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ABSTRACT 
This paper focuses on the determination of the effects on the bladed 

disk forced response of small variations (mistuning) in the blade-disk 
interface properties as may result from blade seating. A blade-interface-
disk mean model is first developed that relies on both the Craig-Bampton 
approach and a local modeling of the interface. Then, both model and 
data uncertainties are introduced in this model using the nonparametric 
stochastic modeling approach. An example of application is presented 
that indicates a difference in physical behavior of a bladed disk with 
mistuned interfaces as compared to one with mistuned blade alone 
frequencies. Most notably, it is shown that at equal variability on the 
blade frequencies, the variations in blade-disk interface properties lead to 
a higher amplification factor. 

Keywords: mistuning, interface variations, bladed disk, nonparametric 
stochastic modeling, random matrices, blade vibration 

 
INTRODUCTION 

The effects of blade-to-blade variations in their structural and 
geometrical properties, collectively referred to as mistuning, on the free 
and forced responses of bladed disks have been the subject of a large 
number of investigations in the last four decades. These efforts have led 
in particular to a good understanding (e.g. see [1-3]) of the physics 
underlying the localization of the free response and the amplification of 
the forced response. Computationally efficient reduced order modeling 
strategies (e.g. see [4-7]) have also been formulated and validated. 
Further, the largest possible amplification of the response and the 
conditions under which it occurs have been well analyzed (e.g. see [8-
15]). More recently, multi-stage effects have also started being analyzed 
(e.g., see [16-19]) 

In all of the above investigations, mistuning has been assumed to 
originate from differences in the blades, be it in their geometrical and/or 
material properties. More rarely is the seating of an inserted blade in its 

fir tree/dove tail also mentioned. Note however that this variability does 
not affect the blade alone as other mistuning sources but it also affects 
the disk dynamics as the blade-disk interface is shared. 

In this light, the focus of the present investigation is on the 
development of a formulation for the consideration of variability in the 
disk-blade interface and on the study of its effects on the entire disk 
response. Most notably, the present effort will assess whether the 
variability in interface properties exhibits similar or different properties 
than blade mistuning. 
 
BLADE-INTERFACE-DISK MODELING 

A detailed, finite element analysis of the effects of blade-disk 
interface variability, e.g. from blade seating, would be a very complex 
and computationally intensive effort as one would in particular have to 
vary the meshing at the blade root to model the seating variability. 
Accordingly, it would be very desirable to adopt a more global 
approach, i.e. a modeling of the blade-interface-disk system in which the 
interface is a clearly delineated component. Further, because Monte 
Carlo simulations will be undertaken to obtain a statistical perspective 
of the effects of interface variability, it will be important to dispose of a 
computationally efficient model. 

The Craig-Bampton method of component mode synthesis is a 
particularly attractive approach for such an effort as it expresses the 
response of a structure in terms of the motion of its boundary (i.e., the 
blade-disk interface) and the modes of the structure with fixed interface, 
e.g., the clamped modes of the blade (see for example [5] for a prior 
application in bladed disks). This method will be applied here to both 
the blades and the disk separately and then the two models will be 
interfaced. 

Consider first a typical blade (blade b) and partition its degrees-of-
freedom in terms of internal (I) and boundary (B) ones yielding the 
physical stiffness and mass matrices  
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Following the Craig-Bampton approach, the internal ( I
physbX , ) and 

boundary ( B
physbX , ) degrees-of-freedom will be expressed as 
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Further, in Eq. (3), the symbol 
b

Ξ  denotes the matrix of constraint 
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Finally, the vector 
b

q  denotes the generalized coordinates of the modes 

of the clamped blade b. 
To the change of variables, from ( )B

physb
I

physb XX ,, ,  to ( )bb
Yq , , is 

accompanied by the transformation matrix  
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and thus, the corresponding stiffness and mass matrices of the blades are 
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Since the reduced order model is built on the modal matrix 
b

Φ , the 

matrices qq
CBb

K
,

 and qq
CBb

M
,

 are diagonal, and more specifically with 

nonzero elements equal to the natural frequencies and 1 if the modes 

jb,
φ  have been normalized with respect to the mass matrix II

physb
M

,
. 

