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H∞ Control of Delayed Teleoperation Systems under Polytopic-Type
Uncertainties

Bo Zhang, Alexandre Kruszewski and Jean-Pierre Richard

Abstract— In this paper, the H∞ control design under time-
varying delays and polytopic-type uncertainties, which ensures
the stability and performance (synchronization/transparency)
between the master and slave manipulators, is proposed. With
this objective, the design of the controller based on our proposed
control scheme is performed by using Linear Matrix Inequality
(LMI) optimization based on Lyapunov-Krasovskii functionals
(LKF) and H∞ control theory. The solution is efficient for
different working conditions, e.g. abrupt tracking and wall
contact motion, and this is illustrated by a final example.

I. INTRODUCTION

Bilateral teleoperation is the extension of a person’s sens-
ing and manipulation capability to a remote environment, a
typical form of which is composed of the human operator,
the master robot, the communication medium, the slave robot
and the environment. The remote slave robot tracks the
motion of the master robot commanded by the human op-
erator. Conversely, the corresponding data of the slave robot
is also transmitted back to the master robot, in particular,
to improve the task performance, force feedback from the
slave to master, representing contact motion, provides a more
extensive feeling of telepresence [1], [2].

In bilateral teleoperation, the master and slave are coupled
via the communication medium, which incurs the additional
dynamics represented by time-varying delays (especially
with the Internet) [3]. In order to avoid a severe deterioration
of the global performance, these delays must be considered
at the control design stage [4]. Recently, various methods
addressed the stability and performance issues, most of
them concern passivity-based control under variable delays,
including the scattering and wave variables, the readers can
refer to the survey [5] and the references therein; based
on the energy and power considerations, time domain pas-
sivity control [6], [7] without the transformation of wave
variables have been proposed. For non-passive control, [8]
and [9] summarized many teleoperation control strategies
and schemes. These methods can resolve the stabilization
problem under constant or time-varying delays, but the
system performance is not guaranteed.

Our latest research [10] presented a force-reflecting proxy
control scheme, which guarantees the stability and the po-
sition/force tracking of the closed-loop system under time-
varying delays by using Lyapunov-Krasovskii functionals
(LKF) and H∞ control, which can be solved by Linear
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Matrix Inequality (LMI) optimization. Thus, in this paper,
based on the control scheme proposed in [10], we handle
the teleoperation under time-varying delays and model un-
certainties. Here, the uncertainties are expressed under the
form of time-varying parameters, but could also correspond
to nonlinear effects. The design approach proposed in this
paper can be summarized:
• Control scheme in [10] is utilized, but the technique

is extended to the case of polytopic-type models of master,
proxy of master (a remote observer of the master used at the
slave side to reduce the impact of the communication delays)
and slave.
• Local controllers of master, proxy and slave are designed

by using Lyapunov functions and LMI optimization.
• Slave controller used to eliminate the impact of asym-

metric time-varying delays are fixed by LKF, H∞ control
and LMI [11]. Local and slave controllers mentioned above
will be explained later.

This paper is organized as follows: Section 2 introduces
the theorems to be used later. Some details of the control
scheme and the problems to be resolved are presented in
Section 3. Our main results are given in Section 4. Results
of simulation are presented in Section 5. Finally we conclude
in Section 6.

II. PRELIMINARIES

This section is devoted to the general stability analysis
with the H∞ performance index for time delay system with
time-varying polytopic-type uncertainties. It is considered the
following system with time-varying matrices A0, Ai, i =
1, 2, ..., n and B,





