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A new six-dof epicyclic-parallel manipulator with all actu-

ators allocated on the ground is introduced. It is shown that

the system has a considerably simple kinematics relation-

ship, with the complete direct and inverse kinematics anal-

ysis provided. Further, the first and second links of each leg

can be driven independently by two motors. The serial and

parallel singularities of the system are determined, with an

interesting feature of the system being that the parallel singu-

larity is independent of the position of the end-effector. The

workspace of the manipulator is also analyzed with future

applications in haptics in mind.

Keywords: parallel manipulator, epicyclic system,

kinematics, workspace

1 Introduction

There are a large number of parallel manipulators which

have been reported over the past three decades. They can be

divided into three-dof, four-dof, five-dof and six-dof parallel

manipulators [1–4]. In three-dof parallel manipulators, there

are three-dof translational parallel manipulators [5–7], three-

dof rotational parallel manipulators [8,9] and others [10,11].

Among the four-dof parallel manipulators, examples include

the four-DOF four-URU parallel mechanism [12] and the

McGill Schönflies-motion generator [13]. There are also

five-dof parallel manipulators, such as 3T2R parallel manip-

ulators [14, 15]. For six-dof manipulators, the number of all
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possible structures can be extremely large [16]. Six-legged

six-dof parallel manipulators, such as the Gough-Stewart

platform, have high stiffness and accuracy but suffer from a

small workspace and limb interference. Three-legged six-dof

manipulators were introduced to overcome this workspace

limitation and do not suffer from the same limb interference

as their six-legged counterparts [17]. However, to achieve

six-dof with only three legs requires actuators to be mounted

on the moving limbs, thus increasing the mass and inertia of

the moving parts. A number of three-legged manipulators

have been reported, such as [18–24], however, very few of

them have all actuators allocated on the ground, [20, 23, 24]

being some examples. Cleary and Brooks [20] used a differ-

ential drive system, Lee and Kim [23] used a gimbal mecha-

nism and Monsarrat and Gosselin [24] used five-bar mecha-

nisms as input drivers to allow for all actuators to be mounted

on the base of a three-legged six-dof parallel mechanism.

This paper proposes a new design of a six-dof three-

legged parallel manipulator with all base mounted actuators,

the Monash Epicyclic-Parallel Manipulator (MEPaM). The

design is achieved by utilising the advantages of two-dof

planetary belt systems, namely transmitting power from a

base-mounted actuator to a moving joint. By mounting ac-

tuators on the base, the mass and inertia of the moving links

is greatly reduced resulting in a lightweight six-dof parallel

manipulator.

This paper is organized as follows. Section 2 describes

the concept design and provides solutions to the direct and



Fig. 1. Virtual model of MEPaM (one leg is hidden for clarity)

inverse kinematics problems for the manipulator. The sin-

gularities of MEPaM are analysed in Section 3 and its

workspace in Section 4. Finally, the first prototype and future

applications of MEPaM are briefly discussed in Section 5.

2 Concept Design

The proposed six-dof parallel manipulator is illustrated

in Fig. 1. There are three identical planetary-belt mecha-

nisms, each having two-dof driven by two motors. The driv-

ing planes of the planetary systems form an equilateral trian-

gle. The output of the subsystem is an arm attached to the

planet, Lever Arm B. There is a cylindrical joint attached to

an end of this arm, perpendicular to the corresponding driv-

ing plane. A triangular end-effector is connected to the three

cylindrical joints via universal joints on its vertices.

The planetary belt-pulley system shown in Fig. 1 has

a transmission ratio of 1, providing two-dof movement in a

flat plane. The carrier, Lever Arm A, is driven by a lower

motor via a short stiff belt, while the sun pulley is driven

by the upper motor. This motion is transmitted to the planet

pulley via a long stiff belt. The arm attached to the planet

is therefore driven by these two motors and hence, the end-

effector controlled by six motors.

