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In this paper, a new linearization algorithm of Power Amplifier, based on Kalman filter-

ing theory is proposed for obtaining fast convergence of the adaptive digital predistor-

tion. The proposed method uses the real-time digital processing of baseband signals to

compensate the nonlinearities and memory effects in radio-frequency Power Amplifier.

To reduce the complexity of computing in classical Kalman Filtering, a sliding time-

window has been inserted which combines off-line measurement and on-line parameter

estimation with high sampling time to track the changes in the PA characteristics. We

evaluated the performance of the proposed linearization scheme through simulation and

experiments. Using digital signal processing, experimental results with commercial power

amplifier are presented for multicarrier signals to demonstrate the effectiveness of this

new approach.

Keywords: Power amplifiers, digital predistortion, Kalman Filtering, parameter estima-

tion, adaptive control.

1. Introduction

Nonlinear system linearization of microwave components and radio-frequency cir-

cuits becomes a challenge and potential useful problem in the radiocommunication

system research areas. Interest for Radio Frequency Power Amplifier (RF PA) con-

trol is motivated by the increasing growth of the wireless communication systems

which has lead to use digital modulation techniques such as (BPSK, QPSK, QAM,

...) with non-constant envelope to improve spectral efficiency 1. As a result of the

variable envelope modulation schemes, the improvement of the linearity of the PA

becomes an objective of first importance for mobile communication systems. This

is due to the nonlinear distortions and dynamical effects which generate unwanted

spectrum components for the transmitted signal and lead to Adjacent Channel

Power Ratio (ACPR) requirements. It also causes in-band distortion which degrades

the bit error rate (BER) performance, especially for modulation with high peak-to-

average power ratio and large fluctuations in signal envelopes such as CDMA and

OFDM.

A number of approaches and variations have been proposed for linearizing the
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PA, which can be divided into three categories: the feedforward, Cartesian feed-

back, and predistortion approaches 1,2,3,4. Other popular techniques are used to

insure an efficient amplification by including a variety of circuit elements in trans-

mitter such as LInear amplification with Nonlinear Components (LINC), Combined

Analog-Locked Loop Universal Modulator (CALLUM), and Envelope Elimination

and Restoration (EER) 1,2,5.

In feedforward approach, an error amplifier and delays are used to compensate

the distorted signal generated by the main amplifier. As feedforward is inherently

an open-loop process, changes of components characteristics, signal properties or

matching conditions are not ideally compensated 2. To adaptively compensate the

amplitude and delays imbalance, an on-line correction of the gain and phase weights

can be added to the original structure. An example of adaptive DSP controlled with

feedforward technique using LMS algorithm was published in 6.

Feedback control is extensively studied in automatic domain and particularly

appreciated in the control of systems with low frequencies dynamics (electrical ma-

chines, audio amplifiers, ...) 7. The general principle of this approach is to force the

output to follow an input reference. It can provide linearization if applied directly

to the amplifier in the form of Radio or Intermediate Frequency feedback, harmonic

feedback or envelope feedback 1. In all cases, a portion of the output signal from

feed-backed amplifier is fed back through a voltage divider, subtracted from the

input signal, and the PA is driven with this error signal. Typical results with this

approach are: an improvement of 10dB of two-tone IMD for Envelope feedback
8, around 35dB for Polar feedback with a narrow-band PA 1 and for Cartesian

feedback with high nonlinear PA (Class-C) 9,10.

Unfortunately, the disadvantage of feedback is that the large bandwidth of the

PA signal induces stability problem. The feedback changes the input to output

relationship and induces a new dynamic mode which can affect the stability criteria

defined by gain and phase margins. The current solution is based on the addition

of new control strategies using advanced signal processing 8,10,11.

