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A Six-Dof Epicyclic-Parallel Manipulator
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A new six-dof epicyclic-parallel manipulator with all actuators allocated on the ground is introduced. It is shown that the system has a considerably simple kinematics relationship, with the complete direct and inverse kinematics analysis provided. Further, the first and second links of each leg can be driven independently by two motors. The serial and parallel singularities of the system are determined, with an interesting feature of the system being that the parallel singularity is independent of the position of the end-effector. The workspace of the manipulator is also analyzed with future applications in haptics in mind.

Introduction

There are a large number of parallel manipulators which have been reported over the past three decades. They can be divided into three-dof, four-dof, five-dof and six-dof parallel manipulators [START_REF] Merlet | Parallel Robots[END_REF][START_REF] Kong | Type Synthesis of Parallel Mechanisms[END_REF][START_REF] Gogu | Structural Synthesis of Parallel Robots, Part 1: Methodology[END_REF][START_REF] Gogu | Structural Synthesis of Parallel Robots, Part 2: Translational Topologies with Two and Three Degrees of Freedom[END_REF]. In three-dof parallel manipulators, there are three-dof translational parallel manipulators [START_REF] Clavel | Delta, a fast robot with parallel geometry[END_REF][START_REF] Tsai | Kinematics of a novel three dof translational platform[END_REF][START_REF] Gregorio | Closed-form solution of the position analysis of the pure translational 3-RUU parallel mechanism[END_REF], threedof rotational parallel manipulators [START_REF] Gosselin | On the kinematic design of spherical 3-dof parallel manipulators[END_REF][START_REF] Gregorio | Kinematics of a new spherical parallel manipulator with three equal legs: the 3-URC wrist[END_REF] and others [START_REF] Liu | A new family of spatial 3-dof fully-parallel manipulators with high rotational capability[END_REF][START_REF] Liu | A new family of spatial 3-dof parallel manipulators with two translational and one rotational dofs[END_REF]. Among the four-dof parallel manipulators, examples include the four-DOF four-URU parallel mechanism [START_REF] Zhao | A novel spatial fourdof parallel mechanism and its position analysis[END_REF] and the McGill Schönflies-motion generator [START_REF] Morozov | The mechanical design of a novel Schönflies-motion generator[END_REF]. There are also five-dof parallel manipulators, such as 3T2R parallel manipulators [START_REF] Huang | General methodology for type synthesis of lower mobility symmetrical parallel manipulators and several novel manipulators[END_REF][START_REF] Li | Type synthesis of 3R2T 5-dof parallel mechanisms using the Lie group of displacements[END_REF]. For six-dof manipulators, the number of all possible structures can be extremely large [START_REF] Ben-Horin | Singularity condition of six-degree-of-freedom three-legged parallel robots based on Grassmann-Cayley algebra[END_REF]. Six-legged six-dof parallel manipulators, such as the Gough-Stewart platform, have high stiffness and accuracy but suffer from a small workspace and limb interference. Three-legged six-dof manipulators were introduced to overcome this workspace limitation and do not suffer from the same limb interference as their six-legged counterparts [START_REF] Dash | Instantaneous kinematics and singularity analysis of three-legged parallel manipulators[END_REF]. However, to achieve six-dof with only three legs requires actuators to be mounted on the moving limbs, thus increasing the mass and inertia of the moving parts. A number of three-legged manipulators have been reported, such as [START_REF] Behi | Kinematic analysis for a six-degree-offreedom 3-PRPS parallel mechanism[END_REF][START_REF] Kohli | Manipulator configurations based on rotary-linear (r-l) actuators and their direct and inverse kinematics[END_REF][START_REF] Cleary | Kinematic analysis of a novel 6-dof parallel manipulator[END_REF][START_REF] Byun | Analysis of a novel 6-dof, 3-PPSP parallel manipulator[END_REF][START_REF] Simaan | Design considerations of new six degrees-of-freedom parallel robots[END_REF][START_REF] Lee | Analysis and optimal design of a new 6 dof parallel type haptic device[END_REF][START_REF] Monsarrat | Workspace analysis and optimal design of a 3-leg 6-dof parallel platform mechanism[END_REF], however, very few of them have all actuators allocated on the ground, [START_REF] Cleary | Kinematic analysis of a novel 6-dof parallel manipulator[END_REF][START_REF] Lee | Analysis and optimal design of a new 6 dof parallel type haptic device[END_REF][START_REF] Monsarrat | Workspace analysis and optimal design of a 3-leg 6-dof parallel platform mechanism[END_REF] being some examples. Cleary and Brooks [START_REF] Cleary | Kinematic analysis of a novel 6-dof parallel manipulator[END_REF] used a differential drive system, Lee and Kim [START_REF] Lee | Analysis and optimal design of a new 6 dof parallel type haptic device[END_REF] used a gimbal mechanism and Monsarrat and Gosselin [START_REF] Monsarrat | Workspace analysis and optimal design of a 3-leg 6-dof parallel platform mechanism[END_REF] used five-bar mechanisms as input drivers to allow for all actuators to be mounted on the base of a three-legged six-dof parallel mechanism.