2.1 Direct Kinematics

The problem of direct kinematics is to find the position

and orientation of the end effector, given the position of all

the controlled joints. There are six motors all together, so

there are six angles to be specified, i.e. θ1a, θ1b, θ2a, θ2b, θ3a

and θ3b. There are also three pairs of angles indicating the

angles of the carrier and the planet denoted θ1c, θ1p, θ2c, θ2p,

θ3c and θ3p. Fig. 2 shows the planetary belt-pulley transmis-

sion. According to Fig. 2, we have

A1x = w+ d1 cosθ1c + d2 cosθ1p (1a)

A1z = w+ d1 sinθ1c + d2 sinθ1p (1b)

where (w,w) is the Cartesian coordinate vector of the sun cen-

Fig. 2. The belt-pulley transmission

Fig. 3. The end-effector connecting to A1, A2, and A3

ter. Due to the planetary transmission, we have

θ1b −θ1c

θ1p −θ1c

= 1 (2)

Given a proper reference for θ1a, we should have θ1c =
θ1a. Therefore, Eqn. (2) can be written as θ1p = θ1b. This

indicates that the motions of the carrier and the planet can

be independently controlled by Motor 1A and Motor 1B, re-

spectively. Eqns. (1) can be further written as

Aix = w+ d1 cosθia + d2 cosθib (3a)

Aiz = w+ d1 sinθia + d2 sinθib (3b)

for i = 1, 2, 3.

With the actuators locked, the manipulator has a struc-

ture equivalent to that of the 3PS manipulator analysed by

Parenti-Castelli and Innocenti [25], the difference being that



MEPaM is a six-dof manipulator with six actuators allocated

on the base as opposed to the three-dof, three actuator 3PS

manipulator. Nevertheless, it is still an important task to for-

mulate the steps necessary to find the strokes of the three

cylindrical joints, li for i = 1,2,3, upon the geometric con-

straints on the triangular platform. The frame assignment for

the driving planes as well as the end-effector are shown in

Fig. 3. Three fixed frames, F1, F2 and F3, are attached to

the base in an equilateral triangle formation, while a mov-

ing frame F4 is attached to the triangular end effector of side

length d3. ai and bi are the Cartesian coordinate vectors of

points Ai and Bi, respectively. An upper-left index is used to

indicate in which frame the vector is expressed. Since each

cylindrical joint is perpendicular to the corresponding plane,

we have

1b1 =





A1x

l1
A1z



 , 2b2 =





A2x

l2
A2z



 , 3b3 =





A3x

l3
A3z



 (4)

From Fig. 3, the transformation matrices between frames F1,

F2 and F3 are given by

1
2T = 2

3T = 3
1T =







cos(2π/3) −sin(2π/3) 0 d0

sin(2π/3) cos(2π/3) 0 0

0 0 1 0

0 0 0 1







Hence, the positions of all the vertices can be trans-

formed into F1, i.e.,

1bi =
1
i T ibi (5)

for i = 2, 3. The geometric constraints on the device are given

by

‖1bi − 1b j‖2 = d2
3 (6)

for i = 1, 2, 3 and j = i+ 1 (mod 3).

The constraint equations, Eqns. (6), contain only three

variables li, i = 1,2,3, and can be further written in the form:

D2l2
2 +D1l2 +D0 = 0 (7a)

E2l3
2 +E1l3 +E0 = 0 (7b)

F2l3
2 +F1l3 +F0 = 0 (7c)

where D j,E j,Fj( j = 0,1,2) are functions of l1, l2 and l1 re-

spectively, as well as d3, Aix and Aiz (i = 1,2,3).

By means of dialytic elimination [26], the system of

equations (7) can be reduced to a univariate polynomial of

order four in the variable l1:

G4l1
4 +G3l1

3 +G2l1
2 +G1l1 +G0 = 0 (8)

where the coefficients Gk (k = 0...4) are given in the Ap-

pendix. Note that for the 3PS structure analysed by Parenti-

Castelli and Innocenti [25], the univariate polynomial was of

order eight. Once Eqn. (8) has been solved for l1, substitu-

tion of the result into Eqns. (7) will allow for determination

of l2 and l3. The complexity of Eqns. (6) is relatively low

as compared to the direct kinematics problem in most six-

dof parallel manipulators. Solutions of li for i = 1,2,3 can

be used to evaluate the position and orientation of the end-

effector. The position of the end-effector is simply the origin

of F4, given by 1b1 = [A1x l1 A1z ]
T

. The orientation of

the end-effector is given by

1
4Q = [ i j k ]

where

i =
1b2 − 1b1

‖1b2 − 1b1‖

j =
(1b3 − 1b1)− iiT (1b3 − 1b1)

‖(1b3 − 1b1)− iiT (1b3 − 1b1)‖
k = i× j (9)

Therefore, the direct kinematics of MEPaM is solved.