A similar procedure can be followed with the disk to describe its 
response in terms of the motion of its degrees-of-freedom at its interface 
with every one of the N blades, i.e. [ ]T

Nd
T
d

T
d

T
d YYYY ,2,1, K= , and of the 

modal coordinates 
d

q  associated with the disk modes with fixed blade 

interface 
ld ,

φ  stacked in the modal matrix ⎥⎦
⎤

⎢⎣
⎡ φφφ=Φ

pdddd ,2,1,
K . 

The disk stiffness and mass matrices in the coordinates ( )dd
Yq ,  are 

then 
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To complete the blade-interface-disk modeling, it remains to relate the 
response of the interface degrees-of-freedom on the disk side to those on 
the blades. In this regard, two situations can be envisioned. In the first, 
the interface degrees-of-freedom of the disk are not collocated with 
those of the blades, see Fig. 1a, and a physical interface zone has been 
created. Assuming that there are no external forces acting on the 
interface zone of blade b, the disk-side and blade-side interfaces, bdF ,  

and bF  can be expressed as 
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where 
dbdb

M
,

, 
bdb

M
,

, 
dbb

M
,

, etc. are the mass and stiffness matrices 

of the finite element model of the contact zone. Note that 
bb

M
,

 and 

bb
K

,
 are in general not equal to II

physb
M

,
and II

physb
K

,
, although they 

relate to the same degrees-of-freedom, because they correspond to 
different finite element models, of the interface zone for the former 
matrices and of the blade for the latter ones. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 (a)                                                          (b) 

Figure 1. Blade-Disk Interface Zone 
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If a detailed finite element model of the interface zone has not been 
carried out, e.g. see Fig. 1b, it is still possible to introduce relative 
motions at the blade-disk interface by adopting Eq. (12) but with chosen 
mass and stiffness matrices  
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where the scalar k is an adjustable, dimensionless parameter that 
describes the stiffness of the blade-disk interface. 

The assembly of the various models, i.e. Eq. (8)-(12), provides the 
complete representation of the blade-interface-disk system. For example, 
for a disk supporting two blades, one would obtain the following mass 
and stiffness matrices associated with the degrees-of-freedom ( )
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assuming that there is no direct coupling between two blades (e.g., no 
shroud). 
 
 
SIMULATION OF RANDOM INTERFACE PROPERTIES 

The discussion of the previous section has established a mean model, 
i.e. one in which there is no variation nor uncertainty from blade to 
blade. Such variations and uncertainties will be simulated next by 
randomizing the interface characteristic mass (if not zero, see Eq. (13)) 
and stiffness matrices 

1,d
M , 

2,d
M , ... and 

1,d
K , 

2,d
K , ... In this 

regard, note that in physical bladed disks, one would expect these 
matrices to vary both in magnitude (e.g. eigenvalues) and in form (e.g. 
eigenvectors) and thus it would be desirable to use a simulation strategy 
that performs a similar, complete randomization. The nonparametric 
stochastic modeling method (e.g., see [20-22]) is such an approach and 
accordingly will be selected here. It is briefly reviewed below for 
completeness. 

Simulating random matrices 
id

M
,

~  and/or 
id

K
,

~  requires effectively 

the specification of the joint probability density functions of their 
elements which represents an extraordinary amount of information that 
is generally not available. This difficulty has often in the past been 
resolved by further restricting the stochastic model of these matrices to 
affect only certain properties (e.g. the eigenvalues/natural frequencies 
but not the eigenvectors/modes) or by imposing a series of independence 
conditions between the various elements. All of these assumptions are 
ad hoc, without a firm physical basis, and thus may or may not lead to a 
correct perspective on the effects of variations/uncertainties. 

