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Abstract

Many engineering materials exhibit �uctuations and uncertainties on their macro-
scopic mechanical properties. This basically results from random �uctuations ob-
served at a lower scale, especially at the mesoscale where microstructural uncer-
tainties generally occur. In the present paper, we �rst propose a complete theore-
tical stochastic framework (that is, a relevant probabilistic model as well as a non-
intrusive stochastic solver) in which the volume fraction at the microscale is modelled
as a random �eld whose statistical reduction is performed using a Karhunen-Loeve
expansion. Then, an experimental procedure dedicated to the identi�cation of the
parameters involved in the probabilistic model is presented and relies on a non-
destructive ultrasonic method. The combination of the experimental results with a
micromechanical analysis provides realizations of the volume fraction random �eld.
In particular, it is shown that the volume fraction can be modelled by a homoge-
neous random �eld whose spatial correlation lengths are determined and may provide
conditions on the size of the meso-volumes to be considered.
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1 Introduction

The introduction of randomness into a mechanical modeling process has re-
ceived a quite large attention from the scienti�c community. In particular,
Stochastic Mechanics has become more widespread mainly due to the devel-
opment of the Stochastic Finite Elements Method (SFEM) - see, for a gen-
eral overview, the book from Ghanem and Spanos [1], as well as the general
reviews [2] [3]. These methods however deal with random properties which
�uctuate at a macroscopic scale (that is for instance, a Young's modulus over
a composite plate) and thus, one can wonder on how such random macro-
scopic properties can be assessed without completely resorting to expensive
and time-consuming material quali�cation loops. In order to achieve such a
rather di�cult task, multi-scale approaches seem to be promising, provided
they can properly integrate, in a way to be de�ned, the random dimension of
the physical phenomenom [23]. Surprisingly, only a few papers were basically
dedicated to such a multi-scale probabilistic approach and the topic (in par-
ticular, the construction of relevant probabilistic models) still remains quite
unexplored [4] [5] [6].
Dealing with composite materials, it is well-known that the randomness is
mainly due to the manufacturing process (combined to the batch-to-batch
variability). The nature of the uncertainties itself basically depends on the
technology or equivalently, on the nature of the composite. Laminates are
typically manufactured using a consolidation process (inside an autoclave for
instance), yielding in most cases to uncertainties on the de�nition of the com-
posite part itself (geometry, thicknesses, etc.). In the case of injection mould-
ing, one may consider three main microstructural features: the �nal length of
the �bers, their orientation and their distribution inside the material. Here,
one typically distinguishes two main cases [22]:

• case of short �ber composites: the initial length of the �bers is quite well
preserved, the orientation is well predicted considering the �ow lines, the
distribution of the �bers is homogeneous over the composite part;

• case of long �ber composites: due to �ber breakage during the process (shear-
ing action in the screw), a length distribution is often observed. Also, de�n-
ing an orientation tensor may be meaningless because the �bers are curved
and so, no particular randomness on orientation can be clearly introduced
(in most cases, the composite may be approximated as isotropic). Finally,
�ber clustering can be observed, leading to random �uctuations of the vol-
ume fraction (see Fig. (1)).

In this paper, we investigate the case of long �ber thermoplastic materials, for
which uncertainties on the volume fraction at a meso-scale are clearly observed
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Figure 1. Fiber clustering in long �ber suspensions (redrawn from [21] [22]).

along both the injection �ow and thickness directions [7]. It is assumed that
a �ber length distribution exists but has a negligible e�ect on the random
macroscopic mechanical behaviour. The main objective of the paper is then
to propose a new methodology that allows to evaluate the impact of such a
microstructural uncertainty at the meso-scale of composite materials.

2 Scales setting

In order to take into account these local �uctuations, as well as to properly
catch the randomness at the meso-scale, we consider three di�erent scales
(namely the microscale, the meso-scale and the macroscale), that are assumed
to be well separated and such as described in G�ar�ajeu and Suquet [8]. Con-
sidering such a double-scale homogenization, one introduces a partition of Ω,
Ω = ∪N∗

j=1Ωj (where Ωj is called �sub-� or �meso-volume�), as shown on Fig.
(2). This scale separation allows to proceed to two successive homogenization
steps:

- the �rst one is performed between the microscale and the meso-scale and
allows to estimate the mechanical e�ective properties of each meso-volume;

- the second one is performed between the meso-scale and the macroscale and
thus, it integrates the random meso-structure of the composite.
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Figure 2. Top: experimental partition and scale separation. Bottom: successive ho-
mogenization procedures.

