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ABSTRACT
In real−time collaborative systems, replicated objects,
shared by users, are subject to concurrency constraints. In
order to satisfy these, various algorithms, qualified as op−
timistic, [3, 5, 13, 17, 14, 15, 18], have been proposed that
exploit the semantic properties of operations to serialize
concurrent operations and achieve copy convergence of
replicated objects. Their drawback is that they either re−
quire a condition on user’s operations which is hard to
verify when possible to ensure, or they need undoing then
redoing operations in some situations. The main purpose
of this paper is to present two new algorithms that over−
come these drawbacks. They are based upon the imple−
mentation of a continuous global order which enables that
condition to be released, and simplifies the operation inte−
gration process. In the second algorithm, thanks to de−
ferred broadcast of operations to other sites, this process
becomes even more simplified.

INTRODUCTION
The purpose of a collaborative system is to facilitate team
working, and in particular to enable the manipulation of
shared objects by members of a team whilst making them
evolve in a coherent way. Usually, a shared object in−
volved in a collaborative activity (shared text edition,
shared CAD, electronic conferences, etc.) is subject to
concurrent accesses and real−time constraints. The real−
time aspect necessitates every user seeing the effects of
his own actions on the object immediately, and the effects
resulting from the actions of other users as soon as possi−
ble. In a distributed system when assuming a non negligi−
ble network latency, this high reactivity cannot be
achieved without each object being replicated on every
site. Consequently, the problem is to conciliate both real−
time constraint and consistency preservation of object
copies, as they can be modified concurrently by many us−
ers. In particular, concurrency control must not use a
blocking protocol.

In this context, various algorithms, dOPT [3], ORESTE
[5], adOPTed [13], GOT [17], SOCT2 [14], GOTO [18],
that exploit the semantic properties of the operations, have

been proposed to serialize concurrent operations and thus
ensure the convergence of all copies of an object. More
precisely, dOPT, adOPTed, GOT, SOCT2 and GOTO ex−
ploit a transposition function to transform an operation
before integrating it into the history associated with an
object copy so as to respect users intentions. The histories
associated with the copies of an object are ensured to be
equivalent (i.e. resulting in the same final state) though
the order of the concurrent operations might be different.
In adOPTed, SOCT2 and GOTO the transposition function
needs conforming to a condition (named C2) which is
hard to verify, and not always possible to ensure. In GOT
this condition is relaxed, but it is necessary under some
circumstances to undo and then redo some operations.

Given this, our aim is to conceive algorithms which over−
come these limitations. The purpose is to ensure copies
convergence while respecting the user’s intention without
either imposing condition C2 on the transformation or
needing to undo then redo some operations.

The paper is developed as follows. First we describe the
model used as well as the problems raised when consider−
ing the consistency of the copies of an object in a distrib−
uted collaborative environment. Then we review the
problem of operation integration in the history associated
with a copy. Afterwards we detail the principles of the two
proposed algorithms called SOCT3 and SOCT4. These al−
gorithms are based upon the implementation of a continu−
ous global order which enables condition C2 to be re−
leased, and the operation integration process to be simpli−
fied. Finally, we compare the existing algorithms and give
an overview of the implemented techniques.

GENERAL PROBLEMS
A distributed collaborative system is constituted from a
set of sites interconnected by a supposed reliable network.
Each object (i.e. text, graphics, …) shared by the users is
replicated so that a copy of the object exists on every site.
Each object can be handled using definite operations. In
order to maintain copies consistency, every operation
generated and executed on a site must be executed on all
other copies as well. This requires every generated opera−
tion to be broadcast to the other sites; after reception on a
site the operation is executed on the local copy of the ob−
ject. Given a site, a local operation is an operation gener−
ated on this site whereas a remote operation is one that has
been generated on another site. In order to guarantee users
a minimum response time, operations generated on a site
(i.e. local ones) are executed immediately on this site.
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This section reviews the three problems encountered when
trying to achieve consistency maintenance of object cop−
ies, namely: (1) causality preservation, (2) user intention
preservation and (3) convergence. A collaborative text
editor will be used as an example. Let us assume a text is
an ordered collection of sentences, each one being an ob−
ject represented by a string of characters. The operations
defined on this object are:

insert(p,c): inserts character c at position p in the string,
delete(p): deletes character at position p in the string.

In the following, we suppose that users work concurrently
and modify the same sentence.

Causality Preservation
The operation op

1
is said to causally precede op

2
(noted

op
1

precedes
C

op
2
) iff op

2
has been generated on a site af−

ter op
1

was executed on this site. Consequently, op
2

is
supposed to depend on the effects of operation op

1
. The

problem is then to execute the operations broadcast on
every site without violating the causality precedence.

Figure 1a depicts an example where causality precedence
is not respected. Initially all the copies hold the value "x".
After reception and execution of the operation
insert(1, ’y’) generated by the user on site 1, the user on
site 2 generates the operation delete(1). In this case in−
sert(1,’y’) precedesC delete(1). If these operations were to
be delivered and executed in a different order on another
site (e.g. site 3), then their effects might produce an inco−
herent copy: thus the need to respect causal precedence on
all sites. To summarize, given that op

1
precedesC op

2
then

on each site the execution of op
1

must precede the execu−
tion of op

2
.