ẋ(t) = A0x(t) +
∑n

i=1 Aix(t− τi(t)) + Bw(t),
z(t) = Cx(t),

x(t0 + θ) = φ(θ), ẋ(t0 + θ) = φ̇(θ), θ ∈ [−h2, 0],
(1)

where, x(t) ∈ Rn, w(t) ∈ Rl is some exogenous distur-
bance signals, while z(t) ∈ Rq is seen as the objective
control output. φ(θ) is the initial state function, and τi(t) ∈
[h1, h2], h1 ≥ 0, i = 1, 2, ..., n, are time-varying delays.
There is no particular assumption on τ̇i(t). C is the constant
matrice, and A0, Ai, i = 1, 2, ..., n, B are subject to time-
varying uncertainties and satisfy the real convex polytopic
model,



[A0, Ai, B] ∈ Ω, i = 1, 2, ..., n,

Ω , [A0(ρ(t)), Ai(ρ(t)), B(ρ(t)) =

N∑
j=1

ρj(t)[A0j , Aij , Bj ],

N∑
j=1

ρj(t) = 1, ρj(t) > 0],

(2)

where, A0j , Aij , Bj , i = 1, 2, ..., n, j = 1, 2, ..., N , are
constant matrices of appropriate dimension and ρj(t), j =
1, 2, ..., N , are time-varying uncertainties. Note that, in the
following, all systems mentioned satisfy the polytopic-type
condition as in (2).

Considering the Lyapunov-Krasovskii functional as fol-
low [12],

V (t, x(t), ẋ(t)) =

N∑
j=1

Vj(t, x(t), ẋ(t)),

Vj(t, x(t), ẋ(t)) = x(t)T Pjx(t)

+

∫ t

t−h1

x(s)T Sjx(s)ds +

∫ t

t−h2

x(s)T Sajx(s)ds

+ h1

∫ 0

−h1

∫ t

t+θ

ẋ(s)T Rj ẋ(s)dsdθ

+

n∑
i=1

(h2 − h1)

∫ −h1

−h2

∫ t

t+θ

ẋ(s)T Raij ẋ(s)dsdθ.

(3)

According to H∞ control theory, the performance will be
studied by checking H∞ performance index J(w) < 0 for a
positive scalar γ,

J(w) =

∫ ∞

0

(z(t)T z(t)− γ2w(t)T w(t))dt < 0, (4)

and then, from [10], J(w) < 0 can be assured if,

V̇ (t, x(t), ẋ(t)) + z(t)T z(t)− γ2w(t)T w(t) < 0. (5)

Theorem 1: Suppose there exist matrices Pj > 0, Rj > 0,
Sj > 0, Saj > 0, Raij > 0, P2j , P3j , Y1j , Y2j , i =
1, 2, ..., n, j = 1, 2, ..., N , and a positive scalar γ, such
that the condition (6) with notations (7), j = 1, 2, ..., N , is
feasible. Then the system (1) is robustly stable with J(w) <
0 for time-varying delays τi(t) ∈ [h1, h2], i = 1, 2, ..., n.

Proof. From [13], the condition in (5) can be relaxed to
a set of N LMIs as follows, j = 1, 2, ..., N ,

V̇j(t, x(t), ẋ(t)) + z(t)T z(t)− γ2w(t)T w(t) < 0. (8)

The proof of (8) can be found in [10], the readers can
refer to [10] for more details.

Our theorem can also be derived to the delay-free case
(without

∑n
i=1 Aix(t− τi(t)), i = 1, 2, ..., n) as follow,

{
ẋ(t) = A0x(t) + Bw(t),
z(t) = Cx(t).

(9)

Corallary 1: Suppose there exist matrices Pj > 0, P2j ,
P3j , j = 1, 2, ..., N , and a positive scalar γ, such that

the condition (10) with the notation (11), j = 1, 2, ..., N ,
is feasible. Then the system (9) is robustly stable with
J(w) < 0.

