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Abstract

This paper deals with the robust updating of uncertain computational models in the context

of structural dynamics in the low- and medium-frequency ranges of composite sandwich

panels for which experimental results are available. The uncertain computational model

is constructed using the non-parametric probabilistic approach which takes into account

model and data uncertainties. The formulation of the robust updating problem includes

the effects of uncertainties and consists in minimizing a cost function with respect to an

admissible set of updating parameters. Updating is performed in two steps using several

cost functions and experimental results. The results of the robust updating problem show

that the method proposed is efficient for updating the uncertain computational model in

both low- and medium-frequency ranges.

Key words: Robust updating, Structural dynamics, Model uncertainties, Composite

sandwich materials, Low-frequency range, Medium-frequency range.

1 Introduction

In structural dynamics, the updating of a computational model using experimental data is cur-

rently a challenge of interest in many industrial areas. It is known that the dynamical behaviour

of a real structure manufactured from a designed structure has to be predicted with a compu-

tational model constructed with a probabilistic model in order to take into account the model

uncertainties and the data uncertainties. Consequently, the updating has to be carried out with

an uncertain computational model, which allows the effects of uncertainties in the updating

process to be taken into account. Such an updating is understood as robust updating. Note that
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the quality of the robust updating is conditioned by the probability model used for construct-

ing the uncertain computational model. In general, the updating process is performed with a

deterministic computational model [1–10].

More recently, robust updating formulations have been proposed in the context of structural dy-

namics [11–15]. Such robust updating formulations concern the robust updating with respect to

data uncertainties. This means that the uncertain computational model which has to be updated

is constructed with a parametric probabilistic approach. In such a case, the parameters of the

mean computational model are modelled by random variables or stochastic fields in order to

take into account the data uncertainties. Note that such an uncertain computational model does

not take into account the model uncertainties. Consequently, the mean computational model has

to model the structural complexity of the dynamical system with a high accuracy in order to be

predictive. This means, that the more complex the dynamical system is, the larger the number

of parameters is.

The motivation of this paper is to propose a robust updating methodology with respect to both

model uncertainties and data uncertainties in the low- and medium-frequency ranges using ex-

perimental measurements. Concerning the present robust optimization approach, it should be

noted that, to the knowledge of the authors, there is a prior work carried out in that sense in the

field of robust design optimization [16,17] but none in the present context of robust updating

optimization. The present robust udating optimization is briefly summarized as follows. The

uncertain computational model which has to be updated is constructed with the non-parametric

probabilistic approach [18,19] whose relevance and efficiency has been proven in structural dy-

namics [20–23] and in structural acoustics [24,25]. The main idea of this approach is to avoid
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a complex modelling of the mean computational model. A set of mean computational models

whose design parameters are called the updating mean parameters and belong to an admissi-

ble set defined by the design constraints is constructed. This mean computational model has to

be representative of the physics of the problem although it remains a rough approximation of

the dynamical system. Consequently, it should be noted that the admissible set of the updating

mean parameters has a reasonable dimension. The non-parametric probabilistic model is then

used to take into account model uncertainties and data uncertainties. The operators of the mean

computational model are replaced by random operators whose probability model is constructed

from the maximum entropy principle with the available information. With such an approach,

the uncertainty level of each random operator is controlled by a scalar parameter called the

dispersion parameter. This non-parametric probabilistic approach allows not only the data un-

certainties (uncertainties on the parameters of the mean computational model) to be taken into

account but also the model uncertainties (uncertainties due to the lack of accuracy in the mean

computational model). One then obtains a set of uncertain computational models whose up-

dating parameters are the updating mean parameters related to the mean computational model

and the updating dispersion parameters which allow the uncertainty level in the computational

model to be controlled. The cost function used for the robust updating is defined as a function of

these updating parameters and is the sum of the normalized variance of the dynamical response

of the stochastic computational model and of the bias defined as the distance between the mean

stochastic response and the mean of the experimentally measured response.

The robust updating leads a non-linear constrained optimization problem to be solved with re-

spect to the admissible set of the updating parameters. The robust updating methodology is

splitted in two steps. The first step consists in calculating the initial updating parameters. First,
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the initial updating mean parameters are deduced from deterministic updating, that is to say by

using a cost function constructed from the mean computational model and defined as a distance

between the mean computational model and the mean of the experiments. It is known that the

information contained in the unwrapped phase of a frequency response function is interesting

(see for instance [26–28]) although rarely used for the analysis of mechanical systems. One

proposes then to solve this deterministic updating by using two cost functions. The first one

is defined from the modulus of the frequency response functions (usual method). The second

one is a new approach which uses the unwrapped phase of the frequency response functions.

The efficiency of these two cost functions is then compared and discussed. Secondly, the initial

updating dispersion parameters are deduced by using the cost function defined for the robust

updating and previously constructed from the uncertain computational model for which the up-

dating mean parameters are set to their initial value. The second step consists then in solving the

robust updating optimization problem around the initial updating parameters. The methodology

is validated and compared in the context of the structural dynamics of composite sandwich pan-

els in the low- and medium-frequency ranges for which experimental results issued from a set

of 8 manufactured sandwich panels are available [23,25].

