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Abstract The Dempster-Shafer theory of belief functions has prowedaeta powerful for-
malism for uncertain reasoning. However, belief functionsa finite frame of discernment
Q are usually defined in the power sét, 2esulting in exponential complexity of the oper-
ations involved in this framework, such as combinationsul&henQ is linearly ordered,

a usual trick is to work only with intervals, which drastiyaleduces the complexity of cal-
culations. In this paper, we show that this trick can be @di@ted to frames endowed with
an arbitrary lattice structure, not necessarily a linedeorThis principle makes it possible
to apply the Dempster-Shafer framework to very large frague$ as the power set, the set
of partitions, or the set of preorders of a finite set. Apglaas to multi-label classification,
ensemble clustering and preference aggregation are dé&aiecs

Keywords Belief Functions, Dempster-Shafer theory, Evidence Tydaattices, Lattice
Intervals, Classification, Clustering, Learning, PrefeesRelation, Preorder.

1 Introduction

The theory of belief functions originates from the pionegrivork of Dempster [4,5] and
Shafer [26]. In the 1990’s, the theory was further developgdmets [29,32], who pro-
posed a non probabilistic interpretation (referred to as*“fransferable Belief Model”)
and introduced several new tools for information fusion dadision making. Big steps to-
wards the application of belief functions to real-world lplems involving many variables
have been made with the introduction of efficient algoritHorscomputing marginals in
valuation-based systems [27,28].

Although there has been some work on belief functions onicootss frames (see, e.qg.,
[19, 31]), the theory of belief functions has been mainlylegopin the discrete setting. In
this case, all functions introduced in the theory as remitasiens of evidence (including
mass, belief, plausibility and commonality functions) dedined from the Boolean lattice
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(22, C) to the interval0, 1]. Consequently, all operations involved in the theory (sagthe
conversion of one form of evidence to another, or the contisinaf two items of evidence
using Dempster’s rule) have exponential complexity wittpect to the cardinaliti of the
frameQ, which makes it difficult to use the Dempster-Shafer forsralin very large frames
[35].

When the frame? is linearly ordered, a usual trick is to constrain the fodaheents
(i.e., the subsets d® such tham(A) > 0) to beintervals(see, for instance, [9]). The com-
plexity of manipulating and combining mass functions isnteastically reduced from"2
to K2. Most formula of belief function theory work for intervalsecause the set of intervals
equipped with the inclusion relation hatagtice structure As shown recently in [16], belief
functions can be defined in any lattice, not necessarily &mulIn this paper, this trick will
be extended to the case of frames endowed with a latticetsteyaot necessarily a linear
order. As it will be shown, a lattice of intervals can be comsted, in which belief func-
tions can be defined. This approach makes it possible to defiref functions in very large
frames (such as the power set of a finite Qethe set of partitions of a finite set, or the set
of preorders of a finite set) with manageable complexity.

The rest of this paper is organized as follows. The necessaiyground on belief func-
tions and on lattices will first be recalled in Sections 2 ande8pectively. Our main idea
will then be exposed in Section 4. It will then be applied teethdata analysis problems
involving the definition and manipulation of belief funat®on

1. The powerset of a finite set (Section 5), with applicatmmulti-label classification

2. The set of partitions of a finite set (Section 6), with aqggiion toensemble clustering

3. The set of preorders of a finite set (Section 7), with apgilin topreference aggregation
from pairwise comparisons.

Finally, Section 8 will conclude this paper. Note that the@lagations to multi-label clas-

sification and ensemble clustering have been describedadelyain [11,37] and [20, 21],

respectively. The present paper presents the approachdh greater generality and pro-
vides a unified view of the two previous applications. To destmte the generality of the
new introduced framework, a third application to prefeemaggregation is dealt with. A
unified decision making procedure based on commonalitialsésintroduced.

2 Belief Functions: Basic Notions

Let Q be a finite set. Anormalized) mass functiaon Q is a functionm: 22 — [0,1] such
thatm(0) = 0 and
m(A) = 1. @)
ACD
The subset# of Q such tham(A) > 0 are called thdéocal elementsf m. The normaliza-
tion property can be relaxed by dropping the conditiof®) = 0. Only normalized mass
functions will be considered in this paper. A mass functiois often used to model beliefs
held by an agent about a variabfetaking a single but ill-known valuey in Q [32]. The
quantitym(A) is then interpreted as the measure of the belief that is ctie@xactlyto
the hypothesisw € A. Full certainty corresponds to the case wha(¢wy}) = 1 for some
wx € Q, while total ignorance is modeled by tliacuouamass function verifyingn(Q) = 1.
To each normalized mass functiomcan be associatedtzelief function bedefined as
follows:
bel(A) = ¥ m(B), @
BCA



forall AC Q. Itis clear thabel(0) = 0 andbel(Q) = 1. Each quantitpel(A) is interpreted
as thetotal degree of justified beligB2] in the proposition “The true valugy of X belongs
to A”. Converselymcan be recovered frotvel as

m(A) = (-1)*®bel(B), 3)
BCA

for all AC Q, where| - | denotes cardinality. Functianis said to be thélobius transform
of bel. For any functionf from 22 to [0, 1] such thatf (0) = 0 andf (Q) = 1, the following
conditions are known to be equivalent [26]:

1. The Mobius transforrm of f is positive and verifie§ oo M(A) = 1.
2. fis totally monotone, i.e., for arly> 2 and for any familydy, ..., A in 29,

f(LkJAi)> ) <_1)|+1f(m>,
i=1 OAC{T,... k} icl

Hence bel defined by (2) is totally monotone.
Other functions related tm are theplausibility function defined as

pl(A)= 5 m(B)=1-bel(A), VACQ @)
BNA#0D

and thecommonality functiorfor co-Mobius transform dbel) defined as
oA = 5 mB). VAC Q. ®)
7.}
Obviously, q(0) = 1 andq(Q) = m(Q). Functionm can be recovered frorg using the
following relation:
m(A) = BZ (-1)PWq(B). (6)
oA

Functionsm, bel, pl andq are thus in one-to-one correspondence and can be regarded as
different facets of the same information.

When the reliability of a source is doubtful, the mass predidy this source can be
discountedusing the following operation:

{"’m(A):(l—a)m(A) VA£Q, @
"mQ)=(1-a)m(Q)+a,

where 0< a < 1 is thediscount rate This coefficient is related to our confidence in the
reliability of the source of information [30]. It can be inpeeted as the plausibility that the
source is unreliable. Whea is equal to 1, the vacuous mass function is obtained. When
a =0, mremains unchanged.

