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wny engineering mterils exhiit )ututions nd unertinties on their mroE sopi mehnil propertiesF his silly results from rndom )ututions oE served t lower sleD espeilly t the mesosle where mirostruturl unerE tinties generlly ourF sn the present pperD we (rst propose omplete theoreE til stohsti frmework @tht isD relevnt proilisti model s well s nonE intrusive stohsti solverA in whih the volume frtion t the mirosle is modelled s rndom (eld whose sttistil redution is performed using urhunenEvoeve expnsionF henD n experimentl proedure dedited to the identi(tion of the prmeters involved in the proilisti model is presented nd relies on nonE destrutive ultrsoni methodF he omintion of the experimentl results with miromehnil nlysis provides reliztions of the volume frtion rndom (eldF sn prtiulrD it is shown tht the volume frtion n e modelled y homogeE neous rndom (eld whose sptil orreltion lengths re determined nd my provide onditions on the size of the mesoEvolumes to e onsideredF

Introduction

he introdution of rndomness into mehnil modeling proess hs reE eived quite lrge ttention from the sienti( ommunityF sn prtiulrD tohsti wehnis hs eome more widespred minly due to the develE opment of the tohsti pinite ilements wethod @piwA E seeD for genE erl overviewD the ook from qhnem nd pnos ID s well s the generl reviews P QF hese methods however del with rndom properties whih )utute t mrosopi sle @tht is for instneD oung9s modulus over omposite plteA nd thusD one n wonder on how suh rndom mroE sopi properties n e ssessed without ompletely resorting to expensive nd timeEonsuming mteril quli(tion loopsF sn order to hieve suh rther di0ult tskD multiEsle pprohes seem to e promisingD provided they n properly integrteD in wy to e de(nedD the rndom dimension of the physil phenomenom PQF urprisinglyD only few ppers were silly dedited to suh multiEsle proilisti pproh nd the topi @in prE tiulrD the onstrution of relevnt proilisti modelsA still remins quite unexplored R S TF heling with omposite mterilsD it is wellEknown tht the rndomness is minly due to the mnufturing proess @omined to the thEtoEth vriilityAF he nture of the unertinties itself silly depends on the tehnology or equivlentlyD on the nture of the ompositeF vmintes re typilly mnuftured using onsolidtion proess @inside n utolve for instneAD yielding in most ses to unertinties on the de(nition of the omE posite prt itself @geometryD thiknessesD etFAF sn the se of injetion mouldE ingD one my onsider three min mirostruturl feturesX the (nl length of the (ersD their orienttion nd their distriution inside the mterilF rereD one typilly distinguishes two min ses PPX

• se of short (er ompositesX the initil length of the (ers is quite well preservedD the orienttion is well predited onsidering the )ow linesD the distriution of the (ers is homogeneous over the omposite prtY • se of long (er ompositesX due to (er rekge during the proess @sherE ing tion in the srewAD length distriution is often oservedF elsoD de(nE ing n orienttion tensor my e meningless euse the (ers re urved nd soD no prtiulr rndomness on orienttion n e lerly introdued @in most sesD the omposite my e pproximted s isotropiAF pinllyD (er lustering n e oservedD leding to rndom )ututions of the volE ume frtion @see pigF @IAAF sn this pperD we investigte the se of long (er thermoplsti mterilsD for whih unertinties on the volume frtion t mesoEsle re lerly oserved Email address: guilleminot@ensm-douai.fr @tohnn quilleminotAF P pigure IF pier lustering in long (er suspensions @redrwn from PI PPAF long oth the injetion )ow nd thikness diretions UF st is ssumed tht (er length distriution exists ut hs negligile e'et on the rndom mrosopi mehnil ehviourF he min ojetive of the pper is then to propose new methodology tht llows to evlute the impt of suh mirostruturl unertinty t the mesoEsle of omposite mterilsF 2 Scales setting sn order to tke into ount these lol )ututionsD s well s to properly th the rndomness t the mesoEsleD we onsider three di'erent sles @nmely the mirosleD the mesoEsle nd the mrosleAD tht re ssumed to e well seprted nd suh s desried in q § r § jeu nd uquet VF gonE sidering suh douleEsle homogeniztionD one introdues prtition of ΩD Ω = ∪ N * j=1 Ω j @where Ω j is lled suE or mesoEvolumeAD s shown on pigF @PAF his sle seprtion llows to proeed to two suessive homogeniztion stepsX the (rst one is performed etween the mirosle nd the mesoEsle nd llows to estimte the mehnil e'etive properties of eh mesoEvolumeY the seond one is performed etween the mesoEsle nd the mrosle nd thusD it integrtes the rndom mesoEstruture of the ompositeF Q pigure PF opX experimentl prtition nd sle seprtionF fottomX suessive hoE mogeniztion proeduresF gonsidering twoEphse omposite mterilD the volume frtions of reinE forement t the miroE nd mesoEsle will e denoted y f nd F respeE tivelyF etion @QA presents the generl mthemtil frmework s well s the stohsti multisle modellingF he experimentl nlysis @used for the idenE ti(tion of prmeters involved in the proilisti modelA is then detiled nd disussed in setion @RAF 3 Proposed stochastic modelling and mathematical framework ine the volume frtion t the mesoEsle )ututes long oth the sptil xis nd the proilisti dimensionD it hs to e modelled s rndom (eldF sn generlD proilisti modelling proedure relies on three ritil stepsX @IA estlishing suitle representtion for the rndom quntityD s detiled in setion @QFIAY @PA de(ning strtegy in order to identify the prmeters involved in the representtion @see setion QFPAY @QA hoosing the most relevnt stohsti solver tking into ount the proE ilisti dimension of the prolemD s disussed in setion QFQF R QFI gonstrution of proilisti model ine the size of the mesoEvolume is unknown prioriD it is proposed to model the mirosopi rndom (eld f D the orresponding rndom (eld t the mesoE sle F eing determined in turn using n verge rule @see @QFIFPAAF QFIFI he(nition of lss of rndom (elds for modelling the mirosopi rndom (eld vet f (x)D x ∈ Ω e rndom (eld de(ned on proility spe (Θ,