In Section 2, the experimental results are summarized. Section 3 is devoted to the deterministic

updating of the mean computational model in order to calculate the initial updating mean pa-

rameters. In Section 4, one proposes the construction of a cost function in order to formulate

the robust updating problem with respect to model and data uncertainties. This cost function is

then used (1) for calculating the initial updating dispersion parameters and (2) for solving the

robust updating optimization problem around the initial updating parameters. The methodology

is numerically validated from experiments.
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2 Experiments in the low- and medium- frequency ranges

2.1 Description of the experimental data

Experimental data related to a set of nexp = 8 multilayered sandwich panels manufactured

from a designed composite sandwich panel [23,25] is used. The designed composite sand-

wich panel is a free structure with rectangular shape and is made up of two thin carbon-resin

skins constituted of two unidirectional plies [60/-60] and of one high stiffness closed-cell foam

core. Dynamical experiments are conducted for each of the manufactured sandwich panels.

The detailed description of the designed sandwich panel and of its corresponding experimen-

tal protocol can be found in [23,25]. Figure 1 displays several samples of the sandwich panel.

The frequency response function corresponding to a given out-plane point load is measured at

nobs = 24 observation points in the frequency band of analysis
 

= [100 , 4500] Hz. Let

xj with j ∈ {1, . . . , nobs} be the location of the observation point number j. One denotes by

W exp
j (ω, θk) the observation corresponding to the experimental frequency response function of

the manufactured composite sandwich panel number k, measured at observation point xj , at a

given frequency ν =
ω

2 π
of frequency band

 
and expressed in terms of acceleration.

2.2 Analysis of the experimental results

When analyzing linear dynamical systems in the frequency domain, the frequency response

functions are complex. Most often, the dynamic analyses are carried out with the moduli of

the frequency response functions and the information provided by the phases of frequency re-
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sponse functions is usually not investigated. It is known that the phase of a frequency response

function is able to characterize the different frequency ranges of analysis (low-frequency range,

medium-frequency range, high-frequency range) [29]. In the low-frequency range, for which

there is a low modal density, there are rotations of the phase each time an isolated mode is

crossed. Representing the phase as an unwrapped phase yields an unwrapped phase which is

a non-monotoneous function of the frequency, for which the rotations of the phase are repre-

sented by discontinuities. In the high-frequency range, for which there is a high modal density,

the modes are overlapped and there is no rotation of the phase. Consequently, the unwrapped

phase is a linear mapping of the frequency. The medium-frequency range is characterized by

an unwrapped phase which is not linear but which is a smooth function of the frequency. Con-

sequently, since the information provided by the phase is rich and is usually not often used in

linear dynamics for updating optimization, one proposes to analyze the experimental data not

only from the moduli of the experimental frequency responses (usual approach) but also from

the phases of the experimental frequency response functions.

The experimental complex-valued frequency response function W exp
j (ω, θk) can be written as

W exp
j (ω, θk) = |W exp

j (ω, θk)| exp(−i Φexp
j (ω, θk)) in which |W exp

j (ω, θk)| and Φexp
j (ω, θk) are

the modulus and the unwrapped phase angle. In order to analyze the experimental data, the

following quantities corresponding to a spatial average of moduli and of unwrapped phases are

introduced as:

dBexp
w (ω) = 10 log10





1

nobs nexp

nexp
∑

k =1

(

nobs
∑

j=1

|W exp
j (ω, θk)|

2

)



 , (1)

φexp

w
(ω) =

1

nobs nexp

nexp
∑

k = 1

nobs
∑

j=1

Φexp
j (ω, θk) , (2)

Figure 2 displays the graph ν 7→ dBexp
w (ν) where ν = ω/(2 π) is the frequency in Hz. Figure 3
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displays the graph ν 7→ φexp

w
(ν). In Figure 3, it should be noted that the low-frequency range

and the medium-frequency range can be easily identified from each other. The low-frequency

range is characterized by the low-frequency band
 

L for which φexp

w
(ν) is a non-monotoneus

function of the frequency ν, showing discontinuities when crossing an isolated resonance. An-

alyzing Figure 3 (but also Figure 2) yields
 

L = [100 , 1200] Hz. As the frequency grows,

the modal density increases and the medium-frequency range corresponds to the medium-

frequency band
 

M for which φexp

w
(ν) is a smooth function of ν. In Figure 3, it can be seen

that
 

M = [1200 , 4500] Hz.

3 Updating method for the mean computational model of the dynamical system using

the experimental frequency response functions

3.1 Motivation and strategy

The mean computational model related to the designed sandwich panel is constructed by the fi-

nite element method. In this Section, one investigates a deterministic updating method in order

to update the mean computational model using experimental measurments. Such an updating

method has to be efficient both in the low-frequency range and in the medium-frequency range.

It is assumed that the conservative part (mass and stiffness) has already been updated [23].

In this paper, one proposes to update the damping model in the low- and medium-frequency

ranges. In general, damping depends on the frequency in the medium-frequency range. Conse-

quently, the damping model used has to take into account this dependance with the frequency.

A damping model controlled by four updating mean parameters defined on a given admissible
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set of updating mean parameters is introduced. The mean computational model is then updated

with respect to this admissible set using the experimental data. First, a usual updating method

consisting in minimizing the cost function defined as a distance between a spatial average of

moduli of the frequency response functions and the corresponding experimental data is used.