Let us now assume that we receive two normalized mass fursstipandnmy, from two
distinct sources of information assumed to be reliable.nThe and my, can be combined
using Dempster’s rule of combination defined as follows:

Yec=aM(B)m(C) .
(ml@mz)(A):{ - Al—K it A7 0
0 if A= 0,

(8)

wherek = Y grc—pM(B)mp(C) is thedegree of conflicbetween the two mass functions,
assumed to be strictly smaller than one. This rule is comtinateassociative, and admits



the vacuous mass function as neutral elementgletqg, denote the commonality function
corresponding tom @ mp. It can be computed fror, andq, the commonality functions
associated tay andmny, as follows:

(@ e)(A) = =7 — = 9

for all non empty subsei of Q, and(qy @ qp)(0) = 1.
The conjunctive sum has a dual disjunctive rule [30], olgdiby substituting union for
intersection in (8), and dropping the normalization comstahich is no longer needed:

(Mom)(A) = Z m(B)mp(C), VAC Q. (10)
BC=A

Denoting bybel @bel, the belief function corresponding to, @y, it can be shown that
(behObebk)(A) =beh(A)-bek(A), VAC Q, (11)

which is the counterpart of (9).

Given two mass functionsy andnm, on the same frame of discernmept we say that
my is aspecializationof my (or, equivalently, that, is ageneralizationof my), if my can
be obtained fromm, by transferring masses;(B) to subsets 0B, for all focal element8
of mp [12]. It is then more informative, or more committed. Fortpathis property can be
expressed as follows:

m(A)= T SABM(B), VACQ, (12)
BCQ

whereS: 22 x 29 — [0, 1] verifies

Y SAB) =1 VvBCQ,
ACQ

and
S(A\B)>0=ACB, ABCQ.

3 Belief Functions in General Lattices

As shown by Grabisch [16], the theory of belief functions bardefined not only in Boolean
lattices, but in any lattice, not necessarily Boolean. WEfikst recall some basic definitions
about lattices. Grabisch'’s results used in this work wiirthbe summarized.

3.1 Lattices

A review of lattice theory can be found in [22]. The followipgesentation follows [16].

Let L be a finite set anek a partial ordering (i.e., a reflexive, antisymmetric andi$ia
tive relation) onL. The structurgL, <) is called aposet We say tha{L, <) is alattice if,
for everyx,y € L, there is a unique greatest lower bound (denated) and a unique least
upper bound (denotexV y). OperationsA andV are called theneetandjoin operations,
respectively. For finite lattices, the greatest elememdtkr T) and the least element (de-
noted_L) always exist. A strict partial ordering is defined from< asx <y if x <y and
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Fig. 1 Hasse diagram of a lattice d& = {x,y,zt}.

X # Y. We say thak covers yif y < xand there is nasuch thay < z < x. An elementx of L
is anatomif it covers only one element and this element.islt is aco-atomif it is covered
by a single element and this elementis

Two latticesL andL’ areisomorphicif there exists a bijective mappin§ from L to
L’ such thax < y < f(x) < f(y). For any posefL, <), we can define its dudlL,>) by
inverting the order relation. A lattice autodualif it is isomorphic to its dual.

A lattice isdistributiveif (xVy) Az= (xAz)V (yAz) holds for allx,y,z € L. For any
X € L, we say tha has a complement ih if there existsx' € L such thaxAx = 1 and
xV X = T. Lis said to becomplemented any element has a complement. Boolean lattices
are distributive and complemented lattices. In a Booletitég every element has a unique
complement. Every Boolean lattice is isomorphic¢ 28, C) for some sef2. For the lattice
(22,C),we haveA =N, V=U, L =0 andT = Q.

Example 1Let Q = {Xx,y,zt} be a frame of discernment, and fetbe the following partial
order:x <y, x<zy<t, z<t. This order is represented by the Hasse diagram shown in
Figure 1. In this representation, a line segments goes upfram a to b if b coversa. It

is easy to see thdiQ,<) forms a lattice, isomorphic to the Boolean latti@’, C) with

|®| = 2. The least element i the greatest elementisandy andz are both atoms and
co-atoms. (]

A closure systenon a setO is a family ¢ of subsets of2 containing®, and closed
under intersection. As shown in [22], any closure syst@émC) is a lattice withA =N and
Vv = U defined by

AUuB=[){Ce¥|AUBCC}, V(AB)e%> (13)

3.2 Belief Functions on Lattices

Let (L,<) be a finite poset having a least element, andfl&e a function fromL to R.
The Mobius transfornof f is the functionm: L — R defined as the unique solution of the
equation:
f(x) = 2 m(y), W¥xeL. (14)
y<x

Functionm can be expressed as:

= ' X) F(y), (15)
m(x) y;u(y x)f(y)



wherep(x,y) : L? — R is theMobius functionwhich is defined inductively by:

1 ifx=y,
uixy)=q 7~ 2 HOD X<y, (16)
0, otherwise.

Theco-Mobius transfornof f is defined as:

a(x) = > m(y), (17)

andmcan be recovered fromas:

m(x) = > U(x.y)q(y)- (18)

y=X

Let us now assume thdt, <) is a lattice. Following Grabisch [16], a functidel :
L — [0,1] will be called a belief function o if bel(_L) =0, bel(T) = 1, and its Mobius
transform is non negative.

As shown in [16], any belief function ofL, <) is totally monotone, i.e., for any > 2
and for any familyxy, ..., X in L,

bel(\k/xi)z > (1)|||+1bel</\xi).
i=1 041 C{1,... k} icl

However, the converse does not hold in general: a totallyatuore function may not have
a non negative Mobius transform.

As shown in [16], most results of Dempster-Shafer theory loartransposed in the
general lattice setting. For instance, Dempster’s rulebeaextended by replacimgby A in
(8), and relation (9) between commonality functions is presd. Similarly, we can extend
the disjunctive rule (10) by substitutingfor U in (10), and relation (11) still holds.

The discounting operation (7) and the notion of specidbraf{12) can be also gen-
eralized in straightforward ways. However, the extensibotber notions from classical
Dempster-Shafer theory may require additional assumgt@an(L, <). For instance, the
definition of the plausibility functiorpl as the dual obel using (4) can only be extended to
autodual lattices [16].

4 Belief functions with Lattice Intervals as Focal Elements

Let Q be a finite frame of discernment. If the cardinality @fis very large, working in
the Boolean latticg 2, C) may become intractable. This problem can be circumvented
by defining the set opropositionsas a strict subset of‘2 As shown in Section 3, the
Dempster-Shafer calculus can be applied in this restrisgtaf propositions as long as it
has a lattice structure. To be meaningful, the definitionroppsitions should be based on
some underlying structure of the frame of discernment.