All existing algorithms, dOPT [3], adOPTed [13], GOT
[17], SOCT2 [14, 15], GOTO [18] achieve causality−
preservation by the use of a state vector V

S
associated

with each object at each site S. A state vector is a variant
of the clock vector [8]. More precisely, a state vector
component V

S
[j] (with 1 ≤ j ≤ N, N being the number of

sites) holds the value corresponding to the number of op−
erations generated by site j, received and executed by site

S. Each operation op generated by site S
op

is timestamped
with the value of the state vector associated to the object
on that site, before it is broadcast. This timestamp is noted
V

op
. When received on site S, the operation is not deliv−

ered unless all the causally preceding operations have
been received, that is to say, when the site’s state vector is
such that V

S
[i] ≥ V

op
[i], (∀i, 1 ≤ i ≤ N). As shown on Figure

1b, it is the case of delete(1) which is delayed until in−
sert(1,’y’) has been received. Finally, given two opera−
tions op

i
and op

j
, one can deduce that op

i
precedesC op

j
iff

their state vectors verify V
opi

[S
opi

] < V
opj

[S
opi

].

User Intention Preservation
Operations that are not causally related are said to be con−
current. More accurately op

1
and op

2
are concurrent iff

neither (op
1

precedesC op
2
) nor (op

2
precedesC op

1
). In this

case, neither one depends on the effects of the other. Thus
they can be executed in any order on the different sites.
Nevertheless, if a site executes op1 before op2, it must take
into account the changes made by op

1
when it executes

op
2

in order to respect the intention of the user who gen−
erated op

2
. In the example of Figure 2a, two users work

simultaneously on the same object whose state is "efect".
The intention of user 1 is to add a ’f’ to get "effect"; this is
realized by operation insert(2, ’f’). The intention of user 2
is to add a ’s’ at the end of the word; this is realized by the
operation insert(6, ’s’). When this operation is delivered
and executed on site 1, the new state is "effecst" which is
not what user 2 expected. To respect his intention, opera−
tion insert(6, ’s’) needs to be transformed. Thus insert(7,
’s’) should be executed instead of insert(6, ’s’).

The problem described here is due to the fact that the op−
eration which realizes the user intention is relative to a
specific state of the object. Should a concurrent operation
be executed before it, the object will not be in the required
state to execute that operation without violating the user
intention. The solution is to transform the operation to be
executed to take into account the modifications made by
all the concurrent operations serialized before it. This
transformation is possible provided that a function specific
to the semantics of the operations is defined which gives

Figure 1: Respecting the causality
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for all pairs of operations (op
1
, op

2
) an operation noted

op2
op1, defined on the state resulting from the execution of

op
1

and realizing the same intention as op
2
. This transfor−

mation function introduced in dOPT [3] is also used in
[10], adOPTed [13], GOT [17], SOCT2 [14] and GOTO
[18] under various denominations. We call it forward
transposition [14, 15]. Let O

i
be an object state, O

i
.op is

the state obtained after the execution of op and
Intention(op, O

i
) is the intention which is realized by op−

eration op on object state O
i
. The forward transposition is

then formally defined as follows:

Transpose_forward(op
1
, op

2
) = op

2
op1, with:

∀ O
i
, Intention(op

2
op1, O

i
.op

1
) = Intention(op

2
, O

i
).

More generally, let seq
n

be a sequence of n operations; the
forward transposition of operation op with seq

n
, noted

opseqn, is defined recursively by : opseqn = Transpose_for−
ward(op

n
, opseqn−1) with seq

n
= op

1
.op

2
....op

n
= seq

n−1
.op

n
and opseq0 = op, where op

i
.op

j
represents the execution of

op
i
 followed by the execution of op

j
.

It is important to note that the forward transposition re−
quires both operations to be defined on the same state of
the object. If this is not the case, the preservation of user
intention cannot be guaranteed. This is of particular im−
portance in the case of partial concurrency [1], when an
operation is concurrent to a sequence of operations. As
depicted in Figure 3a, op

1
causally precedes op

2
while op

3
and op

1
are concurrent and both defined on the same state

"telefone", but though op
3

is concurrent to op
2
, they are

not defined on the same state. This is a typical case of
partial concurrency. On site 1, when op

3
= delete(5) is re−

ceived it is forward transposed successively with op
1

and
op

2
 which gives operation op

3
op1.op2 = delete(7) whose exe−

cution gives "telephone". On site 2, the forward transposi−
tion of op

1
with op

3
gives op

1
op3 = insert(5, ’p’), but the

forward transposition of op2 with op3 gives op2
op3 = in−

sert(5, ’h’) whose execution leads to the incorrect state
"telehpone" which violates the intention of user 1.

Different solutions have been proposed to apply forward
transposition in the right way. In GOT [17] operation op

2

is transformed using the reverse function of forward
transposition (called Exclusion_Transformation), so that
op

2
be defined on the same state as op

3
enabling the use of

forward transposition. In adOPTed [13] several equivalent

histories respecting the causal order are kept on each site,
which permits the intermediate states of the object to be
retrieved on each site. In SOCT2 [14] and GOTO [18] a
new transformation is defined. This function [11] we call
backward transposition makes it possible to change the
execution order of a pair of operations while respecting
the user intention. More accurately, the backward trans−
position of a couple of operations (op

1
, op

2
), executed in

this order, gives as a result the couple
(op2’, op1’) which corresponds to their
execution in reverse order that leads to
the same state, and is compatible with
the forward transposition. Formally:

Transpose_backward(op
1
, op

2
) = (op

2
’, op

1
’), with:

op
2
 = Transpose_forward(op

1
, op

2
’) and 

op
1
’ = Transpose_forward(op

2
’, op

1
).