Γ2j =

(
Γ
2j
11 Pj−P T

2j+AT
0jP3j P T

2jBj

> −P3j−P T
3j P T

3jBj

> > −γ2I

)
< 0, (10)

Γ2j
11 = AT

0jP2j + P T
2jA0j + CT C. (11)

Remark 1: Theorem 2 in [10] can also be directly applied
to system (1) (One matrice variable replaces N matrice
variables, e.g. P replaces Pj , j = 1, 2, ..., N ), and then, an
polytopic method is applied to verify the LMI condition.
This method can also make the system robustly stable, but
leads to more conservative, which will be proved later by
the simulation.

III. PROBLEM FORMULATION
The force-reflecting proxy control scheme is presented in

Fig. 1. Let us give a description of the control scheme:
• Fm(t) and Fs(t) are the actuated inputs of the master

and the slave.
• Fh(t) and Fe(t) are the forces of the human operator

and environment on the system. F̂h(t) and F̂e(t) are the
estimations of these two forces, which can be obtained by
adding the perturbation observers in reality.
• τ1(t) (from the master to the slave) and τ2(t) (from the

slave to the master) are the time-varying delays, which are
modeled as the previous section, τ1(t), τ2(t) ∈ [h1, h2]. Mas-
ter and slave clocks are synchronized thanks to time-stamped
data packet exchanges between them, using a network time
protocol as in [14]. Therefore, τ̂1(t) is the estimated network
delay between the master and slave, it is available at slave’s
side: τ̂1(t) = τ1(t).
• From the master to slave, the information transferred

are the velocity/position of the master and the estimated
force F̂h(t). However, from the slave to the master, only the
estimated force F̂e(t) is transferred, so the force tracking,
Fm(t) = F̂e(t − τ2(t)), is realized, if the stability of the
whole system is verified.
• θ̇m(t)/θm(t) and θ̇s(t)/θs(t) are the velocities/positions

of the master and slave.
The models of master and slave with polytopic-type un-

certainties are described as follows,

(Σm) ẋm(t) = (Am(ρm(t))−Bm(ρm(t))K0
m)xm(t)

+ Bm(ρm(t))(Fm(t) + Fh(t)),

(Σs) ẋs(t) = (As(ρs(t))−Bs(ρs(t))K
0
s )xs(t)

+ Bs(ρs(t))(Fs(t) + Fe(t)),

(12)

where, xm(t) = θ̇m(t), xs(t) = θ̇s(t) are the states of the
master and slave,

[Am(ρm(t)), Bm(ρm(t))] =

N∑
j=1

ρmj(t)[Amj , Bmj ],

[As(ρs(t)), Bs(ρs(t))] =

N∑
j=1

ρsj(t)[Asj , Bsj ].

(13)



Γ1j =




Γ
1j
11 Γ

1j
12 Rj+

∑n
i=1 P T

2jAij−nY T
1j nY T

1j −P T
2jA1j+Y T

1j ... −P T
2jAnj+Y T

1j Y T
1j ... Y T

1j P T
2jBj

> Γ
1j
22

∑n
i=1 P T

3jAij−nY T
2j nY T

2j −P T
3jA1j+Y T

2j ... −P T
3jAnj+Y T

2j Y T
2j ... Y T

2j P T
3jBj

> > −Sj−Rj 0 0 0 0 0 0 0 0

> > > −Saj 0 0 0 0 0 0 0

> > > > −Ra1j 0 0 0 0 0 0

> > > > > ... 0 0 0 0 0
> > > > > > −Ranj 0 0 0 0

> > > > > > > −Ra1j 0 0 0

> > > > > > > > ... 0 0
> > > > > > > > > −Ranj 0

> > > > > > > > > > −γ2I




< 0, (6)

Γ1j
11 = Sj + Saj −Rj + AT

0jP2j + P T
2jA0j + CT C, Γ1j

12 = Pj − P T
2j + AT

0jP3j , Γ1j
22 = −P3j − P T

3j + h2
1Rj + (h2 − h1)

2
n∑

i=1

Raij .