2.2 Inverse Kinematics

The problem of inverse kinematics is to find the six input

angles, given the position and orientation of the end-effector,

i.e. 1o4 and 1
4Q. The Cartesian coordinate vectors of the

vertices of the moving platform, denoted B1, B2 and B3, are

given by:

1bi =
1o4 +

1
4Q 4bi (10)

for i = 1,2,3, where 4b1 = [0 0 0 ]T , 4b2 = [d3 0 0 ]T ,

and 4b3 = [d3/2
√

3d3/2 0 ]T .

Upon Eqns. (3), we can readily find the motor inputs, i.e.

θia and θib for i = 1,2,3. First, the Eqns. (3) are re-written

as

αi1 − d1 cosθia = d2 cosθib (11a)

αi2 − d1 sinθia = d2 sinθib (11b)

where αi1 =Aix−w and αi2 =Aiz−w for i= 1,2,3. Then Aix

and Aiz are found from Eqn. (4) which requires substituting

Eqn. (10) into Eqn. (5) to solve for the component values.

Squaring Eqns. (11) and adding the resultants yields a single



equation in one variable for each θia:

βi − 2d1αi1 cosθia − 2d2αi2 sin θia = 0 (12)

where βi =αi1
2+αi2

2+d1
2−d2

2 for i= 1,2,3. By using the

half angle formulae, eq. (12) becomes a quadratic equation

in tan(θia/2) with solution

tan
θia

2
=

4d1αi2 ±
√

16d1
2(αi1

2 +αi2
2)− 4βi

2

2(βi + 2d1αi1)
(13)

for i = 1,2,3. Knowing θia allows for the calculation of θib

with the use of eqs. (11):

tanθib =
αi2 − d1 sinθia

αi1 − d1 cosθia

(14)

for i = 1,2,3. Hence, the inverse kinematics problem has

been solved. From Eqn. (13), it can be seen that there are

two possible solutions for each arm which indicates that gen-

erally there are two possible configurations (working modes)

of each arm for any pose of the end-effector.

3 Singularity Analysis

The singularities of the manipulator can be found from

the determinant of the serial and parallel Jacobian matrices,

JS and JP, respectively [27]. The Jacobian matrices satisfy

the following relationship:

JS Θ̇ = JP t (15)

where Θ̇ is the vector of active joint rates and t is the twist of

the moving platform.

3.1 Serial Singularities

The serial Jacobian matrix can be obtained by differen-

tiating Eqn. (3) with respect to time, which yields:

JS =





J1 02×2 02×2

02×2 J2 02×2

02×2 02×2 J3





where

Ji =

[

−d1 sinθia −d2 sinθib

d1 cosθia d2 cosθib

]

The serial singularities occur when the determinant of

JS is null, namely,

−(d1d2)
3

3

∏
i=1

sin
(

θia −θib

)

= 0

Hence, the serial singularities occur when

θia −θib = 0 or π

In such configurations, the arms of the planetary gear sys-

tems are either fully extended or folded. This result is as

expected, since when the arms are in such an arrangement

the moving platform can no longer move in the direction of

the arms and thus loses one dof.

3.2 Parallel Singularities

Whilst the parallel singularities of the manipulator can

be determined from the parallel Jacobian matrix, an alter-

native means is able to provide geometric insight into their

meaning. A geometric condition for the manipulator singu-

larities is obtained by means of Grassmann-Cayley Algebra

with the actuation singularities being able to be plotted in the

manipulator’s orientation workspace.

Grassmann-Cayley Algebra (GCA), also known as ex-

terior algebra, was developed by H. Grassmann as a calcu-

lus for linear varieties operating on extensors with the join

and meet operators. The latter are associated with the span

and intersection of vector spaces of extensors. Extensors are

symbolically denoted by Plücker coordinates of lines and

characterized by their step. In the four-dimensional vec-

tor space V associated with the three-dimensional projective

space P3, extensors of step 1, 2 and 3 represent points, lines

and planes, respectively. They are also associated with sub-

spaces of V , of dimension 1, 2 and 3, respectively. Points

are represented with their homogeneous coordinates, while

lines and planes are represented with their Plücker coordi-

nates. The notion of extensor makes it possible to work at the

symbolic level and therefore, to produce coordinate-free al-

gebraic expressions for the geometric singularity conditions

of spatial parallel manipulators (PMs). For further details on

GCA, the reader is referred to [28–32].