Secondly, based on the information contained in the unwrapped phase of a given frequency

response function, one proposes a new approach consisting in using a spatial average of the

unwrapped phase of the frequency response functions in order to construct a cost function.

3.2 Description of the mean finite element model

The mean finite element model of the designed sandwich panel which has to be updated is a lam-

inated composite thin plate in bending mode. Its middle plane occupies the domain [0 , 0.4] ×

[0 , 0.3] m in the plane (Ox, Oy) of a cartesian coordinate system (O xy z). The out-plane

displacements are only considered. The laminated composite thin plate is constituted of five

layers, each one made up of an orthotropic elastic material. The first two layers are two uni-

directional plies in a [−60/60] layup with width 0.00017 m, mass density 1600 kg.m−3 and

whose elasticity constants expressed in the local coordinate system (O X Y z) are given by

EX = 101 GPa, EY = 6.2 GPa, νXY = 0.32, GXY = GXZ = GY Z = 2.4 GPa. The

third layer is a closed-cell foam with thickness 0.01 m, mass density 80 Kg.m−3 and elasticity

constants Ex = Ey = 60 MPa, νxy = 0, Gxy = Gxz = Gyz = 30 MPa. The last two

layers are two unidirectional plies in a [60/− 60] lay-up with the same characteristic as the first

two layers. The laminated thin plate is a free structure. The finite element mesh is constituted

of 64 × 64 rectangular four nodes elements and has n = 12 288 DOF. Figure 4 shows the
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corresponding finite element mesh. The mean finite element model is submitted to a determin-

istic unit transverse load constant in frequency band
 

with amplitude 1 and located at the node

with coordinates (0.187, 0.103, 0). In the present case, the updating concerns the model used for

modeling the damping in the composite panel. Let r be the vector of the updating parameters.

Vector r belongs to an admissible set R corresponding to a given family of damping models

that is defined in the next Subsection. Assuming the designed sandwich panel to be linear and

slightly damped, for fixed r belonging to R and for fixed ω belonging to
 

, the mean finite

element matrix equation of the sandwich panel is written as

(−ω2 [M ] + i ω [D(r)] + [K]) u(r, ω) = f(ω) , (3)

in which u(r, ω) is the ✁ n-vector of the n DOF and where f(ω) is the ✁ n-vector induced by

the external forces. Since the sandwich panel has a free boundary, the mean mass matrix [M ]

is a positive-definite symmetric (n × n) real matrix and the mean damping and stiffness ma-

trices [D(r)] and [K] are positive semi-definite symmetric (n × n) real matrices. It should

be noted that the rank of mean matrices [D(r)] and [K] is n − 3 (presence of three rigid

body modes). For j belonging to {1, . . . , nobs}, the frequency response functions expressed

in terms of acceleration at point xj are denoted by wj(r, ω) and are stored in the ✁ nobs-vector

w(r, ω) = (w1(r, ω), . . . , wnobs
(r, ω)) such that w(r, ω) = [T (ω)] u(r, ω), in which [T (ω)] is

the (nobs × n) observation matrix.
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3.3 Description of the mean reduced matrix model

The mean reduced matrix model of the sandwich panel is constructed by modal analysis. Since

we are interested in the elastic motion of the structure, we introduce the (n × N) real matrix

[Φ] whose columns are the N ≪ n eigenvectors ϕ
j

related to the N positive lowest eigenvalues

λj = ω2
j . The mean reduced matrix model is then written as w(r, ω) = [T (ω)] [Φ] q(r, ω) in

which q(r, ω) is the ✁ N -vector of the generalized coordinates which is solution of the matrix

equation

(

− ω2 [M] + i ω [D(r)] + [K]
)

q(r, ω) = F(ω) (4)

In Eq. (4), the ✁ N -vector F(ω) is written as F(ω) = [Φ]T f(ω) and the matrices [M] and

[K] are the positive-definite symmetric (N × N) real diagonal matrices such that [M]jk =

µj δjk and [K]jk = µ
j
ω2

j δjk in which µ
j

is the generalized mass related to eigenmode ϕ
j

and

where δjk denotes the Kronecker symbol. The mean reduced damping matrix [D(r)] (which

is a positive-definite symmetric (N × N) real matrix) is then introduced such that [D(r)]jk =

2 µ
j
ωj ξ

j
(r) δjk in which ξ

j
(r) is the mean modal damping rate related to eigenmode ϕ

j
defined

as ξ
j
(r) = f(ωj , r). Let r = {ξ0, ξ1, α, β} be the ✁ 4-vector of the updating mean parameters

belonging to the admissible set R defined as R =
{

{ξ0, ξ1, α, β}, ξ1 ≥ ξ0 > 0; α > 1; β > 0
}

.