One of the most promising linearization methods for nonlinear PA is to pre-

distort the baseband drive signal 14,15,16,17,18. This technique is based on off-line

estimation of inverse characteristics of the amplifier to be linearized. If accurate

predistortion is required, it is necessary to adjust in real-time the predistorter char-

acteristics so that it can track changes in amplifier characteristics 4,10,19,20. Kalman

Filter (KF) algorithm is one of the most popular adaptive filtering techniques in

nonstationary environments and real-time estimation 21,22. This algorithm, origi-

nally developed for linear systems, is generalized for a nonlinear case, called Ex-

tended Kalman Filter (EKF) 7. However, the EKF has some inherent limitations

mainly due to calculation of complicated analytical derivatives for linearizing the

nonlinear model 23. This is a major constraint for the implementation in adaptive

predistortion using nonlinear models with memory. In this article, new approach

based on identification by a sliding time-window is proposed which has less training

complexity than EKF algorithm.
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Both analytical and simulation results using memory polynomial predistorter

are presented to demonstrate the feasibility and performance of this approach to

adaptive predistortion. Also, this paper presents preliminary results achieved with

an experimental system based on digital processing system and a Class AB ampli-

fier.

The paper is organized as follows. In Section 2, the adaptive system, based on the

indirect learning, and the parametric model of nonlinear predistortion are defined.

The KF theory is revised in section 3 and applied to the PA linearization problem.

The performance of the linearized transmitter system is investigated through simu-

lations and experiments in Section 4 from different digitally modulated signals and

a two-tone test. And, finally, discussions and conclusions are given in Section 5.

2. System Model

A commonly used method to reduce distortions and fluctuations in systems affected

by static nonlinearities and short/long term memory is to use the inverse model.

An overview of such methods is given by Åström and Witenmark 24, Goodwin and

al. 25 (see also 26). Most of the methods for on-line identification can be classified

into two main groups: direct learning and indirect learning 7. In an indirect learning

mechanism, an inverse PA model with memory is computed in quasi-open loop and

applied as a feedforward controller. It has been demonstrated that this indirect

approach is more efficient than a direct learning for linearization structure using

Volterra models and its variants (Hammerstein, Wiener, polynomial models, ...)
12,19. Hence, only nonlinear adaptive predistorter with indirect learning architecture

is considered in this work.

2.1. Predistorter based on the indirect learning

The block diagram of indirect learning adaptation is shown in Fig. 1. All signal

designations refer either to complex baseband signals, sampled at the period Ts,

and does not depend on the modulation format.

The predistorter creates a complex predistorted version Vprek = Iprek + j.Qprek

of the transmitted input signal Vink
= Iink

+ j.Qink
, based on amplifier output

Voutk = Ioutk + j.Qoutk . In the identification part, input and output complex en-

velopes are sampled for the real-time estimation of the PA inverse function. The

input and output signals of the predistorter model are respectively Voutk/G and

V̂prek , where G is the PA gain. The feedback path called ”Recursive identification”

is the predistorter training based on minimization of the IQ errors εI and εQ for a

set of K input/output data. The identification algorithm converges when the multi-

variable quadratic criterion J =
∑K

k=1
ε2Ik + ε2Qk

is minimized. After identification,

the new predistorter parameters are uploaded into predistorter which becomes an

exact copy of predistorter model.
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Fig. 1. Baseband equivalent scheme of the adaptive digital predistortion

2.2. Predistortion model

Volterra series are used in nonlinear model with memory and applied in systemmod-

eling and analysis like channel identification, PA characterization, echo cancellation
1,23,27. The main advantage of such models is that they are linear-in-parameters al-

lowing Least Mean Square (LMS) estimation techniques. However, there are severe

drawbacks, especially for on-line identification, such as the large number and com-

plexity of coefficients depending on the number of kernels (memory and the degree

of nonlinearity). A special case of Volterra series is to consider a diagonal repre-

sentation of their Kernels corresponding to Hammerstein model. This model, used

intensively in literature 19,20,23, can be interpreted by a memoryless nonlinearity

block followed by a discrete filter (usually a Finite Impulse Response Filter FIR).

In this paper, the Hammerstein model used for the predistorter block is described

as:

Vprek =

Q−1
∑

q=0

P
∑

p=0

αq,2p+1 · |Vink−q
|2p · Vink−q

(1)

where P is the nonlinearity order, Q represents the memory length of the power

amplifier and αq,2p+1 are the predistortion complex coefficients. For parameters

estimation, the model (1) is expressed in linear regression system such as:

Vprek = ϕT
k
· θ (2)

where ϕT
k
is the transposed regression vector of input signal and θ is the vector of

αq,2p+1 coefficients to be estimated:
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The objective of identification procedure is to obtain recursively the optimal

estimates noted θ̂ of the vector θ which minimize a quadratic IQ errors.