In Figure 3b, when applying backward transposition to the
couple (op3, op1

op3) we obtain the couple (op1, op3
op1), that

is to say the operations (insert(5, ’p’), delete(6)). Opera−
tions op

2
and op

3
op1 are now defined on the same state and

thus forward transposition of op2 with op3
op1 is allowed and

gives operation insert(6, ’h’) whose execution leads to the
expected result.

Copies Convergence
Taking into account causality as well as user intention is
not sufficient to achieve executions that guarantee in all
cases the convergence of the copies on all sites. In addi−
tion, forward transposition is required to verify two con−
ditions [3, 13]. Indeed, consider two concurrent operations
op1 and op2, generated on the same state and executed, af−
ter being forward transposed, in a different order on two
different sites (Fig. 4). The execution of op1 followed by
the execution of op2

op1 on site 1 must produce the same
results as the execution of op

2
followed by the execution

of op
1
op2 on site 2. This condition called C1 is formally

defined as:

Condition C1: Let op
1

and op
2

be two concurrent opera−
tions defined on the same state. The forward transpo−
sition verify C1 iff:

op
1
.op

2
op1 ≡ op

2.op
1

op2

where ≡ denotes the equivalence of states obtained af−
ter applying both sequences from the same state.

Figure 2: Respecting the intention of the user
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Let now consider an operation op3 generated on site 3
which is concurrent to op

1
and op

2
. It is transposed in turn

when received on sites 1 and 2. To guarantee the conver−
gence of all the copies, the transformation of an operation
with a sequence of two (or more) concurrent operations
must not depend on the order used to serialize these op−
erations. For that, in addition to condition C1, the forward
transposition must verify condition C2.

Condition C2: Whatever operations op1, op2 and op3 are,
the forward transposition verify C2 iff:

op
3

op1:op2 = op
3

op2:op1

where op
i
:op

j
 denotes op

i
.op

j
opi.

In the example of Figure 4, forward transposition does not
verify condition C2, since the forward transposition of op3
with the sequences op

1
.op

2
op1 and op

2
.op

1
op2 differs on

site 1 and site 2. Conditions C1 and C2 are required in
adOPTed [13], SOCT2 [14] and GOTO [18]. Only GOT
[17] frees itself from these two conditions by imposing an
unique serialization order on all sites. This order, comply−
ing with the causal order, makes it necessary to
Undo/Redo some operations. In dOPT [3], condition C2 is
not required to the detriment of copies convergence.

In this context, our aim is to propose a new solution to
convergence of copies which avoids the constraint associ−
ated with the verification of condition C2, while guaran−
teeing that no operation will need to be undone then re−
done. Two new algorithms meeting these requirements are
presented below.

OPERATION INTEGRATION
This section presents a framework for describing the vari−
ous algorithms, and emphasizes the difficulty related to
the integration of an operation in the history of a copy.
We note that providing the user with the possibility to
undo an operation already executed is not in the scope of
this paper.

Framework Components
Three major functionalities are implemented on each site.
They each correspond to a procedure, namely Local_Exe−
cution, Causal_Reception and Integration.

The Local_Execution procedure is executed consecutively
to the generation of an operation on the site. It contains

the local execution of the operation (satisfying in this way
the immediate execution constraint) and its broadcast to
all the sites including the generator site. The message
broadcast for an operation is a triplet <op, S

op
, V

op
> where

op designates the operation, S
op

the site which generated
it, and V

op
 the timestamp associated with op.

The Causal_Reception procedure is executed when an op−
eration, either local or remote, is received. Its role is to
handle the delivery of operations to the Integration proce−
dure with respect to the causal order. For site S, it corre−
sponds to the following algorithm:

procedure Causal_Reception (<op, Sop, Vop>) {
wait until VS[i] ≥ Vop[i], (∀ i : 1 ≤ i ≤ N) ;
deliver (<op, Sop, Vop>) ;
/*delivery of the operation to the Integration procedure*/
VS[Sop] := VS[Sop] + 1;  }

This procedure is proved [14] to ensure that if op
1

pre−
cedes

C
op

2
then op

1
will be delivered before op

2
. Notice

that the delivery order of concurrent operations might dif−
fer on distinct sites.

Integration procedure is called when a local or remote
operation is delivered. It performs the local execution of a
remote operation (a local operation has already been exe−
cuted). To take into account the problems evoked earlier
on (intention preservation and copies convergence), a re−
mote operation needs to be transformed prior to its execu−
tion on the current state of the local copy. This task holds
all the difficulties, and this is where the differences among
the various algorithms reside.

Integration of a Remote Operation
The integration of an operation on site S aims at enabling
its execution on the current state of the copy on S. It con−
sists in obtaining, by using the history on site S, the op−
eration whose execution on the current object state real−
izes the same intention as the operation generated on the
remote site.

Definition: The history of object O on site S, noted
H

S,O
(n), is a sequence of n operations executed on the copy

of O on the site S, that transformed it from its initial state
to its current state.