For r fixed in R, the function b 7→ f(b, r) is defined from ✂ + into ✂ + by

f(b, r) = ξ0 + (ξ1 − ξ0)
bα

bα + 10β
. (5)

Its graph is displayed in Figure 5. It should be noted that admissible set R is defined in order

that the family of functions {b 7→ f(b, r)}
r∈R has the following properties: for r fixed in R, the

function b 7→ f(b, r) is (1) a continuous increasing function from ✂ + into [ξ0 , ξ1]; has (2) a zero
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first derivative with respect to b in b = 0; has (3) an horizontal asymptote for b 7→ +∞; has (4)

one inflection point whose position is controlled by parameters α and β. The algebraic represen-

tation of the damping rate which has been constructed uses the following properties. In such a

dynamical system, the damping is approximatively constant in the frequency bands [0 , ω1] and

[ω2 , +∞[ with ω1 < ω2. In the transition band [ω1 , ω2], the damping rate is increasing. The

proposed model is a simple one corresponding to these properties. However, the use of such a

simplified model induces model uncertainties and this is the reason why a probabilistic model

of uncertainties is introduced for the generalized damping matrix. Consequently, the problem is

not to only update a mean computational model but also to update the stochastic computational

model as the predictive model. Finally, it should be noted that the robust updating methodology

presented in this paper does not depend on the damping model used and can be applied to any

damping models.

In a first step, one updates the mean computational model to get an initial value of the updating

parameters and in a second step, one updates the stochastic computational model which is the

predictive model.

3.4 Updating the mean computational model of the designed sandwich panel with experi-

ments.

In this section, two formulations are proposed in order to update the mean computational model

of the sandwich panel with the experiments. Similarly to Eqs. (1) and (2), the following obser-
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vations are introduced

dBw(r, ω) = 10 log10





1

nobs

(

nobs
∑

j=1

|wj(r, ω)|2
)



 , (6)

φ
w
(r, ω) =

1

nobs

nobs
∑

j=1

φ
j
(r, ω) , (7)

in which |wj(r, ω)| and φ
j
(r, ω) are the modulus and the unwrapped phase angle of wj(r, ω).

Two formulations are then proposed in order to update the mean computational model of the

sandwich panel with respect to updating mean parameter r. The first cost function is written as

j
mod

(r) =
||dBw(r, .) − dBexp

w ||2✄
||dBexp

w ||2✄ , (8)

in which ||g||2✄ =
∫

✄ |g(ω)|2 dω. The second cost function is written as

j
pha

(r) =
||φ

w
(r, .) − φexp

w
||2✄

||φexp

w
||2✄ . (9)

The updating of the mean computational model is then performed by solving the optimization

problem:

find rmod ∈ R such that j
mod

(rmod) ≤ j
mod

(r) for all r ∈ R ,

for the first cost function or the following one for the second cost function

find rpha ∈ R such that j
pha

(rpha) ≤ j
pha

(r) for all r ∈ R .

Each constrained optimization problem can be solved numerically by using the sequential

quadratic optimization algorithm [30,31]. Moreover, it should be noted that the gradient and

the Hessian of cost functions j
mod

(r) and j
pha

(r) can easily be algebraically constructed.

Let rini = {ξini
0 , ξini

1 , αini, βini} for which ξini
0 = ξini

1 = 0.01, αini = 10 and βini = 42.84

be the value of the updating mean parameter used for the initialization of the optimization algo-
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rithm. In this case, since ξini
0 = ξini

1 , the modal damping model does not depend on parameters

αini and βini (see Eq. 5). Such an initial value corresponds to a mean damping model for which

the critical damping rate is constant over the low- and medium-frequency range and is equal to

0.01. The corresponding mean computational model is the mean computational model issued

from the updating of the conservative parameters [23,25] and is in the present case the initial

mean computational model. Moreover, since updating parameters α and β allows the position

of the inflection point of function b 7→ f(b, r) to be controlled as soon as ξ0 < ξ1, the values

αini = 10 and βini = 42.84 are chosen in order to set the location of the initial inflection point

at frequency ν = 3000 Hz.

3.5 Numerical Results

First, a convergence analysis is performed with respect to the reduced order model N . The

convergence analysis is performed by analyzing the function N 7→ 10 log10 (||w||2✄ ). Since

updating parameters only concern damping, convergence with respect to N weakly depends

on r and can be neglected in the convergence analysis. It has been verified that convergence is

reached for N = 120. Figure 6 compares the graph of ν 7→ dBw(ν, rini) with ν 7→ dBexp
w (ν).

Figures 7 compares the graph ν 7→ φ
w
(ν, rini) with ν 7→ φexp

w
(ν). It is seen that the quality

of the initial mean computational model with respect to the experiments is quite good in the

low-frequency range but has to be improved in the medium-frequency range.

The results obtained by solving the deterministic updating problem using the two cost func-

tions j
mod

(r) and j
pha

(r) are then analyzed and discussed. The optimization of cost function

j
mod

(r) yields optimal updating mean parameters rmod = {0.0091, 0.1206, 10.6856, 46.2361}
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whereas the optimization of cost function j
pha

(r) yields optimal updating mean parameters

rpha = {0.0099, 0.08495, 10.5867, 46.6657}. Figure 8 shows the graph ν 7→ f(ν, rmod) and

ν 7→ f(ν, rpha) related to the two updated damping models. It is seen that the two cost functions

yield similar function f in [100 , 2000] Hz but are different for higher frequencies. In particular,

it can be seen that the response of the updated mean computational model obtained with cost

function j
mod

(r) is more damped than the response of the updated mean computational model

obtained with cost function j
pha

(r).