This paper proposes a new design of a six-dof threelegged parallel manipulator with all base mounted actuators, the Monash Epicyclic-Parallel Manipulator (MEPaM). The design is achieved by utilising the advantages of two-dof planetary belt systems, namely transmitting power from a base-mounted actuator to a moving joint. By mounting actuators on the base, the mass and inertia of the moving links is greatly reduced resulting in a lightweight six-dof parallel manipulator.

This paper is organized as follows. Section 2 describes the concept design and provides solutions to the direct and inverse kinematics problems for the manipulator. The singularities of MEPaM are analysed in Section 3 and its workspace in Section 4. Finally, the first prototype and future applications of MEPaM are briefly discussed in Section 5.

Concept Design

The proposed six-dof parallel manipulator is illustrated in Fig. 1. There are three identical planetary-belt mechanisms, each having two-dof driven by two motors. The driving planes of the planetary systems form an equilateral triangle. The output of the subsystem is an arm attached to the planet, Lever Arm B. There is a cylindrical joint attached to an end of this arm, perpendicular to the corresponding driving plane. A triangular end-effector is connected to the three cylindrical joints via universal joints on its vertices.

The planetary belt-pulley system shown in Fig. 1 has a transmission ratio of 1, providing two-dof movement in a flat plane. The carrier, Lever Arm A, is driven by a lower motor via a short stiff belt, while the sun pulley is driven by the upper motor. This motion is transmitted to the planet pulley via a long stiff belt. The arm attached to the planet is therefore driven by these two motors and hence, the endeffector controlled by six motors.

Direct Kinematics

The problem of direct kinematics is to find the position and orientation of the end effector, given the position of all the controlled joints. There are six motors all together, so there are six angles to be specified, i.e. θ 1a , θ 1b , θ 2a , θ 2b , θ 3a and θ 3b . There are also three pairs of angles indicating the angles of the carrier and the planet denoted θ 1c , θ 1p , θ 2c , θ 2p , θ 3c and θ 3p . Fig. 2 shows the planetary belt-pulley transmission. According to Fig. 2, we have

A 1x = w + d 1 cos θ 1c + d 2 cos θ 1p (1a) A 1z = w + d 1 sin θ 1c + d 2 sin θ 1p (1b)
where (w,w) is the Cartesian coordinate vector of the sun cen- 

θ 1b -θ 1c θ 1p -θ 1c = 1 (2) 
Given a proper reference for θ 1a , we should have θ 1c = θ 1a . Therefore, Eqn. (2) can be written as θ 1p = θ 1b . This indicates that the motions of the carrier and the planet can be independently controlled by Motor 1A and Motor 1B, respectively. Eqns. (1) can be further written as

A ix = w + d 1 cos θ ia + d 2 cos θ ib (3a) A iz = w + d 1 sin θ ia + d 2 sin θ ib (3b) for i = 1, 2, 3.
With the actuators locked, the manipulator has a structure equivalent to that of the 3PS manipulator analysed by Parenti-Castelli and Innocenti [START_REF] Parenti-Castelli | Direct displacement analysis for some classes of spatial parallel mechanisms[END_REF], the difference being that MEPaM is a six-dof manipulator with six actuators allocated on the base as opposed to the three-dof, three actuator 3PS manipulator. Nevertheless, it is still an important task to formulate the steps necessary to find the strokes of the three cylindrical joints, l i for i = 1, 2, 3, upon the geometric constraints on the triangular platform. The frame assignment for the driving planes as well as the end-effector are shown in Fig. 3. Three fixed frames, F 1 , F 2 and F 3 , are attached to the base in an equilateral triangle formation, while a moving frame F 4 is attached to the triangular end effector of side length d 3 . a i and b i are the Cartesian coordinate vectors of points A i and B i , respectively. An upper-left index is used to indicate in which frame the vector is expressed. Since each cylindrical joint is perpendicular to the corresponding plane, we have