(7)

Fig. 1. Force-reflecting proxy control scheme

As mentioned above, all uncertainties proposed in this
paper satisfy the polytopic-type condition as in (2). K0

m, K0
s

are local controllers of the master and slave ensuring the
speed stability, which will be designed in next section.

Because the proxy acts as a remote observer of the master,
the proxy model is the same as that of the master, but under
different polytopic-type uncertainty,

(Σp) ẋp(t) = (Ap(ρp(t))−Bp(ρp(t))K0
m)xp(t)

+ Bp(ρp(t))(F̂e(t) + F̂h(t− τ1(t))− Fp(t− τ1(t))),
(14)

[Ap(ρp(t)), Bp(ρp(t))] =

N∑
j=1

ρpj(t)[Amj , Bmj ], (15)

where, xp(t) = θ̇p(t) is the state of the proxy, θ̇p(t)/θp(t) is
the velocity/position, Fp(t− τ1(t)) is the correction term of
the proxy of master,

Fp(t− τ1(t)) = L

(
θ̇p(t−τ̂1(t))

θ̇m(t−τ1(t))
θp(t−τ̂1(t))−θm(t−τ1(t))

)
,

L =
(

L1 L2 L3
)
.

(16)

Here, L is the gain of proxy of master, next, K =(
K1 K2 K3

)
is the gain of the controller C,

Fs(t) = −K

(
θ̇s(t)

θ̇p(t)

θs(t)−θp(t)

)
. (17)

Thus, our following works are to solve:
Problem 1: the local controllers of master, proxy and

slave, K0
m and K0

s , are designed to make the master, proxy

and slave robustly stable with respect to the polytopic-type
uncertainties.

Problem 2: L, K (as the slave controller) will be designed
in order to provide the stability and performance guaran-
tee for teleoperation system under time-varying delays and
polytopic-type uncertainties.

IV. MAIN RESULTS

The objective of this section is to solve the problems
mentioned above.

A. Problem 1: Local Controller Design

The local controllers are designed by a Lyapunov
functional and LMI, taking the master as an example,
and considering the Lyapunov function V (t, xm(t)) =∑N

j=1 Vj(t, xm(t)), Vj(t, xm(t)) = xm(t)T Pjxm(t), Pj =
PT

j > 0, j = 1, 2, ..., N . In order to apply LMI condition,
V̇ (t, xm(t)) < 0 is relaxed to a set of V̇j(t, xm(t)) < 0,
j = 1, 2, ..., N . We introduce free weighting matrices P2,
P3 into V̇j(t, xm(t)), j = 1, 2, ..., N [13],

2[xm(t)T P T
2 + ẋm(t)T P T

3 ]

[(Amj −BmjK
0
m)︸ ︷︷ ︸

Āmj

xm(t)− ẋm(t)] = 0. (18)

We set η(t) = col{xm(t), ẋm(t)} and get, j = 1, 2, ..., N ,
(

ĀT
mjP2+P T

2 Āmj Pj−P T
2 +ĀT

mjP3

> −P3−P T
3

)
< 0. (19)

Multiplying (19) by diag{P−T
2 , P−T

2 } at the left side,
diag{P−1

2 , P−1
2 } at the right side, then K0

m can be obtained
by defining P3 = ξP2 and Nm = K0

mP2. The result
K0

m = NmP−1
2 follows, j = 1, 2, ..., N ,



(
AmjP2−BmjNm+P T

2 AT
mj−NT

mBT
mj Pj−P2+ξP T

2 AT
mj−ξNT

mBT
mj

> −ξP2−ξP T
2

)

< 0.
(20)

Remark 2: The proxy has the same local controller with
master (K0

m), and the local controller of slave (K0
s ) can be

obtained by the same procedure.

B. Problem 2: Slave Controller Design
Firstly, we will design the proxy of master by Lyapunov-

Krasovskii functionals, H∞ control and LMI. Considering
the models of the master and the proxy as the following
system,





ẋmp(t) = A0
mp(ρmp(t))xmp(t) + A1

mp(ρmp(t))xmp(t− τ1(t))
+Bmp(ρmp(t))wmp(t),

zmp(t) = Cmpxmp(t),
(21)

where,

xmp(t) =

(
θ̇p(t)

θ̇m(t)
θp(t)−θm(t)

)
, wmp(t) =

(
F̂e(t)+F̂h(t−τ1(t))

Fm(t)+Fh(t)

)
,

zmp(t) =
(

θp(t)−θm(t)
)
,

(22)

A0
mp(ρmp(t)) =

(
A0

mp(ρmp(t))(1,1) 0 0

0 A0
mp(ρmp(t))(2,2) 0

1 −1 0

)
,

A0
mp(ρmp(t))(1, 1) = Ap(ρp(t))−Bp(ρp(t))K0

m,

A0
mp(ρmp(t))(2, 2) = Am(ρm(t))−Bm(ρm(t))K0

m,

A1
mp(ρmp(t)) =(−Bp(ρp(t))L1 −Bp(ρp(t))L2 −Bp(ρp(t))L3

0 0 0
0 0 0

)
,

Bmp(ρmp(t)) =(
Bp(ρp(t)) 0

0 Bm(ρm(t))
0 0

)
=

(
B1

mp(ρmp(t)) B2
mp(ρmp(t))

)
,

Cmp =
(

0 0 1
)
.

(23)

According to the control scheme, considering any two
subsystems in the master, proxy of master and slave, or
the whole system, the polytopic-type model can be found.
Thus, we get the parameter matrices satisfy the real convex
polytopic models,

A0
mp(ρmp(t)) =

N∑
j=1

ρmpj(t)A
0
mpj ,

Bmp(ρmp(t)) =

N∑
j=1

ρmpj(t)Bmpj =

N∑
j=1

ρmpj(t)
(

B1
mpj B2

mpj

)
.

(24)
Theorem 2: Suppose there exist matrices Pj > 0, Rj > 0,

Sj > 0, Saj > 0, Ra1j > 0, P2, Y1j , Y2j , M , j = 1, 2, ..., N ,
and positive scalars γ and ξ, such that the condition (26) with
notations (27), j = 1, 2, ..., N , is feasible. Then the system
(21) is robustly stable with J(w) < 0 for time-varying delays
τ1(t) ∈ [h1, h2] and with the following proxy control gain:

L = MP−1
2 . (25)

Proof. We use Theorem 1 on system (21), a series
of steps is made to obtain LMI condition [15], we de-
fine P2j = P2, P3j = ξP2, j = 1, 2, ..., N , mul-
tiply Γ1j , by diag{P−T

2 , ..., P−T
2 , I} at the left side,

diag{P−1
2 , ..., P−1

2 , I} at the right side, then make the
transformation A1

mp(ρmp(t)) = −B1
mp(ρmp(t))L, choose

M = LP2, apply Schur formula, finally the result follows.
The position tracking between the master and the proxy

of master has been achieved, and then, the position tracking
between the proxy of master and the slave is assured by the
controller C. The model of the system containing the proxy
of master, the controller C and the slave, is given as follow,

{
ẋps(t) = Aps(ρps(t))xps(t) + Bps(ρps(t))wps(t),
zps(t) = Cpsxps(t).

(28)

where,

xps(t) =

(
θ̇s(t)

θ̇p(t)

θs(t)−θp(t)

)
, zps(t) =

(
θs(t)−θp(t)

)
,

wps(t) =
(

Fe(t)

F̂e(t)+F̂h(t−τ1(t))−Fp(t−τ1(t))

)
.

(29)

Aps(ρps(t)) =(
Aps(ρps(t))(1,1) −Bs(ρs(t))K2 −Bs(ρs(t))K3

0 Aps(ρps(t))(2,2) 0
1 −1 0

)
,

Aps(ρps(t))(1, 1) = As(ρs(t))−Bs(ρs(t))K
0
s −Bs(ρs(t))K1,

Aps(ρps(t))(2, 2) = Ap(ρp(t))−Bp(ρp(t))K0
m,

Bps(ρps(t)) =

(
Bs(ρs(t)) 0

0 Bp(ρp(t))
0 0

)
=

(
B1

ps(ρps(t)) B2
ps(ρps(t))

)
,

Cps =
(

0 0 1
)
,

(30)
Thus, we get,

Aps(ρps(t)) = A0
ps(ρps(t)) + A1

ps(ρps(t)) =
N∑

j=1

ρpsj(t)(A
0
psj + A1

psj),

A0
psj =

(
Asj−BsjK0

s 0 0

0 Amj−BmjK0
m 0

1 −1 0

)
,

A1
psj =

(−BsjK1 −BsjK2 −BsjK3
0 0 0
0 0 0

)
,

Bps(ρps(t)) =

N∑
j=1

ρpsj(t)Bpsj =

N∑
j=1

ρpsj(t)
(

B1
psj B2

psj

)
.

(31)
With the transformation of A1

psj = −B1
psjK, j =

1, 2, ..., N , we get the following theorem.
Theorem 3: Suppose there exist matrices Pj > 0, P2,

W , and positive scalars γ and ξ, j = 1, 2, ..., N , such
that the condition (33) with notations (34), j = 1, 2, ..., N ,
is feasible. Then the system (28) is robustly stable with
J(w) < 0 and with the control gain of the controller C:

K = WP−1
2 . (32)

Γ4j =




Γ4j
11 Γ4j

12 Bpsj P T
2 CT

ps

> Γ4j
22 ξBpsj 0

> > −γ2
j I 0

> > > −I


 < 0, (33)



Γ3j =




Γ
3j
11 Γ

3j
12 Rj−B1

mpjM−Y T
1j Y T

1j Y T
1j+B1

mpjM Y T
1j Bmpj P T

2jCT
mp

> Γ
3j
22 −ξB1

mpjM−Y T
2j Y T

2j Y T
2j+ξB1

mpjM Y T
2j ξBmpj 0

> > −Sj−Rj 0 0 0 0 0

> > > −Saj 0 0 0 0

> > > > −Ra1j 0 0 0

> > > > > −Ra1j 0 0

> > > > > > −γ2
j I 0

> > > > > > > −I




< 0, (26)

Γ3j
11 = Sj + Saj −Rj + P T

2 A0
mpj

T
+ A0

mpjP2, Γ3j
12 = Pj − P2 + ξP T

2 A0
mpj

T
, Γ3j

22 = −ξP2 − ξP T
2 + h2

1Rj + (h2 − h1)
2Ra1j .

(27)

Γ4j
11 = P T

2 A0
psj

T
+ A0

psjP2 −W T B1
psj

T −B1
psjW,

Γ4j
12 = Pj − P2 + ξP2A

0
psj

T − ξW T B1
psj

T
,

Γ4j
22 = −ξP2 − ξP T

2 .

(34)

Proof. We apply the system (28) in Corollary 1, and the
proof is straightforward as Theorem 2.

Till now, the position tracking between the master, the
proxy and slave are ensured. Finally, the objective is to
ensure the global stability of the whole system described
by,





ẋmps(t) = A0
mps(ρmps(t))xmps(t)

+A1
mps(ρmps(t))xmps(t− τ1(t))

+Bmps(ρmps(t))wmps(t),
zmps(t) = Cmpsxmps(t),

(35)

where,

xmps(t) =




θ̇s(t)

θ̇p(t)

θ̇m(t)
θs(t)−θp(t)

θp(t)−θm(t)


 , wmps(t) =

(
Fe(t)

F̂e(t)+F̂h(t−τ1(t))
Fm(t)+Fh(t)

)
,

zmps(t) =
(

θs(t)−θp(t)

θp(t)−θm(t)

)
.