In the nonparametric modeling approach, the lack of knowledge of 
the joint probability density function is resolved by selecting this 
function to achieve a maximum of the entropy under the physical 
constraints that the random matrix must satisfy, e.g. symmetry, positive 
definiteness. Through maximizing the entropy, the nonparametric 
modeling approach guarantees that the “tails” of the distribution will be 
as populated as possible, or equivalently that the simulated matrices will 
not simply represent small deviations around their mean values. Further, 
it has been shown that the simulated matrices are “fully” random, i.e. all 
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of their elements, eigenvalues, and eigenvectors are random, as desired 
here. 

It is necessary here that the simulated matrices 
id

M
,

~  and 
id

K
,

~  be 

symmetric, strictly positive definite (to avoid rigid body modes or zero 
mass modes), and further that their mean be given as the matrices 

id
M

,
 

and/or 
id

K
,

 of Eq. (12) or Eq. (14). The problem of simulating matrices 

A  satisfying these constraints and with a joint probability density 

function maximizing the entropy has been solved in [20] and exhibits an 
elegant solution. Specifically, denote by A  the prescribed mean of A  

and proceed first with its Cholesky factorization 

   
T

LLA = .               (18) 

Then, the desired random matrices A  are obtained as 

              
TT LHHLA =              (19) 

where H  denotes a lower triangular random matrix the elements of 

which are all statistically independent of each other, see Fig. 2. Further, 
the off-diagonal elements of H  are zero mean Gaussian random 

variables with common standard deviation μ=σ /1 . Finally, the 
diagonal elements  are obtained as iiH

   
μ

= ii
ii

YH               (20) 

where  are Gamma random variables of parameter 
. In these results, n denotes the size the matrix 

iiY
( ) 12 −λ+−= inip A , 

2
12 −λ+

=μ
n , and λ>0 represents the single free parameter of the 

stochastic model. This parameter can be evaluated to meet any given 
information about the variability, e.g. standard deviation of appropriate 
natural frequencies, see the example section for discussion. 

 
Figure 2: Structure of the random H  matrices 

(figures for n=8, i=2, and λ=1 and 10). 
 

EXAMPLE OF APPLICATION 

The above discussion was exemplified on the bladed disk model 
shown in Fig. 3 which is a modification (a reduction of the number of 
blades to 12) of the one considered in [5]. Since the original model is a 
blisk and thus does not exhibit a detailed modeling of the blade root as it 
fits in the disk, the simple interface modeling of Eq. (13) and (14) was 
adopted. The blade-interface-disk modeling was extracted directly from 
the sector finite element model using the cyclosymmetric Craig-
Bampton formulation of [5]. 

 

 
 

               (a)                                     (b) 
 

 
(c) 

 
Figure 3. Bladed Disk example: (a) view, (b) blade sector 

finite element mesh, and (c) natural frequencies and coupling 
indices vs. nodal diameter plot. 

 
The frequency vs. nodal diameter plot of Fig. 3(c) above has been 

enriched with a measure of blade to disk coupling recently introduced 
[22] and referred to as the coupling index (abbreviated by ci). This 
measure of coupling relates to the change in the cyclic system natural 
frequency corresponding to a particular number of nodal diameters 
induced by a change of blade only (not disk) Young’s modulus. If the 
resonance condition investigated is associated with a blade alone 
motion, then a relative change Eδ  of blade Young’s modulus would 
affect the blade alone natural frequencies by the factor  Eδ+1 . In the 
opposite limit, if the motions induce deformations only in the disk, then  
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the natural frequency will not be affected by Eδ . In general, the 
variations of the bladed disk natural frequencies will be between these 
two extreme cases and the coupling index will be defined as  

( ) ( )
( ) ( )111

11

r

rr

E
Eci

ωδ
ωδω

−+
−+

=                                 (21) 

where ( )Er δ+ω 1  corresponds to the appropriate bladed disk natural 
frequency associated with r  nodal diameter and a blade Young’s modulus 
of E + δE. Similarly, ( )1rω  corresponds to . 0=δE