1 b 1 =   A 1x l 1 A 1z   , 2 b 2 =   A 2x l 2 A 2z   , 3 b 3 =   A 3x l 3 A 3z   (4) 
From Fig. 3, the transformation matrices between frames F 1 , F 2 and F 3 are given by

1 2 T = 2 3 T = 3 1 T =    cos(2π/3) -sin(2π/3) 0 d 0 sin(2π/3) cos(2π/3) 0 0 0 0 1 0 0 0 0 1   
Hence, the positions of all the vertices can be transformed into F 1 , i.e.,

1 b i = 1 i T i b i ( 5 
)
for i = 2, 3. The geometric constraints on the device are given by

1 b i -1 b j 2 = d 2 3 ( 6 
)
for i = 1, 2, 3 and j = i + 1 (mod 3).

The constraint equations, Eqns. ( 6), contain only three variables l i , i = 1, 2, 3, and can be further written in the form:

D 2 l 2 2 + D 1 l 2 + D 0 = 0 (7a) E 2 l 3 2 + E 1 l 3 + E 0 = 0 (7b)
F 2 l 3 2 + F 1 l 3 + F 0 = 0 (7c)
where D j , E j , F j ( j = 0, 1, 2) are functions of l 1 , l 2 and l 1 respectively, as well as d 3 , A ix and A iz (i = 1, 2, 3).

By means of dialytic elimination [START_REF] Angeles | Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms[END_REF], the system of equations ( 7) can be reduced to a univariate polynomial of order four in the variable l 1 :

G 4 l 1 4 + G 3 l 1 3 + G 2 l 1 2 + G 1 l 1 + G 0 = 0 (8)
where the coefficients G k (k = 0...4) are given in the Appendix. Note that for the 3PS structure analysed by Parenti-Castelli and Innocenti [START_REF] Parenti-Castelli | Direct displacement analysis for some classes of spatial parallel mechanisms[END_REF], the univariate polynomial was of order eight. Once Eqn. ( 8) has been solved for l 1 , substitution of the result into Eqns. [START_REF] Gregorio | Closed-form solution of the position analysis of the pure translational 3-RUU parallel mechanism[END_REF] will allow for determination of l 2 and l 3 . The complexity of Eqns. ( 6) is relatively low as compared to the direct kinematics problem in most sixdof parallel manipulators. Solutions of l i for i = 1, 2, 3 can be used to evaluate the position and orientation of the endeffector. The position of the end-effector is simply the origin of F 4 , given by

1 b 1 = [ A 1x l 1 A 1z ] T .
The orientation of the end-effector is given by

1 4 Q = [ i j k ] where i = 1 b 2 -1 b 1 1 b 2 -1 b 1 j = ( 1 b 3 -1 b 1 ) -ii T ( 1 b 3 -1 b 1 ) ( 1 b 3 -1 b 1 ) -ii T ( 1 b 3 -1 b 1 ) k = i × j (9) 
Therefore, the direct kinematics of MEPaM is solved.

Inverse Kinematics

The problem of inverse kinematics is to find the six input angles, given the position and orientation of the end-effector, i.e. 1 o 4 and 1 4 Q. The Cartesian coordinate vectors of the vertices of the moving platform, denoted B 1 , B 2 and B 3 , are given by:

1 b i = 1 o 4 + 1 4 Q 4 b i ( 10 
) for i = 1,2,3, where 4 b 1 = [ 0 0 0 ] T , 4 b 2 = [ d 3 0 0 ] T , and 4 b 3 = [ d 3 /2 √ 3d 3 /2 0 ] T . Upon Eqns.
(3), we can readily find the motor inputs, i.e. θ ia and θ ib for i = 1, 2, 3. First, the Eqns. (3) are re-written as

α i1 -d 1 cos θ ia = d 2 cos θ ib (11a) α i2 -d 1 sin θ ia = d 2 sin θ ib (11b)
where α i1 = A ixw and α i2 = A izw for i = 1, 2, 3. Then A ix and A iz are found from Eqn. (4) which requires substituting Eqn. [START_REF] Liu | A new family of spatial 3-dof fully-parallel manipulators with high rotational capability[END_REF] into Eqn. [START_REF] Clavel | Delta, a fast robot with parallel geometry[END_REF] to solve for the component values. Squaring Eqns. [START_REF] Liu | A new family of spatial 3-dof parallel manipulators with two translational and one rotational dofs[END_REF] and adding the resultants yields a single equation in one variable for each θ ia :