When the frame is linearly ordered, then a usual trick consists in assigmion zero
masses only to intervals. Here, we propose to extend andafizerthis approach, by con-
sidering the more general case wh€réas a lattice structure for some partial ordering



The set of events is then defined as the gt of lattice intervals i Q, <). We will show
that(.#o <, C) is then itself a lattice, in which the Dempster-Shafer caiscan be applied.

The lattice(.# <, C) of intervals of a latticg Q, <) will first be introduced more pre-
cisely in Section 4.1. The definition of belief functions(isfo <, C) will then be dealt with
in Section 4.2.

4.1 The Latticg.7g <, C)

Let Q be afinite frame of discernment, and {ebe a partial ordering a2 such tha{Q, <)
is a lattice, with greatest elementand least element. A subset of Q is a (lattice) interval
if there exist elementa andb of Q such that

| ={xeQla<x<b}.

We then denoté as[a,b]. Obviously, Q is the interval[ L, T] and 0 is the empty interval
represented bia, b] for anya andb such thaia < b does not hold. Let/p < C 22 pe the
set of intervals, including the empty set 0:

So<={lablabe Q.a<b}uio}.
The intersection of two intervals is an interval:

[ave,bad] ifave<bAad,
0 otherwise.

[a,bjNc,d] = {
Consequently,Zq < is a closure system, arid’ <, C) is a lattice, with least element 0 and
greatest elemer®®. We have

[a,b] C[c,d] < c<aandb<d.
The meet operation is the intersection, and the join operatiis defined by
[a,bjU[c,d] = [anc,bvd]. (19)

Clearly,[a,b] C [a,b]LI[c,d] and]c,d] C [a,b]U][c,d], hencda, bjU[c,d] C [a,b]U[c,d],
but the inclusion is strict in general. We note thaf, <, C) is a subposet, but not a sublattice
of (22,C), because they do not share the same join operation.

The atoms of . <, C) are the singletons d®, while the co-atoms are intervals of the
form [L,X], wherex is a co-atom of Q, <), or [x, T], wherex is an atom of(Q,<). The
lattice (£ <, C) is usually neither autodual, nor Boolean.

Example 2Let (2, <) be the lattice defined in Example 1. Figure 2 displays theeeorr
sponding lattice of interval6.7o <, C). There are ten distinct intervals 02, <), includ-
ing the empty set. The atoms (¥ <, C) are the singletons o, and the co-atoms are
Xy = {xVy}, [x,74 = {x 2z}, [y,t] = {y,t} and[z,t] = {z,t}. This lattice is complemented,
but the complements are not unique: for instarfgez} N {y,t} = 0 and{x,z} U {y,t} = Q,
but we also havéx,z} N {t} = 0 and{x,z} U {t} = Q: consequently{y,t} and{t} are two
complements ofx,z}. As a consequence, the lattic#p <, C) is not Boolean. O
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Fig. 2 The lattice(# <, C) of intervals of the latticé Q, <) shown in Figure 1.

4.2 Belief Functions inf.7g <, Q)

Let m be a mass function fron¥g < to [0, 1]. Belief and commonality functions can be
defined in(.“o <,C) as explained in Section 3. Conversatycan be recovered frorel
andq using (15) and (18), where the Mobius functiprdepends on the lattide/g <, C).
As the cardinality of7q < is at most proportional t&2, whereK is the cardinality ofQ,

all these operations, as well as the conjunctive and diiitsneums can be performed in
polynomial time.

Example 3Let us come back to Example 2. Given a mass funationsg < — [0, 1], the
corresponding belief function can be computedel$d) = 0, bel(Q) = 1, and

bel({x}) =m({x}), bel({y}) =m({y}), bel({z})=m({z}), bel({t}) =m({t}),

bel({x,y}) = m({x})+m({y}) +m({xy}), bel({xz}) =m({x}) +m({z}) +m({x z}),
bel({y,t}) = m({y}) + m({t}) + m({y,t}), bel({zt}) =m({z}) +m({t}) + m({zt}).

By solving the above linear system, we easily find timatan be recovered frofpel using
(15), with the Mobius function defined for aNandB in .# < by

(-1)BW ifACB
0 otherwise.

MA&={

O

Given a mass functiomon (.%g <, C), we may define a functiom* on (22, C) as

nﬂM:{mM)HAGZQQ
0 otherwise.
m* will be called theextensiorof min (29, Q).

Letbel* andqg* be the belief and commonality functions associategh'tolt is obvious
thatbel* (1) =bel(l) andg*(1) = q(l) forall | € .# <. Letmy andmp be two mass functions
on(#q <, <), and letm; andm; be their extensions i(2?, C). Because the meet operations



Table 1 Disjunctive combination of two mass functiomg andmy on the lattice(.7o <, C) of Example 2.

A mi(A)  mp(A)  bek(A) beb(A) (beh©beb)(A) (M@OmMm)(A)
0

0 0 0 0 0 0
{x} 0.1 0 0.1 0 0 0
{y} 0.2 0.3 0.2 0.3 0.06 0.06

{xy} 03 0 0.6 0.3 0.18 0.12
{2} 0 0 0 0 0 0
{xz} 02 0.4 0.3 0.4 0.12 0.12
{t} 0 0.1 0 0.1 0 0
{y.t} 0 0.1 0.2 0.5 0.1 0.04
{zt} 0 0 0 0.1 0 0
Q 0.2 0.1 1 1 1 0.66

are identical in .%o <, C) and (2%, C), computing the conjunctive sum in any of these two
lattices yields the same result, as we have

R (mom)(A) if Ac o<,
(i & mp) (A) = {0 otherwise.
However, computing the disjunctive sum(iZP, Q) or (Hq <, C) is not equivalent, because
the join operation irf.q <, C), defined by (19), is not identical to the union operation‘fn 2
Consequently, when computing the disjunctive sutmmpandm, the productm; (A)mj;(B)
is transferred tA U B, whereas the produat; (A)mp(B) is transferred tALI B when com-
bining m; andmy. Let (m@my)* be the extension afy @my in (22,C). ASALIBD AUB,
(m@mp)* is thus a generalization (i.e., @auter approximatiorf12, 8]) of m;@ms. When
masses are assigned to intervals of the laitiee<), doing the calculations 0.7 <, C)
can thus be seen an approximation of the calculatiom‘?r.)g), with a loss of information
only when a disjunctive combination is performed.