3. Kalman filtering algorithm with sliding window

3.1. Linear prediction and correction approach

To introduce the KF concept, consider a general case of a linear discrete-time and

multivariable system described in state space by:
{

xk+1 = Ak xk +Bk uk + υk

y
k

= C xk + ǫk
(3)

where

xn×1

k is the state space vector and n is system order,

ul×1

k and ym×1

k
are the input and the output of the system,

υn×1

k and ǫm×1

k are respectively the state noise vector and the measurement noise,

An×n
k , Bn×l

k and Cm×n
k are the system matrix that defining the model.

Application of the KF algorithm supposes that the noises υk and ǫk which

affect the system are white and Gaussian and assumed statistically independent.

Later we use the covariance matrices Qk and Rk of υk and ǫk. We assume that we

have an initial state estimate x0 and its covariance P0/0. If E{·} denotes statistical

expectation operator, then these basic assumptions can be written as:
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


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





P0/0 0 0

0 Qi δij 0

0 0 Ri δij







where δij is the Kronecker symbol defined as:

δij =

{

1 if i = j

0 otherwise
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and P0/0 > 0, Qi > 0, Ri > 0.

Throughout the paper, (·)T denotes matrix transposition, (·)∗ conjugate trans-

form and (·)H conjugate-transpose transform (i.e. hermitian transpose). In stands

for the identity matrix of dimension n× n.

The goal in using the Kalman filter is to estimate recursively the next state of

a system xk+1, given the previous measurement y
k
. Assume we know at the kth

sampling time an estimate x̂k/k of the actual state vector and the error covariance

matrix Pk/k defined according to the estimation error ek = xk − x̂k/k such as:

Pk/k = E
{

ek e
T
k

}

(4)

hence from the first relation of (3), it is possible to derive a predicted value of the

state at the (k + 1)th sampling time noted x̂k+1/k:

x̂k+1/k = Ak x̂k/k +Bk uk (5)

and a predicted error covariance matrix defined by 21,26

Pk+1/k = E

{

(

xk+1 − x̂k+1/k

) (

xk+1 − x̂k+1/k

)T
}

= Ak Pk/k AT
k +Qk (6)

A predicted measurement ŷ
k+1/k

is derived with x̂k+1/k from the second relation

of (3):

ŷ
k+1/k

= Ck+1 x̂k+1/k (7)

After prediction step defined above, we proceed to the correction step of state

in which we use the measurement y
k+1

to improve the estimation error such as:

x̂k+1/k+1 = x̂k+1/k +Kk+1 (yk+1
− ŷ

k+1/k
) (8)

where the matrix gain Kn×m
k+1

called Kalman gain, is computed in order to minimize

the trace of the error covariance matrix defined as the sum of the elements on its

main diagonal. Then it can be shown that Kk+1 and Pk+1/k+1 are given by 26

Kk+1 = Pk+1/k C
T (C Pk+1/k C

T +Rk+1)
−1 (9)

and

Pk+1/k+1 = (In −Kk+1 C)Pk+1/k (10)

State vector estimation using Kalman filter requires an initial values x̂0/0 = x̂(0)

and computation of the corresponding error covariance matrix P0/0. Usually initial

values of state vector are chosen to have a relative stability at the beginning of the

system adaptation and P0/0 are the identity matrix with high values of the diagonal

terms to ensure convergence and unbiased estimates 23. In practice, the Kalman
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filter stabilizes progressively during iterations and converge to an optimal values in

spite of initialization errors.

To summarize the recursive algorithm we state all the formulas for the Kalman

filter one last time :

• Initialization step : Select initial values of x̂0/0 and P0/0

• Prediction Step: Compute the evolution model estimate and covariance:

x̂k+1/k = Ak x̂k/k +Bk uk

ŷ
k+1/k

= Ck+1 x̂k+1/k

Pk+1/k = Ak Pk/k AT
k +Qk

(11)

• Correction Step: Correct a state estimate and covariance:

Kk+1 = Pk+1/k C
T (C Pk+1/k C

T +Rk+1)
−1

x̂k+1/k+1 = x̂k+1/k +Kk+1 (yk+1
− ŷ

k+1/k
)

Pk+1/k+1 = (In −Kk+1 C)Pk+1/k

(12)

• Update k = k + 1 and return to Prediction step.