3.2.1 Wrench System of MEPaM

The actuated joints of MEPaM are the first two revolute

joints of each leg. The actuation wrench τ̂i
01 corresponding

to the first revolute joint of the ith leg is reciprocal to all the

twists of the leg, but to the twist associated with its first revo-

lute joint. Likewise, the actuation wrench τ̂i
02 corresponding

to the second revolute joint of the ith leg is reciprocal to all

the twists of the leg, but to the twist associated with its sec-

ond revolute joint. As a result,

τ̂1
01 =

[

u

b1 ×u

]

, τ̂2
01 =

[

v

b2 × v

]

, τ̂3
01 =

[

w

b3 ×w

]

(16)



Fig. 4. The actuation forces applied on the moving platform of

MEPaM

and

τ̂1
02 =

[

z

b1 × z

]

, τ̂2
02 =

[

z

b2 × z

]

, τ̂3
02 =

[

z

b3 × z

]

(17)

In a non-singular configuration, the six actuation

wrenches τ̂1
01, τ̂1

02, τ̂2
01, τ̂2

02, τ̂3
01 and τ̂3

02, which are illustrated

in Fig. 4, span the actuation wrench system of MEPaM. As

MEPaM does not have any constraint wrenches, its global

wrench system amounts to its actuation wrench, namely,

WMEPaM = span(τ̂1
01, τ̂1

02, τ̂2
01, τ̂2

02, τ̂3
01, τ̂3

02) (18)

The legs of MEPaM apply six actuation forces to its moving-

platform. Its global wrench system is a six-system. A par-

allel singularity occurs when the wrenches in the six-system

become linearly dependent and span a k-system with k < 6.

3.2.2 Wrench Graph of MEPaM in P3

The six actuation wrenches τ̂1
01, τ̂1

02, τ̂2
01, τ̂2

02, τ̂3
01 and τ̂3

02

form a basis of the global wrench system WMEPaM. Those

wrenches are represented by six finite lines in P3. To obtain

the six extensors of MEPaM’s superbracket, twelve projec-

tive points on the six projective lines need to be selected, i.e.

two points on each line. The extensor of a finite line can be

represented by either two distinct finite points or one finite

point and one infinite point since any finite line has one point

at infinity corresponding to its direction.

B1, B2 and B3 are the intersection points of τ̂1
01 and τ̂1

02,

τ̂2
01 and τ̂2

02, τ̂3
01 and τ̂3

02, respectively. Let b1, b2 and b3 de-

note the homogeneous coordinates of points B1, B2 and B3,

respectively. As shown in Fig. 4, τ̂1
02, τ̂2

02 and τ̂3
02 are paral-

lel and intersect at the infinite plane Π∞ at point z= (z, 0)T ,

which corresponds to the Z direction. τ̂1
01 is along vector u

and intersects at the infinite plane Π∞ at point u = (u, 0)T .

τ̂2
01 is along vector v and intersects at the infinite plane Π∞ at

point v = (v, 0)T . τ̂3
01 is along vector w and intersects at the

infinite plane Π∞ at point w = (w, 0)T . Let x = (x, 0)T and

y = (y, 0)T . As vectors u, v and w are normal to vector z,

points u, v, w, x and y are aligned at the infinite plane Π∞.

Fig. 5. The wrench graph of MEPaM

The actuation forces can be expressed by means of the

six projective points b1, b2, b3, u, v and w as follows: τ̂1
01 ≡

b1u, τ̂1
02 ≡ b1z, τ̂2

01 ≡ b2v, τ̂2
02 ≡ b2z, τ̂3

01 ≡ b3w and τ̂3
02 ≡

b3z. As a result, the wrench graph of MEPaM is as shown in

Fig. 5.

3.2.3 Superbracket of MEPaM

The rows of the backward Jacobian matrix of a par-

allel manipulator are the Plücker coordinates of six lines

in P3. The superjoin of these six vectors in P5 corresponds

to the determinant of their six Plücker coordinate vectors

up to a scalar multiple, which is the superbracket in GCA

Λ(V (2)) [33]. Thus, a singularity occurs when these six

Plücker coordinate vectors are dependent, which is equiva-

lent to a superbracket equal to zero.