β i -2d 1 α i1 cos θ ia -2d 2 α i2 sin θ ia = 0 ( 12 
)
where 2 for i = 1, 2, 3. By using the half angle formulae, eq. ( 12) becomes a quadratic equation in tan(θ ia /2) with solution tan

β i = α i1 2 +α i2 2 +d 1 2 -d 2 
θ ia 2 = 4d 1 α i2 ± 16d 1 2 (α i1 2 + α i2 2 ) -4β i 2 2(β i + 2d 1 α i1 ) (13) 
for i = 1, 2, 3. Knowing θ ia allows for the calculation of θ ib with the use of eqs. [START_REF] Liu | A new family of spatial 3-dof parallel manipulators with two translational and one rotational dofs[END_REF]:

tan θ ib = α i2 -d 1 sin θ ia α i1 -d 1 cos θ ia ( 14 
)
for i = 1, 2, 3. Hence, the inverse kinematics problem has been solved. From Eqn. ( 13), it can be seen that there are two possible solutions for each arm which indicates that generally there are two possible configurations (working modes) of each arm for any pose of the end-effector.

Singularity Analysis

The singularities of the manipulator can be found from the determinant of the serial and parallel Jacobian matrices, J S and J P , respectively [START_REF] Gosselin | Singularity analysis of closed-loop kinematic chains[END_REF]. The Jacobian matrices satisfy the following relationship:

J S Θ = J P t ( 15 
)
where Θ is the vector of active joint rates and t is the twist of the moving platform.

Serial Singularities

The serial Jacobian matrix can be obtained by differentiating Eqn. (3) with respect to time, which yields:

J S =   J 1 0 2×2 0 2×2 0 2×2 J 2 0 2×2 0 2×2 0 2×2 J 3  
where

J i = -d 1 sin θ ia -d 2 sin θ ib d 1 cos θ ia d 2 cos θ ib
The serial singularities occur when the determinant of

J S is null, namely, -(d 1 d 2 ) 3 3 ∏ i=1 sin θ ia -θ ib = 0
Hence, the serial singularities occur when

θ ia -θ ib = 0 or π
In such configurations, the arms of the planetary gear systems are either fully extended or folded. This result is as expected, since when the arms are in such an arrangement the moving platform can no longer move in the direction of the arms and thus loses one dof.

Parallel Singularities

Whilst the parallel singularities of the manipulator can be determined from the parallel Jacobian matrix, an alternative means is able to provide geometric insight into their meaning. A geometric condition for the manipulator singularities is obtained by means of Grassmann-Cayley Algebra with the actuation singularities being able to be plotted in the manipulator's orientation workspace.

Grassmann-Cayley Algebra (GCA), also known as exterior algebra, was developed by H. Grassmann as a calculus for linear varieties operating on extensors with the join and meet operators. The latter are associated with the span and intersection of vector spaces of extensors. Extensors are symbolically denoted by Plücker coordinates of lines and characterized by their step. In the four-dimensional vector space V associated with the three-dimensional projective space P 3 , extensors of step 1, 2 and 3 represent points, lines and planes, respectively. They are also associated with subspaces of V , of dimension 1, 2 and 3, respectively. Points are represented with their homogeneous coordinates, while lines and planes are represented with their Plücker coordinates. The notion of extensor makes it possible to work at the symbolic level and therefore, to produce coordinate-free algebraic expressions for the geometric singularity conditions of spatial parallel manipulators (PMs). For further details on GCA, the reader is referred to [START_REF] White | The bracket ring of a combinatorial geometry I[END_REF][START_REF] White | The bracket of 2-extensors[END_REF][START_REF] Kanaan | Singularity analysis of lower-mobility parallel manipulators using Grassmann-Cayley algebra[END_REF][START_REF] Caro | Singularity analysis of a six-dof parallel manipulator using Grassmann-Cayley algebra and Gröbner bases[END_REF][START_REF] Amine | Constraint and singularity analysis of lower-mobility parallel manipulators with parallelogram joints[END_REF].