F, P)D indexed y ounded set Ω in R 2 with vlues in [0, 1] ⊂ RF por θ k ∈ ΘD the mpping x → f (x, θ k ) from Ω into [0, 1] de(nes trjetory of the rndom (eldF st is ssumed tht f is seondEorder rndom (eldF vet x → f (x) = E {f (x)} e its men funtion from Ω into [0, 1]D in whih E denotes the mthemtil expettionF vet (x, x') → R f (x, x') = E {f (x) f (x')} e its utoorreltion funtion from Ω × Ω into RF pinllyD let (x, x') → C f (x, x') = E f (x) -f (x) f (x') -f (x') = R f (x, x') -f (x) f (x'
) e its ovE rine funtion from Ω × Ω into RF st is ssumed tht the orreltion funtion stis(es the following onditionX

Ω Ω |R f (x, x')| 2 dxdx' < +∞ @IA
whih mkes the orreltion opertor rilertEhmidt opertorD llowing one to proeed to sttistil redution of the rndom (eldD s further detiled in setion @QFIFRAF QFIFP he(nition of the set of experimentl reliztions e onsider p exp omposite pltes whih re interpreted s p exp independent reliztions of the mirosopi rndom (eldF ine the volume frtion is n dE ditive propertyD reliztions of the mesosopi rndom (eld F re determined from the following verge ruleX

∀k ∈ {1, ..., p exp } , ∀j ∈ {1, ..., N * } , F exp (j) (θ k ) = 1 t m tm t=1 f exp (t) (θ k ) @PA
where t m is prmeter nd prtition on the mesoEvolume Ω j @involving set of miroEvolumes {ω l } l AD Ω j = l ω l D ws introdued nd is suh tht f exp (t) (θ k ) = f (x, θ k ) , x ∈ ω t F elling the prtition introdued in setion @PAD the set of experimentl results is then de(ned sX S exp = {f exp (x i , θ j ) , i ∈ {1, ..., N } , j ∈ {1, ..., p exp }} @QA S QFIFQ istimtion of the men nd orreltion funtions from experimentl results nised estimtes of the men nd orreltion funtions re determined from S exp nd re respetively given yX

f p exp (x i ) = 1 p exp p exp k=1 f (x i , θ k ) @RA C f (x i , x j ) = 1 1 -p exp p exp k=1 f (x i , θ k ) -f p exp (x i ) f (x j , θ k ) -f p exp (x j ) @SA for (i, j) ∈ {1, ..., N } 2 F
QFIFR ttistil redution of the rndom (eld ine the numer of prts N involved in the prtition my eome quite lrgeD it is onvenient to proeed to redution of the rndom (eld y mens of urhunenEvoeve expnsion IHF husD the rndom (eld is next written sX

f M (x) ≈ f (x) + M α=1 λ α η α ψ α (x) @TA
where M should e lower thn N F vet {λ α } M α=1 nd {ψ α } M α=1 e the eigenvlues nd eigenvetors of the ovrine opertorD tht isD they stisfy the following eigenvlue prolem @see IHAX