3.2. Kalman filtering and parameters estimation

The problem of interest is to extract recursively the predistorter parameters θ com-

posed from the complex coefficients αq,2p+1 (Eqs. 1-2) using sampled input and

output envelope in baseband format. In the indirect learning approach described in

Fig. (1), we consider the classical problem of inverse model computation describ-

ing the output envelope Vout to predistorted envelope Vpre relationship. At each

iteration, the Kalman filter solves the problem of estimating the parameters of

Hammerstein with memory model to minimize the quadratic error using PA’s out-

put Vout as an input signal 19. In this formulation, the parameters are considered as

state variables described by a quasi-stationary evolution, thus the discrete system

defined in (3) becomes a parameter evolution and predistortion system represented

by a particular case of single output system with Ak = In, Bk = 0 and C = ϕT ,

given by:
{

θk+1 = θk + υk

Vprek = F̂pre (θk, Vout) + ǫk = ϕT · θ + ǫk
(13)

Because we are in inverse model formulation, the regressor vector ϕ is obtained by

replacing Vin by Vout in relations (1) and (2).

Using the Kalman filter developed in previous section in this case, the updating

of the parameters vector is carried out:










θ̂k+1 = θ̂k +Kk+1 (Vprek+1
− V̂prek+1

)

Kk+1 = Pk ϕ (ϕT Pk ϕ+Rk+1)
−1

Pk+1 = (In −Kk+1 ϕ
T ) (Pk +Qk)

(14)
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where θ̂k+1 = θ̂k+1/k = θ̂k+1/k+1 according to the first relation of (13) which shows

that predicted estimates (a priori) θ̂k+1/k and corrected one (a posteriori) θ̂k+1/k+1

are equal. This simplify a previous notations used in section (3.1).

3.3. Adaptation to linearization problem

The KF algorithm described above is based on the discrete state space model de-

scribing the future evolution of the system when the input is given. In identification

approach, the Kalman gain corrects iteratively the estimate according to the error

between measured output and desired input 21. The advantage of this technique

is that the estimate is corrected recursively at each iteration. However, there are

severe drawbacks, not acceptable in real-time estimation, such as the great number

of calculations with complex data and matrix to obtain an appropriate KF gain 23.

To reduce and simplify these computations, the proposed method is based on the

description of a sliding time-window. In this case, the time domain is decomposed

into several data sets as shown in Fig. 2. At the end of each set composed by Nw

input and output data, the vector of parameters is corrected according to KF al-

gorithm, which amounts to introduce a new sampling period greater than Ts and

equal to Nw × Ts.

Time

Ith set i+1 th set i+2th set

iθθθθ 1i++++θθθθ
2i++++θθθθ

Fig. 2. On-line estimation with sliding window

According to linearization scheme in Fig. (1) and given Nw measured values of

predistorted signal Vpre and output envelope signal Vout, we can analyze for one set

an off-line situation where we can write the Nw equations:











































Vpre1 = Fpre1(θ, Vout) + ǫ1 = ϕT
1
· θ + ǫ1

...

Vprek = Fprek (θ, Vout) + ǫk = ϕT
k
· θ + ǫk

...

VpreNw
= FpreNw

(θ, Vout) + ǫNw
= ϕT

Nw
· θ + ǫNw

(15)

which can be re-written in linear matrix regression model such as:
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V Nw×1
prei = φNw×N

i · θN×1 + ǫNw×1

i with φi =
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(16)

and N = (P + 1).Q is the number of parameters to be estimated.

If we assume that the variations of PA characteristics in each frame are negligible

according to the global variation during operation, the application of KF algorithm

gives the final updating system parameters by mixing off-line measurement with

a fundamental sampling time equal to Ts and on-line estimation with Nw × Ts

sampling time such as:















Ki+1 = Pi φ
H
i+1

(

R+ φi+1 Pi φ
H
i+1

)

−1

Pi+1 = Pi −Ki+1 φi+1 Pi

θ̂i+1 = θ̂i +Ki+1

(

V prei+1
− V̂ prei+1

(θ̂i, V out)
)

(17)

where transposition (.)T is replaced here by conjugate-transpose transform (.)H

because the predistortion parameters are a complex coefficients.

