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a b s t r a c t

The biomechanical system of voice production has been usually modeled as deterministic.

However, when uncertainties of the parameters are considered, voice production must be

regarded as a stochastic process. We follow a parametric approach for stochastic modeling,

which requires the adoption of random variables to represent the uncertain parameters,

and argue that such an approach improves predictability of the model. For each random

variable, a probability density function is constructed using the maximum entropy princi-

ple. From the output of the model, a probability density function of the voice fundamental

frequency is constructed, for configurations corresponding to male and female larynges,

and compared to experimental data.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In past years several models of voice production (phonation) have been proposed to explain its underlying mechanisms

and to synthesize voice by computer simulation (Cataldo et al., 2006). However, most models are deterministic, whereas

phonation must be regarded as a stochastic process. This stochasticity and its applications have been discussed by many

researchers. Titze (1994) stated that perturbation analysis should be conducted to determine the degree to which the fun-

damental frequency (F0) deviates from a prescribed model. Further, he showed that the distribution of F0 is nearly gaussian,

suggesting that perturbations are primarily random. Pinto and Titze (1990) discussed distributional characteristics of pertur-

bations, and argued that different types of vocal perturbations may have different distributions. Some discussions have been

made to characterize probability distributions of vocal jitter, considering voice signals from normal subjects (e.g., Schoeng-

ten, 2001). Iwata and von Leden (1970) concluded that data from normal adult males yielded normal synchronous curves.

Later, Stone et al. (1976) contested those findings claiming that some results indicated non gaussian distributions.

In this work, the voice production system is considered to be non-deterministic. A version of the popular two-mass model

of the vocal folds (Ishizaka and Flanagan, 1972) is adopted. This model has been widely used (Zhang et al., 2005; Adachi and

Yu, 2005) and the capability of this well-known model to reproduce the vocal folds vibrations has been successfully dem-

onstrated. Some parameters of this model will be characterized as uncertain by using the maximum entropy principle (Kapur

and Kesavan, 1992). This is a powerful technique which allows us to construct probability density functions based on scarce

available information.
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2. Mean model

For the so-called mean model we adopt a version of the two-mass model of the vocal folds proposed by Ishizaka and Flan-

agan (1972), shown in Fig. 1.

Each vocal fold is represented by two-mass systems. The two vocal folds are assumed identical and they move symmet-

rically with respect to the glottal midline, in the horizontal direction.

The dynamics of the system can be written, in a simplified form, by Eq. (1) and (2):

w1ðwÞ _ug þ w2ðwÞjug jug þ w3ðwÞug þ
1
~c1

Z t

0

ðugðsÞ � u1ðsÞÞds� y ¼ 0 ð1Þ

½M� €wþ ½C� _wþ ½K�wþ hðw; _w;ug ; _ugÞ ¼ 0 ð2Þ

where wðtÞ ¼ ðx1ðtÞ; x2ðtÞ;u1ðtÞ;u2ðtÞ;urðtÞÞt ; x1 and x2 are the displacements of the masses, u1 and u2 describe the air volume

flow through the (two) tubes that model the vocal tract, ur is the air volume flow through the mouth, y is the subglottal pres-

sure is denoted by y, ug is the glottal signal, and pr is the radiated pressure at the output and it is given by prðtÞ ¼ urðtÞrr ,
where rr ¼ 128qvc=9p3y22;q is the air density, vc is the sound velocity, and y2 is the radius of the second tube. And also
~c1 ¼ ‘1pr21=qv

2
c , where ‘1 is the length of the first tube, r1 is the radius of the first tube, and l is the shear viscosity coefficient.

Parameters w1;w2;w3;h, as well as matrices ½M�; ½C�; ½K� are obtained from the model proposed by Ishizaka and Flanagan

(1972), after algebraic manipulations.

The expressions of w1;w2;w3 are given here because they contain the parameter ag0 in their equations:
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þ 12‘2g
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 !
; /3ðwÞ ¼ qd1

ag0 þ 2‘gx1
þ qd2

ag0 þ 2‘gx2
þ ~‘1

� �

where ~‘1 ¼ q‘1
2py2

1

; ~‘r ¼ 8q
3p2yn

; r1 ¼ 2
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ffiffiffiffiffiffiffiffiffiffi
qlx
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p
;x ¼

ffiffiffiffiffi
k1
m1

q
; a1 ¼ py21; ~c1 ¼ ‘1py

2
1

qv2c
; ‘1 is the length of the first tube, y1 is the radius of the

first tube, and l is the shear viscosity coefficient. And also, ‘g is the length of the vocal fold and dn is the vocal fold width, with

n ¼ 1;2.

We can note that Eq. (2) describes the vibration problem in each of the two subsystems (vocal folds and vocal tract) and

Eq. (1) is the equation that couples the two subsystems.