The range of excitation frequencies extended over the range of the first 
blade alone natural frequencies which led to the selection of 20 blade 
alone modes in the reduced order model. An equal number of disk modes 
per sector were selected. Finally, all 45 degrees-of-freedom of the 
interface were retained. This reduced order model led to an excellent 
match of all frequencies below 7000Hz as shown in Fig. 4. The damping 
ratio was set to 0.3% on all modes and the excitation was assumed to be a 
uniformly distributed loading on the blades only in the direction 
perpendicular to the disk. 
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Figure 4. Relative error (%) of the natural frequencies of the 
reduced order model as compared to cyclosymmetric finite 

element 
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Figure 5. Relative difference (%) of the natural frequencies of 

the reduced order model for k =0.6 vs. the k = ∞ values. 
 

The selection of the parameter k in Eq. (15) was considered next and 
the evolution of the tuned bladed disk natural frequencies was studied as 

k was reduced from the limiting case k= ∞ corresponding to a perfectly 
stiff interface. It was found that for k = 0.6 the tuned natural frequencies 
would typically be 1% lower than their counterparts for k= ∞ , see Fig. 
5. This situation was considered to be representative of physical bladed 
disks and thus this value of k was adopted for all ensuing computations. 

The following computations focused on determining the amplification 
factor of the forced response of bladed disks with mistuned blade-disk 
interfaces. In addition to the nonparametric modeling approach 
described above, a simple strategy was also employed in which the 
parameter k is varied from blade-to-blade as Vk where V is a random 
variable with probability density function 
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Such a random variable is easily simulated from a uniform random 
variable U in [0,1] according to 
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Note that the term in bracket in Eq. (23) is a uniform random variable of 
mean equal to 1 and standard deviation σ. Then, V is the square of a 
uniform random variable, and thus will be denoted as U2 distributed in 
the remainder of this paper. 

For the sake of comparisons, computations were also carried in which 
the interfaces were maintained tuned but the blade frequencies were 
varied. In these computations, both nonparametric method and U2 
random variations in natural frequencies were used. 

Comparing computational results obtained under different modeling 
assumptions, i.e. random interfaces and random blade properties, 
requires the selection of a single physical parameter deemed most 
important in both conditions. In mistuning analyses, it is well 
recognized that the standard deviation of the blade alone natural 
frequencies represent this key parameter. Thus, the first set of 
comparisons were performed by plotting a particular statistics of the 
amplification factor vs. the standard deviation of the blade alone natural 
frequency for all 4 set of computations (interface nonparametric, 
interface U2, blade nonparametric, and blade U2). 

Two more details must clarified: what statistic of the amplification 
factor should be used and for which blade alone natural frequency 
should the standard deviation be computed? 

In regards to the choice of statistics for the amplification factor, it 
should be noted that the potentially dangerous situations are those in 
which a large amplification factor is achieved with a probability high 
enough to occur in a small population. Accordingly, it was proposed 
here to select as critical statistics the 95th percentile of the amplification 
factors, i.e. the amplification factor the exceedance of which occurs only 
with a probability of 0.05. 

The last question to address is of which natural frequency should the 
standard deviation be computed? In the frequency range of interest, i.e. 
[30,000-50,000] rad/sec or [4774-7958] Hz, the maximum amplitude of 
response of the tuned disk is achieved at a resonance associated with the 
5th blade alone mode (or 5th family) for engine orders 0, 1, 2, 5, and 6 
but with 4th blade alone mode (or 4th family) for engine orders 3 and 4. 
Further, it was observed for the latter two engine orders that the 
resonance condition yielding the largest amplification factor in the 
presence of randomness in either blade alone properties or interface 
switched from the 4th family to the 5th one as the level of randomness 
increased. 