Ω C f (x, x') ψ α (x') dx' = λ α ψ α (x)
@UA whih hs to e solved numerilly in the present se IF wking use of ollotion methodD iqF @UA is lssilly onverted into the following mtrix eigenprolemX

C f Ψ = ΛΨ @VA
where Ψ nd Λ re the modl mtrix @whose olums will e denoted y ψ α A nd the nonil form of C f respetivelyF st is worth notiing tht iqF @TA silly orresponds to trunted representtion introduing n error of pproximtionF st n then e proved tht the norm of the error tkes the form IIX

E ||f -f M || 2 H = Ω tr [C f (x, x)] dx - M k=1 λ k @WA
iqF @WA llows one to estimte the norm of the error resulting from the trunE tion nd thusD the determintion of n optiml order of expnsion M F xote tht suh vlue n lso e otined nlysing the onvergene of the funE tion p -→ p i=1 λ 2 i F T he rndom vetor η = (η 1 , ..., η M ) is suh thtX

E {η α } = 0, E {η α η β } = δ αβ @IHA
@where δ is the uroneker deltA nd hs proility distriution whih depends on the proility lw of the rndom (eld f nd whih n e onE struted s explined in IIF wking use of the orthogonlity of the sis {ψ α } M α=1 in iqF @TAD one omputes the independent reliztions η α (θ j )X

η α (θ j ) = 1 √ λ α f (θ j ) -f, ψ α @IIA where f (θ j ) = (f (x 1 , θ j ) , ..., f (x N , θ j ))D f = f (x 1 ) , ..., f (x N ) nd •,
• deE notes the lssil inner produt in R N F he entred rndom vetor η n e lssilly represented using olynomil qussin ghos expnsion @II IPA whih is written t the qEth order sX

η = q γ,|γ|=1 z γ H γ (X) √ γ! @IPA where γ is multiEindex (γ 1 , ..., γ m ) ∈ N m @with |γ| = m k=1 γ k ≤ q nd γ! = m k=1 γ k !AD X is mEdimensionl zeroEmen qussin vetor @E {X i X j } = δ ij AD H γ (X) = m k=1 h γ k (X k ) @where h γ k (x) is the oneEdimensionl rermite polynomil of order γ k A nd z γ is vetor in R M F gomining the reltion E {η α η β } = δ αβ with iqF @IPA yieldsX q γ,|γ|=1 z γ z γ T = I M @IQA
where I M is the M × M unit mtrixF henoting y Q the numer of terms in the sum oveD it is redily seen tht neessry ondition for iqF @IQA to hold is thtX

M ≤ Q = (m + q)! m!q! -1 @IRA
whih provides n usefull inequlity etween the size m of the qussin germ XD the order q of the olynomil ghos expnsion nd the order of trunE ture M of the urhunenEvoeve representtionF ine it is known tht dding terms in the olynomil ghos expnsion does not neessrily improve the pproximtion @in prtieD onvergene nlysis hs to e performedA IT nd sine n optiml vlue for M n e derived from iqF @WAD iqF @IRA n then e used for hoosing suitle size m of the germF emrkX despite the ft tht there is strightforwrd forml nlogy eE tween iqF @TA nd the formultion used y q § r § jeu nd uquet V @see their iqF @QFIAAD it must e emphsized tht iqF @TA integrtes expliitly the rndomE ness of the )ututionsF U QFP sdenti(tion of the ghos oe0ients vet Ξ 1 , Ξ 2 , ..., Ξ p exp e p exp experimentl reliztions of rndom vetor η @with Ξ i = η (θ i ) nd Ξ i j = η j (θ i )AD omputed from S exp using iqF @IIAF vet Z e the M × Q mtrix whose olums re the vetors z γ F iqF @IQA n e rewritten sX ZZ T = I M @ISA vet p η e the proility density funtion of ηF pinllyD let C e the mnifold de(ned y iqF @IQAF he estimtion of Z n e performed using the wximum vikelihood methodD s detiled in WF he identi(tion prolem n then e stted s followsX

R 1 : max Z∈C L Ξ 1 , ..., Ξ p exp ; Z @ITA
where L is the likelihood funtion de(ned sX

L Ξ 1 , ..., Ξ p exp ; Z = p exp i=1 p η Ξ i , Z @IUA
sn prtieD suh n optimiztion prolem is very timeEonsuming euse of the estimtion of the joint proility density funtionsF husD one sustitutes

L y LD given y WX L Ξ 1 , ..., Ξ p exp ; Z = p exp i=1 M j=1 p η j Ξ i j , Z @IVA
xote tht the pproximtion de(ned y iqF@IVA is reltively e0ient euse the rndom vriles η α D while sttistilly dependentD re unorreltedF his yields the following pproximtion R