To simplify notations and without loss of generality, we
assume there is only one object. Consequently H

S,O
(n) is

noted H
S
(n) with H

S
(n) = op

1
.op

2
. ...op

i
. ...op

n
. The opera−

tions order in H
S
(n) is called serialization order. Any local

operation op executed on S is appended to the history of
the site (Fig. 5), so in this case, H

S
(n+1) = H

S
(n).op

n+1
=

H
S
(n).op.

The problem of the integration of a remote operation is
depicted in Figure 6a. Thanks to causal delivery, H

S
(n)

contains all the operations which causally precede op.

Figure 4: Convergence of the copies
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However, it also contains operations that are concurrent to
op. Thus the objective is to obtain, given op and H

S
(n), an

operation op
n+1

whose execution realizes the same inten−
tion as op, knowing that causally preceding and concur−
rent operations are mixed together in H

S
(n). In its princi−

ple, the integration of an operation op is composed of two
steps (Fig. 6b):

Step 1: consists in reordering history H
S
(n) to get an

equivalent history where all the operations causally pre−
ceding op precede the operations that are concurrent to op.
The border between these two sequences corresponding to
the state on which op is defined, the partial concurrency
problem is then naturally solved.

Step 2: consists in transforming op in order to take into
account the concurrent operations already executed.

As concurrent operations may be delivered in different
orders on different sites, each site builds its own serializa−
tion order based on the delivery order while insuring it is
equivalent to the serialization order of the other sites. The
algorithm SOCT2 [14] precisely follows the above men−
tioned schema. Backward transposition is used to reorder
the history. Then concurrent operations are taken into ac−
count using the forward transposition. The last section
gives a comparison of the other existing algorithms.

Limits of Existing Algorithms: Undo/Redo or Condition
C2
Condition C2 ensures the transposition of an operation
with a sequence is independent of the order the operations
in this sequence are themselves transposed. Verifying this
condition is not trivial. With the operations presented in
Figure 4 condition C2 is not satisfied. Considering the
triplet (op

1
=insert(3, ’f’), op

2
=delete(3), op

3
=insert(4, ’f’)),

one cannot achieve equality of op
3

op1:op2 and op
3

op2:op1 un−
less additional parameters are added to the operations sig−
nature [15]. Doing so, however, increases the complexity
of the verification of C2, especially when the set of op−
erations is large. The set of operations {insert, delete}
alone leads to no less than a hundred cases to be checked
depending on the various parameters [16]. Moreover, in
some cases, condition C2 cannot be satisfied at all and
consequently the convergence of the copies cannot be
guaranteed. As a result, it is worth trying to get rid of this
condition. This supposes that concurrent operations can be

ordered in the same way on all sites. The definition and
the use of a global serialization order (noted precede

S
) re−

specting the causal order makes it possible.

In GOT[17], a global serialization order is defined by the
sum of the state vector components and in case of equality
by a predefined priority on the sites. More precisely, given
two messages <op

1
, S

1
, V

1
> and <op

2
, S

2
, V

2
>, op

1
pre−

cedes
S

op
2

iff (sum(V
1
) < sum(V

2
)) or (sum(V

1
) = sum(V

2
)

and S1 < S2). However, concurrent operations are deliv−
ered in an order that, although it respects the causal order,
does not correspond to this global serialization order. Thus
an Undo/Redo schema must be employed: when an opera−
tion is received, all the operations following it in the
global serialization order but already integrated in the his−
tory have to be undone. Next, the received operation is
executed and the undone operations are reintegrated in the
history.

In the following, we propose the implementation of a
global serialization order such that the operations can be
delivered in this order. This way condition C2 can be
abandoned without having to Undo/Redo any operation.

CONTINUOUS GLOBAL ORDER AND IMMEDIATE
BROADCAST: THE SOCT3 ALGORITHM
Suppression of condition C2 requires the use of an unique
global order precede

S
compatible with the causal order

precede
C
. Moreover, in order to avoid to undo/redo opera−

tions the order of operations delivery must be consistent
with the precede

S
order. We propose to satisfy both con−

straints by using a sequencer to obtain a global and con−
tinuous order.

Local Execution, Broadcast and Reception of Opera−
tions in SOCT31

A sequencer [12] is an object which delivers continuously
growing positive integer values, called timestamps. A
timestamp is obtained through a call to function Ticket.
The various methods of implementing a sequencer in a
distributed system, namely circulating sequencer [7] or
replicated sequencer [2] will not be discussed in this pa−
per. Thanks to the Ticket function of the sequencer, each
operation generated in the collaborative system is assigned
a timestamp. The precede

S
order follows the order of the

timestamps and we show below that it is compatible with
the causal order precede

C
.

To respect the real−time constraint (i.e. immediate execu−
tion), a local operation is executed before the Ticket func−
tion is called. To be more precise, an operation generated
on site S is executed without delay and the quadruplet
<op, S

op
, V

op
, −1> is appended to the site history. The

value of (−1) denotes that the operation has not yet been
assigned a timestamp. Next, the call to function Ticket re−
turns N

op
, the timestamp which will be assigned to op.