Both optimization strategies are then compared (1) with respect to the initial mean computa-

tional model in order to quantify the improvement of the deterministic updating and (2) with

respect to one to the other one in order to determine the best optimization strategy to be used

in the present case. Figure 9 shows the graphs ν 7→ dBw(ν, rmod), ν 7→ dBw(ν, rpha) and

ν 7→ dBexp
w (ν). Figure 10 shows the graph ν 7→ φ

w
(ν, rmod), ν 7→ φ

w
(ν, rpha) and ν 7→ φexp

w
(ν).

By comparing Figure 9 with Figure 6 and Figure 10 with Figure 7, it is seen that both cost func-

tions yield an updated mean computational model which improves the updating in the medium-

frequency range. Note that j
mod

(rmod) = 0.3172 j
mod

(rini) and j
pha

(rpha) = 0.1821 j
pha

(rini)

which shows that this improvement is better using cost function j
pha

(r) than with cost function

j
mod

(r). In Figure 9, it can be seen that the optimization of cost function j
mod

(r) yields an

updated mean computational model which matches relatively well with the experiment. Nev-

ertheless, it should be noted that the dynamical behaviour of the sandwich panel is not well

represented by this updated mean computational model in [3000 , 4500] Hz because the mean

computational model does not yield any resonance peakings in this frequency range. In Fig-

ure 10, it can be seen that the optimization of cost function j
pha

(r) yields an updated mean

computational model for which there is a good agreement with respect to the experiments in
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both low and medium-frequency ranges.

Concerning the comparison of both optimization strategies with respect to the other, it should

be noted that we have j
mod

(rpha) = 0.4460 j
mod

(rini) and j
pha

(rmod) = 0.7755 j
pha

(rini).

Clearly, we have j
mod

(rmod) < j
mod

(rpha) and j
pha

(rpha) < j
pha

(rmod). These results show

that cost function j
pha

(r) is more sensitive to the updating mean parameters than cost func-

tion j
mod

(r). In particular, by comparing Figures 9 and 10, one can see that rpha is an up-

dating point which is more acceptable for cost function j
mod

(r) than rmod is acceptable for

cost function j
pha

(r). All the comments above are related to the observations used in the

cost function, which are global observations defined as a spatial average of the modulus or

the phase of the frequency response functions. It is interesting to see the results on the phys-

ical observations which corresponds to the frequency response functions at the different mea-

surment points. We are then interested in comparing the frequency response functions ob-

tained by the two updated mean computational models with respect to the experimental fre-

quency response functions. Let mexp☎ (ω) = (mexp☎
,1(ω)), . . . , mexp☎

,nobs
(ω)) be the ✁ nobs-vector

such that mexp☎
,j (ω) =

1

nexp

nexp
∑

k=1

✆ exp
j (ω, θk) where

✆ exp
j (ω, θk) = 20 log10(|W

exp
j (ω, θk)|).

Let ✝ j(r, ω) = 20 log10(|wj(r, ω)|). Figures 11 and 12 show the graph of functions ν 7→

✝ i(ν, rmod), ν 7→ ✝ i(ν, rpha) and ν 7→ mexp☎
,i (ν) in which the subscript i = {1, 2} corresponds

to observation point number i located at x1 = (0.187, 0.047, 0) and x2 = (0.037, 0.272, 0) (see

Fig. 4. In Figures 11 and 12, it can be seen that both cost functions yield accurate results in

the low-frequency band [100 , 1200]Hz and yield satisfactory results in [1200 , 3000]Hz. In

[3000 , 4500] Hz, it is clearly seen that the updated mean computational model obtained from

cost function j
pha

(r) yields a better agreement with respect to the experiment than the updated
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mean computational model obtained from cost function j
mod

(r).

Finally, from all these observations, it can then be deduced that cost function j
pha

(r) is particu-

larly adapted for solving this deterministic updating.

4 Robust updating method with respect to model uncertainties for the computational

model of the dynamical system using the experimental frequency response functions

4.1 Description of the random matrix model

It is assumed that the mean computational model of the sandwich panel contains model un-

certainties and data uncertainties. The probabilistic model used for modelling the uncertain-

ties in the computational model is the non-parametric probabilistic approach. Below, the non-

parametric probabilistic approach is briefly summarized.

The methodology of the non-parametric probabilistic approach consists of replacing matri-

ces [M], [D(r)], [K] by random matrices [M], [D(r)] and [K] such that E{[M]} = [M],

E{[D(r)]} = [D(r)] and E{[K]} = [K] in which E is the mathematical expectation and for

which the probability distribution is known. The random matrices [M], [D(r)] and [K] are writ-

ten as [M] = [LM ]T [GM ] [LM ], [D(r)] = [LD(r)]T [GD] [LD(r)] and [K] = [LK ]T [GK ] [LK ]

in which [LM ], [LD(r)] and [LK ] are N×N real diagonal matrices such that [M] = [LM ]T [LM ],

[D(r)] = [LD(r)]T [LD(r)] and [K] = [LK ]T [LK ] and where [GM ], [GD] and [GK ] are full

random matrices such that E{||[GM ]||F} = [I], E{||[GD]||F} = [I], E{||[GK ]||F} = [I] and

are with value in the set of all the positive-definite symmetric N ×N matrices. The probability
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model of random matrices [GM ], [GD] and [GK ] is constructed by using the maximum entropy

principle with the available information. All the details concerning the construction of this prob-

ability model can be found in [18,19,32]. The dispersion of each random matrix [GM ], [GD] and