2 of R 1 X R 2 : max Z∈C L Ξ 1 , ..., Ξ p exp ; Z @IWA
purthermoreD for omputtionl purposesD one lssilly onsiders the logE likelihood funtion

L log = log 10 L D resulting in the (nl pproximtion R 3 of the initil optimiztion prolem R 1 X R 3 : max Z∈C L log Ξ 1 , ..., Ξ p exp ; Z @PHA
where

L log Ξ 1 , ..., Ξ p exp ; Z = p exp i=1 M j=1 log 10 p η j Ξ i j , Z @PIA
por physil systemsD this optimiztion prolem is silly very highEdimensioE nl nd it ppers tht lssil deterministi optimiztion lgorithms re not suitle for suh n nlysisF woreoverD the lgeri onstrint de(ned y iqF @ISA mkes geneti lgorithms une'etive euse this property n not V e resonly trnsmitted etween two suessive genertionsF husD it follows tht rndom serh proedure hs to e used in order to solve R 3 F he proE lem is then redued to (i) rndomly generte set of mtries Z = {Z i } N OPT i=1 @where x OPT should e s lrge s possileA stisfying iqF @ISAD (ii) evlute for eh Z the logElikelihood funtion L log Ξ 1 , ..., Ξ p exp ; Z F he generl lgoE rithm is s follows WX (i) Procedure for generating the set {Z i } N OPT i=1 :

@IA ndomly generte mtrix Z 0 whose omponents re independent uniE form rel rndom vriles in

[-1, 1]F @PA vet Y 0 = Z 0 Z T 0 nd onsider its gholesky deompositionD Y 0 = L T LF @QA he(ne Z i sX Z i = L -T Z 0 F (ii)
Procedure for estimating the log-likelihood function @IA ndomly generte reliztions of the qussin germ XF @PA gompute the orresponding reliztions of η using iqF @IPAF @QA istimte p η j Ξ i j , Z i,j using lssil methodsF

@RA gompute L log Ξ 1 , ..., Ξ p exp ; Z F vet M M,Q (R) e the set of ll M × Q rel mtriesF por A ∈ M M,Q (R)D let
A ∞ e the in(nite norm of A de(ned y A ∞ = max i=1,...,M Q j=1 |A ij |F por x OPT = 10000D the rndom serh proedure is illustrted on pigF @QAD where for eh Z ∈ ZD the pir Z ∞ , -L log Ξ 1 , ..., Ξ p exp ; Z is reportedF QFQ tohsti solver he im of the setion is to propose numeril strtegy for solving the stohti homogeniztion prolem whih orresponds to the presented modelF wore preiselyD we wnt to hrterize the mrosopi stohsti sti'ness tensor

C = C (θ)F gonsidering n isotropi ompositeD one hsX C (θ) = 3 k (θ) J+2 µ (θ) KD
where k (θ) nd µ (θ) re the stohsti overll ulk nd sher moduli of the mteril respetively @J = 1 3 i ⊗ iD K = I -JD i nd I re the seond nd symmetri fourthEorder identity tensors respetivelyAF k (θ) nd µ (θ) re lso represented using olynomil qussin ghos expnsionX

k (θ) = p χ,|χ|=1 k c χ H χ (X) √ χ! , µ (θ) = p χ,|χ|=1 µ c χ H χ (X) √ χ! @PPA W pigure QF qrph of the pirs Z ∞ , -L log Ξ 1 , ..., Ξ p exp ; Z for x OPT = 10000D horizontl xisX Z ∞ D vertil xisX -L log Ξ 1 , ..., Ξ p exp ; Z F he prmeters k c χ χ nd µ c χ χ
re determined using the orthogonlity of the rermite polynomilsD tht isX

k c χ = 1 √ χ! E k (θ) H χ (X) , µ c χ = 1 √ χ! E µ (θ) H χ (X) @PQA
xote tht the omputtion of the mthemtil expettion E k (θ) H χ (X)

orresponds to multiEdimensionl integrtion proessX

E k (θ) H χ (X) = R m k (θ) H χ (x) φ m (x) dx @PRA
where φ m is the mEdimensionl nonil norml densityF iqF @PRA n e solved y wonteEgrlo numeril simultions IQ whih require the ompuE ttion of the mrosopi moduli for eh reliztionF por eh reliztion of XD iqsF @TA nd @IPA provide the reliztion of the stohsti proess f (x, θ k )D from whih the reliztion of F (x, θ k ) is omputed in turn using iqF @PAF wo suessive homogeniztion proedures re then performed nd provide the reE liztion C (θ k ) @nd thusD k (θ k ) nd µ (θ k )AF hose lultions re performed s followsX