By the matrix inversion lemma detailed in 26, the gain matrix Ki+1 becomes for

complex coefficients:

Ki+1 = Pi+1 φ
H
i+1R

−1 (18)

and we obtain the final updating system:
{

θ̂i+1 = θ̂i + Pi+1 φ
H R−1

(

εIi+1
+ j.εQi+1

)

P−1
i+1 = P−1

i + φH
i+1 R

−1 φi+1

(19)

When physical knowledge or prior information on parameter variations is known

and modeled by parameters covariance matrix noted Q, we can rewrite the error

covariance matrix P to take into account this constraint on parametric domain such

as:
{

θ̂i+1 = θ̂i + Pi+1 φ
H R−1

(

εIi+1
+ j.εQi+1

)

P−1

i+1 = (Pi +Q)−1 + φH
i+1 R

−1 φi+1

(20)

Noted that if the process noise variance called σ2
b is known, the output matrix

variance R can be replaced by R = σ2
b .In , which gives the same updating system

as in reference 13. As mentioned in previous sections, these design parameters will

considerably modify the performance of the Kalman algorithm. Hence, these pa-

rameters must assume appropriate values to achieve an optimal tracking and fast



10 Smail Bachir, Nicusor Calinoiu and Claude Duvanaud

convergence 20. The choice of the number of input and output data Nw is impor-

tant in on-line identification procedure. This parameter is principally determined

by the time-constant of the PA dynamics and must be chosen greater than its time-

transient to insure convergence of regressors vectors φ
k
defined in relations (15)

and (16).

To start the optimization, the initial conditions of the predistorter have to be

defined. The initialization is very important to insure stability and high speed

convergence 7. For an unknown amplifier characteristics, we can initialize the vector

of predistorter coefficients θ at unity gain values, i.e.:

θ0 =
[

1 0 0 · · · 0 0
]T

(21)

Another solution is to perform an off-line identification of the predistorter using

LMS algorithm 26. The calculated parameters can be downloaded on the digital

signal processor (DSP) and serve as initial values for the predistorter.

4. Simulation and experimental results

In this section, we illustrate through simulations and experiments, performance of

the memory polynomial predistorter identified using modified KF algorithm.

4.1. Simulation results

The proposed digital predistortion technique is used to linearize an actual model

from Class AB PA (HEMT ZJL-3G), at the frequency of 2.1 GHz designed with

Matlab/Simulink software. The model is composed of gain and phase nonlin-

earities described by Saleh equations followed by a Finite Impulse Response filter

with complex coefficients 19. The test signal is a 16-QPSK digitally modulated sig-

nal at rate of 5 Mb/s and shaped with a raised cosine filter having a rolloff factor of

0.25. We compare the power spectral density (PSD) of the output signals to evaluate

the effectiveness of the predistorter in reducing spectral regrowth. In this part, the

predistorter (Eq. 1) is defined with two delay taps (Q = 2) and 5th odd-order non-

linearity (P = 2). The power amplifier was driven to the 1 dB compression point.

All results are given with a vector of parameters initialized using LMS algorithm.

4.1.1. Convergence and linearity indicators

Fig. 3 shows the performance improvement in terms of spectral regrowth. The com-

plex predistorter with memory could achieve 20 dB reduction in spectral distortion.

To investigate the real-time convergence of the parametric space under trans-

mitter variations, we simulate a modification of the PA characteristics during trans-

mission. In practice, a bias of ±25% is introduced to the AM/AM and AM/PM

parameters of the used PA at 500 µs. Figures (4.a) and (4.b) give respectively the

evolution of real and imaginary parts of predistorter parameters during linearization

procedure. In figure (4.a), the curves from the top to the bottom after convergence
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Fig. 3. Power spectral density of output signal

are, respectively, the real parts of α0,1, α0,5, α1,3, α1,1, α0,3 and α1,5. In figure (4.b),

the curves from the top to the bottom are, respectively, the imaginary parts of α1,5,

α1,1, α0,3, α0,1, α1,3 and α0,5.

The system identification results reveal that the change of the PA characteris-

tics affect the parameters estimates. That explains why the fixed parameter predis-

torter is not appropriate when variations are occurring in system transmission. In

the adaptive control case, the on-line scheme effectively uses system parameter esti-

mation to adjust the predistorter parameters in real time according to PA changes.