Example 4Table 1 shows two mass functiong andm, on the lattice(.7g <, C) defined
in Example 2, as well as the corresponding belief functiansgl, the resulim©@my of their
disjunctive combination. Table 2 shows the extensighandm; of my andmy in 22, as well
as their disjunctive combinatiom; @m. It can be verified thatn; ©m; is a specialization
of (MuOmMmy)*, i.e., it is strictly more committed. Computing the disjtime combination in
the lattice(.#g <, C) has thus resulted in a loss of information. d

To conclude this section, we may also remark that the reslucd complexity obtained
by expressing beliefs in the lattice of intervals comes waittoss of expressive power. It
is clear that, whereas any mass functiorin .o < has an extensiom” in 29 any mass
function in 22 with at least one focal elemert C Q not belonging taZn < cannot be
expressed in that lattice. Such a mass function could beorjppated by transferring each
massm(A) for A ¢ .7 < to the smallest interval containiry However, in the worst case,
all information can be lost in this process.

For instance, considering again the lattice defined in Exa@detm be the mass func-
tion on (22, C) such tham({y,zt}) = 1. This mass function expresses the opinion that the
true valuewy in Q is certainly not equal ta. It can be approximated it¥g < by transfer-
ring the unit mass of belief to the smallest interval contajn{y,zt}, which is Q itself,
resulting in the vacuous mass function. However, this isaesehat extreme case. Complex
real-world problems in which useful information can be egsed in a lattice of intervals
will be described below.
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Table 2 Disjunctive combination of two mass functions; and mj on the Boolean latticg2?,C) with
Q = {xy,zt}. Mass functionsm; andmy; are the extensions ofy andm, in Table 1. The elements of the
lattice .7 < are preceded by an asterisk.

A m(A) my(A)  bek(A) beh(A) (beﬁ@éeﬁ)(A) (W@%‘E)(A)

* 0 0 0 0 0
X 0.1 0 0.1 0 0 0
* {y 0.2 0.3 0.2 0.3 0.06 0.06
*  I{xy} 03 0 0.6 0.3 0.18 0.12
* {z} 0 0 0 0 0 0
* {xz 0.2 0.4 0.3 0.4 0.12 0.12
{y.2} 0 0 0.2 0.3 0.06 0
{xyz 0 0 0.8 0.7 0.56 0.26
ot 0 0.1 0 0.1 0 0
{xt} 0 0 0.1 0.1 0.01 0.01
it} 0 0.1 0.2 0.5 0.1 0.04
(X yt} 0 0 0.6 0.5 0.3 0.07
* {zt} 0 0 0 0.1 0 0
{xzt} 0 0 0.3 05 0.15 0.02
{y.zt} 0 0 0.2 0.5 0.1 0
* Q 0.2 0.1 1 1 1 0.3

4.3 Decision making

When working with belief functions in a Boolean Lattit2?, C), a usual decision rule is to
select the singletofiw} of Q with the largest plausibility or, equivalently, with therdest
commonality [7,3]. In the latticé. 7, <, C), the plausibility function is not defined, but
the commonality function exists and its maximum can somesitne computed efficiently
without enumerating the elements@f as will be shown below. A possible rule for decision
making is thus to select the element®@fwith the largest commonality.

5 Reasoning with Set-valued Variables

In this section, we present a first application of the aboveese to the representation of
knowledge regarding set-valued variables [11]. The gémmenmework will be presented in
Section 5.1, and it will be applied to multi-label classifioa in Section 5.2.

5.1 Evidence on Set-valued Variables

Let © be a finite set, and leX be a variable taking values in the power s&t Such a
variable is said to be set-valued,@mjunctivg12, 36]. For instance, in diagnosis problems,
© may denote the set of faults that can possibly occur in asysiadX the set of faults
actually occurring at a given time, under the assumptionrintiple faults can occur. In
text classification® may be a set of topics, arXl the list of topics dealt with in a given
text, etc.

Defining belief functions on the Iatticé?.ze,g) is practically intractable, because of
the double exponential complexity involved. However, weyragploit the lattice structure
induced by the ordering in Q = 2°, using the general approach outlined in Section 4 [11].

For any two subset& andB of © such thafA C B, the interval[A, B] is defined as

[AB]={CCOACCCB}.
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The set of intervals of the lattiqg2, C) is thus
fﬂ_Q,Q = {[AvB”AaBG QvAg B}U@Q,

where &, denotes the empty sets &f (as opposed to the empty set®. Clearly, o ¢ C

22 = 22° The interval[A, B] can be seen as the specification of an unknown sheéd
thatsurelycontains all elements &, andpossiblycontains elements @&. Alternatively,C
surely containsio element ofB.

As the meet and join in the lattid®, C) are set intersection and union, respectively, the
corresponding operations {7, ¢, C) are

[AUC,BND] if AUCCBND,
0q otherwise

mmmpmz{

and
[A,B]U[C,D]=[ANC,BUD].
As noticed in [17], any intervdlA, B] of subsets 0B = {04, ..., 6« } can be represented
by a vector(us,...,ux) € {—1,0,1}X, with

1 if6eA
=14 -1 if6eB,
0 otherwise.

This encoding makes it possible to implementthendLl operations in a simple way using
generalized truth tables. It also makes it clear that théieality of .7 c is equal to § +1,

which is much less than thé2elements of 2.

Example 5Let © = {a,b,c,d} be the set of possible faults of a given system. Assume that
several faults can occur simultaneously, and we receivértdependent pieces of evidence:

— Item of evidence 1: faula is surely present and faul{®, c} may also be present, with
confidence . This is represented by the following mass function:

my([{a},{a b,c}]) =0.7, m([0e,O])=0.3.

— Item of evidence 2: fault is surely present, and either faulta, b} (with confidence
0.8) or faults{a,d} (with confidence 0.2) may also be present. This is repreddmte

mp([{c},{a,b,c}]) =0.8, mp([{c},{acd}]) =02

The combination ofmy and mp by Dempster’s rule can be computed using the following
table:

[{a}v {a7 b? CH [09: @]

0.7 0.3
(e {ab.cl] | [fac),{ab.e)] | [ch {ab.c]
0.8 0.56 0.24

[{c}.{acd}] | [{ach{ac} | [{c},{acd}]
0.2 0.14 0.06
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Let my2 = my & mp. We thus get
miz([{a,c}, {a,b,c}]) =056, muz([{c},{a,b,c}]) =0.24,

m2([{a,c},{a,c}]) =0.14, m2([{c},{ac,d}]) =0.06.
Based on this evidence, we can compute our degrees of bettef following propositions:

— Faultais present:
behs([{a},®]) = 0.56+0.14=0.7

— Faultd is not present:
beho([0o, {d}]) = beka([0o, {a,b,c}]) = 0.56+0.14+ 0.24 = 0.94
— Only faultsa andc are present:

behs([{a,c},{ac}]) =0.14

5.2 Application to Multi-label Classification

In [11,37], the above framework was appliedrtwilti-label classificatior{39,34]. In this
learning task, each object may belong simultaneously teraéelasses, contrary to stan-
dard single-label problems where objects belong to onlyaass. For instance, in image
retrieval, each image may belong to several semantic dasseh as “beach” or “urban”.
In such problems, the goal is to predict the value of the clasisble for a new instance,
based on a training set. As the class variable is set-vatbedramework developed in the
previous section can be applied.