• from the mirosle to the mesoEsleX for eh mesoEvolume Ω j @1 ≤ j ≤ N * AD the volume frtion F (j) (θ k ) = F (x, θ k , ) , x ∈ Ω j is derived from iqsF IH @PA nd @TAF henD menE(eld pproh or ny omputtionl homogenizE tion proedure n e used for estimting the mesosopi properties @see IS PTAF husD we derive the reliztions of the N * mesosopi sti'ness tensors

C (r) (θ k ) N *
r=1 F • from the mesoEsle to the mrosleX one the mesosopi sti'ness tensors hve een determinedD suitle liner homogeniztion sheme n e used in order to determine the overll mehnil properties of the reliztion of the omposite mteril with rndom mesoEstrutureF 4 Experimental analysis and micromechanical interpretation RFI riniple nd pplition he experimentl identi(tion of the prmeters involved in the proilisti model silly requires the onsidertion of ν reliztions of the mirosopi rndom (eldF he smples re omposite pltes de(ned with respet to grtesin oordinte system (Oxyz) @see pigF @PAAF he dimensions in the OxD Oy nd Oz diretions re respetively denoted y h x D h y et h z D nd re suh tht h z << h x et h z << h y F he rndom (eld is then onsidered s twoE dimensionlF heling with rndomly )ututing volume frtionD lssil method would e to weigh omposite smples twieD efore nd fter the resin urnEo'F rowE everD suh methodology hs two min drwksX @IA it is timeEonsuming nd hrdly hievle in prtieD tking into E ount the numer of smples tht re neessry to hieve onverged proilisti resultsD @PA it is destrutive ontrol tehniqueF yf the ove two pointsD the (rst one is ertinly the most prolemti nd thenD de(ning nother experimentl identi(tion proedure turns out to e neessryF he si ide relies on the ft tht in most sesD the mtrix nd the reinforing mteril do hve very di'erent ultrsoni properties nd thusD one n expet the veloities of some ultrsoni wves @propgting in diretions to e determinedA to e losely link to the volume frtionF utting this within more theoretil frmework nd relling tht the omposite n e onsidered s isotropiD one introdues the veloity of longitudinl wves propgting inside n isotropi ody @see for instne PRAX

V l = E(1 -ν) ρ(1 + ν)(1 -2ν) @PSA

II

where ED ν nd ρ re the oung9s modulusD the oisson rtio nd the density of the volume under investigtionD respetivelyF ine the e'etive mehnil properties of this volume n e derived from n usul miromehnil nlysis @see pigF @RAAD iqF @PSA provides reltion etween the volume frtion inside the domin nd the veloity of longitudiE nl wves propgting inside itF st is worth notiing tht using suh nonE destrutive proedureD the size of the mesoEvolume eomes dptiveF pigure RF iquivlene etween the heterogeneous solid nd the ssoited homogeE neous solidF emrk IX the methodology n still e pplied onsidering ny (er orientE tion tensor @nd thusD to ny nisotropi mediumAF sn this seD the ultrsoni snnings re performed (rst @ preliminry nlysis on the morphology is still neessry to de(ne the wves to e onsideredA nd mirostruturl informE tion @t lestD the distriution nd orienttion tensors of the (ersA is then deE termined from lssil destrutive methodsF roweverD onsidering nisotropi ody signi(ntly omplites the nonEdestrutive nlysisD sine omintions of di'erent wves hve to e onsidered PRF emrk PX note tht the injetion moulding does not introdue ny porosiE ties @whih ould distur the ultrsoni testingAF es n pplitionD we onsider n isotropi polypropylen mtrix reinfored IP y long i glss (ersF he properties of eh phse reX

     E 0 = 1.535 [GP a], ν 0 = 0.41, ρ 0 = 900 [kg.m -3 ] E f = 73 [GP a], ν f = 0.21, ρ f = 2600 [kg.m -3 ] @PTA
where the mehnil properties of the mtrix were experimentlly determined @ dtse ws used for the (ersAF gomining iqF @PSA with miromehnE il nlysis @detiled in ppendix eAD one otins the preditions illustrted on pigF @SAD on whih the predition of lssil rule of mixture on veloities is lso reportedF es expetedD the funtion is inresing on the intervl of veloities for the pigure SF reditions of the volume frtion using di'erent homogeniztion shemesF three estimtes whih nturlly tend to 0 for veloities lose to the veloity inside the nonEreinfored mtrix @round 1991 m.s -1 AF es expetedD it is seen thtX