Noted that new predistorter coefficients corresponding to the modified amplifier

model are achieved in only 300 µs corresponding to 15 iterations with Nw = 500

data for each time-window (Ts = 0.04µs).
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Fig. 4. Evolution of parameters during estimation procedure

In term of adjacent spectral regrowth, fig. (5) gives the simulated output spectral

density before, after model variations and after parameters convergence. As we
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can see, the variation induces a transient deterioration of the spectral response,

corrected after by the adaptive predistorter.
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Fig. 5. On-line spectrum evolution with PA model variation

If there is a signal with non-constant envelope at the PA’s input, each of its sam-

ples will be amplified with different gain and the introduced phase shift will differ

according to the input signal amplitude. This nonlinear distrotion is illustrated in

the case of 64-QAM modulation as shown in figure (6). The constellation point

near the saturation will be more deformed in the case of PA without linearizer.

These figures show too the improvement in constellation diagrams for the adaptive

linearization using KF with sliding window.

−2 −1 0 1 2
−2

−1

0

1

2
Input

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3 Output without linearization

−2 −1 0 1 2
−2

−1

0

1

2 Output with KF linearizer

Fig. 6. Constellation diagrams for 64-QAM signal

4.1.2. Evaluation criteria

To carry out a more detailed study among different adaptive algorithm, we com-

pare the proposed KF algorithm using sliding window (KFSW ) with classical Ex-

tended Kalman Filter EKF (Eq. 14) and two other known techniques: Recursive

Least Squares algorithm with forgetting factor λ (RLS algorithm) 19,28 and Gra-

dient algorithm 7. These approaches correct the estimate parameters according to

estimation error with different gains such as:
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• RLS algorithm 19



















Kk+1 = Pk . ϕ
∗

k+1
.
(

λ+ ϕH
k+1

Pk ϕk+1

)

−1

Pk+1 = λ−1 .
(

Pk −Kk+1 ϕ
T
k+1

Pk

)

θ̂k+1 = θ̂k +Kk+1

(

Vprek+1
− V̂prek+1

)

(22)

• Gradient algorithm 26,29







Kk+1 = 2 · µ · ϕ∗

k+1

θ̂k+1 = θ̂k +Kk+1

(

Vprek+1
− V̂prek+1

) (23)

The major difference between variants of KF algorithm, RLS and gradient algo-

rithms is the degrees of freedom in covariance matrix adjustment. RLS and Gradient

algorithms have only scalar parameter λ and µ to adjust the speed convergence and

stability contrary to KF algorithm which has N ×N weights in the monitoring ma-

trix R (where N = (P + 1) · Q = 6 is the number of parameters in the vector θ

described in section 2.2).

To give a quantitative measure of the improvement, we use the normalized mean

square error (NMSE), as

NMSEdB = 10 log10







∑K
k=1

∣

∣

∣Vprek − V̂prek

∣

∣

∣

2

∑K
k=1

|Vprek |
2






(24)

where K is the total number of points. We define also the number of arithmetic

operations for each iteration composed by the Nw = 500 data. Subtraction and

division are counted respectively with addition (called Add) and with multiplication

(called Mult).

NMSEdB Number of operations

KFSW −44.92
Add = Nw.(2N

2 + 3) = 37500

Mult = 4.Nw.N
3 + 4N2 + 2N2 = 432216

EKF −42.61
Add = Nw.(8N

2 + 2N + 8) = 154000

Mult = Nw.(2N
4 + 4N2 + 8) = 1372000

RLS −37.66
Add = Nw.(4N

2 + 2) = 73000

Mult = Nw.(N
4 + 4N2 + 5N) = 735000

Gradient −36.94
Add = Nw.(2N + 1) = 6500

Mult = Nw.(4N − 1) = 11500

Table 1. Comparison of NMSEdB and computation complexity

The second column of Table (1) shows the NMSEdB obtained by averaging over

the last K = 20.Nw = 10000 error samples to reflect algorithm performances after
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convergence. We can observe that the proposed KFSW algorithm and classical one

give more than 7dB NMSE improvement compared to classical recursive algorithms.