[GK ] is controlled by one real positive parameter δM , δD and δK called the dispersion param-

eter. In addition, there exists an algebraic representation of this random matrix useful to the

Monte Carlo numerical simulation. Let δ = (δM , δD , δK) be the ✂ 3-vector of the dispersion

parameters defined on the admissible set A = {[0 ,
√

N+1

N+5
]}3. It should be noted that the defini-

tion of admissible set A results from the construction of the probability model of matrix [GM ],

[GD] and [GK ] using the maximum entropy principle with the available information [18,19]. In

coherence with the notation of Section 3.2, let W(r, δ, ω) = (W1(r, δ, ω), . . . , Wnobs
(r, δ, ω))

be the ✁ nobs-valued random vector of the nobs observations. The equations of the stochastic re-

duced matrix system constructed with the non-parametric approach of uncertainties are given

by W(r, δ, ω) = [T (ω)] [Φ] Q(r, δ, ω), where Q(r, δ, ω) is the ✁ N -valued random vector of

the generalized coordinates, which is solution of the random matrix equation

(

− ω2 [M] + i ω [D(r)] + [K]
)

Q(r, δ, ω) = F(ω) . (10)

4.2 Formulation for the robust updating problem.

In this Section, the robust updating optimization problem is formulated. As explained in the In-

troduction, the cost function used for solving the robust updating problem is constructed with an

uncertain computational model. The probabilistic model used for modelling the uncertainties in

the computational model is the non-parametric probabilistic approach. With such a probabilistic

approach, the probability model of random matrix [GD] only depends on the dispersion param-
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eter δD although the random matrix [D(r)] does depend by construction on both dispersion

parameter δD and mean updating parameter r. Consequently, the cost function which describes

the performance of the uncertain computational model with respect to the experimental mea-

surements is a function of two classes of updating parameters : the updating mean parameter r

and the updating dispersion parameter δ.

In this paper, the cost function proposed for the formulation of the robust updating problem.

is denoted as j(r, δ) and is defined as the sum of (1) the bias between the mean value of the

uncertain computational model and the mean value of the experiment and (2) the variance of

the uncertain computational model. Cost function j(r, δ) is then written as

j(r, δ) = γ ||m ☎ (r, δ, ·) − mexp☎ ||2✄ + (1 − γ) |||
✆

(r, δ, ·) − m
☎ (r, δ, ·)|||2 , (11)

in which m
☎ (r, δ, ω) = E{

✆
(r, δ, ω)} ∈ ✁ nobs , where

✆
(r, δ, ω) = (

✆
1(r, δ, ω), . . . ,

✆
nobs

(r, δ, ω)) with
✆

j(r, δ, ω) = 20 log10(|Wj(r, δ, ω)|) and where ||g||2✄ =
∫ ✄ ||g(ω)||2 dω

with ||g(ω)|| the Hermitian norm of g(ω). In Eq. (11), the norm ||| ✞ ||| is defined by ||| ✞ |||2 =

E{|| ✞ ||2✄ }, where { ✞ (ω), ω ∈
%
} is a stochastic process indexed by

%
. Moreover, the scalar γ is

a weighting factor belonging to ]0 , 1[ which allows the weight of the bias term with respect to

the variance term in the optimization process to be quantified. It should be noted that cost func-

tion j(r, δ) does not correspond to a direct generalization of Eq. (8). Indeed, the cost functions

j
mod

(r) and j
pha

(r) are defined as a distance between two quantities which are averaged over

the space variables. In the previous Section, it is shown that these cost functions are particularly

adapted to the deterministic updating. However, its generalization for the robust updating does

not allow the quality of the uncertain computational model with respect to the experiments to

be accurately quantified. Indeed, such a generalization would yield a cost function defined by
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a norm describing a distance between two quantities spatially and statistically averaged. The

combination of these two types of averaging does not yield any satisfactory results because the

variability induced by the randomness can not be distinguished from one observation point to

another one. Such a norm is then too rough and is not appropriated in the context of robust up-

dating. Consequently, a more refined norm is introduced in Eq. (11). For each observation point,

this norm is related to the square integrable norm over the low- and medium- frequency range

and describes for each observation point the quality of the uncertain computational model with

respect to the experiments. The robust updating problem leads to a non-linear constrained opti-

mization problem which consists in minimizing the cost function with respect to the admissible

set R×A. The robust updating problem consists in solving the optimization problem

find (rRU , δRU ) ∈ {R×A} such that j(rRU , δRU ) ≤ j(r, δ) , ∀(r, δ) ∈ {R×A}.

4.3 Numerical aspects

The robust updating process concerning the optimization of cost function j(r, δ) is described as

follows. First, the updating mean parameter rpha calculated in the previous Section is used as the

initial updating mean parameter r0 for the robust updating optimization problem. One then has

r0 = rpha. Secondly, the initial updating dispersion parameter δ0 is calculated by minimizing

cost function j(r0, δ) with respect to the admissible set A. Since the cost function is not convex,

such a constrained optimization problem is solved by using a genetic algorithm [33] coupled

with the Monte Carlo numerical simulation. Thirdly, in order to refine the optimum, one solves

the robust design optimization problem around updating parameters (r0, δ0). The cost function

j(r, δ) is then minimized with respect to the admissible set of updating parameters R × A by
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using the sequential quadratic optimization algorithm [30,31,34] coupled with the Monte Carlo

numerical simulation.

