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The theoretical foundations of the double hybrid

exchange-correlation functionals have been recently ana-

lyzed by Sharkas et al.,1 and, successively, by Brémond and

Adamo2 and by Toulouse et al.3 This analysis partially re-

sulted in the introduction of a new class of double hybrids

depending on just one parameter, the value of which was

assumed to be 0.5 by Brémond and Adamo.2 In this note,

I will suggest that other values can be chosen and that all

these choices can be justified using the same theoretical argu-

ments. These values are also “theoretical” mixing coefficients

for single-hybrids, i.e., functional where only the exchange is

hybridized.

In a recent paper, Sharkas et al.1 obtained, by a rigor-

ous approach, the following expression for a one-parameter

double-hybrid (1DH) exchange-correlation functional:

EDS1DH
xc = λ EHF

x + (1 − λ)EDFA
x [n] + EDFA

c [n]

− λ2EDFA
c [n1/λ] + λ2EMP2

c , (1)

where EHF
x is the Hartree-Fock exchange energy, EMP2

c is

the second-order Møller-Plesset correlation, EDFA
x [n] and

EDFA
c [n] are semi-local density functionals, and "DS" recalls

that the functional contains a dependence on the scaled elec-

tron density: n1/λ = (1/λ3)n(r/λ).

Sharkas et al. simplified Eq. (1) by assuming that

EDFA
c

[

n1/λ

]

≈ EDFA
c [n], thus obtaining the following 1DH

functional:

E1DH
xc = λ EHF

x + (1 − λ)EDFA
x [n]

+ (1 − λ2)EDFA
c [n] + λ2EMP2

c . (2)

A different approximation of EDFA
c [n1/λ] was adopted

by Brémond and Adamo,2 who assumed that EDFA
c [n1/λ]

≈ λ EDFA
c [n]. By such an approximation, and consistently

modifying the λ dependence of the MP2 term, they derived

the following functional:

E1DH
xc = λ EHF

x + (1 − λ)EDFA
x [n]

+ (1 − λ3)EDFA
c [n] + λ3EMP2

c . (3)

Successively, Toulouse et al.3 showed that the same expres-

sion could also be derived starting from the Görling-Levy per-

turbation theory,4 giving strong theoretical support to Eq. (3).

The value of the λ parameter can be determined by fitting

some reference datasets, as it was done in Ref. 1, or it can be

chosen on the basis of some theoretical arguments. Brémond

and Adamo assumed λ = 0.5, which is the mixing parame-

ter of the Becke half-and-half single-hybrid (SH) functional.5

This value was obtained by a two-point approximation of the

integral describing the so-called adiabatic connection

Exc =

∫ 1

0

Uxc, αdα, (4)

where

Uxc, α = 〈#α|V̂ee|#α〉 −
1

2

∫ ∫

n(r)n(r′)

|r − r′|
dr dr

′ (5)

and #α = Min
#→n(r)

〈# |T̂ + αV̂ee| #〉.

Let me assume, as it was done by Brémond and Adamo,2

that λ can be identified with the mixing parameter of standard

SHs. The most famous “theoretical” mixing coefficient is the

one (1/4) proposed by Perdew et al.6 on the basis of the fol-

lowing argument. They performed a series expansion of Uxc, α

and supposed that a realistic description of the exact Uxc, α is

provided by the first m+1 terms of that series:

Uxc, α = c0 + c1α + · · · + cmαm. (6)

Then, they considered the following model of the Uxc, α

dependence on α:

U 1SH
xc, α = UDFA

xc, α +
(

EHF
x − EDFA

x

)

(1 − α)m. (7)

In Eq. (7), the exponent of (1 − α) is equal to the maximum

exponent of α in Eq. (6). The resulting 1SH functional is

E1SH
xc = EDFA

xc +
1

m + 1

(

EHF
x − EDFA

x

)

. (8)

Finally, they argued that m + 1 could be identified with the

smallest order of the perturbation theory, which provides a

good description of the systems in which one is interested.

As for the atomization energies of the molecules of the G1

dataset the fourth-order Møller-Plesset perturbation theory

is adequate, they suggested to choose m + 1 = 4. Thus

λ = 1
m+1

= 1
4
.

A different value can be obtained by using a slightly dif-

ferent approach. According to Perdew and co-workers, let me

assume the validity of Eqs. (6)–(8). In order to determine m,

suppose to develop the wave function #α entering in Eq. (5)

in power series of α. Stopping the series at the order n, one

has m = 2n and λ = 1
2n+1

. Thus, at zero-order

E1SH
xc = EHF

x + EDFA
c , (9)

while λ = 1
3

at the first order

E1SH
xc =

1

3
EHF

x +
2

3
EDFA

x + EDFA
c . (10)
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This value of λ works very well if the semi-local functional

entering in Eq. (10) is the nTCA functional introduced in

Ref. 7. Good results are also obtained if this value is inserted

in the Brémond and Adamo 1DH given in Eq. (3). This can

be verified in Fig. 1 of Ref. 2: the results for the atomization

energies of the G2 dataset are as good as, or even better of,

those obtained by taking λ = 0.5.

Concerning this approach, some remarks are in order.

First, as Uxc, α is defined in terms of #α , a development in

power series of the latter implies an analogous development of

the former, while the opposite is not true. In particular, there

are no reasons for using an odd value of m in Eq. (6). Sec-

ond, using a second-order approximation of #α , one obtains

λ = 0.2, which is the optimum value8 if the semi-local func-

tional is the RevTCA one proposed in Ref. 7. Third, the values

λ = 0.5 and λ = 0.25 are obtained at the first- and second-

order, respectively, if the exponent of (1 − α) in Eq. (7) is

assumed to be m − 1 instead of m. This can be a reasonable

choice if n ≥ 1, that is, m ≥ 2. In such a case, m − 1 could

provide a better description of the global dependence of the

exact Uxc, α on α (Eq. (6)). In conclusion, there are four values

of the SH mixing parameter: 1/2, 1/3, 1/4, 1/5, which actu-

ally have the same theoretical basis. It is quite interesting that

all these values are (almost) the optimal ones for SHs based

on different semi-local functionals. Two of these values, 1/2

and 1/3, also work if they are inserted in the 1DH expression

given in Eq. (3) and the semi-local functional is chosen to be

the Perdew-Burke-Ernzerhof (PBE) one.9 However, the other

values could be a better choice for 1DH based on other semi-

local parameter-free functionals, such as those belonging to

the TCA family.7, 10
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