In order to construct a multi-label classifier, we generafsume the existence of a
labeled training set, composedroéxamplegx;,Y;), wherex; is a feature vector describing
instance, andy; is a label set for that instance, defined as a subset of ti@ sltlasses [39,
34]. In practice, however, gathering such high quality infation is not always feasible at
a reasonable cost. In many problems, there is no groundfoutissigning unambiguously
a label set to each instance, and the opinions of one or $ewgrerts have to be elicited.
Typically, an expert will sometimes express lack of confefor assigning exactly one
label set.

The formalism described in Section 5.1 can easily be usedrdla such situations. In
the most general setting, the opinions of one or severalrexpegarding the set of classes
that pertain to a particular instancenay be modeled by a mass functionin (# c, Q).

A less general, but arguably more operational option is $trict my to be categorical, i.e.,
to have a single focal elemej#;, Bi], with A; C B; C ©. The set is then the set of classes
that certainly applyto examplei, while B; is the set of classes thpbssiblyapply to that
instance. In a multiple expert settingj, might represent the set of classes indicateclby
experts as relevant to describe instaneghile B; would be the set of classes mentioned by
someexperts. The usual situation of precise labeling is re@én the special case where
A =B;.

For instance, assume that instances are songs and classemations generated by
these songs. Upon hearing a song, an expert may decide tatainly evokes happiness
and certainly does not evoke sadness, but may be undecigediimy the other emotions
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(such as quietness, anger, surprise, etc.). In that caseptlyg cannot be assigned a single
label set, but we can associate to it the set of all label setaming “happiness” and not
containing “sadness”, which has the form suggested above.

The evidentialk nearest neighbor rule introduced in [6] can be extendedearthlti-
label framework as follows. Lapby(x) denote the set dfnearest neighbors of a new instance
described by feature vectar according to some distance measdyandx; an element of
that set with labe[A;, B;]. This item of evidence can be described by the following mass
function in(Sg ¢, C):

mi([A,Bi]) = Bexp(—yd(x,xi)) = ai,
m([0e,0]) = 1-Bexp(—yd(x,xi)) = 1-ai,

wheref andy are two parameters such thakQ3 < 1 andy > 0. Thesek mass functions
are then combined into a single omeusing Dempster’s rule:

m= @ ,;m. (20)

For decision making, it was proposed in [11,37] to use thiofohg rule. LetY be
the predicted label set for instange To decide whether to include each class © or
not, two quantities were computed: the degree of bé&k@f{{6},0]) that the true label set
Y containsf, and the degree of belidfel([0,{6}]) that it does not contaif. The set of
predicted label¥ was then defined as

Y ={6 € 0| bel([{6},0]) > bel([0,{6}])}.

This method was shown in [11, 38] to yield good performaneespared to standard multi-
label classification methods, especially when class ladrelsincertain.

As noted in Section 4.3, an alternative way of making a deciss to find the set of
labels with the greatest commonality. This approach mayobmdlized as follows. The
commonality function corresponding to the combination) (8B@iven by:

qO ‘|_£|Qi7 (21)

wheregq; is the commonality function associatednpn These individual commonalities can
be simply expressed for any sub¥etf © by:

o J1 if A CYCB;,
a(Y) = { 1-a; otherwise. 2
We thus have :
k
a(Y) O [](1—a)* 9, (23)
ﬂ i

with
5_[LEACYCH
~ | 0 otherwise

For each focal eleme#;, Bi], let us introduce the following notations:

 [1ifgeA
4] = 0 otherwise
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and
b — 1if 6; € B;
" 71 0 otherwise

In the same way, a subs¥étof © will be represented by K-dimensional vectoy whose
component are defined lyy = 1 if 6; € Y and 0 otherwise. With these notations, the inclu-
sion constrain®y; C 'Y may be translated by:

S

Similarly, the constrain¥ C B;, or, equivalentlygi cy, may be written as:

||
D

K K
(1-bij)(1-yj) = > (1-byj).
; i i ; i

Maximizing q(Y) is equivalent to maximizing its logarithm, which is equal to

Ing(Y) = _i(l —&)In(1— aj) + constant

To find the selY of greatest commonality, we can thus solve the followingahjrinteger

programming problem:
k
min Z&In(l—ai), (24)

ye{0,1}K 6e{0,1}k ;&

subject to the constraints:

Zia”yj>dziall Vi=1Kk,

K
(1—bi)(1-y) (1-bij) Vi=1k
]Zl |l ] Z IJ

(25)

Note that the way in which the constraints (25) are writtesuees that if§ is set to
1,Y is enforced to belong tPA;, B], and if § is set to 0, there is no constraint ¥nwith
respect toA; andB;. This method is more general and computationally more efftdihan
the method described in [11,38]; it has been found expeitafigrto yield similar results
when applied to multi-label classification problem.

6 Belief Functions on Partitions

Ensemble clustering methods [18, 14] aim at combining mlelttlustering solutions or par-
titions into a single one, offering a better descriptionhd tlata. In this section, we explain
how to address this fusion problem using the general framewtroduced in Section 4.
Each clustering algorithm (or “clusterer”) can be consgdeas a partially reliable source,
giving an opinion about the true, unknown, partition of thgects. This opinion provides
evidence in favor of a set of possible partitions. Moreover,suppose that the reliability
of each source is described by a confidence degree, eittessassby an external agent or
evaluated using a class validity index. Manipulating dsligefined on sets of partitions is
intractable in the usual case where the number of poterdiditions is high (for example, a
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set composed of 6 elements has 203 potential partitionsl) tan be manageable using the
lattice structure of partitions, as will be explained belblete that, due to space limitations,
only the main principles will be introduced. More detailsyree found in [20,21].

First, basic notions about the lattice of partitions of aasetrecalled in Section 6.1, then
our approach is explained and illustrated in Section 6.8gugisynthetic data set.

6.1 Lattice of Partitions

Let E denote a finite set afi objects. A partitionp is a set of non empty, pairwise disjoint
subsetds,, ..., Ex of E, such that their union is equal #. Every partitionp can be asso-

ciated to an equivalence relation (i.e., a reflexive, symigiednd transitive binary relation)

onE, denoted byR,, and characterized, for dl&, a;) € EZ, by:

~__ | 1 if 3 anda; belong to the same cluster ;
Re(@i.aj) = { 0 otherwise.