The tension parameter is used in order to control the fundamental frequency of the vocal folds. Then, the parameters

m1; k1;m2; k2; kc are written asm1 ¼ bm1=q; k1 ¼ q^k1;m2 ¼ bm2=q; k2 ¼ q^k2; kc ¼ q^kc , in which bm1; ;^k1; bm2; ^k2; ^kc are fixed values.

And, the parameters m1; k1;m2; k2; kc are written as m1 ¼ bm1=q; k1 ¼ q^k1;m2 ¼ bm2=q; k2 ¼ q^k2; kc ¼ q^kc , in which
bm1; ;^k1; bm2; ^k2; ^kc are included in the expressions of the matrices M;C and K.

3. Stochastic model

Three parameters, which are the main responsible for changes of the fundamental frequency, are considered as uncertain:

tension parameter (q), subglottal pressure (y), and neutral glottal area (ag0). The corresponding stochastic equations are ob-

tained from Eqs. (1) and (2), by substituting the parameters by the corresponding random variables Q, Y, and Ag0,

respectively.

Fig. 1. Model used for describing the voice production process.
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Instead of considering that perturbations occur cycle-to-cycle for a fixed set of parameters, an output signal is obtained

for each realization of the three parameters and variations of fundamental frequency of each signal are analyzed. This is pos-

sible if voice production is assumed to be a stationary and ergodic process (see, e.g., Schoengten, 2001). To construct the den-

sity probability functions of the random variables Q, Y and Ag0 we follow the Maximum Entropy Principle (Kapur and

Kesavan, 1992; Jaynes, 1957a,b; Soize, 2001), which consists in maximizing the entropy subjected to constraints defined

by the usable information.

The maximum entropy principle is invoked whenever we have only partial information about a system which can be ex-

pressed in the form of some averages. Uncertainty is the characteristic of such systems. We can note that Ishizaka and Flan-

agan (1972) do not give much information about the values of the parameters, principally about their dispersions.

Letting X be a continuum random variable, the Entropy SðpXÞ (Shannon (1948)) of its probability density function pX is

defined by Eq. (3).

SðpXÞ ¼ �
Z

R

pXðxÞ‘nðpXðxÞÞdx: ð3Þ

The probability density function pX to be constructed is the one with the largest uncertainty, measured by the entropy,

among the sets of all of the probability density functions that verify the constraints defined by the usable information.

The tension parameter is modeled by the random variable Q. The usable information are: (i) its support is �0;þ1½, (ii) its
mean value is EfQg ¼ Ys, (iii) Ef1=Q2g < þ1. Information (iii) is due to M1 ¼ bm1=Q is to be a second-order random variable.

Then, it is necessary that EfM2
1g < þ1 yielding Ef1=Q2g < þ1. Its probability density function is given by

pQ ðqÞ ¼ 1�0;þ1½ðqÞ
1

Q

1

d2Q

 ! 1

d2
Q 1

Cð1=d2Q Þ
q

Q

 ! 1

d2
Q

�1

exp � q

d2QQ

 !
; ð4Þ

where the positive parameter dQ ¼ rQ=Q is the dispersion coefficient, satisfying dQ < 1=
ffiffiffi
2

p
, and rQ is the standard deviation

of Q.

The subglottal pressure is modeled by the random variable Y. The usable information are: (i) its support is �0;þ1½, (ii) its
mean value is EfYg ¼ Y , (iii) The second-order moment of its inverse is finite Ef1=Y2g < þ1. Information (iii) is used because

0, and values near to it, should be repulsive values for Y, since there is a minimum pressure necessary to produce phonation.

The probability density is

pYðyÞ ¼ 1�0;þ1½ðyÞ
1

Y

1

d2Y

 ! 1

d2
Y 1

C 1=d2Y
� �

y

Y

� � 1

d2
Y

�1

exp � y

d2YY

 !
; ð5Þ

where the positive parameter dY ¼ rY=Y is the dispersion coefficient, satisfying dY < 1=
ffiffiffi
2

p
, and rY is the standard deviation

of Y.

The usable information for constructing the probability density function of Ag0 are: (i) its support is �0;þ1½, (ii) its mean

value is EfAg0g ¼ Ag0, and (iii) it is a second-order random variable; it means EfA2
g0g < þ1. The probability density function

of Ag0 is

pAg0
ðag0Þ ¼ 1�0;þ1½e

�k0�k1x�k2x
2 ð6Þ

where k0; k1 and k2 are the values that minimize the function D, given by Eq. (7)

D ¼ k0 þ k1Ag0 þ k2c ð7Þ

with EfX2g ¼ c; c < þ1. A coefficient of dispersion dAg0
¼

rAg0

Ag0
is created, where rAg0 is the standard deviation of Ag0. It can be

proved that c ¼ A2
g0ð1þ d2Ag0

Þ.