(36)
Thus, we can get, j = 1, 2, ..., N ,

A0
mps(ρmps(t)) =

N∑
j=1

ρmpsj(t)A
0
mpsj ,

A0
mpsj =


Asj−BsjK0

s−BsjK1 −BsjK2 0 −BsjK3 0

0 Amj−BmjK0
m 0 0 0

0 0 Amj−BmjK0
m 0 0

1 −1 0 0 0
0 1 −1 0 0


 ,

A1
mps(ρmps(t)) =

N∑
j=1

ρmpsj(t)A
1
mpsj =

N∑
j=1

ρmpsj(t)

( 0 0 0 0 0
0 −BmjL1 −BmjL2 0 −BmjL3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,

Bmps(ρmps(t)) =

N∑
j=1

ρmpsj(t)Bmpsj =

N∑
j=1

ρmpsj(t)




Bsj 0 0

0 Bmj 0

0 0 Bmj

0 0 0
0 0 0


 , Cmps =

(
0 0 0 1 0
0 0 0 0 1

)
.

(37)

By Theorem 1, we can verify the global stability of the
system. Then the force tracking, Fm(t) = F̂e(t − τ2(t)), is
achieved.

V. ILLUSTRATIVE EXAMPLE

To evaluate the performance of the proposed approach,
different working conditions have been simulated. The maxi-
mum amplitude and sampling time of time-varying delays are
0.2s (greater amplitude of delays can also be handled) and
0.001s. Note that, the time-varying delays in two channels
are asymmetric.

For simplicity reasons, the master, the proxy of master
and the slave models can be described as Am(ρm(t)) =
As(ρs(t)) = 0, Bm(ρm(t)) = Bs(ρs(t)) = 1

ρ(t) , ρ(t) ∈
[0.5, 1]. Firstly, by our local controller design, K0

m = K0
s =

2.6585. Next, the gains of the proxy of master and the
controller C, the corresponding γL

min, γK
min, and the global

stability with γg
min are presented as follows,

L =
(

1.7860 −1.7862 9.1797
)
, γL

min = 0.2626,

K =
(

20.4799 −21.2537 575.2051
)
, γK

min = 0.0164,

γg
min = 0.3286.

(38)

For comparison reasons, by using the LMI condition
proposed in Remark 1, we get,

γL
min = 1.399, γK

min = 0.0954, γg
min = 1.5681. (39)

We can see that, the LKF proposed in this paper improves
the results and reduces the conservatism.

A. Tracking in abrupt tracking motion

Fig. 2 shows the position tracking between the master
and slave, where the human operator (Fh(t)) is modeled
as the pulse generator. It is clear that our method ensures
the system stability and the position tracking, even at the
changing point of the position, good position convergence
between the master and slave has been achieved.

B. Tracking in Wall Contact Motion

The position tracking in wall contact motion is presented
in Fig. 3. Here, the slave is driven to the hard wall with
a stiffness of Ke = 30kN/m located at the position x =
1.0m. Our local and slave controllers ensure the position
performance, because of the uncertainties in master and
slave models and time-varying delays, there exist the small
position jitters at the master and slave side, the slave side’s
jitter usually causes much larger jitter at the master side. The



Fig. 2. Position response in abrupt changing motion

Fig. 3. Position response in wall contact motion

force tracking between Fm(t) and F̂e(t) is straightforward
as in [10], thus, it is omitted here.

VI. CONCLUSIONS

This paper focused on the slave controller design problem
for teleoperation with time-varying delays and polytopic-type
uncertainties. Thanks to Lyapunov functions and Lyapunov-
Krasovskii functionals, H∞ control theory and LMI, the
system stability and high-quality performance are guaranteed
based on our method.

The simulations performed by YALMIP and SIMULINK
demonstrate that such a teleoperation system can run in
different working conditions.
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