The set of all partitions oE, denoted®, can be partially ordered using the following or-
dering relation: partitiorp is said to befiner than partitionp’ on the same seé (denoted

p =< p') if the clusters ofp can be obtained by splitting those gf (or equivalently, if each
cluster of p’ is the union of some clusters @). This partial ordering can be alternatively
defined using the equivalence relations associateoatad p':

p=p < Ry(a,a) <Ry(a,a)), V(a,aj)eE>2

The setQ endowed with the<-order has a lattice structure [22]. In this lattice, the thee
pA p of two partitionsp and p’ is defined as the coarsest partition among all partitions
finer thanp and p’. The clusters of the megtA p’ are obtained by considering pairwise
intersections between clusterspéndp’. The equivalence relatidR,, y is simply obtained
as the minimum oRp andRy. The joinpV p' is similarly defined as the finest partition
among those that are coarser thmand p'. The equivalence relatioR,, y is thetransitive
closureof the maximum ofR, andRy. The least element. of that lattice is thefinest
partition, denotego = (1/2/--- /n), in which each object is a cluster. The greatest element
T of (Q, =) is thecoarsespartition denotecpe = (123 --n), composed of a single cluster
containing then objects. In this order, each partition precedes everytmartderived from
it by aggregating two of its clusters. Similarly, each gati covers all partitions derived by
subdividing one of its clusters in two clusters.

Figures 3 and 4 show examples of partition lattices in the edtereE is composed of
three and four objects, respectively. Tatemsof (Q, <) are the partitions preceded Ipy.
There aren(n— 1)/2 such partitions ofh — 1 clusters. Atoms are associated to matriegs
with only one off-diagonal entry equal to 1. The co-atomsdiokotomies, i.e., partitions
composed of two clusters.

For any partitiong andp of Q such thap < p, the interval[p,p] is defined as:

pP={peQ[p=p=P} (26)

It is a particular set of partitions, namely, the set of alitpi@ns finer tharip and coarser
thanp. The set of intervals of the lattiqg2, <) is:

o~ ={[p,PIpPEQ,p=P}U0b,.
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123

12/3 1/23 13/2

1/2/13
Fig. 3 Lattice of partitions of a three-element set.

1234

14/23 1/234 12473 13/24 123/4 134/2 12/34

1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

1/2/3/4

Fig. 4 Lattice of partitions of a four-element set.

In the lattice(.#q <, C), the least element is 0o and the greatest elemeftis Q. The
atoms are the singletons &f. The co-atoms are of the forfipg, p] with p a co-atom of
(Q,=), or[p, pe] with pan atom of(Q, <). An example of such a lattice, in the case where
E is composed of three objects, is shown in Figure 5.

Several forms of imprecise knowledge about a partition eaexpressed i, <, C).
For instance, the intervalpo, p] and[p, pe] represent the set of partitions finer and coarser,
respectively, than a given partitign Suppose now that the elements of aAe&t E are
known to belong to the same cluster. This information candpeesented by the interval
[Pa, Pe], where pa denotes the partition in which the only elements that arstehed to-
gether are the elements Af

pa={AtU{{a}/a €A}.

6.2 Application to Ensemble Clustering

In [21], the above approach was applied to ensemble clagtefine basic strategy can be
summarized as follows:

1) Mass generation: Givarclusterers, build a collection ofmass functionsnt, mé,...,m'
on the lattice of interval§.#g <, C); the way of choosing the focal elements and allocat-
ing the masses from the results of several clusterers depaathly on the applicative
context and on the nature of the clusterers in the ensemble.
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Q =[1/2/3,123]

[1/2/3,12/3] [1/2/3,13/2] [1/2/3,23/1] [12/3,123] [13/2,123] [23/1,123]

XSS

{1/2/3} {(12/3} {13/2} {231} {123}

Fig. 5 Lattice of intervals of the lattice shown in Figure 3.

2) Aggregation: Combine the mass functions into a single one using Dempster’s rule.
The result of this combination is a mass functionwith focal elementgp, , 7] and
associated masseg, k=1,...,s. The equivalence relations correspondingpfoand
P Will be denotedR, andRy, respectively.

3) Decision making: as for multi-label classification, itgessible to solve a binary inte-
ger optimization problem for picking the best partitipmvith the greatest commonality.
However, although theoretically possible, this approastessitates a too large number
of binary variables and renders the approach intractal#e &r moderate-sized data
sets. We have thus proposed another way of making a decisiqn; denote the parti-
tion with n— 1 clusters, in which the only objects that are clusteredttegeare objects
i andj (partition pj; is an atom in the latticéQ, <)). Then, the intervalp;;, pe] repre-
sents the set of all partitions in which objectnd j are in the same cluster. Our belief
in the fact that and j belongs to the same cluster can be characterized by théiitgdi
of [pij, pe], which can be computed as follows:

S

Belj = bel([pij, pe]) = Z me= 5 m=5 mR(,j). @7
[P PxIE[Pij - PE] B =P k=1

Matrix Bel = (Bel;j) can be considered as a new similarity matrix and can in turn be
clustered using, e.g., a hierarchical clustering algorithf a partition is needed, the
classification tree (dendogram) can be cut at a specified $evas to insure a user-
defined number of clusters.

Example 6 The data set used to illustrate the method is the half-rirtg sket inspired from
[13]. It consists of two clusters of 100 points each in a timm&hsional space. To build the
ensemble, we used the fuzeymeans algorithm with a varying number of clusters (from 6
to 11). The six hard partitions computed from the soft pari& are represented in Figure 6.
Each hard partitiop, (¢ = 1,...,6) was characterized by a confidence degrgevhich
was computed using a validity index measuring the qualityefpartition. Considering that
the true partition is coarser than each individual one, akihgy into account the uncertainty
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6 clusters (0=0.772) 7 clusters (0=0.724) 8 clusters (a=0.742)
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Fig. 6 Half-rings data set. Individual partitions.

of the clustering process, the following mass functionsens&fined:

m’([pe, Pe]) = ay
{m[([po, pe]) =1—ay. (28)

The six mass functions (with two focal elements each) wese tombined using Demp-
ster’s rule. A hierarchy was computed from matBigl using Ward’s linkage. The dendro-
gram, represented in the left part of Figure 7, reveals ar deparation in two clusters.
Cutting the tree to obtain two clusters yields the partitiepresented in the right part of
Figure 7. We can see that the natural structure of the datfieqtly recovered.

7 Beliefs on Preorders

In Section 6.1, we presented the lattice of partitions ofigeftset, which is isomorphic to the
lattice of equivalence relations. We will now introduce arengeneral lattice of relations,
the lattice of preorders, and we will illustrate its interies aggregating preference relations.
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Consensus
3 - -
°© o]
1 2.5 ° &0 % ©
o, G&%ﬁ(ﬁogm
o]
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Fig. 7 Half-rings data set. Ward's linkage computed fr8®l and derived consensus.

7.1 Lattice of preorders

Let E = {ay,...,an} be a finite set oh objects. Apreorder Ron E is a bhinary reflexive

and transitive relation. Preorders are very general melatencompassing partial orders (an-

tisymmetric preorders) and equivalence relations (symmpteorders) as special cases.
The setQ of all preorders defined da can be equipped with the same ordering relation

as the one introduced for equivalence relations: a pre&desaid to bdinerthan a preorder

R (we writeR < R) if and only if:

R(a,a)) <R(a,a)) V(a,a))€E%

(Q, =) is alattice. Note that the lattice of equivalence relatisressublattice of the lattice of
preorders. As for equivalence relations, the minimal elemiein this lattice is represented
by a diagonal matrix and the maximal elemé&nby a matrix with all entries equal to one.
As in Section 6.1, the meet and the join of two eleméitandR; are defined, respectively,
as the minimum oR; andR;, and as the transitive closure of the maximunRefandR,.
For any two relation® andR such thaR < R, we can define the intervéR R}, i.e., the set
of all preorders coarser th@and finer thark:

RR ={Re QR=R=R}.
The set of intervals of the lattide2, <) defined by:
Jo,<={RRIRRe 2,R=R} U0y,

is also a lattice, endowed with the inclusion relation. Tingsnework will be used in the
next section for representing and aggregating partiatinétion regarding the ranking of a
set of objects.

7.2 Application to Preference Aggregation

It is often desirable, for decision making purposes, to @efin order between different al-
ternatives or objects, on the basis of different opiniongreferences provided by decision-
makers. This problem has attracted considerable intesest €.9., [23,25, 1,15, 2]). Prefer-
ences are often expressed through pairwise comparisorexpained in [24], comparing
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two objectsa; anda; can be seen as determining which of the four following pdesstiu-
ations holds:

1. Objecta; is “before” objecta;, where “before” implies some kind of order betweasn
anda;, induced either by direct preferencg (s preferred ta;) or by measurements on
an associated scale;

. The converse situation: objeaitis “before” objecta;;

3. Objecta is “near” objecta;, where “near” can be considered either as indifference

(objecta; or objecta; will do equally well for some purpose), or as a similarity;

4. Objectsy; anda; cannot be compared because, for example, of lack of inféometigh

uncertainty, or conflicting information.

N

A preference relatiofR = (r;) defined on the set of alternativEsis a preorder oif,
which encodes the four above situations as follows:

. Objecta; is strictly preferred t@; (a > a;) < rjj = 1andrj =0;
. Objecta; is strictly preferred t@; (& < aj) < rjj =0 andrj = 1,
. Objectsy; eta; are indifferent & ~ a;) < rijj =1 andrj =1;

. Objectsy; eta; are incomparablea( <> a;) < rij =0andrj =0;

A WONPR

The problem addressed here is to derive such a prefererat@nefrom the opinions
expressed b agents about pairs of objects. More precisely, we suppaggftit each pair
of alternatives{a;,a; }, each agenk has to choose between the four situations described
above, and that he is able to quantify his degree of beliefiénselected proposition by a
valueaij € [0,1]. The choice of agerk for any pair{a;,a;} with i < j will be indicated

using four binary variableél(jf(), ¢ = 1,4, using the following convention:

% = {3 cmernrte @)
e { (1J gt?efw?ée, (30)
(sl(li) = { é gt?e?w?ée, (31)
a0~ St .

Itis clear that exactly one of these four binary variablesgjsal to one, i.e., the following
equation holds:
4
(0
/Zij =1

Let us assume that an agdnhas expressed his preference about objactsda; by
setting the values of the four binary variabl@%f, ¢=1,...,4. This piece of information
can be seen as defining a constraint on the underlying preBrdeer the sekE of objects.
To express the set of preorddRscompatible with this information, let us introduce two
preorderspij andpij on E defined as follows:

{Pij(ai,aj)
pij (&, &)

1
0 v(kI)#(,j)
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and .

{Pij(ai,aj)z(), o
It is clear that the following equivalences hold:

& =1 Relf =[py.pil.
5
5
3% =1 Rel = [L.pj Apyl.

i) =1& Re Ifl-z) = [pji,Pij];

Y =1eRell) =[pjvp;, T,

Example 7Let E be a set composed of three elements. Suppose that an ageftdsas
the propositiora; > ap. Then relatiorR has to belong to the following interval:

110 111
010],{011||=p12021,
001 111

i.e., all terms of matriR are free except;> = 1 andr; = 0.
If the agent has chosen the indifference betwaganday, then the relatiorR is sup-
posed to belong to:

110 111
110,111 || =[p12Vpar; T]
001 111
In this case, all terms of matri® are free exceptiz =ry1 = 1. O

The opinion of an agerk may be thus expressed in the lattic€p <, C) of preorder
intervals by the following mass assignment (foriad{ j):

myc(1f) =8 aij.  £=1,....4, (33)
Mijk ([L, T]) = 1—aijk.

The opinion given b evaluators about the(n— 1) /2 pairs of objects may finally be
combined into a single mass functionusing Dempster’s rule:

K
m=PPmi. (34)

k=1i<]j

Remark 1The applicability of Dempster’s rule is conditioned by tresamption of inde-
pendence of the sources to be combined. The use of this milthoa be questioned when
combining several pairwise evaluations of a single ageoivé¥er, the dependency of these
evaluations is not so straightforward, as explained in.[&%n using unblinded compar-
isons, when comparing; vs. a; anday vs. ag, the fact thata, is common to both com-
parisons does not necessarily imply a dependence of thaagials, unless the expert is
employing a notion of transitivity to force his choices todmherent. The interested reader
can refer to [33] for a detailed discussion about this isHuehe independence cannot be
assumed, other combinations rules, such as the cautiojisnctive introduced [10], can
be used. We may note here that this rule is based on the cahdewomposition of belief
functions, which can be computed in any lattice [16]: consedly, it is well defined in the
setting considered in this paper (see also [11]).
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The corresponding commonality functieancan be computed using (9) in the lattice
(Jo~.C) as:
qO |'||‘|q.JK, (35)
k=1i<]

whereqjk is the commonality function associatednyy.
The commonality of a singletofR} is equal to:

a({R}) O[] [T o {RD, (36)
k i<]
with:
1 if 3¢ such that\) = 1 andR e I(/ ,
iik({R}) = 1k / 37
Gijk ({R}) {laijk otherwise. 37)

Equation (37) can be simplified by encoding relatiusing new variablexi(f) fori < j
and/ =1,...,4, defined as follows:

&f=mu4m

4_2):|’»i(17|’| )7

2(’_3) _ rijjrji, : (38)
x@—u4murm

We thus have:
Re Ifjl) < rij = Landrj :O(i’xiﬂl) —1,
Re Ifl.z) & rij =0andrj = l<:>)<i<jZ) _
Re Iff’) & rij=1andrj = 1@Xi<ja) _

Re Ii(j“) & rij=0andrj =0« Xi(j4) =1
With this notation, (37) can be rewritten as:

ap((R)=1{ 1 ”qux (39)

1—aijjx otherwise.

Maximizing q({R}) is equivalent to maximizing its logarithm, which is equal to

Inq({R}) = Z ( /Z Jk)(I )In (1— aijx) + constant (40)
i<]

By eliminating the constant term and permuting the sums, avesee that the optimal
relationR maximizing (40) can finally be obtained by solving the follog binary integer
programming problem:

mln /ixlzg (J In(1—aik) (41)

e{o 1}I<J 1
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subject to the constraints:

4
; X' =1 vi<] (42)
=1

Nj+rxk—1<rik Vi#j#k (43)

Constraints (42) ensure that only o}ﬁ#) is equal to 1. Constraints (43) ensure the transi-
tivity of the resulting matrixR. Note that constraints (43) can be easily expressed with the
unknowns of the problem, since the following relation holds

XY+ x it <,
lij = 2 33) . (44)
X% ifi >
Example 8We illustrate our approach using a synthetic example. Wergged at random
a preordeR* = (ri*j) on a sek of n = 6 objects. Then, we assumed that a varying number
of respondents (from 1 to 35) were asked for their opinionualtioe 15 pairs of objects.
Their evaluation was simulated as follows. For each gajra;} and each respondekt
a probability pjjx of error was drawn from a beta distribution. Then, the trualuation
was kept with probability X pjjx, and changed with probabilitg;;, a wrong evaluation
being uniformly chosen among the three remaining possésliThe parameters of the beta
distribution were varied so as to induce different noiseelevin the evaluations (the first
parameter of the distribution was set to 20 and the secoraigier was chosen in the set
{0.5,2,5,10,15,18,20} so that the expectation for the error probability variedneen 2%
and 50%). Lastly, we assumed that each respondent was atpletdify the error level in
his evaluations, so that we fixedjx = 1— pjjx, Vi < j andVk. The relationR obtained by
solving problem (41-43) was compared to the true preordegukbe error rate defined as:

2
TR PR
The simulation process was repeated 100 times and thegaeselt averaged. They are
presented in Figure 8. We can see from the figure that our appracts as a good denoising
process, since, for every noise levels, the error tendsrtwathe number of respondents
grows. Note that a reduction of error rate is also observet &vonly one respondent is
considered.

When pooling the opinions of the experts using the lineagumming approach (41),
it is clear that the internal coherence of each expert isaia@rt into account. If one wants
to take into account the self consistency of each expes,dbssible to use a two-step pro-
cedure. The first step consists in assessing the internatente of each expert by applying
the decision making approach to each preorder and disegutite opinion of the experts
according to this coherence. In fact, when the procedurppieal individually to each ex-
pert, the maximal value af({R}) reflects the consistency of the expert: if this value is equal
to 1, then the evaluations of the expert are fully consist&nilue less than 1 reflects some
conflict in the evaluations of the expert. The maximal comatioy values for each expert
can thus be used to discount expert opinions, before aptiiem overall procedure.

Example 9We illustrate this point using an example inspired from [38] a study con-
ducted at the Ontario Cancer Institute, subjects were askgive their preferences about
four scenarios describing ethical dilemmas in health cEne.preferences for all six possi-
ble scenario pairs were obtained. The experts were alsa askate the reliability of their
evaluations. The preferences for one subject (expert 1&:wer
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Fig. 8 Error rate as a function of the number of respondents.

@) (b)

Fig. 9 Graph representation of the evaluations; (a): expert 1 @t@}) = 0.56); (b): expert 2
(maxq({R}) = 1).

— Scenario B is preferred to scenario A with reliability 0.44,
— Scenario D is preferred to scenario B with reliability 0.74,
— Scenario D is preferred to scenario C with reliability 0.06,
— Scenario A is preferred to scenario C with reliability 0.97,
— Scenario A is preferred to scenario D with reliability 0.94,
— Scenario B is preferred to scenario C with reliability 0.93.

The preference of a subject can be represented by a direetph tp which the vertices are
the scenarios and the edges represent the relation “isgéf®”. The corresponding graph
of expert 1 is given in Figure 9a. The fact that the graph doata cycle (ADB) shows that
the evaluations of expert 1 are not fully consistent. We sapmow that the evaluations of a
second subject (expert 2), represented in Figure 9b, aea ghhis time, there is no cycle in
the graph, but the degrees of belief are weaker than for ekpa&pplied individually to each
expert, the procedure gives a a commonality of 0.56 for tisééxpert, and a commonality
of 1 for the second expert. If the evaluations are mergecttlireone obtains the relation
represented in Figure 10a, which is close to the relatioarghy expert 1 with a correction
of transitivity. If the evaluations of the experts are befwand discounted using one minus
the individual commonalities as discounting factors, tti@relation represented in Figure
10b with a commonality equal to 0.36 is found, which is thatieh given by expert 2.
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Fig. 10 Graph representation of the aggregation; (a): withoutadisting (maxq({R}) = 0.11); (b): with
discounting (mag({R}) = 0.29).

8 Conclusion

The exponential complexity of operations in the theory dighéunctions has long been seen
as a shortcoming of this approach, and has prevented itecaph to very large frames
of discernment. We have shown in this paper that the contglefithe Dempster-Shafer
calculus can be drastically reduced, while retaining siefficexpressive power, if belief
functions are defined over a suitable subset of the powegsgiged with a lattice structure.
When the frame of discernment forms itself a lattice for squagial ordering, the set of
events may be defined as the set of intervals in that lattisend_this method, it is possible
to define and manipulate belief functions in very large fraraech as the power set of a
finite set, the set of partitions of objects or the set of preorders over a set of alternatives.
This approach opens the way to the application of Dempdiafe® theory to a wide range
of computationally demanding tasks in Decision Analysid Btachine Learning.
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