For engine orders 0, 1, 2, 5, and 6, it appears clearly that the 95th 
percentile of the amplification factor should be plotted vs. the standard 
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deviation of the 5th blade alone natural frequency. For engine orders 3 
and 4, the situation appears less obvious. In this context, note that the 
switch of critical resonance condition appears for all 4 sets of 
computations in the same range of values of the standard deviation of the 
5th natural frequency. Further, the standard deviation of the 4th blade 
alone natural frequency was found to be a one-to-one function of the 
corresponding statistic of the 5th blade alone natural frequency. These 
findings demonstrate that it is also appropriate to plot the 95th percentile 
of the amplification factor in engine orders 3 and 4 vs. the standard 
deviation of the 5th blade alone natural frequency. They also show 
however that the plots obtained with engine orders 3 and 4 can be 
compared to each other but not to those corresponding to engine orders 0, 
1, 2, 5, and 6 which nevertheless can be compared to each other. 

With these clarifications, shown in Figs 6-12 are the 95th percentiles of 
the amplification factor corresponding to engine orders 0-6 in the 
frequency range [4774-7958] Hz vs. the standard deviation of the 5th 
blade alone natural frequency. 

From these results, it appears that the mistuning of the blade-disk 
interface leads rather consistently to a larger amplification factor than 
does the traditional blade alone frequencies mistuning. 
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Figure 6. 95th percentile of the amplification factor vs. 

standard deviation of the 5th blade alone natural frequency (in 
%), engine order 0 excitation in the range [4774-7958] Hz. 
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Figure 7. 95th percentile of the amplification factor vs. 

standard deviation of the 5th blade alone natural frequency (in 
%), engine order 1 excitation in the range [4774-7958] Hz. 

 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 0.5 1 1.5 2

Interface‐U2
Interface‐NP
Blade‐U2
Blade‐NP

AF
 9

5t
h 

P
er

ce
nt

ile

σ ω5  
Figure 8. 95th percentile of the amplification factor vs. 

standard deviation of the 5th blade alone natural frequency 
(in %), engine order 2 excitation in the range [4774-7958] Hz. 
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Figure 9. 95th percentile of the amplification factor vs. 

standard deviation of the 5th blade alone natural frequency 
(in %), engine order 3 excitation in the range [4774-7958] Hz. 
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Figure 10. 95th percentile of the amplification factor vs. 

standard deviation of the 5th blade alone natural frequency 
(in %), engine order 4 excitation in the range [4774-7958] Hz. 
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Figure 11. 95th percentile of the amplification factor vs. 

standard deviation of the 5th blade alone natural frequency (in 
%), engine order 5 excitation in the range [4774-7958] Hz. 
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Figure 12. 95th percentile of the amplification factor vs. 

standard deviation of the 5th blade alone natural frequency (in 
%), engine order 6 excitation in the range [4774-7958] Hz. 

 
In seeking an explanation for this unexpected behavior, it was first 

observed that the distribution of the 5th blade alone natural frequencies 
obtained by interface and blade alone mistuning were different even 
though they exhibited the same standard deviation. Specifically, it was 
found that the distributions of these frequencies obtained from random 
interfaces exhibited, at the contrary of the blade mistuning cases, a shift 
of the mean toward smaller frequencies. This mean shift was found to be 
approximately 0.7% at the highest level of blade alone frequency 
standard deviation. Since the difference between the 95th percentiles of 
the amplification factor obtained with random interfaces and with random 
blade properties are noticeably larger than 0.7% in those situations, it 
would appear that this mean shift is not the cause of the higher 
amplification factors. 