From Fig. 5, MEPaM’s superbracket SMEPaM can be ex-

pressed as follows:

SMEPaM = [b1ub1zb2vb2zb3wb3z] (19)

This expression can be developed into a linear combination

of 24 bracket monomials [16,34], each one being the product

of three brackets of four projective points. A simplified ex-

pression of MEPaM’s superbracket was obtained by means

of a graphical user interface recently developed in the frame-



work of the ANR SIROPA project [35], namely,

SMEPaM = [b1b2 zb3]
(

[b1 uzb2][vwb3 z]

−[b1uzv][b2 wb3 z]
)

(20)

3.2.4 Geometric Conditions for MEPaM’s Singularities

Let Π1 be the plane passing through point B1 and

spanned by vectors u and z. Let Π3 be the plane passing

through point B3 and spanned by vectors w and z. Let L1

be the intersection line of planes Π1 and Π3. Let L2 be the

line passing through point B2 and along v. From Eq. (20),

MEPaM reaches a parallel singularity if and only if at least

one of the two following conditions is verified:

1. The four points of the tetrahedron of corners B1, B2, B3

and z are coplanar, namely, the moving platform is ver-

tical as shown in Fig. 6;

2. The lines L1 and L2 intersect as shown in Fig. 7.

Fig. 6. A singular configuration of MEPaM: its moving platform is

vertical

These two conditions yield directly the relation satis-

fied by the parallel singularities in the orientation workspace,

specifically,

(

−1+ 2Q2
2 + 2Q3

2
)(

Q2
2 +Q3

2 +Q4
2 − 1

)

Q4
2 = 0 (21)

where variables (Q2,Q3,Q4), a subset of the quaternions co-

ordinates, represent the orientation space. The quaternions

represent the orientation of the moving-platform with a rota-

tion axis s and an angle θ. The relation between the quater-

nions, axis and angle representation can be found in [36]:

Q1 = cos(θ/2), Q2 = sx sin(θ/2)

Q3 = sy sin(θ/2), Q4 = sz sin(θ/2) (22)

Fig. 7. A singular configuration of MEPaM: lines L1 and L2 inter-

sect
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0.0

0.5

1.0

Q4

Fig. 8. The parallel singularities of MEPaM in its orientation

workspace

where s2
x + s2

y + s2
z = 1 and 0 ≤ θ ≤ π.

It is evident that Eqn. (21) depends only on the orien-

tation variables (Q2, Q3, Q4). This means that the parallel

singularities do not depend on the position of the centroid

of the moving platform. Hence, the parallel singularities

of MEPaM can be represented in its orientation workspace

only, characterized with the variables (Q2,Q3,Q4) as shown

in Fig. 8.



4 Workspace of MEPaM

Due to the mechanical design of MEPaM, the orienta-

tion and positional workspaces can be studied separately. In-

vestigations found that the size and shape of the orientation

workspace of MEPaM depend only on the orientation of the

legs and the physical limitations of the U-joints. The posi-

tional workspace can be directly deduced from the possible

motions of the epicyclic transmissions.

4.1 Orientation Workspace

The regular orientation workspace of MEPaM was cho-

sen to be 360-40-80◦ in a Azimuth, Tilt and Torsion (φ,θ,σ)

co-ordinate frame, as illustrated in Fig. 9. This workspace

was chosen with regards to future use of MEPaM in haptic

applications. The U-joints attached to each corner of the plat-

form can only be bent to an angle up to 45◦ due to physical

limitaions. The reachable orientation workspace of MEPaM

can be calculated by discretizing the orientation workspace

and verifying if the two following conditions, which take into

account the U-joints angles limitation, are verified for each

leg i = 1,2,3:

|yi.ui| ≥
√

2

2
and |yi.z4| ≤

√
2

2
(23)

The regular (blue) and reachable (yellow) orientation

workspaces of MEPaM are plotted in Fig. 10. It can be

seen that the reachable orientation workspace perfectly fits

the specified requirements. Moreover, all the orientations

that can be reached by the moving platform are singularity-

free. This implies that the physical limitations of the U-joints

are sufficient in order to not reach a parallel singularity and

to stay in the required workspace. Thus, attention to these

two points in the control loop of the manipulator need not be

considered.