4.4 Numerical results

First, a convergence analysis is performed with respect to the number N of eigenmodes and the

number ns of realizations for the Monte Carlo numerical simulation. A convergence analysis

is carried out for updating parameters r = (0.01, 0.01, α, β) and δ = (0.23, 0.43, 0.25). Such

an analysis shows that convergence is reasonably reached for ns = 750 and N = 300. One

then presents the optimization of cost function j(r, δ) with respect to the admissible set R×A

for a weighting factor γ = 0.25. It should be noted that cost function j(r, δ) is a multiobjec-

tive function for which the variance term describes the width of the confidence region obtained

from the uncertain computational model. Any value γ belonging to ]0, 0.5[ means that more

importance is attributed in the minimization of the width of the confidence region. The value

γ = 0.5 corresponds to the natural case for which each objective is equally considered. Any

value γ belonging to ]0.5, 1[ is obsolete in the present context because it is expected that the

experimental data is included in a small confidence region. In this work, two values of γ have

been tried : γ = 0.5 and γ = 0.25. The best result is found to be for γ = 0.25. For this

value, the experimental data is included in the confidence region of the updated computational

model. The initial updating parameters used for initializing the robust updating are first calcu-

lated and yield r0 = rpha = (0.0099, 0.08495, 10.5867, 46.6657) and δ0 = (0.30, 0.19, 0.09).

Note that the cost function is normalized such that j(r0, δ0) = 1. The optimization of cost

function j(r, δ) with respect to the admissible set R × A yields optimal updating parameters
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rRU = (0.01, 0.0850, 10.7144, 46.1018) and δRU = (0.31, 0.20, 0.14) which corresponds to

j(rRU , δRU) = 0.8248. Figure 13 shows the graph ν 7→ f(ν, r0) and ν 7→ f(ν, rRU ) in or-

der to compare the damping model of the structure corresponding to the deterministic updating

and to the robust updating. In particular, it can be seen that both damping models are compa-

rable in the frequency band [100 , 2000] Hz and that the updated mean computational model

is more damped when frequency increases. Figures 14 to 19 compare the experiments with the

confidence region of the random response
✆

i(r
RU , δRU , ν) for i = {1, 2, 3, 4, 5, 6} obtained

with a probability level Pc = 0.96. The subscript i = {1, 2, 3, 4, 5, 6} corresponds to the

observation point number i located at points x1 = (0.187, 0.047, 0), x2 = (0.037, 0.272, 0),

x3 = (0.037, 0.047, 0), x4 = (0.037, 0.159, 0), x5 = (0.112, 0.159, 0), x6 = (0.037, 0.215, 0)

see Fig. 4. These figures show that there is a good agreement between the experiments and the

updated computational model in both low- and medium-frequency ranges. In particular, it can

be seen on figures 18 and 19 that the updated computational model matches well with the ex-

periments in both low- and medium-frequency ranges.

It should be noted that some discrepancies between the experiments and the confidence region

related to the updated uncertain computational model can be locally observed. These discrepan-

cies are mainly explained by the fact that the confidence region of the uncertain computational

model is calculated with a probability level of 0.96. In Figures 17 and 18, it can be seen that all

the experiments are outside the confidence region in frequency band [2800 , 3000] Hz. Clearly,

small increasing of dispersion parameter δ will lead the experiments to belong to the confi-

dence region. However, the choice of the cost function defined in terms of the bias and variance

yields this global minimum. This aspects could be improved in substituting this cost function by
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another one imposing the experiments to be inside the confidence region. Such a cost function

corresponds to a non-differentiable cost function [35]. Presently, for computational reasons, one

has preferred to use a differentiable cost function in order to decrease the numerical costs.

Concerning the quantification of the robustness of the updated uncertain computational model,

it is recalled that cost function defined by Eq. (11) provides a robustness measure of the up-

dating. First, the cost function has been defined from an uncertain computational model which

has been constructed with a non-parametric probabilistic approach. This means that robustness

is understood as robustness with respect to model uncertainties and to data uncertainties. Sec-

ondly, the robustness of the uncertain computational model is quantified by the width of the

confidence region which has to include the experimental measurments. If the confidence region

is broad, this means that the uncertain computational model is sensitive to both model and data

uncertainties and the robustness of the uncertain computational model is poor. On the contrary,

if the confidence region is narrow, this means that the updated uncertain computational model

is robust with respect to model uncertainties and data uncertainties. With regard to this analysis,

it can be seen on figures 14 to 19 that the confidence region is narrow in the low-frequency

band
 

L = [100 , 1200] Hz which means that the updated computational model is robust with

respect to data and model uncertainties in
 

L. The higher the frequency is, the broader the

confidence region is. This means that this robustness decreases in the medium-frequency range

 
M = [1200 , 4500] Hz. Moreover, it should be noted that there exist local sub-frequency band

in the medium-frequency range for which the confidence region of the updated computational

model is relatively narrow. For example, it can be seen on figure 18 that for observation point x5,

the updated computational model is more robust with respect to data and model uncertainties in