Wrench System of MEPaM

The actuated joints of MEPaM are the first two revolute joints of each leg. The actuation wrench τi 01 corresponding to the first revolute joint of the ith leg is reciprocal to all the twists of the leg, but to the twist associated with its first revolute joint. Likewise, the actuation wrench τi 02 corresponding to the second revolute joint of the ith leg is reciprocal to all the twists of the leg, but to the twist associated with its second revolute joint. As a result, 

τ1 01 = u b 1 × u , τ2 01 = v b 2 × v , τ3 01 = w b 3 × w (16)
= z b 1 × z , τ2 02 = z b 2 × z , τ3 02 = z b 3 × z ( 17 
)
In a non-singular configuration, the six actuation wrenches τ1 01 , τ1 02 , τ2 01 , τ2 02 , τ3 01 and τ3 02 , which are illustrated in Fig. 4, span the actuation wrench system of MEPaM. As MEPaM does not have any constraint wrenches, its global wrench system amounts to its actuation wrench, namely,

W MEPaM = span(τ 1 01 , τ1 02 , τ2 01 , τ2 02 , τ3 01 , τ3 02 ) (18) 
The legs of MEPaM apply six actuation forces to its movingplatform. Its global wrench system is a six-system. A parallel singularity occurs when the wrenches in the six-system become linearly dependent and span a k-system with k < 6.

Wrench Graph of MEPaM in P 3

The six actuation wrenches τ1 4,τ1 02 , τ2 02 and τ3 02 are parallel and intersect at the infinite plane Π ∞ at point z = (z, 0) T , which corresponds to the Z direction. τ1 01 is along vector u and intersects at the infinite plane Π ∞ at point u = (u, 0) T . τ2 01 is along vector v and intersects at the infinite plane Π ∞ at point v = (v, 0) T . τ3 01 is along vector w and intersects at the infinite plane Π ∞ at point w = (w, 0) T . Let x = (x, 0) T and y = (y, 0) T . As vectors u, v and w are normal to vector z, points u, v, w, x and y are aligned at the infinite plane Π ∞ . 

Superbracket of MEPaM

The rows of the backward Jacobian matrix of a parallel manipulator are the Plücker coordinates of six lines in P 3 . The superjoin of these six vectors in P 5 corresponds to the determinant of their six Plücker coordinate vectors up to a scalar multiple, which is the superbracket in GCA Λ(V (2) ) [START_REF] White | Grassmann-Cayley algebra and robotics applications[END_REF]. Thus, a singularity occurs when these six Plücker coordinate vectors are dependent, which is equivalent to a superbracket equal to zero.

From Fig. 5, MEPaM's superbracket S MEPaM can be expressed as follows:

S MEPaM = [b 1 u b 1 z b 2 v b 2 z b 3 w b 3 z] (19) 
This expression can be developed into a linear combination of 24 bracket monomials [START_REF] Ben-Horin | Singularity condition of six-degree-of-freedom three-legged parallel robots based on Grassmann-Cayley algebra[END_REF][START_REF] Mcmillan | The dotted straightening algorithm[END_REF], each one being the product of three brackets of four projective points. A simplified expression of MEPaM's superbracket was obtained by means of a graphical user interface recently developed in the frame-work of the ANR SIROPA project [START_REF] Amine | Singularity analysis of the 4-RUU parallel manipulator based on Grassmann-Cayley algebra and Grassmann geometry[END_REF], namely, and z are coplanar, namely, the moving platform is vertical as shown in Fig. 6;

S MEPaM = [b 1 b 2 z b 3 ] [b 1 u z b 2 ][v w b 3 z] -[b 1 u z v][b 2 w b 3 z] (20 
2. The lines L 1 and L 2 intersect as shown in Fig. 7.

Fig. 6. A singular configuration of MEPaM: its moving platform is vertical These two conditions yield directly the relation satisfied by the parallel singularities in the orientation workspace, specifically,

-1 + 2 Q 2 2 + 2 Q 3 2 Q 2 2 + Q 3 2 + Q 4 2 -1 Q 4 2 = 0 (21)
where variables (Q 2 , Q 3 , Q 4 ), a subset of the quaternions coordinates, represent the orientation space. The quaternions represent the orientation of the moving-platform with a rotation axis s and an angle θ. The relation between the quaternions, axis and angle representation can be found in [START_REF] Khalil | Modeling, Identification and Control of Robots[END_REF]: 21) depends only on the orientation variables (Q 2 , Q 3 , Q 4 ). This means that the parallel singularities do not depend on the position of the centroid of the moving platform. Hence, the parallel singularities of MEPaM can be represented in its orientation workspace only, characterized with the variables (Q 2 , Q 3 , Q 4 ) as shown in Fig. 8. Due to the mechanical design of MEPaM, the orientation and positional workspaces can be studied separately. Investigations found that the size and shape of the orientation workspace of MEPaM depend only on the orientation of the legs and the physical limitations of the U-joints. The positional workspace can be directly deduced from the possible motions of the epicyclic transmissions.