4. Numerical examples

A stochastic solver based on a Monte Carlo numerical simulation was used to compute the radiated pressure. For each

independent realization Ag0ðhÞ;YðhÞ, and QðhÞ, a realization of the random fundamental frequency F0ðhÞ is calculated in

the same way as described for the mean model. A convergence analysis with respect to n was carried out studying the con-

vergence of the estimated second-order moment of F0. This convergence analysis was performed for different values of

dY ; dQ ; dAg0
, for nP 500, convergence was always reached. Then, n ¼ 500 was taken for all further estimations. The values

used for simulations to reproduce the signals of voice produced by men and women are based on those ones discussed

by Lucero and Koenig (2005). The density probability functions for 500 realizations of the random variables Q is shown in

Fig. 2 shows, Y and Ag0, and coefficients of dispersion dAg0
¼ dQ ¼ dY ¼ 0:05.

The results are in good agreement with previous experimental measures, (e.g., Titze, 1994). Here, the comparison is sim-

ply qualitative to show that the shapes of the probability density functions are in agree with those ones showed, experimen-

tally, by Titze. And also, we could see that the fundamental frequencies obtained for women are greater than those ones

obtained for men.
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In the following, we will try to validate the development presented here, with solving an inverse problem and comparing

the results obtained with experimental data. Voice signals produced by one person have been analyzed and their statistics

have been compared with simulations. Two examples based on this idea are showed.

In the first example, seven hundred samples of voice signals of a sustained vowel/a/ were recorded from one and each

sample had 0:3s of duration. From the samples, the fundamental frequency was estimated and a probability density function

was constructed and it is shown in Fig. 3 (top), in which the mean value of the fundamental frequency is bmexp
F0

¼ 113 Hz and

the coefficient of dispersion bdexp
F0

¼ bmexp
F0

=brexp
F0

¼ 0:06. Next, the inverse problem was solved, using the measured data as tar-

gets. A simple trial-and-error method yielded Ag0 ¼ 5� 10�2m2;Y ¼ 6600Pa;Q ¼ 0:63; dY ¼ 0:13 and dQ ¼ 0:05. The mean

value of the fundamental frequency obtained by numerical simulation was bmF0 ¼ 112:8Hz, the dispersion coefficient was
bdF0 ¼ bmF0=brF0 ¼ 0:05 and the probability density function obtained is shown in Fig. 3, bottom. As shown, the theoretical re-

sults are in good agreement with the experimental data, which indicates the possibility of characterizing a set of voice sig-

nals by solving an inverse stochastic problem.

A second example is then performed. A voice signal corresponding to a sustained vowel/a/ has been recorded from one

person and 675 frames were obtained from this signal, each one with 0:01s of length and the corresponding fundamental

frequency was calculated for each frame. From the samples, the fundamental frequency was estimated and a probability

density function was constructed and it is shown in Fig. 4 (top). In this case, the mean value of the fundamental frequency

is bmexp
F0

¼ 120:9525Hz and the coefficient of dispersion bdexp
F0

¼ bmexp
F0

=brexp
F0

¼ 0:0171. Next, the inverse problem was solved,

using the measured data as targets. A simple trial-and-error method yielded Ag0 ¼ 5� 10�2m2;Y ¼ 750Pa;Q ¼ 0:66; dAg0
¼
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Fig. 2. Probability density functions of the fundamental frequency for men (top) and women (bottom).
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Fig. 3. Experimental probability density function of the fundamental frequency related to experimental voice signals produced by one person (top)

compared with the probability density function estimated with the stochastic model (bottom) – first example.
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0:03; dY ¼ 0:01; dQ ¼ 0:01. The mean value of the fundamental frequency obtained by numerical simulation was
bmF0 ¼ 120:7694Hz and the dispersion coefficient was bdF0 ¼ bmF0=brF0 ¼ 0:0173. The probability density function obtained

is shown in Fig. 4, bottom. Again, one can note that the theoretical results are in good agreement with the experimental data.

5. Conclusions

A parametric probabilistic approach, based on the Maximum Entropy Principle, was proposed to take into account uncer-

tainties in a biomechanical voice production model. This technique is especially powerful when available experimental data

sets are not sufficiently large, as in the case of phonation.

It may be questioned if a gaussian distribution could have been used to the random variables associated to the uncertain

parameters. Some disadvantages of such distributions are: (1) gaussian random variables vary from minus infinity to plus

infinity, whereas the biomechanical parameters of the model (pressure, vocal fold tension, and glottal area) can not be neg-

ative; (2) let f be the force on the spring, X its displacement and K its stiffness, so that X ¼ f=K . Assume the force is deter-

ministic, and that both the stiffness and the displacement are random. It is natural to consider the expected value of X

finite; that is, EfX2g < þ1 ) Eff 2=K2g < þ1 ) Ef1=K2g < þ1, which is not true for a gaussian random variable.

Experimental data were compared with those ones obtained numerically and the results showed that this model is useful

to understand a little more about the phonation phenomenon.
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