Fig. 9. Co-ordinate frame for Azimuth (φ), Tilt (θ) & Torsion (σ) an-

gles [φ(z)→ θ(y)→ σ(z∗)]

4.2 Positional Workspace

For symmetrical reasons, the regular positional

workspace was defined as a cylinder of diameter and height

Dw for the center point of the triangular platform. The

Fig. 10. Regular (blue) and Reachable (yellow) orientation

workspaces with respect to the (φ, θ, σ) Azimuth, Tilt & Torsion an-

gles

positional requirement of each epicyclic transmission is

thus a square of side length Dw, drawn in blue in Fig. 11.

However, in order for the device to be able to perform rota-

tions whilst being at a border of the positional workspace,

an offset needed to be considered, as shown in red in Fig.

11. Simulation showed that this offset can be approximated

by the value of 3
8
d3. Hence, the positional requirement

of each epicyclic transmission is a square of side length

L = Dw + 3
4
d3. The lever arms A and B were then designed

in order for MEPaM to have the best accuracy and force

capability over its entire workspace.

Fig. 11. Regular positional workspace of MEPaM and positional re-

quirements of the epicyclic transmissions

5 Conclusions

A new six-dof epicyclic-parallel manipulator with all ac-

tuators mounted on the base, MEPaM, was introduced. The

kinematic equations of the manipulator were presented and

the singularities analysed. An interesting feature of the ma-

nipulator is that the parallel singularity is independent on the

position of the end-effector. MEPaM was designed in such

a way that the physical limits of the U-joints prevent the

end effector from reaching the parallel singularities within

its workspace.
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Ministry for Foreign Affairs (MAEE) and the French Min-

istry for Higher Education and Research (MESR) (Project

PHC FAST).

References

[1] Merlet, J., 2006. Parallel Robots. Springer, Dordrecht.

[2] Kong, X., and Gosselin, C., 2007. Type Synthesis of

Parallel Mechanisms. Springer-Verlag, Berlin.

[3] Gogu, G., 2008. Structural Synthesis of Parallel

Robots, Part 1: Methodology. Springer.

[4] Gogu, G., 2009. Structural Synthesis of Parallel

Robots, Part 2: Translational Topologies with Two and

Three Degrees of Freedom. Springer.

[5] Clavel, R., 1988. “Delta, a fast robot with parallel ge-

ometry”. In Proceedings of the lnternational Sympo-

sium on Industrial Robots, pp. 91–100.

[6] Tsai, L., Walsh, G., and Stamper, R., 1996. “Kinemat-

ics of a novel three dof translational platform”. In Pro-

ceedings of the 1996 IEEE International Conference on

Robotics and Automation, pp. 3446–3451.

[7] Gregorio, R. D., 2000. “Closed-form solution of the po-

sition analysis of the pure translational 3-RUU parallel

mechanism”. In Proceedings of the 8th Symposium on

Mechanisms and Mechanical Transmissions, pp. 119–

124.

[8] Gosselin, C., 1993. “On the kinematic design of spheri-

cal 3-dof parallel manipulators”. International Journal

of Robotics Research, 12(4), pp. 394–402.

[9] Gregorio, R. D., 2001. “Kinematics of a new spherical

parallel manipulator with three equal legs: the 3-URC

wrist”. Journal of Robotic Systems, 18(5), pp. 213–219.

[10] Liu, X., Wang, J., and Pritschow, G., 2005. “A new

family of spatial 3-dof fully-parallel manipulators with

high rotational capability”. Mechanism and Machine

Theory, 40(4), pp. 475–494.

[11] Liu, X., Wang, J., Wu, C., and Kim, J., 2009. “A new

family of spatial 3-dof parallel manipulators with two

translational and one rotational dofs”. Robotica, 27(2),

pp. 241–247.

[12] Zhao, T., and Huang, Z., 2000. “A novel spatial four-

dof parallel mechanism and its position analysis”. Me-

chonicai Science and Technology, 19(6), pp. 927–929.

[13] Morozov, A., and Angeles, J., 2007. “The me-

chanical design of a novel Schönflies-motion genera-

tor”. Robotics and Computer-Integrated Manufactur-

ing, 23(1), pp. 82–93.

[14] Huang, Z., and Li, Q. C., 2002. “General method-

ology for type synthesis of lower mobility symmet-

rical parallel manipulators and several novel manipu-

lators”. International Journal of Robotics Research,

21(2), pp. 131–146.

[15] Li, Q., Huang, Z., and Hervé, J., 2004. “Type synthesis
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Appendix A: Direct Kinematics Coefficients

The coefficients of the univariate polynomial Eqn. (8)

are:
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