The reason for the mean shift is in fact quite clear: increasing the 
stiffness of the interface (e.g. by increasing k) will typically only produce 
a small increase in frequency as this parameter is limited on the high side 
by its rigid interface, k=∞, limit which is just 1% above. On the contrary, 
there is no constraining limit on the softening side and much larger 
decrease in blade alone natural frequencies can be produced. This 
discussion also clarifies the limited range of standard deviations of blade 
alone natural frequencies that can be produced with the random interface 

model. 
To provide further evidence to rule out the mean shift as the cause for 

the higher amplification factor, it was decided to simulate random 
interface properties to produce a mean natural frequency either constant 
or increasing with the corresponding standard deviation. This step was 

achieved simply by proceeding with a nonparametric modeling of 
1
,

~ −

id
K  

instead of 
id

K
,

~  as done for Figs. 6-12. With this revised approach, the 

mean value does increase slightly with increasing standard deviation. 
The logic for this behavior is that the distribution of the eigenvalues of 
the random matrix simulated by the nonparametric approach shifts to the 
left for small values of λ leading to larger eigenvalues of the inverse. 

The use of 
1
,

~ −

id
K  thus favor the stiffening of the interface and increasing 

mean natural frequencies are observed. The disadvantage of the 
1
,

~ −

id
K  

simulation strategy is that the range of standard deviation of blade alone 
natural frequencies that can be produced is even further reduced as 

compared to the scheme using 
id

K
,

~ . Forced response computations 

carried out with the 
1
,

~ −

id
K  based simulation algorithm at the highest 

possible standard deviation of the 5th blade alone natural frequency led 

to a 95th percentile of response smaller than obtained for the 
id

K
,

~  

based scheme for 5 of the 7 engine orders 0-6. For two of these engine 
orders, a higher 95th percentile of the amplification factor was obtained 
with a mean blade alone natural frequency higher than for the mean 
model. 

Based on this result and the small magnitude of the mean shift 
obtained (0.7%) it is expected that this shift does not contribute 
significantly to the higher amplification factors observed in Figs. 6-12. 

Since the blade alone natural frequency does not appear to provide an 
explanation for this increased response, it is quite natural to question 
whether a variability in the blade alone mode shapes could be the 
underlying factor. To this end, shown in Figs 13 and 14 are the standard 

deviation of the mode shape norm 
ii

ψ−ψ  where 
i

ψ  and 
i

ψ  are the 

ith mass normalized mode shapes of the random and mean blade, 
respectively, obtained for all 4 modeling strategies. Clearly, the standard 
deviations obtained with random interfaces are much larger than those 
obtained by varying simply the blade properties thus supporting the 
tentative role of the mode shape variability to explain the increased 
amplification factors in Figs. 6-12. In analyzing the results of Figs 13 
and 14, it should be noticed that the nonparametric method consistently 
lead to a higher standard deviation of mode shape norm than the use of a 
single random variable. This finding applies to both random interface as 
well as random blade properties. 

The above discussion indicates that both blade alone natural 
frequency and mode shape variations affect the amplification factor and 
thus a different key parameter should be used in comparing the random 
interface results with those obtained with random blade alone properties. 
In this regard, note that the mode shape variability will play at the 
assembly of the different sectors to form the blade disk which suggests 
that the key parameter sought may be a disk property, not a blade alone 
feature. This key parameter must however exhibit a fairly simple 
physics if it is to be a useful indicator and this required simplicity rules 
out the use of natural frequencies and/or mode shapes of the fully 
mistuned disks. 
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Figure 13. Standard deviation of blade alone mode shape 
deviation vs. standard deviation of the 5th blade alone natural 

frequency (in %), mode 4. 
 
 

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2

Interface‐U2
Interface‐NP
Blade‐U2
Blade‐NP

σ
m

od
e5

σ ω5  
Figure 14. Standard deviation of blade alone mode shape 

deviation vs. standard deviation of the 5th blade alone natural 
frequency (in %), mode 5. 