The message broadcast for an operation is the quadruplet
<op, S

op
, V

op
, N

op
>, op being the generated operation, S

op

1 Acronym of: Sérialisation des Opérations Concurrentes par
Transposition (in French).

Figure 6: Integration of a remote operation
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the site which generated op, V
op

the state vector associated
with op and N

op
the timestamp assigned to op. The recep−

tion procedure ensures a sequential delivery of operations
with respect to the ascending order of the timestamps.
Upon receiving an operation the reception procedure de−
lays its delivery until all the operations with lower times−
tamps have been received and delivered. The state vector
is of no use for the reception procedure, but it enables to
determine which operations are concurrent to op during
integration step.

The reception procedure, now called Sequential_Recep−
tion, along with the Local_Execution procedure are the
followings:

Notations 
S : local site
VS : state vector of site S
op : received operation
Sop : site which generated op
Vop : state vector associated with op
Nop : timestamp associated with op
NS : timestamp of the last delivered operation on site S
H : representation of HS(n) = table of n items in the form

<opi, Sopi
, Vopi

, Nopi
>, H[i].operation, H[i].site,

H[i].vector, H[i].timestamp being the fields of H[i]
n : number of items in H

procedure Local_Execution (op) {
/*Execution and broadcast of a locally generated operation*/
execute (op) ; /*execution on the current state of the object*/
Vop = VS ;
n := n+1 ;
H[n] := <op, S,Vop, −1> ;
VS[S] = VS[S]+1 ;
Nop  = Ticket() ;
H[n].timestamp := Nop ;
broadcast(<op, S, Vop, Nop>) ;
/*immediate broadcast to all the sites including S*/  }

procedure Sequential_Reception(<op, Sop, Vop, Nop>) {
wait until (NS = Nop − 1) ;
deliver (<op, Sop, Vop, Nop>) ;
NS  := NS + 1 ;  }

The precede
S

order (i.e. timestamps order) is compatible
with the causal order precedeC because, if op

1
precedesC

op
2

then N
op1

< N
op2

. Indeed, if op
1

precedes
C

op
2

then the
execution of op

1
was performed before the generation of

op
2
. The call to Ticket for op

1
preceded the one for op

2
, so

op
1

was assigned a lower timestamp than op
2
; thus op

1
will

be delivered before op
2
 on each site.

Principle of Operation Integration in SOCT3
The integration of a remote operation follows the previ−
ously presented schema. The specificity of the current al−
gorithm is due to the fact that each site maintains a history
(equivalent to the real history of the site) noted H

S
(n) in

which operations are ordered according to the value of
their timestamp.

Formally, let H
S
(n) = op

1
.op

2
. ...op

i
.op

L1
.op

L2
. ...op

Lm
 be the

history of the object on site S. H
S
(n) is such that:

i) for (1 ≤ j ≤ i), op
j
is an operation, either local or remote,

delivered by the sequential reception procedure; so op
1
,

op
2
, …op

i
 have continuous timestamps.

ii) for (1 ≤ k ≤ m), op
Lk

is a local operation executed but
not yet delivered by the sequential reception procedure;
op

L1
, op

L2
, …op

Lm
 may have discontinuous timestamps.

iii) n = m + i.

As timestamps are assigned to the operations according to
the order in which they are generated, the local operations
(op

L1
, op

L2
, …op

Lm
) timestamps verify: i < L

1
 < … < L

m
.

When operation op
i+1

with timestamp (i+1) is delivered by
the reception procedure, two cases are possible:

1) op
i+1

is the local operation op
L1

, already executed, so no
additional computation is needed;

2) op
i+1

is a remote operation from site S’; op
i+1

needs to
be integrated in H

S
(n), that means:

• determine and execute, on the current state, the opera−
tion that realizes the same intention as op

i+1
,

• reorder the resulting history to conform to the ascend−
ing order of the operation timestamps.

To find the operation to be executed that realizes the same
intention as op

i+1
, we apply the principle presented in the

previous section. Operations of history H
S
(n) are first re−

ordered, using backward transposition, into two sequences
of operations seq

1
 and seq

2
 such that:

• seq
1
 contains all the operations that precedeC op

i+1
,

• seq
2
 contains all the operations concurrent to op

i+1
,

• H
S
(n) is equivalent by transposition2 to seq

1
.seq

2
,

which is noted H
S
(n) ≡

T
 seq

1
.seq

2
.

Thus, the operation to be executed to realize the intention
of op

i+1
is op

i+1
seq2, that is to say the forward transposition

of op
i+1

 with seq
2
. We obtain: H

S
(n+1) ≡

T

H
S
(n).op

i+1
seq2 = op

1
.op

2
. ...op

i
.op

L1
.op

L2
. ...op

Lm
.op

i+1
seq2

For H
S
(n+1) to be well ordered, op

i+1
seq2 needs to be put at

the right place according to its timestamp. This is done
using the backward transposition of op

i+1
seq2 with the se−

2 H
1

is said to be equivalent by transposition to H
2
, noted H

1
≡

T
H

2
, iff H

2
can be obtained from H1 by applying the backward transposition to the
operations.

Figure 7: Integration of an operation in SOCT3
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quence of local operations. The resulting well ordered
history: H

S
(n+1) = op

1
.op

2
. ...op

i
.op’

i+1
.op’

L1
.op’

L2
. ...op’

Lmis identical to the one we would obtain if the operations
were executed in timestamp ascending order. The proof is
given in [16] along with the details of operations op’

i+1
,

op’
L1

, op’
L2

, ...op’
Lm

. The different steps in the integration
of a remote operation are summarized in Figure 7.