• the dilute nd woriEnk estimtes oinide for smll veloities or equivE lentlyD for smll volume frtions @typilly less thn 0.07AD • the ishely9s sheme lerly overestimtes the volume frtion nd is not suitle for the nlysisF IQ st is lso interesting to note tht for the intervl of veloities in onsidertion @etween 1991 m.s -1 nd 2800 m.s -1 AD the mpping performed using the woriE nk sheme tends to slightly smooth the resulting rndom (eld ompred to the one hieved using simple rule of mixture on veloities @note tht this oservtion is silly reversed for V > 2900 m.s -1 pproximtelyAF husD the woriEnk sheme will e used for the mpping etween the veloity nd volume frtion rndom (elds @see ppendix eAF sn the followingD we onsider p exp = 110 reliztions of the rndom (eldF he ultrsoni sensor used for the nlysis investigtes ylindril volume of dimeter D = 14 mm whih is lose to the hrteri length of the (er @round 8 mmAF mples re omposite pltes whose totl dimensions re h x = 260 mmD h y = 150 mm et h z = 3 mm respetively @see pigF @TA for generl view of the experimentl devieAF he nlysis ws performed over redued domin of length h exp en experimentl reliztion of the rndom (eld f D determined omining the veloity mesurements with the miromehnil nlysisD is shown on pigF @VA whih illustrtes how the volume frtion @t the miroEsleA )ututes over the omposite prtF por x in ΩD the grph of the men funtion x → f (x) is shown on pigF @WA nd demonstrtes tht the rndom (eld reliztions do not exhiit ny prtiulr oundry e'et @see setion @RFQAAF he orreltion IR pigure UF gomposite plte nd zone under experimentl investigtionF pigure VF olume frtion rndom (eldD experimentl reliztion 5F mtrix R c f D whose omponents re given yX

R c f ij = C f (x i , x j ) σ f (x i ) σ f (x j ) @PUA
@where σ f is the stndrd devition estimte of rndom (eld

f X σ f (x i ) = C f (x i , x i
)AD is lso represented in meshed view on pigF @IHA @see setion @RFQAAF pigF @IIA shows the grphs of three mrginl proility density estiE IS pigure WF qrph of the men funtion x → f (x)F pigure IHF weshed representtion of the orreltion mtrixF mtesD omputed from S exp using iqF @IIAF he onvergene nlysis of the sttistil redution is performed using the grph of funtion p -→ p i=1 λ 2 i shown on pigF @IPAF st is seen tht the pproximtion de(ned y iqF @TA n IT pigure IIF ixmplesX grphs of the mrginl proility density estimtes of η 1 @solid lineAD η 10 @dshed lineA nd η 20 @dotted lineAF e resonly written onsidering M = 41F

pigure IPF qrph of the funtionX p -→ p i=1 λ 2 i F IU RFQ yn the sttionrity of the rndom (eld e ssume tht the domin under investigtion is fr enough from the edges of the omposite plte @see pigF @UAAD so tht there is no oundry e'etF henD we ssume tht the rndom (eld f n e pproximted y homogeneous rndom (eld f s F xote tht this silly results in introduing model unerE tinty tht will e disussed in forthoming pperF es n illustrtionD let f e the overll men vlue estimteD de(ned y f = 1

N p exp N i=1
p exp k=1 f (x i , θ k )F he Ph grph of the men funtion is ompred to the grph of the overll men vlue on pigF @IQAF st is redily seen tht the men funtion slightly )ututes round f @with oe0ient of vrition whih is less thn 5 %A nd thusD it n e pproximted y the funtion x → f F pigure IQF qrphs of the men funtionsX x → f x, y i D i = 1..7 @solid linesA nd x → f @dsh lineAF henD iqF @TA eomesX

f s 41 (x) ≈ f + 41 α=1 λ α η α ψ α (x) @PVA
purthermoreD it follows tht the orreltion funtion only depends on the relE tive position of points x nd x' nd is typilly formlized using the lg vetor τ = xx' PSF gonsidering the experimentl dt @see pigsF @IHAD @IRA IV nd @ISAAD we further ssume n exponentil orreltion strutureD so tht the normlized orreltion funtion is written sX

ρ f (τ ) = exp(- τ x L x - τ y L y ) @PWA
where τ u nd L u re the omponent of τ nd the sptil orreltion length in the diretion uD u = x or yD respetivelyF sing lssil lestEsqure methodD one omputes the experimentl sptil orreltion lengths L x nd L y X L exp

x ≈ 24 mm L exp y ≈ 6 mm @QHA he (tted orreltion funtion is illustrted on pigF @ITAF st is interesting to note tht L x >> L y D whih is physilly onsistent @sine pigure IRF qrph of the funtion τ x → exp(-τ x /L x ) @mrkerX experimentl vlueD solid lineX modellingAD horizontl xisX τ x F the )ow lines re in the diretion xAF purthermoreD this result suggests the following onditions on the length a x nd width a y of the mesoEvolumeX he min ojetive of this study is the hrteriztion of volume frtion stohsti )ututions in (er reinfored ompositesF por this purposeD theoretil stohsti frmework nd the ssoited experimentl investigE tion hve een proposedF elevnt sles @nmelyD the miroED mesoE nd mrosleA re (rst introdued nd llows one to proeed to two suessive PH homogeniztionsF henD onsidering the nture of the )ututions @long oth the sptil xis nd the proilisti dimensionAD the volume frtion t the mirosle is modelled s rndom (eld nd the onstrution of suitle proilisti model is proposedF wore preiselyD sttistil redution of the rndom (eld is performed usE ing urhunenEvoeve expnsion nd the proilisti interpoltion of the rndom vetor involved in the representtion is rried out using olynoE mil qussin ghos expnsionF he identi(tion of the ghos oe0ients is lssilly rried out using the wximum vikelihood rinipleD leding to highEdimensionl optimiztion prolem solved y rndom serhF essuming n isotropi elstiityD the rndom e'etive ulk nd sher moduli re further represented using olynomil qussin ghos expnsion whose oe0ients n e determined oupling the douleEsle homogeniztion proedure with nonEintrusive stohsti solverF en experimentl proedure dedited to the identi(tion of the prmeters involved in the proilisti model is lso presented nd relies on veloity meE surements @using nonEdestrutive ultrsoni methodAF he omintion of these experimentl results with miromehnil nlysis silly provides reliztions of the volume frtion rndom (eldF sn prtiulrD it is seen tht the volume frtion n e modelled y homogeneous rndom (eld whose sptil orreltion lengths re determined nd my provide onditions on the size of the mesoEvolumes to e onsideredF he impt of suh volume frtion rndom )ututions on the stohsti mrosopi mehnil properties will e presented in forthoming pperF he im of this ppendix is to estimte the e'etive mehnil properties of the volume under onsidertion nd thusD to determine the reltion etween the volume frtion nd the veloity V l F por this purposeD we onsider the woriEnk estimte @iFeF the mtrix is onsidered s the referene medium nd is sujeted to its own stressD see IU IS IVAD whih llows to tke into ount the intertions etween the inhomogeneitiesF he hoie of this homogeniztion sheme is justi(ed y the mtrixEinlusion morphology of the studied mteril s well s y the expeted men volume frtion @lower thn 20%AF he isotropi e'etive sti'ness tensor C hom provided y the woriE nk sheme is given yX

a x ≥ L exp x , a y ≥ L exp y @QIA nd a x a y ≈ L exp x L exp
C hom MT = C (0) + N r=1 c (r) C (r) -C (0) -1 + P (r) i -1 N s=0 c (s) A (s) i -1 @eFIA where A (s) i
is the strin onentrtion tensor for the phse sD de(ned sX 0) is the sti'ness tensor of the referene medium @tht isD the mtrixAD c (r) nd C (r) re the volume frtion nd the sti'ness tensor of phse rD respetivelyF P (r) i

A (s) i = I + P (s) i C (s) -C (0) -1 @eFPA C ( 
is the rill tensor of the inlusion r @we rell tht P

(r) i = S r ESH : (C 0 ) -1 D where S r
ESH is the ishely tensor of the inhomogeneityD see IWA nd I is the symmetri fourthEorder identity tensor @2I ijkl = δ ik δ jl + δ il δ jk D where δ ij is the uroneker deltAF rereD phse r silly orresponds to (ers whose orienttion is de(ned y the sme unit norml n r F ine (ers di'er only in orienttionD one hsX

∀k ∈ [1, N ] , C (k) = C (f ) @eFQA PQ
where C (f ) is the sti'ness tensor of the (erF king into ount intertions etween the (ersD one lssilly introdues the integrl form of iqF @eFIAD sustituting for instneX

N s=0 c (s) A (s) i -1 -→ (1 -c)I + c 4π ||n||=1 A (s) i dS -1 @eFRA
where c is the volume frtion of (ers inside the volume under onsidertionF pinllyD the e'etive sti'ness tensor is now given yX

C hom MT = C (0) + c 4π ||n||=1 C (f ) -C (0) -1 + P (r) i -1 dS × (1 -c)I + c 4π ||n||=1 A (s) i dS -1
@eFSA e further ssume tht the urves of the (ers re su0iently smll so tht the ishely tensor of stright (er n e sustituted for the one orresponding to @urvedA long (er @see pigF @eFIAAF vet us now onsider the wellEknown pigure eFIF hemti of the equivlene etween rel medium @urved (ersA nd modelling @stright (ersAF lpole sis {E i } 6 i=1 PHD , 0, 1 4

E 1 = 1 2 i T ⊗ i T , E 2 = i N ⊗ i N E 3 = i T ⊗i T -E 1 , E 4 = i T ⊗i N + i N ⊗i T E 5 = i N ⊗ i T , E 6 = i T ⊗ i N
3 -4ν 0 1 -ν 0 , 0, 0, ν 0 2(1 -ν 0 ) r @eFVA nd C (0) -1 = 1 E 0 1 -ν 0 , 1, 1 + ν 0 , 1 + ν 0 , -ν 0 , -ν 0 r @eFWA so thtX

P (r) i = 1 -ν 0 (1 + 2ν 0 ) 2E 0 (1 -ν 0 ) , 0, (3 -4ν 0 )(1 + ν 0 ) 4E 0 (1 -ν 0 )
, 0, 0, 0 r @eFIHA where E 0 nd ν 0 re the oung9s modulus nd the oisson rtio of the isotropi mtrixD respetivelyF rereD the index r mens tht the lpole sis is exE pressed in {E i } r F st is redily seen tht the integrtion over the unit sphere in iqF @eFSA silly results in integrting the lpole sisF wking use of

1 4π ||n||=1 n ⊗ ndS = 1 3 1, 1 4π ||n||=1 n ⊗ n ⊗ n ⊗ ndS = 1 3 J + 2 15 K @eFIIA
where J nd K re the lssil symmetri fourthEorder tensors de(ned y J = 1 3 i ⊗ i nd K = I -J @i is the seondEorder symmetri identity tensor X i ij = δ ij AD one esily proves thtX

< E 1 >= 2 3 J + 1 15 K, < E 2 >= 1 3 J + 2 15 K < E 3 >=< E 4 >= 2 5 K, < E 5 >=< E 6 >= 2 3 J -2 15 K @eFIPA
where < E i >= 1 4π ||n||=1 E i dSF gomining iqsF @eFIA nd @eFIPAD one derives the e'etive sti'ness tensor C hom nd thenD the overll properties E hom nd ν hom @whose expressions re not e provided hereD given their omplexityAF pinllyD the density of the omposite is otined from the rule of mixtureX

ρ hom = cρ f + (1 -c)ρ 0 @eFIQA
where ρ 0 nd ρ f re the densities of the mtrix nd (ers respetivelyF ustituting the miromehnil preditions into iqF @PSAD one (nlly deE (nes funtion ΛX c -→ V l = Λ(c) whih n e inversed nd yieldsD from mesured veloity (eldD the orresponding estimte of the volume frtion PS (eldF xote tht for eh reliztion of the rndom (eld nd for eh mesoE volume Ω j D one oviously tkes c = F (j) (θ k ) @see setion @QFQAAF emrkX ssuming tht the intertions etween (ers re negligile @tht isD for c -→ 0AD one my onsider the dilute shemeD lso known s the ishely9s solutionF he orresponding e'etive sti'ness tensor is then given yX

C hom ESH = C (0) + c 4π ||n||=1 C (f ) -C (0) -1 + P (r) i -1 dS @eFIRA
nd n e omputed using the sme methodology s for the woriEnk estimteF PT

x= 158

 158 mm nd width h exp y = 98 mm @see pigF @UAAD (nlly introduing N = 84 miroEvolumesF pigure TF ixperimentl devieX rooti displement nd ultrsoni sensorF RFP ixperimentl results

  of the funtion τ y → exp(-τ y /L y ) @mrkerX experimentl vlueD solid lineX modellingAD horizontl xisX τ y F pigure ITF qrph of the orreltion funtion with (tted prmetersF 5 Conclusion

  = n ⊗ nD i T = 1i N nd 2(a⊗b) ijkl = a ik b jl + a il b jk for ny seondE order tensors a nd bF e rell tht ny trnsversely isotropi fourthEorder PR tensor D n e expressed sXD = cE 1 + dE 2 + eE 3 + f E 4 + gE 5 + hE 6 = [c, d, e, f, g, h]@eFUA nd thenD si tensor opertions simply redue to elementry lgeri opE ertions PHF vetting y {E i } r the sis ssoited with norml n r nd phse rD one hsX