In term of computation complexity, it is seen that the Gradient algorithm yielded

the minimal result. In reference 29, it is proved that Gradient algorithm is a more

simplified version of Kalman filter where covariance matrix elements are reduced

to one scalar coefficient equal to unity. Noted that the RLS algorithm requires two

time arithmetic operations compared to KFSW Algorithm.

In fact, proposed KFSW algorithm remains optimal in implementation because

the required number of arithmetic operations are treated during Nw.T s = 20µs,

contrary to the other algorithms where all operations are performed at sampling

time Ts = 0.04µs.
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Fig. 7. Comparison of learning curves for different identification algorithm

Fig. (7) shows the learning curves of the predistorter employing the KFSW al-

gorithm, classical EKF algorithm, RLS algorithm and Gradient algorithm where

predistortion is initialized with unity gain value defined in relation (21). The evolu-

tion of mean squared error ε2Ik +ε2Qk
during iteration are plotted. As shown, in term

of speed convergence, we can see that the KFSW algorithm and classical one have

similar performances. Only difference between these KF variants is the sampling

time used which is greater in the case of KF with sliding window. The proposed

algorithm and classical EKF converge and minimize the quadratic error faster than

other algorithms.

4.2. Experimental results

This section describes the practical results achieved using the experimental setup

shown in Fig. 8.

The power amplifier is a commercial Class AB ZHL-42 from Mini Circuits

manufacturer. Quadrature modulator AD8349 and demodulator AD8347 are in-

serted at the input and output of the PA. The DSP processor is a ADSP21161N



Linearization of RF Power Amplifiers 15

0°

90°

Démodulation

���
Q

���
I

��
I

��
Q

pre
I

pre
Q

Local Oscillator

PA

0°

90°

Modulation

Arbitrary Waveform 
Generator

ADSP 21161N

Fig. 8. Experimental setup

platform with dual DAC/ADC 4 inputs/6 outputs ports. They are standard com-

mercial units from Analog Devices with a computational running at Fs = 100 MHz.
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Fig. 9. Power spectral density

Fig. 9 shows the spectrum for a sinusoidal signal applied on Iin at Fm = 4.5kHz.

The total power of the two main components at frequencies 900±Fm MHz is equal

to 25dBm, corresponding to the 1dB compression point for a two carriers operating

condition in accordance with the 1dB compression point of 28dBm for a CW sig-

nal. For such output level, a carrier to third order intermodulation ratio of 32dBc is

achieved. The second curve plotted on Fig. 9 corresponds to the spectrum achieved

after adaptation of the predistorter. The real time adjustment of the predistorter

parameters allows ∼ 15dB improvement of the third order intermodulation distor-

tion.

Fig. 10 shows the time domain measurements of predistorted signal and residual
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Fig. 10. Time domain measurements of predistorted signal and residual

εI . It’s important to note that the initial values of the parameters correspond to a

unity gain (Eq. 21). Hence, the adaptation algorithm is started at 0.8 ms and after

a transient of 3.2 ms, we can verify that the estimation error is correctly minimized.

5. Conclusion

A new technique for performing baseband predistortion has been described. In this

approach, an alternative Kalman Filtering algorithm is introduced to design and

estimate a complex predistorter with memory. Identification algorithm has been

suitably modified to insure convergence, stability and reduce number of calcula-

tions during estimation. With sliding window transformation, the resulting equa-

tion to update the covariance matrix is more simple according to the classical EKF,

allowing a significant reduction of the computational complexity and numerical cal-

culations. The technique uses the baseband transmitted signals through the PA to

perform coefficients update in real-time.

The effectiveness of this approach is demonstrated through simulation results,

showing that the adapted Kalman Filtering predistorter reduces the adjacent chan-

nel interference. The time domain variation of parameters illustrates the capability

of this procedure to track PA changes.

Experimental setup based on DSP microprocessor has been used and showed

good spectral improvement, illustrated by a reduction of ∼ 15dB of IM3 for a

sinusoidal modulating signal. By simulation and measurement, it has been shown

that the adaptive procedure is fast, even in the case of a predistorter initiliazed

at unity gain. This result allows to applied different real time strategies to adapt

the predistorder for example continuously during the transmission, periodically to

track change in transmitter characteristics or when operating conditions or signal

format are modified.
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