 
 

Of complexity intermediate to that of mistuned blades alone and fully 
mistuned bladed disks are uniformly mistuned disks which are cyclic 
structures built with identical blades but different from those of the mean 
model. Uniformly mistuned bladed disks exhibit, as their tuned 
counterparts, natural frequencies associated with nodal diameters and 
thus provide a tentative basis to assess nodal diameter effects of 
mistuning. Accordingly, shown in Figs 15-21 are the 95th percentiles of 
the amplification factor induced by rth engine order excitations for r=0-6 
plotted vs. the standard deviation of the corresponding rth nodal diameter 
natural frequency of uniformly mistuned disks. The 4 curves shown on 
each plot correspond to the nonparametric and U2 random interfaces and 
nonparametric and U2 blade alone properties. Note the differences 
between the 4 curves are typically reduced as compared to those shown in 
Figs 6-12 suggesting that the standard deviation of the natural frequencies 
of uniformly mistuned disks is in fact a better parameter to assess the 
effects of various types of mistuning than the corresponding statistics of 
blades alone. 
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Figure 15. 95th percentile of the amplification factor vs. 

standard deviation of the 0th nodal diameter natural 
frequency of uniformly mistuned disk  (in %), engine order 0 

excitation in the range [4774-7958] Hz. 
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Figure 16. 95th percentile of the amplification factor vs. 

standard deviation of the 1st nodal diameter natural 
frequency of uniformly mistuned disk  (in %), engine order 1 

excitation in the range [4774-7958] Hz. 
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Figure 17. 95th percentile of the amplification factor vs. 

standard deviation of the 2nd nodal diameter natural 
frequency of uniformly mistuned disk  (in %), engine order 2 

excitation in the range [4774-7958] Hz. 

 8 Copyright © 2009 by ASME 



1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 0.5 1 1.5

Interface‐U2
Interface‐NP
Blade‐U2
Blade‐NP

σ ω3 UD

A
F 

95
th

 P
er

ce
nt

ile

 
Figure 18. 95th percentile of the amplification factor vs. 

standard deviation of the 3rd nodal diameter natural frequency 
of uniformly mistuned disk  (in %), engine order 3 excitation in 

the range [4774-7958] Hz. 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.5 1 1.5

Interface‐U2
Interface‐NP
Blade‐U2
Blade‐NP

σ ω4 UD

A
F 

95
th

 P
er

ce
nt

ile

 
Figure 19. 95th percentile of the amplification factor vs. 

standard deviation of the 4th nodal diameter natural frequency 
of uniformly mistuned disk  (in %), engine order 4 excitation in 

the range [4774-7958] Hz. 
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Figure 20. 95th percentile of the amplification factor vs. 

standard deviation of the 5th nodal diameter natural frequency 
of uniformly mistuned disk  (in %), engine order 4 excitation in 

the range [4774-7958] Hz. 
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Figure 21. 95th percentile of the amplification factor vs. 

standard deviation of the 6th nodal diameter natural 
frequency of uniformly mistuned disk  (in %), engine order 6 

excitation in the range [4774-7958] Hz. 
 
 
 
SUMMARY 

This paper focuses on the determination of the effects on the forced 
response of bladed disks of small variations (mistuning) in the blade-
disk interface properties. A blade-interface-disk mean model was first 
developed that relies on both the Craig-Bampton approach and a local 
modeling of the interface, see Eq. (12)-(15). Then, both model and data 
uncertainties were introduced in this model using the nonparametric 
stochastic modeling approach. An example of application was next 
considered to exemplify these concepts and provide a comparison with 
the more classical blade mistuning effects. In this effort, it was 
demonstrated that 

(i) the mistuning of the blade-disk interfaces leads, at equal variability 
on the blade alone frequencies, to larger amplification factors than 
obtained by simply mistuning the blade natural frequencies, and 

(ii) that the nonparametric approach leads typically to larger 
amplification factors than obtained with a simple uniform distribution of 
properties on the blades, in regards to both interface and blade alone 
properties. 

Both of these findings were explained by the increased variability of 
the blade alone mode shapes exhibited by the blades with random 
interfaces as compared to those with random blade alone properties. 

Finally, it was suggested that the standard deviation of the natural 
frequencies of uniformly mistuned bladed disks are better predictors of 
the mistuned response than the corresponding statistics of blades alone. 

These results demonstrate the importance of considering mistuning in 
blade-disk interface and the need to treat it separately from blade alone 
mistuning. 
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