Considering a two-phase composite material, the volume fractions of rein-
forcement at the micro- and meso-scale will be denoted by f and F respec-
tively. Section (3) presents the general mathematical framework as well as the
stochastic multiscale modelling. The experimental analysis (used for the iden-
ti�cation of parameters involved in the probabilistic model) is then detailed
and discussed in section (4).

3 Proposed stochastic modelling and mathematical framework

Since the volume fraction at the meso-scale �uctuates along both the spatial
axis and the probabilistic dimension, it has to be modelled as a random �eld.
In general, a probabilistic modelling procedure relies on three critical steps:

(1) establishing a suitable representation for the random quantity, as detailed
in section (3.1);

(2) de�ning a strategy in order to identify the parameters involved in the
representation (see section 3.2);

(3) choosing the most relevant stochastic solver taking into account the prob-
abilistic dimension of the problem, as discussed in section 3.3.
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3.1 Construction of a probabilistic model

Since the size of the meso-volume is unknown a priori, it is proposed to model
the microscopic random �eld f , the corresponding random �eld at the meso-
scale F being determined in turn using an average rule (see (3.1.2)).

3.1.1 De�nition of a class of random �elds for modelling the microscopic
random �eld

Let f (x), x ∈ Ω be a random �eld de�ned on a probability space (Θ,F ,P),
indexed by a bounded set Ω in R2 with values in [0, 1] ⊂ R. For θk ∈ Θ, the
mapping x 7→ f (x, θk) from Ω into [0, 1] de�nes a trajectory of the random
�eld. It is assumed that f is a second-order random �eld. Let x 7→ f (x) =
E {f (x)} be its mean function from Ω into [0, 1], in which E denotes the
mathematical expectation. Let (x,x') 7→ Rf (x,x') = E {f (x) f (x')} be its
autocorrelation function from Ω×Ω into R. Finally, let (x,x') 7→ Cf (x,x') =

E
{(
f (x)− f (x)

) (
f (x')− f (x')

)}
= Rf (x,x') − f (x) f (x') be its cova-

riance function from Ω×Ω into R. It is assumed that the correlation function
satis�es the following condition:∫

Ω

∫
Ω
|Rf (x,x')|2 dxdx' < +∞ (1)

which makes the correlation operator a Hilbert-Schmidt operator, allowing one
to proceed to a statistical reduction of the random �eld, as further detailed in
section (3.1.4).

3.1.2 De�nition of the set of experimental realizations

We consider pexp composite plates which are interpreted as pexp independent
realizations of the microscopic random �eld. Since the volume fraction is an ad-
ditive property, realizations of the mesoscopic random �eld F are determined
from the following average rule:

∀k ∈ {1, ..., pexp} , ∀j ∈ {1, ..., N∗} , F exp (j) (θk) =
1

tm

tm∑
t=1

f exp (t) (θk) (2)

where tm is a parameter and a partition on the meso-volume Ωj (involving
a set of micro-volumes {ωl}l), Ωj =

⋃
l ωl, was introduced and is such that

f exp (t) (θk) = f (x, θk) , x ∈ ωt. Recalling the partition introduced in section
(2), the set of experimental results is then de�ned as:

Sexp = {f exp (xi, θj) , i ∈ {1, ..., N} , j ∈ {1, ..., pexp}} (3)
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3.1.3 Estimation of the mean and correlation functions from experimental
results

Unbiased estimates of the mean and correlation functions are determined from
Sexp and are respectively given by:

f̂
pexp

(xi) =
1

pexp

pexp∑
k=1

f (xi, θk) (4)

Ĉf (xi,xj) =
1

1− pexp

pexp∑
k=1

(
f (xi, θk)− f̂

pexp
(xi)

) (
f (xj, θk)− f̂

pexp
(xj)

)
(5)

for (i, j) ∈ {1, ..., N}2.

3.1.4 Statistical reduction of the random �eld

Since the number of parts N involved in the partition may become quite large,
it is convenient to proceed to a reduction of the random �eld by means of a
Karhunen-Loeve expansion [10]. Thus, the random �eld is next written as:

fM (x) ≈ f (x) +
M∑

α=1

√
λαηαψα (x) (6)

whereM should be lower than N . Let {λα}M
α=1 and {ψα}M

α=1 be the eigenvalues
and eigenvectors of the covariance operator, that is, they satisfy the following
eigenvalue problem (see [10]):∫

Ω
Cf (x,x')ψα (x') dx' = λαψα (x) (7)

which has to be solved numerically in the present case [1]. Making use of a
collocation method, Eq. (7) is classically converted into the following matrix
eigenproblem:

Ĉf Ψ = ΛΨ (8)

where Ψ and Λ are the modal matrix (whose colums will be denoted by ~ψα)
and the canonical form of Ĉf respectively. It is worth noticing that Eq. (6)
basically corresponds to a truncated representation introducing an error of
approximation. It can then be proved that the norm of the error takes the
form [11]:

E
{
||f − fM ||2H

}
=
∫
Ω
tr [Cf (x,x)] dx−

M∑
k=1

λk (9)

Eq. (9) allows one to estimate the norm of the error resulting from the trun-
cation and thus, the determination of an optimal order of expansion M . Note
that such a value can also be obtained analysing the convergence of the func-
tion p 7−→ ∑p

i=1 λ
2
i .
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The random vector η = (η1, ..., ηM) is such that:

E {ηα} = 0, E {ηαηβ} = δαβ (10)

(where δ is the Kronecker delta) and has a probability distribution which
depends on the probability law of the random �eld f and which can be con-
structed as explained in [11]. Making use of the orthogonality of the basis
{ψα}M

α=1 in Eq. (6), one computes the independent realizations ηα (θj):

ηα (θj) =
1√
λα

〈
f (θj)− f̂, ~ψα

〉
(11)

where f (θj) = (f (x1, θj) , ..., f (xN , θj)), f̂ =
(
f̂ (x1) , ..., f̂ (xN)

)
and 〈·, ·〉 de-

notes the classical inner product in RN . The centred random vector η can
be classically represented using a Polynomial Gaussian Chaos expansion ([11]
[12]) which is written at the q-th order as:

η =
q∑

γ,|γ|=1

zγ
Hγ (X)√

γ!
(12)

where γ is a multi-index (γ1, ..., γm) ∈ Nm (with |γ| =
∑m

k=1 γk ≤ q and
γ! =

∏m
k=1 γk!), X is am-dimensional zero-mean Gaussian vector (E {XiXj} =

δij), Hγ (X) =
∏m

k=1 hγk
(Xk) (where hγk

(x) is the one-dimensional Hermite
polynomial of order γk) and zγ is a vector in RM . Combining the relation
E {ηαηβ} = δαβ with Eq. (12) yields:

q∑
γ,|γ|=1

zγzγ
T = IM (13)

where IM is the M ×M unit matrix. Denoting by Q the number of terms in
the sum above, it is readily seen that a necessary condition for Eq. (13) to
hold is that:

M ≤ Q =
(m+ q)!

m!q!
− 1 (14)

which provides an usefull inequality between the size m of the Gaussian germ
X, the order q of the Polynomial Chaos expansion and the order of trunca-
ture M of the Karhunen-Loeve representation. Since it is known that adding
terms in the Polynomial Chaos expansion does not necessarily improve the
approximation (in practice, a convergence analysis has to be performed) [16]
and since an optimal value for M can be derived from Eq. (9), Eq. (14) can
then be used for choosing a suitable size m of the germ.

Remark: despite the fact that there is a straightforward formal analogy be-
tween Eq. (6) and the formulation used by G�ar�ajeu and Suquet [8] (see their
Eq. (3.1)), it must be emphasized that Eq. (6) integrates explicitly the random-
ness of the �uctuations.
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3.2 Identi�cation of the Chaos coe�cients

Let
{
Ξ1,Ξ2, ...,Ξpexp

}
be pexp experimental realizations of random vector η

(with Ξi = η (θi) and Ξi
j = ηj (θi)), computed from Sexp using Eq. (11). Let

Z be the M × Q matrix whose colums are the vectors zγ. Eq. (13) can be
rewritten as:

ZZT = IM (15)

Let pη be the probability density function of η. Finally, let C be the manifold
de�ned by Eq. (13). The estimation of Z can be performed using the Maximum
Likelihood method, as detailed in [9]. The identi�cation problem can then be
stated as follows:

R1 : max
Z∈C

L
(
Ξ1, ...,Ξpexp ;Z

)
(16)

where L is the likelihood function de�ned as:

L
(
Ξ1, ...,Ξpexp ;Z

)
=

pexp∏
i=1

pη

(
Ξi,Z

)
(17)

In practice, such an optimization problem is very time-consuming because of
the estimation of the joint probability density functions. Thus, one substitutes
L by L̃, given by [9]:

L̃
(
Ξ1, ...,Ξpexp ;Z

)
=

pexp∏
i=1

M∏
j=1

pηj

(
Ξi

j,Z
)

(18)

Note that the approximation de�ned by Eq.(18) is relatively e�cient because
the random variables ηα, while statistically dependent, are uncorrelated. This
yields the following approximation R2 of R1:

R2 : max
Z∈C

L̃
(
Ξ1, ...,Ξpexp ;Z

)
(19)

Furthermore, for computational purposes, one classically considers the log-
likelihood function L̃log = log10

(
L̃
)
, resulting in the �nal approximation R3

of the initial optimization problem R1:

R3 : max
Z∈C

L̃log
(
Ξ1, ...,Ξpexp ;Z

)
(20)

where

L̃log
(
Ξ1, ...,Ξpexp ;Z

)
=

pexp∑
i=1

M∑
j=1

log10

[
pηj

(
Ξi

j,Z
)]

(21)

For physical systems, this optimization problem is basically very high-dimensio-
nal and it appears that classical deterministic optimization algorithms are not
suitable for such an analysis. Moreover, the algebraic constraint de�ned by
Eq. (15) makes genetic algorithms une�ective because this property can not
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be reasonably transmitted between two successive generations. Thus, it follows
that a random search procedure has to be used in order to solve R3. The prob-

lem is then reduced to (i) randomly generate a set of matrices Z = {Zi}N
OPT

i=1

(where NOPT should be as large as possible) satisfying Eq. (15), (ii) evaluate

for each Z the log-likelihood function L̃log
(
Ξ1, ...,Ξpexp ;Z

)
. The general algo-

rithm is as follows [9]:

(i) Procedure for generating the set {Zi}N
OPT

i=1 :

(1) Randomly generate a matrix Z0 whose components are independent uni-
form real random variables in [−1, 1].

(2) Let Y0 = Z0Z
T
0 and consider its Cholesky decomposition, Y0 = LTL.

(3) De�ne Zi as: Zi = L-TZ0.

(ii) Procedure for estimating the log-likelihood function

(1) Randomly generate realizations of the Gaussian germ X.
(2) Compute the corresponding realizations of η using Eq. (12).

(3) Estimate
{
pηj

(
Ξi

j,Z
)}

i,j
using classical methods.

(4) Compute L̃log
(
Ξ1, ...,Ξpexp ;Z

)
.

Let MM,Q (R) be the set of all M × Q real matrices. For A ∈ MM,Q (R), let

‖A‖∞ be the in�nite norm of A de�ned by ‖A‖∞ = maxi=1,...,M
∑Q

j=1 |Aij|.
For NOPT = 10000, the random search procedure is illustrated on Fig. (3),

where for each Z ∈ Z, the pair
(
‖Z‖∞ ,−L̃log

(
Ξ1, ...,Ξpexp ;Z

))
is reported.

3.3 Stochastic solver

The aim of the section is to propose a numerical strategy for solving the
stochatic homogenization problem which corresponds to the presented model.
More precisely, we want to characterize the macroscopic stochastic sti�ness

tensor
˜̃C =

˜̃C (θ).

Considering an isotropic composite, one has:
˜̃C (θ) = 3

˜̃
k (θ) J+2˜̃µ (θ) K, where˜̃

k (θ) and ˜̃µ (θ) are the stochastic overall bulk and shear moduli of the material
respectively (J = 1

3
i ⊗ i, K = I − J, i and I are the second and symmetric

fourth-order identity tensors respectively).
˜̃
k (θ) and ˜̃µ (θ) are also represented

using a Polynomial Gaussian Chaos expansion:

˜̃
k (θ) =

p∑
χ,|χ|=1

kc
χ

Hχ (X)√
χ!

, ˜̃µ (θ) =
p∑

χ,|χ|=1

µc
χ

Hχ (X)√
χ!

(22)
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Figure 3. Graph of the pairs
(
‖Z‖∞ ,−L̃log

(
Ξ1, ...,Ξpexp ;Z

))
for NOPT = 10000,

horizontal axis: ‖Z‖∞, vertical axis: −L̃log
(
Ξ1, ...,Ξpexp ;Z

)
.

The parameters
{
kc

χ

}
χ
and

{
µc

χ

}
χ
are determined using the orthogonality of

the Hermite polynomials, that is:

kc
χ =

1√
χ!
E
{˜̃
k (θ)Hχ (X)

}
, µc

χ =
1√
χ!
E
{˜̃µ (θ)Hχ (X)

}
(23)

Note that the computation of the mathematical expectation E
{˜̃
k (θ)Hχ (X)

}
corresponds to a multi-dimensional integration process:

E
{˜̃
k (θ)Hχ (X)

}
=
∫

Rm

˜̃
k (θ)Hχ (x)φm (x) dx (24)

where φm is the m-dimensional canonical normal density. Eq. (24) can be
solved by Monte-Carlo numerical simulations [13] which require the compu-
tation of the macroscopic moduli for each realization. For each realization of
X, Eqs. (6) and (12) provide the realization of the stochastic process f(x, θk),
from which the realization of F (x, θk) is computed in turn using Eq. (2). Two
successive homogenization procedures are then performed and provide the re-

alization
˜̃C (θk) (and thus,

˜̃
k (θk) and ˜̃µ (θk)). Those calculations are performed

as follows:

• from the microscale to the meso-scale: for each meso-volume Ωj (1 ≤ j ≤
N∗), the volume fraction F (j)(θk) = F (x, θk, ) , x ∈ Ωj is derived from Eqs.
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(2) and (6). Then, a mean-�eld approach or any computational homogeniza-
tion procedure can be used for estimating the mesoscopic properties (see [15]
[26]). Thus, we derive the realizations of the N∗ mesoscopic sti�ness tensors{
C̃(r)(θk)

}N∗

r=1
.

• from the meso-scale to the macroscale: once the mesoscopic sti�ness tensors
have been determined, a suitable linear homogenization scheme can be used
in order to determine the overall mechanical properties of the realization of
the composite material with random meso-structure.

4 Experimental analysis and micromechanical interpretation

4.1 Principle and application

The experimental identi�cation of the parameters involved in the probabilistic
model basically requires the consideration of ν realizations of the microscopic
random �eld. The samples are composite plates de�ned with respect to a
Cartesian coordinate system (Oxyz) (see Fig. (2)). The dimensions in the Ox,
Oy and Oz directions are respectively denoted by hx, hy et hz, and are such
that hz << hx et hz << hy. The random �eld is then considered as two-
dimensional.
Dealing with a randomly �uctuating volume fraction, a classical method would
be to weigh composite samples twice, before and after the resin burn-o�. How-
ever, such a methodology has two main drawbacks:

(1) it is time-consuming and hardly achievable in practice, taking into ac-
count the number of samples that are necessary to achieve converged
probabilistic results,

(2) it is a destructive control technique.

Of the above two points, the �rst one is certainly the most problematic and
then, de�ning another experimental identi�cation procedure turns out to be
necessary. The basic idea relies on the fact that in most cases, the matrix
and the reinforcing material do have very di�erent ultrasonic properties and
thus, one can expect the velocities of some ultrasonic waves (propagating in
directions to be determined) to be closely link to the volume fraction. Putting
this within a more theoretical framework and recalling that the composite can
be considered as isotropic, one introduces the velocity of longitudinal waves
propagating inside an isotropic body (see for instance [24]):

Vl =

√√√√ E(1− ν)

ρ(1 + ν)(1− 2ν)
(25)
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where E, ν and ρ are the Young's modulus, the Poisson ratio and the density
of the volume under investigation, respectively.
Since the e�ective mechanical properties of this volume can be derived from
an usual micromechanical analysis (see Fig. (4)), Eq. (25) provides a relation
between the volume fraction inside the domain and the velocity of longitudi-
nal waves propagating inside it. It is worth noticing that using such a non-
destructive procedure, the size of the meso-volume becomes adaptive.

Figure 4. Equivalence between the heterogeneous solid and the associated homoge-
neous solid.

Remark 1: the methodology can still be applied considering any �ber orienta-
tion tensor (and thus, to any anisotropic medium). In this case, the ultrasonic
scannings are performed �rst (a preliminary analysis on the morphology is still
necessary to de�ne the waves to be considered) and microstructural informa-
tion (at least, the distribution and orientation tensors of the �bers) is then de-
termined from classical destructive methods. However, considering anisotropic
body signi�cantly complicates the non-destructive analysis, since combinations
of di�erent waves have to be considered [24].

Remark 2: note that the injection moulding does not introduce any porosi-
ties (which could disturb the ultrasonic testing).

As an application, we consider an isotropic polypropylen matrix reinforced
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by long E glass �bers. The properties of each phase are:

E
0 = 1.535 [GPa], ν0 = 0.41, ρ0 = 900 [kg.m−3]

Ef = 73 [GPa], νf = 0.21, ρf = 2600 [kg.m−3]
(26)

where the mechanical properties of the matrix were experimentally determined
(a database was used for the �bers). Combining Eq. (25) with a micromechan-
ical analysis (detailed in appendix A), one obtains the predictions illustrated
on Fig. (5), on which the prediction of a classical rule of mixture on velocities
is also reported.
As expected, the function is increasing on the interval of velocities for the

 

Figure 5. Predictions of the volume fraction using di�erent homogenization schemes.

three estimates which naturally tend to 0 for velocities close to the velocity
inside the non-reinforced matrix (around 1991 m.s−1). As expected, it is seen
that:

• the dilute and Mori-Tanaka estimates coincide for small velocities or equiv-
alently, for small volume fractions (typically less than 0.07),

• the Eshelby's scheme clearly overestimates the volume fraction and is not
suitable for the analysis.
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It is also interesting to note that for the interval of velocities in consideration
(between 1991m.s−1 and 2800m.s−1), the mapping performed using the Mori-
Tanaka scheme tends to slightly smooth the resulting random �eld compared
to the one achieved using a simple rule of mixture on velocities (note that this
observation is basically reversed for V > 2900 m.s−1 approximately). Thus,
the Mori-Tanaka scheme will be used for the mapping between the velocity
and volume fraction random �elds (see appendix A).
In the following, we consider pexp = 110 realizations of the random �eld. The
ultrasonic sensor used for the analysis investigates a cylindrical volume of
diameter D = 14 mm which is close to the characteric length of the �ber
(around 8 mm). Samples are composite plates whose total dimensions are
hx = 260 mm, hy = 150 mm et hz = 3 mm respectively (see Fig. (6) for a
general view of the experimental device). The analysis was performed over a
reduced domain of length hexpx = 158mm and width hexpy = 98 mm (see Fig.
(7)), �nally introducing N = 84 micro-volumes.

 

Figure 6. Experimental device: robotic displacement and ultrasonic sensor.

4.2 Experimental results

An experimental realization of the random �eld f , determined combining the
velocity measurements with the micromechanical analysis, is shown on Fig.
(8) which illustrates how the volume fraction (at the micro-scale) �uctuates
over the composite part. For x in Ω, the graph of the mean function x 7→ f (x)
is shown on Fig. (9) and demonstrates that the random �eld realizations do
not exhibit any particular boundary e�ect (see section (4.3)). The correlation
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Figure 7. Composite plate and zone under experimental investigation.

 

Figure 8. Volume fraction random �eld, experimental realization 5.

matrix Rc
f , whose components are given by:

[
Rc

f

]
ij

=
Ĉf (xi,xj)

σ̂f (xi) σ̂f (xj)
(27)

(where σ̂f is the standard deviation estimate of random �eld f : σ̂f (xi) =√
Ĉf (xi,xi)), is also represented in a meshed view on Fig. (10) (see section

(4.3)). Fig. (11) shows the graphs of three marginal probability density esti-
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Figure 9. Graph of the mean function x 7→ f (x).

Figure 10. Meshed representation of the correlation matrix.

mates, computed from Sexp using Eq. (11). The convergence analysis of the
statistical reduction is performed using the graph of function p 7−→ ∑p

i=1 λ
2
i

shown on Fig. (12). It is seen that the approximation de�ned by Eq. (6) can
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Figure 11. Examples: graphs of the marginal probability density estimates of η1

(solid line), η10 (dashed line) and η20 (dotted line).

be reasonably written considering M = 41.

 

Figure 12. Graph of the function: p 7−→
∑p

i=1 λ2
i .
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4.3 On the stationarity of the random �eld

We assume that the domain under investigation is far enough from the edges
of the composite plate (see Fig. (7)), so that there is no boundary e�ect. Then,
we assume that the random �eld f can be approximated by a homogeneous
random �eld f s. Note that this basically results in introducing a model uncer-
tainty that will be discussed in a forthcoming paper. As an illustration, let f̂

be the overall mean value estimate, de�ned by f̂ = 1
Npexp

∑N
i=1

∑pexp
k=1 f (xi, θk).

The 2D graph of the mean function is compared to the graph of the overall
mean value on Fig. (13). It is readily seen that the mean function slightly
�uctuates around f̂ (with a coe�cient of variation which is less than 5%) and

thus, it can be approximated by the function x 7→ f̂ .

 
 

 

Figure 13. Graphs of the mean functions: x 7→ f
(
x, yi

)
, i = 1..7 (solid lines) and

x 7→ f̂ (dash line).

Then, Eq. (6) becomes:

f s41 (x) ≈ f̂ +
41∑

α=1

√
λαηαψα (x) (28)

Furthermore, it follows that the correlation function only depends on the rel-
ative position of points x and x' and is typically formalized using the lag
vector τ = x−x' [25]. Considering the experimental data (see Figs. (10), (14)
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and (15)), we further assume an exponential correlation structure, so that the
normalized correlation function is written as:

ρf (τ) = exp(− τx
Lx

− τy
Ly

) (29)

where τu and Lu are the component of τ and the spatial correlation length in
the direction u, u = x or y, respectively. Using a classical least-square method,
one computes the experimental spatial correlation lengths Lx and Ly:

Lexpx ≈ 24mm

Lexpy ≈ 6mm
(30)

The �tted correlation function is illustrated on Fig. (16).
It is interesting to note that Lx >> Ly, which is physically consistent (since

 

Figure 14. Graph of the function τx 7→ exp(−τx/Lx) (marker: experimental value,
solid line: modelling), horizontal axis: τx.

the �ow lines are in the direction x). Furthermore, this result suggests the
following conditions on the length ax and width ay of the meso-volume:

ax ≥ Lexpx , ay ≥ Lexpy (31)

and
ax

ay

≈ Lexpx

Lexpy
(32)
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Figure 15. Graph of the function τy 7→ exp(−τy/Ly) (marker: experimental value,
solid line: modelling), horizontal axis: τy.

 

 

Figure 16. Graph of the correlation function with �tted parameters.

5 Conclusion

The main objective of this study is the characterization of volume fraction
stochastic �uctuations in �ber reinforced composites. For this purpose, a
theoretical stochastic framework and the associated experimental investiga-
tion have been proposed. Relevant scales (namely, the micro-, meso- and
macroscale) are �rst introduced and allows one to proceed to two successive
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homogenizations. Then, considering the nature of the �uctuations (along both
the spatial axis and the probabilistic dimension), the volume fraction at the
microscale is modelled as a random �eld and the construction of a suitable
probabilistic model is proposed.
More precisely, a statistical reduction of the random �eld is performed us-
ing a Karhunen-Loeve expansion and the probabilistic interpolation of the
random vector involved in the representation is carried out using a Polyno-
mial Gaussian Chaos expansion. The identi�cation of the Chaos coe�cients is
classically carried out using the Maximum Likelihood Principle, leading to a
high-dimensional optimization problem solved by a random search. Assuming
an isotropic elasticity, the random e�ective bulk and shear moduli are further
represented using a Polynomial Gaussian Chaos expansion whose coe�cients
can be determined coupling the double-scale homogenization procedure with
a non-intrusive stochastic solver.
An experimental procedure dedicated to the identi�cation of the parameters
involved in the probabilistic model is also presented and relies on velocity mea-
surements (using a non-destructive ultrasonic method). The combination of
these experimental results with a micromechanical analysis basically provides
realizations of the volume fraction random �eld. In particular, it is seen that
the volume fraction can be modelled by a homogeneous random �eld whose
spatial correlation lengths are determined and may provide conditions on the
size of the meso-volumes to be considered. The impact of such volume fraction
random �uctuations on the stochastic macroscopic mechanical properties will
be presented in a forthcoming paper.
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A Micromechanical analysis

The aim of this appendix is to estimate the e�ective mechanical properties of
the volume under consideration and thus, to determine the relation between
the volume fraction and the velocity Vl. For this purpose, we consider the
Mori-Tanaka estimate (i.e. the matrix is considered as the reference medium
and is subjected to its own stress, see [17] [15] [18]), which allows to take
into account the interactions between the inhomogeneities. The choice of this
homogenization scheme is justi�ed by the �matrix-inclusion� morphology of
the studied material as well as by the expected mean volume fraction (lower
than 20%). The isotropic e�ective sti�ness tensor Chom provided by the Mori-
Tanaka scheme is given by:

Chom
MT = C(0) +

N∑
r=1

c(r)
[(

C(r) − C(0)
)−1

+ P(r)
i

]−1
(

N∑
s=0

c(s)A(s)
i

)−1

(A.1)

where A(s)
i is the strain concentration tensor for the phase s, de�ned as:

A(s)
i =

[
I + P(s)

i

(
C(s) − C(0)

)]−1
(A.2)

C(0) is the sti�ness tensor of the reference medium (that is, the matrix), c(r) and
C(r) are the volume fraction and the sti�ness tensor of phase r, respectively.
P(r)

i is the Hill tensor of the inclusion r (we recall that P(r)
i = Sr

ESH : (C0)
−1
,

where Sr
ESH is the Eshelby tensor of the inhomogeneity, see [19]) and I is the

symmetric fourth-order identity tensor (2Iijkl = δikδjl + δilδjk, where δij is
the Kronecker delta). Here, a phase r basically corresponds to �bers whose
orientation is de�ned by the same unit normal nr. Since �bers di�er only in
orientation, one has:

∀k ∈ [1, N ] , C(k) = C(f) (A.3)
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where C(f) is the sti�ness tensor of the �ber. Taking into account interactions
between the �bers, one classically introduces the integral form of Eq. (A.1),
substituting for instance:(

N∑
s=0

c(s)A(s)
i

)−1

−→
(

(1− c)I +
c

4π

∫
||n||=1

A(s)
i dS

)−1

(A.4)

where c is the volume fraction of �bers inside the volume under consideration.
Finally, the e�ective sti�ness tensor is now given by:

Chom
MT = C(0) + c

4π

∫
||n||=1

[(
C(f) − C(0)

)−1
+ P(r)

i

]−1

dS

×
(
(1− c)I + c

4π

∫
||n||=1 A(s)

i dS
)−1

(A.5)

We further assume that the curves of the �bers are su�ciently small so that the
Eshelby tensor of a straight �ber can be substituted for the one corresponding
to a (curved) long �ber (see Fig. (A.1)). Let us now consider the well-known

Figure A.1. Schematic of the equivalence between real medium (curved �bers) and
modelling (straight �bers).

Walpole basis {Ei}6
i=1 [20],

E1 = 1
2
iT ⊗ iT , E2 = iN ⊗ iN

E3 = iT⊗iT − E1, E4 = iT⊗iN + iN⊗iT
E5 = iN ⊗ iT , E6 = iT ⊗ iN

(A.6)

where iN = n⊗n, iT = 1− iN and 2(a⊗b)ijkl = aikbjl + ailbjk for any second-
order tensors a and b. We recall that any transversely isotropic fourth-order
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tensor D can be expressed as:

D = cE1 + dE2 + eE3 + fE4 + gE5 + hE6 = [c, d, e, f, g, h] (A.7)

and then, basic tensor operations simply reduce to elementary algebraic op-
erations [20]. Letting by {Ei}r the basis associated with normal nr and phase
r, one has:

Sr
ESH =

(
1

2(1− ν0)
, 0,

1

4

3− 4ν0

1− ν0
, 0, 0,

ν0

2(1− ν0)

)
r

(A.8)

and (
C(0)

)−1
=

1

E0

(
1− ν0, 1, 1 + ν0, 1 + ν0,−ν0,−ν0

)
r

(A.9)

so that:

P(r)
i =

(
1− ν0(1 + 2ν0)

2E0(1− ν0)
, 0,

(3− 4ν0)(1 + ν0)

4E0(1− ν0)
, 0, 0, 0

)
r

(A.10)

where E0 and ν0 are the Young's modulus and the Poisson ratio of the isotropic
matrix, respectively. Here, the index r means that the Walpole basis is ex-
pressed in {Ei}r. It is readily seen that the integration over the unit sphere in
Eq. (A.5) basically results in integrating the Walpole basis. Making use of

1

4π

∫
||n||=1

n⊗ ndS =
1

3
1,

1

4π

∫
||n||=1

n⊗ n⊗ n⊗ ndS =
1

3
J +

2

15
K (A.11)

where J and K are the classical symmetric fourth-order tensors de�ned by
J = 1

3
i ⊗ i and K = I − J (i is the second-order symmetric identity tensor :

iij = δij), one easily proves that:

< E1 >= 2
3
J + 1

15
K, < E2 >= 1

3
J + 2

15
K

< E3 >=< E4 >= 2
5
K, < E5 >=< E6 >= 2

3
J− 2

15
K

(A.12)

where < Ei >= 1
4π

∫
||n||=1 EidS. Combining Eqs. (A.1) and (A.12), one derives

the e�ective sti�ness tensor Chom and then, the overall properties Ehom and
νhom (whose expressions are not be provided here, given their complexity).
Finally, the density of the composite is obtained from the rule of mixture:

ρhom = cρf + (1− c)ρ0 (A.13)

where ρ0 and ρf are the densities of the matrix and �bers respectively.

Substituting the micromechanical predictions into Eq. (25), one �nally de-
�nes a function Λ: c −→ Vl = Λ(c) which can be inversed and yields, from
a measured velocity �eld, the corresponding estimate of the volume fraction

25



�eld. Note that for each realization of the random �eld and for each meso-
volume Ωj, one obviously takes c = F (j)(θk) (see section (3.3)).

Remark: assuming that the interactions between �bers are negligible (that is,
for c −→ 0), one may consider the dilute scheme, also known as the Eshelby's
solution. The corresponding e�ective sti�ness tensor is then given by:

Chom
ESH = C(0) +

c

4π

∫
||n||=1

[(
C(f) − C(0)

)−1
+ P(r)

i

]−1

dS (A.14)

and can be computed using the same methodology as for the Mori-Tanaka
estimate.
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