The SOCT3 Algorithm
The procedure Integration is called when an operation is
delivered by the Sequential_Reception procedure. It uses
the two following procedures directly taken from SOCT2:

• the Transpose_Backward procedure that uses the
Transpose_backward function to realize the backward
transposition of two operations in history H

S
(n),

• the Separate function that rearranges the history H
S
(n)

in two sequences seq
1

and seq
2

and returns the length
n

1
of seq

1
. This function is applied on a copy of the

history H
S
(n) so that the original remains ordered ac−

cording to the operations timestamps.

Notations remain unchanged. The proof of correctness of
SOCT3 is given in [16].

procedure Transpose_Backward(j) {
/*Backward transpose the jth operation and the (j−1)th operation*/
<opj, Sopj, Vopj, Nopj> := H[j] ;
<opj−1, Sopj−1, Vopj−1, Nopj−1> := H[j−1] ;
(opj, opj−1) = Transpose_backward(opj−1, opj) ;
H[j] := <opj−1, Sopj−1, Vopj−1, Nopj−1> ;
H[j−1] := <opj, Sopj, Vopj, Nopj> ;  }

function Separate (H, <op, Sop, Vop, Nop>) : integer {
/*Rearrange the history H and return n1 such that:
for 1 ≤ i ≤ n1 , H[i] precedesC <op, Sop, Vop, Nop> and
for n1 < i ≤ n , H[i] is concurrent to <op, Sop, Vop, Nop>*/
n1 := 0 ;
for i := 1 up to n do

<opi, Sopi, Vopi, Nopi> :=  H[i] ;
if Vopi[Sopi] < Vop[Sopi] then  /*opi precedesC op*/

for j := i down to n1+2 do 
/*backward transpose opi down to seq1*/
Transpose_Backward (j) ;

endfor ;
n1 := n1 +1 ;
endif ;

endfor ;  }

procedure Integration (<op, Sop, Vop, Nop>) {
if S ≠ Sop then  /*op is a remote operation*/

H’ :=H ; /*copy history H in H’*/
n1 := Separate (H’, <op, Sop, Vop, Nop>) ;
for i := n1 +1 up to n do  /*forward transpose op with seq2*/

op := Transpose_forward(H’[i].operation, op);
endfor ;
execute (op) ;
VS[Sop] = VS[Sop]+1 ;
H[n+1] := <op, Sop, Vop, Nop>;
n := n+1 ;
for j := n down to Nop+1 do

/*backward transpose op in H down to item Nop*/
Transpose_Backward (j) ;

endfor ;
endif ;  }

CONTINUOUS GLOBAL ORDER AND DEFFERED
BROADCAST: THE SOCT4 ALGORITHM
Principle
In SOCT4 as in SOCT3, the operations are ordered glob−
ally using a timestamp given by a sequencer. They are
then delivered on each site in this order thanks to the se−
quential reception. The originality of SOCT4 comes from
the fact that forward transpositions that take into account
concurrent operations are now made by the generator sites
of the operations. This results in three major advantages:

a) the receiver site does not have to separate history any
more ; thus backward transposition becomes unnecessary,

b) the received operation can be stored as it is in the his−
tory without further transformation,

c) state vectors are no longer needed.

To achieve this, the broadcast of an operation must be de−
ferred. More precisely, an operation generated on a site S
is as usual executed locally without delay to satisfy the
real−time constraint, but it is not broadcast until it has
been assigned a timestamp and all the operations which
precede it according to the timestamp order (i.e. precede

S
)

have been received and executed on site S. Moreover, be−
fore being broadcast, the operation is forward transposed
with all concurrent operations, that is to say with opera−
tions received by S after its generation and preceding it in
the global order.

As in SOCT3, when a remote operation, let us say op
i+1

,
with timestamp (i+1) is delivered on site S by the sequen−
tial reception procedure, then all operations op

j
(∀ j, 1≤ j

≤ i) which precede it in the global order have already been
received and executed on the site. Thus, in the absence of
local operations, the remote operation can be executed as
it is ; otherwise (Fig. 8), if there exists m local operations,
noted op

L1
, op

L2
, ...op

Lm
, which have been executed in this

order and that are waiting to be broadcast, then the inte−
gration of op

i+1
in the history H

S
(n) =

op
1
.op

2
. ...op

i
.op

L1
.op

L2
. ...op

Lm
 (with i + m = n) consists of:

1) determining the operation to be executed on the current
state. The operation op

i+1
is forward transposed to take

into account the local execution of concurrent operations
op

L1
, op

L2
, ...op

Lm ; the resulting operation is then executed
on the local state.

2) reordering the history according to the timestamp order.
Local operations waiting to be broadcast, op

L1
, op

L2
,

...op
Lm

, are forward transposed, one after another, to take
into account the execution of the concurrent operation
op

i+1
. This way, they will not have to be transposed upon

reception. The operation op
i+1

is stored without any modi−
fication at position (i+1) in the history.

Concerning point 1, given that seq = op
L1

.op
L2

. ...op
Lm

is
the sequence of local operations waiting to be broadcast,
the forward transposition of opi+1 to be executed is opi+1

seq.
Concerning point 2, every waiting local operation op

Lk
must be forward transposed with the forward transposed
operation of op

i+1
, noted op

i+1
seq’k where seq’

k
=

op
L1

.op
L2

. ...op
Lk−1

is the sub−sequence of the (k−1) local
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operations which precede op
Lk

. Operations op
i+1

seq’k and
op

Lk
are thus defined on the same object state. The for−

ward transposed operations of the m local operations are
op

L1

opi+1, op
L2

opi+1
opL1,  ...op

Lm

opi+1
opL1

.opL2
.  ...opLm−1.

So far, we have only considered op
i+1

as a remote opera−
tion. When the operation being delivered is local to the
site, it has already been executed and stands in the right
place in the history. The transpositions required to take
into account the concurrent operations received after its
generation have been made before its broadcast. It can
thus be ignored.

Unlike SOCT3, in SOCT4 the operations once delivered
are no longer needed by the algorithm since they are not
involved in the transpositions used.

The SOCT4 Algorithm
The SOCT4 algorithm is constituted of the following pro−
cedures: Local_Execution, Deferred_Broadcast, Integra−
tion as well as the Sequential_Reception procedure al−
ready defined for SOCT3. The same notations as before
are used. As stated earlier, N

S
is the timestamp of the last

delivered operation on site S and it is incremented during
the execution of Sequential_Reception ; n is the total
number of operations (either local or remote) executed
and stored in the history (initially N

S
 = n = 0).

The array H[] is used to store the operations delivered to
site S, as well as local operations. Delivered operations
are stored in the array according to the order of their
timestamps. Without lose of generality, we will assume
that the position occupied by an operation in H is identical
to its timestamp. Thus an operation timestamped with i (i
≤ N

S
) and delivered on site S will be stored in H[i]. Local

operations waiting to be broadcast, however, may be
stored in places H[j] (N

S
< j ≤ n) that do not correspond to

their timestamp. Strictly speaking, the delivered opera−
tions might not need to be stored for the algorithm to
work.

The Local_Execution procedure is called whenever a local
operation op is generated. op is first executed and then
stored at the end of the history. When op receives its
timestamp in return of the call to Ticket, it is checked to
determine whether it can be broadcast.

procedure Local_Execution (op) {
execute(op) ; n := n+1 ;
H[n] := <op, Sop, −1> ;
H[n].timestamp := Ticket() ;
Deferred_Broadcast() ;  }

The Deferred_Broadcast procedure broadcasts to all sites
(including S) the first local operation on condition that its
timestamp is equal to N

S
+ 1, which means that all other

operations with lower value of timestamp have been de−
livered.

procedure Deferred_Broadcast() {
<op, Sop, Nop> := H[NS + 1] ;
if Nop = NS + 1 then broadcast (<op, Sop, Nop>) endif ;  }

The Integration procedure is called when an operation is
delivered by the Sequential_Reception procedure. If the
operation is local then it is ignored since it has already
been executed and stored in the history. If it is remote, the
local operations waiting to be broadcast are shifted one
place to the right before the triplet <op, S

op
, N

op
> is stored

in the position N
S

(i.e. N
op

). Then the operation is trans−
posed with the local ones, and the resulting transposed
operation is executed. Meanwhile, each local operation
waiting for broadcast is in turn forward transposed to take
into account this new concurrent operation. The procedure
ends by checking if a local operation should be broadcast.

procedure Integration (<op, Sop, Nop>) {
if S ≠ Sop then 

for j := n down to NS do H[j + 1] := H[j] endfor ;
H[NS] := <op, Sop, Nop> ; n := n + 1 ;
for j := NS + 1 up to n do

opL := H[j].operation ;
H[j].operation := Transpose_forward(op, opL) ;

/*forward transpose local operations*/
op := Transpose_forward (opL, op) ;

endfor ;
execute(op) ;

endif ;
Deferred_Broadcast() ;  }

Due to lack of space, the proof of correctness of SOCT4 is
not included in this paper.

Discussion about the sequencer
In both algorithms, SOCT3 and SOCT4, a sequencer is
used to globally serialize operations. The consequence in
SOCT4 is that all broadcasts are issued sequentially; it re−
sults in a difficult collaboration between users when the
propagation delay of an operation on the network is high
(e.g. on the order of a minute). This characteristic makes
SOCT4 particularly adapted to fast networks. Measure−
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ments should enable this aspect to be quantified.

For purposes of clarity, algorithms given here are sequen−
tial. However, when exploiting potential concurrency be−
tween procedures, the fact that a local operation is waiting
for a timestamp does not preclude neither the execution of
another local operation nor the integration of a remote op−
eration.

Concerning the lack of robustness of the sequencer, we
underline that failure of the sequencer (or the loss of
timestamp) does not preclude local functionning. Col−
laboration is suspended but each user may continue to
work separately. Collaboration will be resumed as soon as
the sequencer is recovered. The effect is the same when a
timestamped operation is not broadcast by a malicious
site. In other words, the collaboration provided by SOCT3
and SOCT4 cannot be partial: either all sites collaborate
or each one works separately.

COMPARISON WITH RELATED WORKS
Table 1 gives an overview of SOCT3 and SOCT4 algo−
rithms, as well as the dOPT, adOPTed, GOT, GOTO and
SOCT2 algorithms. Many similarities exist among these
algorithms regarding the techniques employed and we will
take a closer look at the differences that make the origi−
nality of each one.

User intention preservation is achieved in all algorithms
by transforming an operation with respect to concurrent
operations in order to permit its integration. This transfor−
mation is employed under various names (L−Transforma−
tion, Inclusion_Transformation, Forward Transposition).
Furthermore, some algorithms such as GOT, GOTO,

SOCT2 and SOCT3 implement an additional transforma−
tion, called Exclusion_Transformation or Backward
Transposition, which enables the order of execution of
two consecutive operations to be changed without violat−
ing the user intention. In adOPTed the problem related to
partial concurrency is solved by the construction and
memorization of a multidimensional graph which enables
all the potential serialization orders to be retrieved. Only
SOCT4 uses Forward Transposition only, the partial con−
currency problem being solved thanks to deferred broad−
cast.

To ensure the copies convergence, the definition of these
transformations must in the general case satisfy two con−
ditions (C1 and C2). Condition C1 guarantees that the op−
eration resulting from the transposition of two concurrent
operations will not depend on the order they are serialized
in. All the algorithms assume that the transformations
verify condition C1. Only GOT algorithm does not impose
this condition but fixes a global order and restrains the
transformations to be made in this order; this obliges to
undo the operations arrived "in advance", that is to say
before operations that precede them in the global order.
Condition C2 aims at making the transformation of an op−
eration with a sequence independent of the order of the
operations in this sequence. Algorithm dOPT does not use
this condition but is unable to ensure copies convergence.
Similarly, it does not solve the partial concurrency prob−
lem, as these two problems were not yet identified when it
was written. Complying with condition C2, when possible,
remains hard to verify, and is thus worth replacing with a
global serialization order as in GOT, SOCT3 and SOCT4.

dOPT adOPTed GOT GOTO SOCT2 SOCT3 SOCT4

Constraints

Intention
preservation

dOP
Transformation

L−Transformation
and

multidimensional
graph

Inclusion
Transformation

and
Exclusion

Transformation

Inclusion
Transformation

and
Exclusion

Transformation

Forward
Transposition

and
Backward

Transposition

Forward
Transposition

and
Backward

Transposition

Forward
Transposition

Causality
preservation

State vectors State vectors State vectors State vectors State vectors Timestamps Timestamps

Copies
convergence

Condition C1
(but

convergence is
not achieved)

Condition C1 
and

Condition C2

Non continuous
global order

and
Undo/Redo

Condition C1 
and

Condition C2

Condition C1 
and

Condition C2

Condition C1 
and

Continuous
global order

Condition C1 
and

Continuous
global order

Remote
operation

Broadcast Immediate Immediate Immediate Immediate Immediate

Immediate 
(as soon as

timestamp is
assigned)

Deferred,
in timestamp

order

Delivery Causal order Causal order Causal order Causal order Causal order
Continuous
global order

Continuous
global order

History

Memorized
order

Execution
order

Several equivalent
orders respecting
the causal order.

Global order
(= execution

order)

Optimized
causal order

Optimized
causal order

Continuous
global order
(≠ execution

order)

Continuous
global order
(≠ execution

order)

Memorized
operation

(at the time
of its

integration)

Executed
operation

Received
operation

and
some transformed

operations

Executed
operation

Executed
operation

Executed
operation

Transformed
operation

conforming to
the timestamp

order

Received
operation

Table 1. Comparative table of the techniques used by the algorithms
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In GOT, the global serialization order is not continuous,
which entails undoing and then redoing some operations
for integrating a late operation at the right position in the
history. In SOCT3 and SOCT4, a global continuous order
is achieved by using a sequencer which associates a
timestamp to each operation. The delivery and therefore
the integration of remote operations can be made accord−
ing to the order of the timestamps.

Causality preservation is achieved in all the algorithms but
SOCT3 and SOCT4 by using state vectors which imple−
ment a reception procedure that ensures that the opera−
tions are delivered following an order compatible with the
causal order. In SOCT3 and SOCT4, the use of a se−
quencer to obtain continuous timestamps not only respects
the causality, but also gives a continuous global order free
from condition C2.

Concerning the broadcasting of an operation, this is done
immediately in all algorithms apart from SOCT4, where it
is deferred until all preceding operations in the global or−
der have been received. This simplifies the integration and
gets rid of the backward transposition needed in SOCT2,
SOCT3, GOT and GOTO.

All algorithms but SOCT4 rely on the memorization by
each site of the operations it received or generated.
SOCT4 only needs to know the operations that are waiting
to be broadcast, that is to say those which have been gen−
erated locally but have not yet been delivered. The man−
agement of the history on each site is thus simplified.

CONCLUSION
This article reviews problems raised by the convergence
of copies in a distributed real−time collaborative environ−
ment that exploits the semantic properties of operations.
In this context, to ensure the convergence of the copies
while respecting the user intention, we have proposed two
new algorithms, called SOCT3 and SOCT4. By imple−
menting a continuous global serialization order these al−
gorithms remove a particularly restrictive condition re−
quired by the transformation used in other existing algo−
rithms, and simplify the process of integration of an op−
eration in the history associated with a copy of an object
on each site, without the need to undo and then redo any
operation. The deferred broadcast of operations to other
sites goes a step further in this simplification, by making
backward transposition as well as the state vectors unnec−
essary. A comparison with the existing algorithms con−
cludes this article, and gives a synthetic overview of ad−
vantages and drawbacks of the different techniques im−
plemented in each one. Our current challenge consists in
providing the user with the possibility to undo an opera−
tion already executed without requiring condition C2.
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