[3000 , 3500] Hz and in [4000 , 4500]Hz than in [3500 , 4000] Hz.
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5 CONCLUSIONS

In the present paper, a methodology has been proposed for the robust updating problem in the

context of structural dynamics with uncertainties in the low- and medium-frequency ranges. The

objective is not the updating of the mean computational model but the robust updating of the

uncertain computational model which is considered as the predictive model. This methodology

is validated from experimental results issued from a set of 8 manufactured composite sandwich

panels. Concerning the first deterministic updating of the mean computational model (no un-

certainties in the dynamical system), it is shown that the use of a cost function defined with

the unwrapped phase of frequency response functions is particularly adapted. Concerning the

second robust updating with respect to data and model uncertainties (using a stochastic com-

putational model), it is shown that the methodology yields an updated uncertain computational

model which is in good agreement with the experiments in the low- and medium-frequency

ranges.
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Fig. 1. Several samples of the sandwich panel
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Fig. 2. Graph of the experimental averaged modulus ν 7→ dBexp
w (ν).
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Fig. 3. Graph of the experimental averaged unwrapped phase ν 7→ φexp

w
(ν).
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Fig. 4. Finite element mesh of the finite element model of the designed computational model - location

of the measured observation points (black squares) - location of the excitation point (black circle).
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Fig. 6. Graph of function ν 7→ dBw(ν, rini) (thick gray line) and ν 7→ dBexp
w (ν) (thick black line)
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Fig. 7. Graph of function ν 7→ φ
w
(ν, rini) (thick gray line) and ν 7→ φexp

w
(ν) (thick black line)
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Fig. 8. (Graph of function ν 7→ f(ν, rmod) (thick dark gray line) and ν 7→ f(ν, rpha) (thick light gray

line) corresponding to the updated mean damping model.

36



0 1000 2000 3000 4000
0

5

10

15

20

25

30

Frequency ν (Hz)

R
e

s
p

o
n

s
e

 l
e

v
e

l 
(d

B
)

Fig. 9. Graph of function ν 7→ dBw(ν, rmod) (thick dark gray line), ν 7→ dBw(ν, rpha) (thick light gray

line) and ν 7→ dBexp
w (ν) (thick black line).
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Fig. 10. Graph of function ν 7→ φ
w
(ν, rmod) (thick dark gray line), ν 7→ φ

w
(ν, rpha) (thick light gray

line) and ν 7→ φexp

w
(ν) (thick black line).

38



0 1000 2000 3000 4000
0

5

10

15

20

25

30

Frequency ν (Hz)

R
e
s
p
o
n
s
e
 l
e
v
e
l 
(d

B
)

Fig. 11. Graph of ν 7→ ✝ 1(ν, rmod) (thick dark gray line), ν 7→ ✝ 1(ν, rpha) (thick light gray line) and

ν 7→ m
exp☎

,1(ν) (thick black line).
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Fig. 12. Graph of ν 7→ ✝ 2(ν, rmod) (thick dark gray line), ν 7→ ✝ 2(ν, rpha) (thick light gray line) and

ν 7→ m
exp☎

,2(ν) (thick black line).
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Fig. 13. Comparison between the damping model corresponding to the deterministic updating and to the

robust updating. Graph of ν 7→ f(ν, r0) (thick line) and ν 7→ f(ν, rRU ) (thin line).
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Fig. 14. Graph of ν 7→

✆ exp
1

(ν, θk) (thin black lines), graph of the confidence region of the random

response ν 7→

✆
1(r

RU , δRU , ν) (gray region), graph of ν 7→ ✝ 1(r
RU , ν) (thick black line).
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Fig. 15. Graph of ν 7→

✆ exp
2

(ν, θk) (thin black lines), graph of the confidence region of the random

response ν 7→

✆
2(r

RU , δRU , ν) (gray region), graph of ν 7→ ✝ 2(r
RU , ν) (thick black line).
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Fig. 16. Graph of ν 7→

✆ exp
3

(ν, θk) (thin black lines), graph of the confidence region of the random

response ν 7→

✆
3(r

RU , δRU , ν) (gray region), graph of ν 7→ ✝ 3(r
RU , ν) (thick black line).
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Fig. 17. Graph of ν 7→

✆ exp
4

(ν, θk) (thin black lines), graph of the confidence region of the random

response ν 7→

✆
4(r

RU , δRU , ν) (gray region), graph of ν 7→ ✝ 4(r
RU , ν) (thick black line).
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Fig. 18. Graph of ν 7→

✆ exp
5

(ν, θk) (thin black lines), graph of the confidence region of the random

response ν 7→

✆
5(r

RU , δRU , ν) (gray region), graph of ν 7→ ✝ 5(r
RU , ν) (thick black line).

46



0 1000 2000 3000 4000
0

10

20

30

40

50

60

70

Frequency ν (Hz)

R
e
s
p
o
n
s
e
 l
e
v
e
l 
(d

B
)

Fig. 19. Graph of ν 7→

✆ exp
6

(ν, θk) (thin black lines), graph of the confidence region of the random

response ν 7→

✆
6(r

RU , δRU , ν) (gray region), graph of ν 7→ ✝ 6(r
RU , ν) (thick black line).

47