Q 1 = cos(θ/2), Q 2 = s x sin(θ/2) Q 3 = s y sin(θ/2), Q 4 = s z sin(θ/2) (22)

Orientation Workspace

The regular orientation workspace of MEPaM was chosen to be 360-40-80 • in a Azimuth, Tilt and Torsion (φ, θ, σ) co-ordinate frame, as illustrated in Fig. 9. This workspace was chosen with regards to future use of MEPaM in haptic applications. The U-joints attached to each corner of the platform can only be bent to an angle up to 45 • due to physical limitaions. The reachable orientation workspace of MEPaM can be calculated by discretizing the orientation workspace and verifying if the two following conditions, which take into account the U-joints angles limitation, are verified for each leg i = 1, 2, 3:

|y i .u i | ≥ √ 2 2 and |y i .z 4 | ≤ √ 2 2 (23) 
The regular (blue) and reachable (yellow) orientation workspaces of MEPaM are plotted in Fig. 10. It can be seen that the reachable orientation workspace perfectly fits the specified requirements. Moreover, all the orientations that can be reached by the moving platform are singularityfree. This implies that the physical limitations of the U-joints are sufficient in order to not reach a parallel singularity and to stay in the required workspace. Thus, attention to these two points in the control loop of the manipulator need not be considered. 

Positional Workspace

For symmetrical reasons, the regular positional workspace was defined as a cylinder of diameter and height D w for the center point of the triangular platform. The However, in order for the device to be able to perform rotations whilst being at a border of the positional workspace, an offset needed to be considered, as shown in red in Fig. 11. Simulation showed that this offset can be approximated by the value of 3 8 d 3 . Hence, the positional requirement of each epicyclic transmission is a square of side length L = D w + 3 4 d 3 . The lever arms A and B were then designed in order for MEPaM to have the best accuracy and force capability over its entire workspace. A new six-dof epicyclic-parallel manipulator with all actuators mounted on the base, MEPaM, was introduced. The kinematic equations of the manipulator were presented and the singularities analysed. An interesting feature of the manipulator is that the parallel singularity is independent on the position of the end-effector. MEPaM was designed in such a way that the physical limits of the U-joints prevent the end effector from reaching the parallel singularities within its workspace.
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 4 Fig. 4. The actuation forces applied on the moving platform of MEPaM

Fig. 5 .

 5 Fig. 5. The wrench graph of MEPaM
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 324 Geometric Conditions for MEPaM's Singularities Let Π 1 be the plane passing through point B 1 and spanned by vectors u and z. Let Π 3 be the plane passing through point B 3 and spanned by vectors w and z. Let L 1 be the intersection line of planes Π 1 and Π 3 . Let L 2 be the line passing through point B 2 and along v. From Eq. (20), MEPaM reaches a parallel singularity if and only if at least one of the two following conditions is verified: 1. The four points of the tetrahedron of corners B 1 , B 2 , B 3
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 78 Fig. 7. A singular configuration of MEPaM: lines L 1 and L 2 intersect

Fig. 9 .

 9 Fig. 9. Co-ordinate frame for Azimuth (φ), Tilt (θ) & Torsion (σ) angles [φ(z) → θ(y) → σ(z * )]

Fig. 10 .

 10 Fig. 10. Regular (blue) and Reachable (yellow) orientation workspaces with respect to the (φ, θ, σ) Azimuth, Tilt & Torsion angles

Fig. 11 .

 11 Fig. 11. Regular positional workspace of MEPaM and positional requirements of the epicyclic transmissions

  Let b 1 , b 2 and b 3 denote the homogeneous coordinates of points B 1 , B 2 and B 3 , respectively. As shown in Fig.

	01 , τ1 02 , τ2 01 , τ2 02 , τ3 01 and τ3 02
	form a basis of the global wrench system W MEPaM . Those
	wrenches are represented by six finite lines in P 3 . To obtain
	the six extensors of MEPaM's superbracket, twelve projec-
	tive points on the six projective lines need to be selected, i.e.
	two points on each line. The extensor of a finite line can be
	represented by either two distinct finite points or one finite
	point and one infinite point since any finite line has one point
	at infinity corresponding to its direction.
	B 1 , B 2 and B 3 are the intersection points of τ1 01 and τ1 02 ,
	τ2 01 and τ2 02 , τ3 01 and τ3 02 , respectively.
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Appendix A: Direct Kinematics Coefficients

The coefficients of the univariate polynomial Eqn. (8) are: