
HAL Id: hal-00684520
https://hal.science/hal-00684520v1

Submitted on 2 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evidential reasoning in large partially ordered sets.
Application to multi-label classification, ensemble

clustering and preference aggregation
Thierry Denoeux, Marie-Hélène Masson

To cite this version:
Thierry Denoeux, Marie-Hélène Masson. Evidential reasoning in large partially ordered sets. Applica-
tion to multi-label classification, ensemble clustering and preference aggregation. Annals of Operations
Research, 2012, 195 (1), pp.135-161. �10.1007/s10479-011-0887-2�. �hal-00684520�

https://hal.science/hal-00684520v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Evidential reasoning in large partially ordered sets
Application to multi-label classification, ensemble clustering and
preference aggregation

Thierry Denœux and Marie-Hélène Masson

the date of receipt and acceptance should be inserted later

Abstract The Dempster-Shafer theory of belief functions has proved to be a powerful for-
malism for uncertain reasoning. However, belief functionson a finite frame of discernment
Ω are usually defined in the power set 2Ω , resulting in exponential complexity of the oper-
ations involved in this framework, such as combination rules. WhenΩ is linearly ordered,
a usual trick is to work only with intervals, which drastically reduces the complexity of cal-
culations. In this paper, we show that this trick can be extrapolated to frames endowed with
an arbitrary lattice structure, not necessarily a linear order. This principle makes it possible
to apply the Dempster-Shafer framework to very large framessuch as the power set, the set
of partitions, or the set of preorders of a finite set. Applications to multi-label classification,
ensemble clustering and preference aggregation are demonstrated.

Keywords Belief Functions, Dempster-Shafer theory, Evidence Theory, Lattices, Lattice
Intervals, Classification, Clustering, Learning, Preference Relation, Preorder.

1 Introduction

The theory of belief functions originates from the pioneering work of Dempster [4,5] and
Shafer [26]. In the 1990’s, the theory was further developedby Smets [29,32], who pro-
posed a non probabilistic interpretation (referred to as the “Transferable Belief Model”)
and introduced several new tools for information fusion anddecision making. Big steps to-
wards the application of belief functions to real-world problems involving many variables
have been made with the introduction of efficient algorithmsfor computing marginals in
valuation-based systems [27,28].

Although there has been some work on belief functions on continuous frames (see, e.g.,
[19,31]), the theory of belief functions has been mainly applied in the discrete setting. In
this case, all functions introduced in the theory as representations of evidence (including
mass, belief, plausibility and commonality functions) aredefined from the Boolean lattice
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(2Ω ,⊆) to the interval[0,1]. Consequently, all operations involved in the theory (suchas the
conversion of one form of evidence to another, or the combination of two items of evidence
using Dempster’s rule) have exponential complexity with respect to the cardinalityK of the
frameΩ , which makes it difficult to use the Dempster-Shafer formalism in very large frames
[35].

When the frameΩ is linearly ordered, a usual trick is to constrain the focal elements
(i.e., the subsets ofΩ such thatm(A) > 0) to beintervals(see, for instance, [9]). The com-
plexity of manipulating and combining mass functions is then drastically reduced from 2K

to K2. Most formula of belief function theory work for intervals,because the set of intervals
equipped with the inclusion relation has alattice structure. As shown recently in [16], belief
functions can be defined in any lattice, not necessarily Boolean. In this paper, this trick will
be extended to the case of frames endowed with a lattice structure, not necessarily a linear
order. As it will be shown, a lattice of intervals can be constructed, in which belief func-
tions can be defined. This approach makes it possible to definebelief functions in very large
frames (such as the power set of a finite setΩ , the set of partitions of a finite set, or the set
of preorders of a finite set) with manageable complexity.

The rest of this paper is organized as follows. The necessarybackground on belief func-
tions and on lattices will first be recalled in Sections 2 and 3, respectively. Our main idea
will then be exposed in Section 4. It will then be applied to three data analysis problems
involving the definition and manipulation of belief functions on

1. The powerset of a finite set (Section 5), with application to multi-label classification;
2. The set of partitions of a finite set (Section 6), with application toensemble clustering;
3. The set of preorders of a finite set (Section 7), with application topreference aggregation

from pairwise comparisons.

Finally, Section 8 will conclude this paper. Note that the applications to multi-label clas-
sification and ensemble clustering have been described separately in [11,37] and [20,21],
respectively. The present paper presents the approach in much greater generality and pro-
vides a unified view of the two previous applications. To demonstrate the generality of the
new introduced framework, a third application to preference aggregation is dealt with. A
unified decision making procedure based on commonalities isalso introduced.

2 Belief Functions: Basic Notions

Let Ω be a finite set. A(normalized) mass functionon Ω is a functionm : 2Ω → [0,1] such
thatm( /0) = 0 and

∑
A⊆Ω

m(A) = 1. (1)

The subsetsA of Ω such thatm(A) > 0 are called thefocal elementsof m. The normaliza-
tion property can be relaxed by dropping the conditionm( /0) = 0. Only normalized mass
functions will be considered in this paper. A mass functionm is often used to model beliefs
held by an agent about a variableX taking a single but ill-known valueω0 in Ω [32]. The
quantitym(A) is then interpreted as the measure of the belief that is committed exactlyto
the hypothesisω0 ∈ A. Full certainty corresponds to the case wherem({ωk}) = 1 for some
ωk ∈Ω , while total ignorance is modeled by thevacuousmass function verifyingm(Ω ) = 1.

To each normalized mass functionm can be associated abelief function beldefined as
follows:

bel(A) = ∑
B⊆A

m(B), (2)
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for all A⊆ Ω . It is clear thatbel( /0) = 0 andbel(Ω ) = 1. Each quantitybel(A) is interpreted
as thetotal degree of justified belief[32] in the proposition “The true valueω0 of X belongs
to A”. Conversely,m can be recovered frombel as

m(A) = ∑
B⊆A

(−1)|A\B|bel(B), (3)

for all A⊆ Ω , where| · | denotes cardinality. Functionm is said to be theMöbius transform
of bel. For any functionf from 2Ω to [0,1] such thatf ( /0) = 0 and f (Ω ) = 1, the following
conditions are known to be equivalent [26]:

1. The Möbius transformm of f is positive and verifies∑A⊆Ω m(A) = 1.
2. f is totally monotone, i.e., for anyk≥ 2 and for any familyA1, . . . ,Ak in 2Ω ,

f

(
k⋃

i=1

Ai

)
≥ ∑

/06=I⊆{1,...,k}

(−1)|I |+1 f

(
⋂

i∈I

Ai

)
.

Hence,bel defined by (2) is totally monotone.
Other functions related tomare theplausibility function, defined as

pl(A) = ∑
B∩A 6= /0

m(B) = 1−bel(A), ∀A⊆ Ω (4)

and thecommonality function(or co-Möbius transform ofbel) defined as

q(A) = ∑
B⊇A

m(B), ∀A⊆ Ω . (5)

Obviously, q( /0) = 1 andq(Ω ) = m(Ω ). Functionm can be recovered fromq using the
following relation:

m(A) = ∑
B⊇A

(−1)|B\A|q(B). (6)

Functionsm, bel, pl andq are thus in one-to-one correspondence and can be regarded as
different facets of the same information.

When the reliability of a source is doubtful, the mass provided by this source can be
discountedusing the following operation:

{ α m(A) = (1−α)m(A) ∀A 6= Ω ,
α m(Ω ) = (1−α)m(Ω )+α ,

(7)

where 0≤ α ≤ 1 is thediscount rate. This coefficient is related to our confidence in the
reliability of the source of information [30]. It can be interpreted as the plausibility that the
source is unreliable. Whenα is equal to 1, the vacuous mass function is obtained. When
α = 0, m remains unchanged.

Let us now assume that we receive two normalized mass functionsm1 andm2 from two
distinct sources of information assumed to be reliable. Then m1 andm2 can be combined
using Dempster’s rule of combination defined as follows:

(m1⊕m2)(A) =






∑B∩C=Am1(B)m2(C)

1−κ
if A 6= /0

0 if A = /0,
(8)

whereκ = ∑B∩C= /0m1(B)m2(C) is thedegree of conflictbetween the two mass functions,
assumed to be strictly smaller than one. This rule is commutative, associative, and admits
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the vacuous mass function as neutral element. Letq1⊕q2 denote the commonality function
corresponding tom1⊕m2. It can be computed fromq1 andq2, the commonality functions
associated tom1 andm2, as follows:

(q1⊕q2)(A) =
q1(A) ·q2(A)

1−κ
, (9)

for all non empty subsetA of Ω , and(q1⊕q2)( /0) = 1.
The conjunctive sum has a dual disjunctive rule [30], obtained by substituting union for

intersection in (8), and dropping the normalization constant, which is no longer needed:

(m1 ∪©m2)(A) = ∑
B∪C=A

m1(B)m2(C), ∀A⊆ Ω . (10)

Denoting bybel1 ∪©bel2 the belief function corresponding tom1 ∪©m2, it can be shown that

(bel1 ∪©bel2)(A) = bel1(A) ·bel2(A), ∀A⊆ Ω , (11)

which is the counterpart of (9).
Given two mass functionsm1 andm2 on the same frame of discernmentΩ , we say that

m1 is aspecializationof m2 (or, equivalently, thatm2 is ageneralizationof m1), if m1 can
be obtained fromm2 by transferring massesm2(B) to subsets ofB, for all focal elementsB
of m2 [12]. It is then more informative, or more committed. Formally, this property can be
expressed as follows:

m1(A) = ∑
B⊆Ω

S(A,B)m2(B), ∀A⊆ Ω , (12)

whereS: 2Ω ×2Ω → [0,1] verifies

∑
A⊆Ω

S(A,B) = 1, ∀B⊆ Ω ,

and
S(A,B) > 0⇒ A⊆ B, A,B⊆ Ω .

3 Belief Functions in General Lattices

As shown by Grabisch [16], the theory of belief functions canbe defined not only in Boolean
lattices, but in any lattice, not necessarily Boolean. We will first recall some basic definitions
about lattices. Grabisch’s results used in this work will then be summarized.

3.1 Lattices

A review of lattice theory can be found in [22]. The followingpresentation follows [16].
Let L be a finite set and≤ a partial ordering (i.e., a reflexive, antisymmetric and transi-

tive relation) onL. The structure(L,≤) is called aposet. We say that(L,≤) is a lattice if,
for everyx,y∈ L, there is a unique greatest lower bound (denotedx∧ y) and a unique least
upper bound (denotedx∨ y). Operations∧ and∨ are called themeetand join operations,
respectively. For finite lattices, the greatest element (denoted⊤) and the least element (de-
noted⊥) always exist. A strict partial ordering< is defined from≤ asx < y if x ≤ y and
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Fig. 1 Hasse diagram of a lattice onΩ = {x,y,z,t}.

x 6= y. We say thatx covers yif y< x and there is nozsuch thaty< z< x. An elementx of L
is anatomif it covers only one element and this element is⊥. It is aco-atomif it is covered
by a single element and this element is⊤.

Two latticesL andL′ are isomorphicif there exists a bijective mappingf from L to
L′ such thatx ≤ y ⇔ f (x) ≤ f (y). For any poset(L,≤), we can define its dual(L,≥) by
inverting the order relation. A lattice isautodualif it is isomorphic to its dual.

A lattice is distributive if (x∨ y)∧ z= (x∧ z)∨ (y∧ z) holds for allx,y,z∈ L. For any
x ∈ L, we say thatx has a complement inL if there existsx′ ∈ L such thatx∧ x′ = ⊥ and
x∨x′ = ⊤. L is said to becomplementedif any element has a complement. Boolean lattices
are distributive and complemented lattices. In a Boolean lattice, every element has a unique
complement. Every Boolean lattice is isomorphic to(2Ω ,⊆) for some setΩ . For the lattice
(2Ω ,⊆), we have∧ = ∩, ∨ = ∪, ⊥ = /0 and⊤ = Ω .

Example 1Let Ω = {x,y,z, t} be a frame of discernment, and let≤ be the following partial
order:x ≤ y, x ≤ z, y ≤ t, z≤ t. This order is represented by the Hasse diagram shown in
Figure 1. In this representation, a line segments goes upward from a to b if b coversa. It
is easy to see that(Ω ,≤) forms a lattice, isomorphic to the Boolean lattice(2Θ ,⊆) with
|Θ | = 2. The least element isx, the greatest element ist, andy andz are both atoms and
co-atoms. �

A closure systemon a setΘ is a family C of subsets ofΘ containingΘ , and closed
under intersection. As shown in [22], any closure system(C ,⊆) is a lattice with∧ = ∩ and
∨ = ⊔ defined by

A⊔B =
⋂
{C ∈ C |A∪B⊆C}, ∀(A,B) ∈ C

2. (13)

3.2 Belief Functions on Lattices

Let (L,≤) be a finite poset having a least element, and letf be a function fromL to R.
TheMöbius transformof f is the functionm : L → R defined as the unique solution of the
equation:

f (x) = ∑
y≤x

m(y), ∀x∈ L. (14)

Functionm can be expressed as:

m(x) = ∑
y≤x

µ(y,x) f (y), (15)



6

whereµ(x,y) : L2 → R is theMöbius function, which is defined inductively by:

µ(x,y) =






1 if x = y,

− ∑
x≤t<y

µ(x, t) if x < y,

0, otherwise.

(16)

Theco-Möbius transformof f is defined as:

q(x) = ∑
y≥x

m(y), (17)

andmcan be recovered fromq as:

m(x) = ∑
y≥x

µ(x,y)q(y). (18)

Let us now assume that(L,≤) is a lattice. Following Grabisch [16], a functionbel :
L → [0,1] will be called a belief function onL if bel(⊥) = 0, bel(⊤) = 1, and its Möbius
transform is non negative.

As shown in [16], any belief function on(L,≤) is totally monotone, i.e., for anyk ≥ 2
and for any familyx1, . . . ,xk in L,

bel

(
k∨

i=1

xi

)
≥ ∑

/06=I⊆{1,...,k}

(−1)|I |+1bel

(
∧

i∈I

xi

)
.

However, the converse does not hold in general: a totally monotone function may not have
a non negative Möbius transform.

As shown in [16], most results of Dempster-Shafer theory canbe transposed in the
general lattice setting. For instance, Dempster’s rule canbe extended by replacing∩ by∧ in
(8), and relation (9) between commonality functions is preserved. Similarly, we can extend
the disjunctive rule (10) by substituting∨ for ∪ in (10), and relation (11) still holds.

The discounting operation (7) and the notion of specialization (12) can be also gen-
eralized in straightforward ways. However, the extension of other notions from classical
Dempster-Shafer theory may require additional assumptions on (L,≤). For instance, the
definition of the plausibility functionpl as the dual ofbel using (4) can only be extended to
autodual lattices [16].

4 Belief functions with Lattice Intervals as Focal Elements

Let Ω be a finite frame of discernment. If the cardinality ofΩ is very large, working in
the Boolean lattice(2Ω ,⊆) may become intractable. This problem can be circumvented
by defining the set ofpropositionsas a strict subset of 2Ω . As shown in Section 3, the
Dempster-Shafer calculus can be applied in this restrictedset of propositions as long as it
has a lattice structure. To be meaningful, the definition of propositions should be based on
some underlying structure of the frame of discernment.

When the frameΩ is linearly ordered, then a usual trick consists in assigning non zero
masses only to intervals. Here, we propose to extend and formalize this approach, by con-
sidering the more general case whereΩ has a lattice structure for some partial ordering≤.
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The set of events is then defined as the setIΩ ,≤ of lattice intervals in(Ω ,≤). We will show
that(IΩ ,≤,⊆) is then itself a lattice, in which the Dempster-Shafer calculus can be applied.

The lattice(IΩ ,≤,⊆) of intervals of a lattice(Ω ,≤) will first be introduced more pre-
cisely in Section 4.1. The definition of belief functions in(IΩ ,≤,⊆) will then be dealt with
in Section 4.2.

4.1 The Lattice(IΩ ,≤,⊆)

Let Ω be a finite frame of discernment, and let≤ be a partial ordering ofΩ such that(Ω ,≤)
is a lattice, with greatest element⊤ and least element⊥. A subsetI of Ω is a (lattice) interval
if there exist elementsa andb of Ω such that

I = {x∈ Ω |a≤ x≤ b}.

We then denoteI as [a,b]. Obviously,Ω is the interval[⊥,⊤] and /0 is the empty interval
represented by[a,b] for anya andb such thata≤ b does not hold. LetIΩ ,≤ ⊆ 2Ω be the
set of intervals, including the empty set /0:

IΩ ,≤ = {[a,b]|a,b∈ Ω ,a≤ b}∪{ /0}.

The intersection of two intervals is an interval:

[a,b]∩ [c,d] =

{
[a∨c,b∧d] if a∨c≤ b∧d,

/0 otherwise.

Consequently,IΩ ,≤ is a closure system, and(IΩ ,≤,⊆) is a lattice, with least element /0 and
greatest elementΩ . We have

[a,b] ⊆ [c,d] ⇔ c≤ a andb≤ d.

The meet operation is the intersection, and the join operation⊔ is defined by

[a,b]⊔ [c,d] = [a∧c,b∨d]. (19)

Clearly,[a,b]⊆ [a,b]⊔ [c,d] and[c,d]⊆ [a,b]⊔ [c,d], hence[a,b]∪ [c,d]⊆ [a,b]⊔ [c,d],
but the inclusion is strict in general. We note that(IΩ ,≤,⊆) is a subposet, but not a sublattice
of (2Ω ,⊆), because they do not share the same join operation.

The atoms of(IΩ ,≤,⊆) are the singletons ofΩ , while the co-atoms are intervals of the
form [⊥,x], wherex is a co-atom of(Ω ,≤), or [x,⊤], wherex is an atom of(Ω ,≤). The
lattice(IΩ ,≤,⊆) is usually neither autodual, nor Boolean.

Example 2Let (Ω ,≤) be the lattice defined in Example 1. Figure 2 displays the corre-
sponding lattice of intervals(IΩ ,≤,⊆). There are ten distinct intervals of(Ω ,≤), includ-
ing the empty set. The atoms of(IΩ ,≤,⊆) are the singletons ofΩ , and the co-atoms are
[x,y] = {x,y}, [x,z] = {x,z}, [y, t] = {y, t} and [z, t] = {z, t}. This lattice is complemented,
but the complements are not unique: for instance,{x,z}∩{y, t} = /0 and{x,z}⊔{y, t} = Ω ,
but we also have{x,z}∩{t} = /0 and{x,z}⊔{t} = Ω : consequently,{y, t} and{t} are two
complements of{x,z}. As a consequence, the lattice(IΩ ,≤,⊆) is not Boolean. �
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Fig. 2 The lattice(IΩ ,≤,⊆) of intervals of the lattice(Ω ,≤) shown in Figure 1.

4.2 Belief Functions in(IΩ ,≤,⊆)

Let m be a mass function fromIΩ ,≤ to [0,1]. Belief and commonality functions can be
defined in(IΩ ,≤,⊆) as explained in Section 3. Conversely,m can be recovered frombel
andq using (15) and (18), where the Möbius functionµ depends on the lattice(IΩ ,≤,⊆).
As the cardinality ofIΩ ,≤ is at most proportional toK2, whereK is the cardinality ofΩ ,
all these operations, as well as the conjunctive and disjunctive sums can be performed in
polynomial time.

Example 3Let us come back to Example 2. Given a mass functionm : IΩ ,≤ → [0,1], the
corresponding belief function can be computed asbel( /0) = 0, bel(Ω ) = 1, and

bel({x}) = m({x}), bel({y}) = m({y}), bel({z}) = m({z}), bel({t}) = m({t}),

bel({x,y}) = m({x})+m({y})+m({x,y}), bel({x,z}) = m({x})+m({z})+m({x,z}),

bel({y, t}) = m({y})+m({t})+m({y, t}), bel({z, t}) = m({z})+m({t})+m({z, t}).

By solving the above linear system, we easily find thatm can be recovered frombel using
(15), with the Möbius function defined for allA andB in IΩ ,≤ by

µ(A,B) =

{
(−1)|B\A| if A⊆ B

0 otherwise.

�

Given a mass functionmon (IΩ ,≤,⊆), we may define a functionm∗ on (2Ω ,⊆) as

m∗(A) =

{
m(A) if A∈ IΩ ,≤,

0 otherwise.

m∗ will be called theextensionof m in (2Ω ,⊆).
Let bel∗ andq∗ be the belief and commonality functions associated tom∗. It is obvious

thatbel∗(I) = bel(I) andq∗(I) = q(I) for all I ∈IΩ ,≤. Letm1 andm2 be two mass functions
on(IΩ ,≤,⊆), and letm∗

1 andm∗
2 be their extensions in(2Ω ,⊆). Because the meet operations



9

Table 1 Disjunctive combination of two mass functionsm1 andm2 on the lattice(IΩ ,≤,⊆) of Example 2.

A m1(A) m2(A) bel1(A) bel2(A) (bel1 ∪©bel2)(A) (m1 ∪©m2)(A)
/0 0 0 0 0 0 0

{x} 0.1 0 0.1 0 0 0
{y} 0.2 0.3 0.2 0.3 0.06 0.06
{x,y} 0.3 0 0.6 0.3 0.18 0.12
{z} 0 0 0 0 0 0
{x,z} 0.2 0.4 0.3 0.4 0.12 0.12
{t} 0 0.1 0 0.1 0 0
{y,t} 0 0.1 0.2 0.5 0.1 0.04
{z,t} 0 0 0 0.1 0 0

Ω 0.2 0.1 1 1 1 0.66

are identical in(IΩ ,≤,⊆) and(2Ω ,⊆), computing the conjunctive sum in any of these two
lattices yields the same result, as we have

(m∗
1⊕m∗

2)(A) =

{
(m1⊕m2)(A) if A∈ IΩ ,≤,

0 otherwise.

However, computing the disjunctive sum in(2Ω ,⊆) or (IΩ ,≤,⊆) is not equivalent, because
the join operation in(IΩ ,≤,⊆), defined by (19), is not identical to the union operation in 2Ω .
Consequently, when computing the disjunctive sum ofm∗

1 andm∗
2, the productm∗

1(A)m∗
2(B)

is transferred toA∪B, whereas the productm1(A)m2(B) is transferred toA⊔B when com-
biningm1 andm2. Let (m1 ∪©m2)

∗ be the extension ofm1 ∪©m2 in (2Ω ,⊆). As A⊔B⊇ A∪B,
(m1 ∪©m2)

∗ is thus a generalization (i.e., anouter approximation[12,8]) of m∗
1 ∪©m∗

2. When
masses are assigned to intervals of the lattice(Ω ,≤), doing the calculations in(IΩ ,≤,⊆)
can thus be seen an approximation of the calculations in(2Ω ,⊆), with a loss of information
only when a disjunctive combination is performed.

Example 4Table 1 shows two mass functionsm1 andm2 on the lattice(IΩ ,≤,⊆) defined
in Example 2, as well as the corresponding belief functions,and the resultm1 ∪©m2 of their
disjunctive combination. Table 2 shows the extensionsm∗

1 andm∗
2 of m1 andm2 in 2Ω , as well

as their disjunctive combinationm∗
1 ∪©m∗

2. It can be verified thatm∗
1 ∪©m∗

2 is a specialization
of (m1 ∪©m2)

∗, i.e., it is strictly more committed. Computing the disjunctive combination in
the lattice(IΩ ,≤,⊆) has thus resulted in a loss of information. �

To conclude this section, we may also remark that the reduction of complexity obtained
by expressing beliefs in the lattice of intervals comes witha loss of expressive power. It
is clear that, whereas any mass functionm in IΩ ,≤ has an extensionm∗ in 2Ω , any mass
function in 2Ω with at least one focal elementA ⊆ Ω not belonging toIΩ ,≤ cannot be
expressed in that lattice. Such a mass function could be approximated by transferring each
massm(A) for A 6∈ IΩ ,≤ to the smallest interval containingA. However, in the worst case,
all information can be lost in this process.

For instance, considering again the lattice defined in Example 2, letmbe the mass func-
tion on(2Ω ,⊆) such thatm({y,z, t}) = 1. This mass function expresses the opinion that the
true valueω0 in Ω is certainly not equal tox. It can be approximated inIΩ ,≤ by transfer-
ring the unit mass of belief to the smallest interval containing {y,z, t}, which is Ω itself,
resulting in the vacuous mass function. However, this is a somewhat extreme case. Complex
real-world problems in which useful information can be expressed in a lattice of intervals
will be described below.
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Table 2 Disjunctive combination of two mass functionsm∗
1 and m∗

2 on the Boolean lattice(2Ω ,⊆) with
Ω = {x,y,z,t}. Mass functionsm∗

1 andm∗
2 are the extensions ofm1 andm2 in Table 1. The elements of the

latticeIΩ ,≤ are preceded by an asterisk.

A m∗
1(A) m∗

2(A) bel∗1(A) bel∗2(A) (bel∗1 ∪©bel∗2)(A) (m∗
1 ∪©m∗

2)(A)
* /0 0 0 0 0 0 0
* {x} 0.1 0 0.1 0 0 0
* {y} 0.2 0.3 0.2 0.3 0.06 0.06
* {x,y} 0.3 0 0.6 0.3 0.18 0.12
* {z} 0 0 0 0 0 0
* {x,z} 0.2 0.4 0.3 0.4 0.12 0.12

{y,z} 0 0 0.2 0.3 0.06 0
{x,y,z} 0 0 0.8 0.7 0.56 0.26

* {t} 0 0.1 0 0.1 0 0
{x,t} 0 0 0.1 0.1 0.01 0.01

* {y,t} 0 0.1 0.2 0.5 0.1 0.04
{x,y,t} 0 0 0.6 0.5 0.3 0.07

* {z,t} 0 0 0 0.1 0 0
{x,z,t} 0 0 0.3 0.5 0.15 0.02
{y,z,t} 0 0 0.2 0.5 0.1 0

* Ω 0.2 0.1 1 1 1 0.3

4.3 Decision making

When working with belief functions in a Boolean Lattice(2Ω ,⊆), a usual decision rule is to
select the singleton{ω} of Ω with the largest plausibility or, equivalently, with the largest
commonality [7,3]. In the lattice(IΩ ,≺,⊆), the plausibility function is not defined, but
the commonality function exists and its maximum can sometimes be computed efficiently
without enumerating the elements ofΩ , as will be shown below. A possible rule for decision
making is thus to select the element ofΩ with the largest commonality.

5 Reasoning with Set-valued Variables

In this section, we present a first application of the above scheme to the representation of
knowledge regarding set-valued variables [11]. The general framework will be presented in
Section 5.1, and it will be applied to multi-label classification in Section 5.2.

5.1 Evidence on Set-valued Variables

Let Θ be a finite set, and letX be a variable taking values in the power set 2Θ . Such a
variable is said to be set-valued, orconjunctive[12,36]. For instance, in diagnosis problems,
Θ may denote the set of faults that can possibly occur in a system, andX the set of faults
actually occurring at a given time, under the assumption that multiple faults can occur. In
text classification,Θ may be a set of topics, andX the list of topics dealt with in a given
text, etc.

Defining belief functions on the lattice(22Θ
,⊆) is practically intractable, because of

the double exponential complexity involved. However, we may exploit the lattice structure
induced by the ordering⊆ in Ω = 2Θ , using the general approach outlined in Section 4 [11].

For any two subsetsA andB of Θ such thatA⊆ B, the interval[A,B] is defined as

[A,B] = {C⊆Θ |A⊆C⊆ B}.
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The set of intervals of the lattice(Ω ,⊆) is thus

IΩ ,⊆ = {[A,B]|A,B∈ Ω ,A⊆ B}∪ /0Ω ,

where /0Ω denotes the empty sets ofΩ (as opposed to the empty set ofΘ ). Clearly,IΩ ,⊆ ⊆

2Ω = 22Θ
. The interval[A,B] can be seen as the specification of an unknown subsetC of Θ

thatsurelycontains all elements ofA, andpossiblycontains elements ofB. Alternatively,C
surely containsno element ofB.

As the meet and join in the lattice(Θ ,⊆) are set intersection and union, respectively, the
corresponding operations in(IΩ ,⊆,⊆) are

[A,B]∩ [C,D] =

{
[A∪C,B∩D] if A∪C⊆ B∩D,

/0Ω otherwise

and

[A,B]⊔ [C,D] = [A∩C,B∪D].

As noticed in [17], any interval[A,B] of subsets ofΘ = {θ1, . . . ,θK} can be represented
by a vector(u1, . . . ,uK) ∈ {−1,0,1}K , with

uk =






1 if θk ∈ A,

−1 if θk ∈ B,

0 otherwise.

This encoding makes it possible to implement the∩ and⊔ operations in a simple way using
generalized truth tables. It also makes it clear that the cardinality of IΩ ,⊆ is equal to 3K +1,

which is much less than the 22K
elements of 2Ω .

Example 5Let Θ = {a,b,c,d} be the set of possible faults of a given system. Assume that
several faults can occur simultaneously, and we receive twoindependent pieces of evidence:

– Item of evidence 1: faulta is surely present and faults{b,c} may also be present, with
confidence 0.7. This is represented by the following mass function:

m1([{a},{a,b,c}]) = 0.7, m1([ /0Θ ,Θ ]) = 0.3.

– Item of evidence 2: faultc is surely present, and either faults{a,b} (with confidence
0.8) or faults{a,d} (with confidence 0.2) may also be present. This is represented by

m2([{c},{a,b,c}]) = 0.8, m2([{c},{a,c,d}]) = 0.2.

The combination ofm1 andm2 by Dempster’s rule can be computed using the following
table:

[{a},{a,b,c}] [ /0Θ ,Θ ]
0.7 0.3

[{c},{a,b,c}] [{a,c},{a,b,c}] [{c},{a,b,c}]
0.8 0.56 0.24

[{c},{a,c,d}] [{a,c},{a,c}] [{c},{a,c,d}]
0.2 0.14 0.06
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Let m12 = m1⊕m2. We thus get

m12([{a,c},{a,b,c}]) = 0.56, m12([{c},{a,b,c}]) = 0.24,

m12([{a,c},{a,c}]) = 0.14, m12([{c},{a,c,d}]) = 0.06.

Based on this evidence, we can compute our degrees of belief in the following propositions:

– Faulta is present:
bel12([{a},Θ ]) = 0.56+0.14= 0.7

– Faultd is not present:

bel12([ /0Θ ,{d}]) = bel12([ /0Θ ,{a,b,c}]) = 0.56+0.14+0.24= 0.94

– Only faultsa andc are present:

bel12([{a,c},{a,c}]) = 0.14.

�

5.2 Application to Multi-label Classification

In [11,37], the above framework was applied tomulti-label classification[39,34]. In this
learning task, each object may belong simultaneously to several classes, contrary to stan-
dard single-label problems where objects belong to only oneclass. For instance, in image
retrieval, each image may belong to several semantic classes such as “beach” or “urban”.
In such problems, the goal is to predict the value of the classvariable for a new instance,
based on a training set. As the class variable is set-valued,the framework developed in the
previous section can be applied.

In order to construct a multi-label classifier, we generallyassume the existence of a
labeled training set, composed ofn examples(xi ,Yi), wherexi is a feature vector describing
instancei, andYi is a label set for that instance, defined as a subset of the setΘ of classes [39,
34]. In practice, however, gathering such high quality information is not always feasible at
a reasonable cost. In many problems, there is no ground truthfor assigning unambiguously
a label set to each instance, and the opinions of one or several experts have to be elicited.
Typically, an expert will sometimes express lack of confidence for assigning exactly one
label set.

The formalism described in Section 5.1 can easily be used to handle such situations. In
the most general setting, the opinions of one or several experts regarding the set of classes
that pertain to a particular instancei may be modeled by a mass functionmi in (IΩ ,⊆,⊆).
A less general, but arguably more operational option is to restrict mi to be categorical, i.e.,
to have a single focal element[Ai ,Bi ], with Ai ⊆ Bi ⊆Θ . The setAi is then the set of classes
that certainly applyto examplei, while Bi is the set of classes thatpossiblyapply to that
instance. In a multiple expert setting,Ai might represent the set of classes indicated byall
experts as relevant to describe instancei, while Bi would be the set of classes mentioned by
someexperts. The usual situation of precise labeling is recovered in the special case where
Ai = Bi .

For instance, assume that instances are songs and classes are emotions generated by
these songs. Upon hearing a song, an expert may decide that itcertainly evokes happiness
and certainly does not evoke sadness, but may be undecided regarding the other emotions
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(such as quietness, anger, surprise, etc.). In that case, the song cannot be assigned a single
label set, but we can associate to it the set of all label sets containing “happiness” and not
containing “sadness”, which has the form suggested above.

The evidentialk nearest neighbor rule introduced in [6] can be extended to the multi-
label framework as follows. LetΦk(x) denote the set ofk nearest neighbors of a new instance
described by feature vectorx, according to some distance measured, andxi an element of
that set with label[Ai ,Bi ]. This item of evidence can be described by the following mass
function in(IΩ ,⊆,⊆):

mi([Ai ,Bi ]) = β exp(−γd(x,xi)) = αi ,

mi([ /0Θ ,Θ ]) = 1−β exp(−γd(x,xi)) = 1−αi ,

whereβ andγ are two parameters such that 0< β < 1 andγ > 0. Thesek mass functions
are then combined into a single onem using Dempster’s rule:

m= ⊕k
i=1mi . (20)

For decision making, it was proposed in [11,37] to use the following rule. LetŶ be
the predicted label set for instancex. To decide whether to include each classθ ∈ Θ or
not, two quantities were computed: the degree of beliefbel([{θ},Θ ]) that the true label set
Y containsθ , and the degree of beliefbel([ /0,{θ}]) that it does not containθ . The set of
predicted labelŝY was then defined as

Ŷ = {θ ∈Θ | bel([{θ},Θ ]) ≥ bel([ /0,{θ}])}.

This method was shown in [11,38] to yield good performances compared to standard multi-
label classification methods, especially when class labelsare uncertain.

As noted in Section 4.3, an alternative way of making a decision is to find the set of
labels with the greatest commonality. This approach may be formalized as follows. The
commonality function corresponding to the combination (20) is given by:

q ∝
k

∏
i=1

qi , (21)

whereqi is the commonality function associated tomi . These individual commonalities can
be simply expressed for any subsetY of Θ by:

qi(Y) =

{
1 if Ai ⊆Y ⊆ Bi ,
1−αi otherwise.

(22)

We thus have :

q(Y) ∝
k

∏
i=1

(1−αi)
1−δi , (23)

with

δi =

{
1 if Ai ⊆Y ⊆ Bi

0 otherwise.

For each focal element[Ai ,Bi ], let us introduce the following notations:

ai j =

{
1 if θ j ∈ Ai

0 otherwise.
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and

bi j =

{
1 if θ j ∈ Bi

0 otherwise.

In the same way, a subsetY of Θ will be represented by aK-dimensional vectory whose
component are defined byy j = 1 if θ j ∈Y and 0 otherwise. With these notations, the inclu-
sion constraintAi ⊆Y may be translated by:

K

∑
j=1

ai j y j =
K

∑
j=1

ai j .

Similarly, the constraintY ⊆ Bi , or, equivalently,B̄i ⊆ Ȳ, may be written as:

K

∑
j=1

(1−bi j )(1−y j) =
K

∑
j=1

(1−bi j ).

Maximizing q(Y) is equivalent to maximizing its logarithm, which is equal to:

lnq(Y) =
k

∑
i=1

(1−δi) ln(1−αi)+constant.

To find the setY of greatest commonality, we can thus solve the following binary integer
programming problem:

min
y∈{0,1}K ,δ∈{0,1}k

k

∑
i=1

δi ln(1−αi), (24)

subject to the constraints:





K

∑
j=1

ai j y j ≥ δi

K

∑
j=1

ai j ∀i = 1,k,

K

∑
j=1

(1−bi j )(1−y j) ≥ δi

K

∑
j=1

(1−bi j ) ∀i = 1,k.

(25)

Note that the way in which the constraints (25) are written ensures that ifδi is set to
1, Y is enforced to belong to[Ai ,Bi ], and if δi is set to 0, there is no constraint onY with
respect toAi andBi . This method is more general and computationally more efficient than
the method described in [11,38]; it has been found experimentally to yield similar results
when applied to multi-label classification problem.

6 Belief Functions on Partitions

Ensemble clustering methods [18,14] aim at combining multiple clustering solutions or par-
titions into a single one, offering a better description of the data. In this section, we explain
how to address this fusion problem using the general framework introduced in Section 4.
Each clustering algorithm (or “clusterer”) can be considered as a partially reliable source,
giving an opinion about the true, unknown, partition of the objects. This opinion provides
evidence in favor of a set of possible partitions. Moreover,we suppose that the reliability
of each source is described by a confidence degree, either assessed by an external agent or
evaluated using a class validity index. Manipulating beliefs defined on sets of partitions is
intractable in the usual case where the number of potential partitions is high (for example, a
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set composed of 6 elements has 203 potential partitions!) but it can be manageable using the
lattice structure of partitions, as will be explained below. Note that, due to space limitations,
only the main principles will be introduced. More details may be found in [20,21].

First, basic notions about the lattice of partitions of a setare recalled in Section 6.1, then
our approach is explained and illustrated in Section 6.2 using a synthetic data set.

6.1 Lattice of Partitions

Let E denote a finite set ofn objects. A partitionp is a set of non empty, pairwise disjoint
subsetsE1, . . . ,Ek of E, such that their union is equal toE. Every partitionp can be asso-
ciated to an equivalence relation (i.e., a reflexive, symmetric, and transitive binary relation)
on E, denoted byRp, and characterized, for all(ai ,a j) ∈ E2, by:

Rp(ai ,a j) =

{
1 if ai anda j belong to the same cluster inp,
0 otherwise.

The set of all partitions ofE, denotedΩ , can be partially ordered using the following or-
dering relation: partitionp is said to befiner than partitionp′ on the same setE (denoted
p� p′) if the clusters ofp can be obtained by splitting those ofp′ (or equivalently, if each
cluster ofp′ is the union of some clusters ofp). This partial ordering can be alternatively
defined using the equivalence relations associated top andp′:

p� p′ ⇔ Rp(ai ,a j) ≤ Rp′(ai ,a j), ∀(ai ,a j) ∈ E2.

The setΩ endowed with the�-order has a lattice structure [22]. In this lattice, the meet
p∧ p′ of two partitionsp and p′ is defined as the coarsest partition among all partitions
finer thanp and p′. The clusters of the meetp∧ p′ are obtained by considering pairwise
intersections between clusters ofp andp′. The equivalence relationRp∧p′ is simply obtained
as the minimum ofRp andRp′ . The join p∨ p′ is similarly defined as the finest partition
among those that are coarser thanp andp′. The equivalence relationRp∨p′ is thetransitive
closureof the maximum ofRp and Rp′ . The least element⊥ of that lattice is thefinest
partition, denotedp0 = (1/2/ · · ·/n), in which each object is a cluster. The greatest element
⊤ of (Ω ,�) is thecoarsestpartition denotedpE = (123· · ·n), composed of a single cluster
containing then objects. In this order, each partition precedes every partition derived from
it by aggregating two of its clusters. Similarly, each partition covers all partitions derived by
subdividing one of its clusters in two clusters.

Figures 3 and 4 show examples of partition lattices in the case whereE is composed of
three and four objects, respectively. Theatomsof (Ω ,�) are the partitions preceded byp0.
There aren(n−1)/2 such partitions ofn−1 clusters. Atoms are associated to matricesRp

with only one off-diagonal entry equal to 1. The co-atoms aredichotomies, i.e., partitions
composed of two clusters.

For any partitionsp andp of Ω such thatp� p, the interval[p, p] is defined as:

[p, p] = {p∈ Ω | p� p� p}. (26)

It is a particular set of partitions, namely, the set of all partitions finer thanp and coarser
thanp. The set of intervals of the lattice(Ω ,�) is:

IΩ ,� = {[p, p]|p, p∈ Ω , p� p}∪ /0Ω .
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1/2/3

12/3 1/23 13/2

123

Fig. 3 Lattice of partitions of a three-element set.

1/2/3/4

1/23/4 14/2/3 1/24/3 13/2/4 12/3/4 1/2/34

14/23 13/241/234 124/3 123/4 134/2 12/34

1234

Fig. 4 Lattice of partitions of a four-element set.

In the lattice(IΩ ,�,⊆), the least element⊥ is /0Ω and the greatest element⊤ is Ω . The
atoms are the singletons ofΩ . The co-atoms are of the form[p0, p] with p a co-atom of
(Ω ,�), or [p, pE] with p an atom of(Ω ,�). An example of such a lattice, in the case where
E is composed of three objects, is shown in Figure 5.

Several forms of imprecise knowledge about a partition can be expressed in(IΩ ,�,⊆).
For instance, the intervals[p0, p] and[p, pE] represent the set of partitions finer and coarser,
respectively, than a given partitionp. Suppose now that the elements of a setA ⊆ E are
known to belong to the same cluster. This information can be represented by the interval
[pA, pE], wherepA denotes the partition in which the only elements that are clustered to-
gether are the elements ofA:

pA = {A}∪
{
{ai}/ai ∈ Ā

}
.

6.2 Application to Ensemble Clustering

In [21], the above approach was applied to ensemble clustering. The basic strategy can be
summarized as follows:

1) Mass generation: Givenr clusterers, build a collection ofr mass functionsm1, m2,...,mr

on the lattice of intervals(IΩ ,�,⊆); the way of choosing the focal elements and allocat-
ing the masses from the results of several clusterers depends mainly on the applicative
context and on the nature of the clusterers in the ensemble.
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= [1/2/3,123] 

 

{1/2/3} {12/3} {13/2} {23/1} {123}

[1/2/3,12/3] [1/2/3,23/1] [13/2,123] [23/1,123][1/2/3,13/2] [12/3,123]

Fig. 5 Lattice of intervals of the lattice shown in Figure 3.

2) Aggregation: Combine ther mass functions into a single one using Dempster’s rule.
The result of this combination is a mass functionm with focal elements[p

k
, pk] and

associated massesmk, k = 1, . . . ,s. The equivalence relations corresponding top
k

and
pk will be denotedRk andRk, respectively.

3) Decision making: as for multi-label classification, it ispossible to solve a binary inte-
ger optimization problem for picking the best partitionp with the greatest commonality.
However, although theoretically possible, this approach necessitates a too large number
of binary variables and renders the approach intractable even for moderate-sized data
sets. We have thus proposed another way of making a decision:let pi j denote the parti-
tion with n−1 clusters, in which the only objects that are clustered together are objects
i and j (partition pi j is an atom in the lattice(Ω ,�)). Then, the interval[pi j , pE] repre-
sents the set of all partitions in which objectsi and j are in the same cluster. Our belief
in the fact thati and j belongs to the same cluster can be characterized by the credibility
of [pi j , pE], which can be computed as follows:

Beli j = bel([pi j , pE]) = ∑
[pk,pk]⊆[pi j ,pE ]

mk = ∑
pk�pi j

mk =
s

∑
k=1

mkRk(i, j). (27)

Matrix Bel = (Beli j ) can be considered as a new similarity matrix and can in turn be
clustered using, e.g., a hierarchical clustering algorithm. If a partition is needed, the
classification tree (dendogram) can be cut at a specified level so as to insure a user-
defined number of clusters.

Example 6The data set used to illustrate the method is the half-ring data set inspired from
[13]. It consists of two clusters of 100 points each in a two-dimensional space. To build the
ensemble, we used the fuzzyc-means algorithm with a varying number of clusters (from 6
to 11). The six hard partitions computed from the soft partitions are represented in Figure 6.

Each hard partitionpℓ (ℓ = 1, . . . ,6) was characterized by a confidence degreeαℓ, which
was computed using a validity index measuring the quality ofthe partition. Considering that
the true partition is coarser than each individual one, and taking into account the uncertainty
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Fig. 6 Half-rings data set. Individual partitions.

of the clustering process, the following mass functions were defined:

{
mℓ([pℓ, pE]) = αℓ

mℓ([p0, pE]) = 1−αℓ.
(28)

The six mass functions (with two focal elements each) were then combined using Demp-
ster’s rule. A hierarchy was computed from matrixBel using Ward’s linkage. The dendro-
gram, represented in the left part of Figure 7, reveals a clear separation in two clusters.
Cutting the tree to obtain two clusters yields the partitionrepresented in the right part of
Figure 7. We can see that the natural structure of the data is perfectly recovered.

7 Beliefs on Preorders

In Section 6.1, we presented the lattice of partitions of a finite set, which is isomorphic to the
lattice of equivalence relations. We will now introduce a more general lattice of relations,
the lattice of preorders, and we will illustrate its interest for aggregating preference relations.
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Fig. 7 Half-rings data set. Ward’s linkage computed fromBel and derived consensus.

7.1 Lattice of preorders

Let E = {a1, . . . ,an} be a finite set ofn objects. Apreorder Ron E is a binary reflexive
and transitive relation. Preorders are very general relations encompassing partial orders (an-
tisymmetric preorders) and equivalence relations (symmetric preorders) as special cases.

The setΩ of all preorders defined onE can be equipped with the same ordering relation
as the one introduced for equivalence relations: a preorderR is said to befiner than a preorder
R′ (we writeR� R′) if and only if:

R(ai ,a j) ≤ R′(ai ,a j) ∀(ai ,a j) ∈ E2.

(Ω ,�) is a lattice. Note that the lattice of equivalence relationsis a sublattice of the lattice of
preorders. As for equivalence relations, the minimal element ⊥ in this lattice is represented
by a diagonal matrix and the maximal element⊤ by a matrix with all entries equal to one.
As in Section 6.1, the meet and the join of two elementsR1 andR2 are defined, respectively,
as the minimum ofR1 andR2, and as the transitive closure of the maximum ofR1 andR2.
For any two relationsR andR such thatR� R, we can define the interval[R,R], i.e., the set
of all preorders coarser thanR and finer thanR:

[R,R] = {R∈ Ω |R� R� R}.

The set of intervals of the lattice(Ω ,�) defined by:

IΩ ,� = {[R,R]|R,R∈ Ω ,R� R}∪ /0Ω ,

is also a lattice, endowed with the inclusion relation. Thisframework will be used in the
next section for representing and aggregating partial information regarding the ranking of a
set of objects.

7.2 Application to Preference Aggregation

It is often desirable, for decision making purposes, to define an order between different al-
ternatives or objects, on the basis of different opinions orpreferences provided by decision-
makers. This problem has attracted considerable interest (see, e.g., [23,25,1,15,2]). Prefer-
ences are often expressed through pairwise comparisons. Asexplained in [24], comparing
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two objectsa j andai can be seen as determining which of the four following possible situ-
ations holds:

1. Objectai is “before” objecta j , where “before” implies some kind of order betweenai

anda j , induced either by direct preference (ai is preferred toa j ) or by measurements on
an associated scale;

2. The converse situation: objecta j is “before” objectai ;
3. Objectai is “near” objecta j , where “near” can be considered either as indifference

(objectai or objecta j will do equally well for some purpose), or as a similarity;
4. Objectsai anda j cannot be compared because, for example, of lack of information, high

uncertainty, or conflicting information.

A preference relationR= (r i j ) defined on the set of alternativesE is a preorder onE,
which encodes the four above situations as follows:

1. Objectai is strictly preferred toa j (ai > a j ) ⇔ r i j = 1 andr ji = 0;
2. Objecta j is strictly preferred toai (ai < a j ) ⇔ r i j = 0 andr ji = 1;
3. Objectsai eta j are indifferent (ai ∼ a j ) ⇔ r i j = 1 andr ji = 1;
4. Objectsai eta j are incomparable (ai <> a j ) ⇔ r i j = 0 andr ji = 0;

The problem addressed here is to derive such a preference relation from the opinions
expressed byK agents about pairs of objects. More precisely, we suppose that, for each pair
of alternatives{ai ,a j}, each agentk has to choose between the four situations described
above, and that he is able to quantify his degree of belief in the selected proposition by a
valueαi jk ∈ [0,1]. The choice of agentk for any pair{ai ,a j} with i < j will be indicated

using four binary variablesδ (ℓ)
i jk , ℓ = 1,4, using the following convention:

δ (1)
i jk =

{
1 if ai > a j

0 otherwise,
(29)

δ (2)
i jk =

{
1 if ai < a j

0 otherwise,
(30)

δ (3)
i jk =

{
1 if ai ∼ a j

0 otherwise,
(31)

δ (4)
i jk =

{
1 if ai <> a j

0 otherwise.
(32)

It is clear that exactly one of these four binary variables isequal to one, i.e., the following
equation holds:

4

∑
ℓ=1

δ (ℓ)
i jk = 1.

Let us assume that an agentk has expressed his preference about objectsai anda j by

setting the values of the four binary variablesδ (ℓ)
i jk , ℓ = 1, . . . ,4. This piece of information

can be seen as defining a constraint on the underlying preorder R over the setE of objects.
To express the set of preordersR compatible with this information, let us introduce two
preordersρi j andρi j onE defined as follows:

{
ρi j (ai ,a j) = 1,
ρi j (ak,al ) = 0 ∀(k, l) 6= (i, j).
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and {
ρi j (ai ,a j) = 0,
ρi j (ak,al ) = 1 ∀(k, l) 6= (i, j).

It is clear that the following equivalences hold:

δ (1)
i jk = 1 ⇔ R∈ I(1)

i j = [ρi j ,ρ ji ],

δ (2)
i jk = 1 ⇔ R∈ I(2)

i j = [ρ ji ,ρi j ],

δ (3)
i jk = 1 ⇔ R∈ I(3)

i j = [ρi j ∨ρ ji ,⊤],

δ (4)
i jk = 1 ⇔ R∈ I(4)

i j = [⊥,ρi j ∧ρ ji ].

Example 7Let E be a set composed of three elements. Suppose that an agent haschosen
the propositiona1 > a2. Then relationR has to belong to the following interval:








1 1 0
0 1 0
0 0 1



 ,




1 1 1
0 1 1
1 1 1







= [ρ12,ρ21],

i.e., all terms of matrixR are free exceptr12 = 1 andr21 = 0.
If the agent has chosen the indifference betweena1 anda2, then the relationR is sup-

posed to belong to: 






1 1 0
1 1 0
0 0 1



 ,




1 1 1
1 1 1
1 1 1







= [ρ12∨ρ21;⊤].

In this case, all terms of matrixR are free exceptr12 = r21 = 1. �

The opinion of an agentk may be thus expressed in the lattice(IΩ ,�,⊆) of preorder
intervals by the following mass assignment (for alli < j):

{
mi jk (I(ℓ)i j ) = δ (ℓ)

i jk αi jk , ℓ = 1, . . . ,4,

mi jk ([⊥,⊤]) = 1−αi jk .
(33)

The opinion given byK evaluators about then(n−1)/2 pairs of objects may finally be
combined into a single mass functionm using Dempster’s rule:

m=
K⊕

k=1

⊕

i< j

mi jk . (34)

Remark 1The applicability of Dempster’s rule is conditioned by the assumption of inde-
pendence of the sources to be combined. The use of this rule can thus be questioned when
combining several pairwise evaluations of a single agent. However, the dependency of these
evaluations is not so straightforward, as explained in [33]. Even using unblinded compar-
isons, when comparinga1 vs. a2 anda2 vs. a3, the fact thata2 is common to both com-
parisons does not necessarily imply a dependence of the evaluations, unless the expert is
employing a notion of transitivity to force his choices to becoherent. The interested reader
can refer to [33] for a detailed discussion about this issue.If the independence cannot be
assumed, other combinations rules, such as the cautious conjunctive introduced [10], can
be used. We may note here that this rule is based on the canonical decomposition of belief
functions, which can be computed in any lattice [16]: consequently, it is well defined in the
setting considered in this paper (see also [11]).
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The corresponding commonality functionq can be computed using (9) in the lattice
(IΩ ,≺,⊆) as:

q ∝
K

∏
k=1

∏
i< j

qi jk , (35)

whereqi jk is the commonality function associated tomi jk .
The commonality of a singleton{R} is equal to:

q({R}) ∝ ∏
k

∏
i< j

qi jk ({R}), (36)

with:

qi jk ({R}) =

{
1 if ∃ℓ such thatδ (ℓ)

i jk = 1 andR∈ I(ℓ)i j ,

1−αi jk otherwise.
(37)

Equation (37) can be simplified by encoding relationRusing new variablesX(ℓ)
i j for i < j

andℓ = 1, . . . ,4, defined as follows:





X(1)
i j = r i j (1− r ji ),

X(2)
i j = r ji (1− r i j ),

X(3)
i j = r i j r ji ,

X(4)
i j = (1− r i j )(1− r ji ).

(38)

We thus have:

R∈ I(1)
i j ⇔ r i j = 1 andr ji = 0⇔ X(1)

i j = 1,

R∈ I(2)
i j ⇔ r i j = 0 andr ji = 1⇔ X(2)

i j = 1,

R∈ I(3)
i j ⇔ r i j = 1 andr ji = 1⇔ X(3)

i j = 1,

R∈ I(4)
i j ⇔ r i j = 0 andr ji = 0⇔ X(4)

i j = 1.

With this notation, (37) can be rewritten as:

qi jk ({R}) =





1 if

4

∑
ℓ=1

δ (ℓ)
i jk X(ℓ)

i j = 1,

1−αi jk otherwise.
(39)

Maximizing q({R}) is equivalent to maximizing its logarithm, which is equal to:

lnq({R}) = ∑
k

∑
i< j

(
1−

4

∑
ℓ=1

δ (ℓ)
i jk X(ℓ)

i j

)
ln(1−αi jk )+constant. (40)

By eliminating the constant term and permuting the sums, we can see that the optimal
relationR maximizing (40) can finally be obtained by solving the following binary integer
programming problem:

min
X(ℓ)

i j ∈{0,1}
∑
i< j

4

∑
ℓ=1

X(ℓ)
i j ∑

k

δ (ℓ)
i jk ln(1−αi jk ) (41)
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subject to the constraints:

4

∑
ℓ=1

X(ℓ)
i j = 1, ∀i < j (42)

r i j + r jk −1≤ r ik ∀i 6= j 6= k. (43)

Constraints (42) ensure that only oneX(ℓ)
i j is equal to 1. Constraints (43) ensure the transi-

tivity of the resulting matrixR. Note that constraints (43) can be easily expressed with the
unknowns of the problem, since the following relation holds:

r i j =

{
X(1)

i j +X(3)
i j if i < j,

X(2)
i j +X(3)

i j if i > j.
(44)

Example 8We illustrate our approach using a synthetic example. We generated at random
a preorderR∗ = (r∗i j ) on a setE of n = 6 objects. Then, we assumed that a varying number
of respondents (from 1 to 35) were asked for their opinion about the 15 pairs of objects.
Their evaluation was simulated as follows. For each pair{ai ,a j} and each respondentk,
a probability pi jk of error was drawn from a beta distribution. Then, the true evaluation
was kept with probability 1− pi jk , and changed with probabilitypi jk , a wrong evaluation
being uniformly chosen among the three remaining possibilities. The parameters of the beta
distribution were varied so as to induce different noise levels in the evaluations (the first
parameter of the distribution was set to 20 and the second parameter was chosen in the set
{0.5,2,5,10,15,18,20} so that the expectation for the error probability varied between 2%
and 50%). Lastly, we assumed that each respondent was able toquantify the error level in
his evaluations, so that we fixedαi jk = 1− pi jk , ∀i < j and∀k. The relationR obtained by
solving problem (41-43) was compared to the true preorder using the error rate defined as:

e=
2

n(n−1) ∑
i< j
1r i j 6=r∗i j

The simulation process was repeated 100 times and the results were averaged. They are
presented in Figure 8. We can see from the figure that our approach acts as a good denoising
process, since, for every noise levels, the error tends to zero as the number of respondents
grows. Note that a reduction of error rate is also observed even if only one respondent is
considered.

When pooling the opinions of the experts using the linear programming approach (41),
it is clear that the internal coherence of each expert is not taken into account. If one wants
to take into account the self consistency of each expert, it is possible to use a two-step pro-
cedure. The first step consists in assessing the internal coherence of each expert by applying
the decision making approach to each preorder and discounting the opinion of the experts
according to this coherence. In fact, when the procedure is applied individually to each ex-
pert, the maximal value ofq({R}) reflects the consistency of the expert: if this value is equal
to 1, then the evaluations of the expert are fully consistent. A value less than 1 reflects some
conflict in the evaluations of the expert. The maximal commonality values for each expert
can thus be used to discount expert opinions, before applying the overall procedure.

Example 9We illustrate this point using an example inspired from [33]. In a study con-
ducted at the Ontario Cancer Institute, subjects were askedto give their preferences about
four scenarios describing ethical dilemmas in health care.The preferences for all six possi-
ble scenario pairs were obtained. The experts were also asked to rate the reliability of their
evaluations. The preferences for one subject (expert 1) were:
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Fig. 8 Error rate as a function of the number of respondents.
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Fig. 9 Graph representation of the evaluations; (a): expert 1 (maxq({R}) = 0.56); (b): expert 2
(maxq({R}) = 1).

– Scenario B is preferred to scenario A with reliability 0.44,
– Scenario D is preferred to scenario B with reliability 0.74,
– Scenario D is preferred to scenario C with reliability 0.06,
– Scenario A is preferred to scenario C with reliability 0.97,
– Scenario A is preferred to scenario D with reliability 0.94,
– Scenario B is preferred to scenario C with reliability 0.93.

The preference of a subject can be represented by a directed graph in which the vertices are
the scenarios and the edges represent the relation “is preferred to”. The corresponding graph
of expert 1 is given in Figure 9a. The fact that the graph contains a cycle (ADB) shows that
the evaluations of expert 1 are not fully consistent. We suppose now that the evaluations of a
second subject (expert 2), represented in Figure 9b, are given. This time, there is no cycle in
the graph, but the degrees of belief are weaker than for expert 1. Applied individually to each
expert, the procedure gives a a commonality of 0.56 for the first expert, and a commonality
of 1 for the second expert. If the evaluations are merged directly, one obtains the relation
represented in Figure 10a, which is close to the relation given by expert 1 with a correction
of transitivity. If the evaluations of the experts are beforehand discounted using one minus
the individual commonalities as discounting factors, thenthe relation represented in Figure
10b with a commonality equal to 0.36 is found, which is the relation given by expert 2.
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Fig. 10 Graph representation of the aggregation; (a): without discounting (maxq({R}) = 0.11); (b): with
discounting (maxq({R}) = 0.29).

8 Conclusion

The exponential complexity of operations in the theory of belief functions has long been seen
as a shortcoming of this approach, and has prevented its application to very large frames
of discernment. We have shown in this paper that the complexity of the Dempster-Shafer
calculus can be drastically reduced, while retaining sufficient expressive power, if belief
functions are defined over a suitable subset of the power set equipped with a lattice structure.
When the frame of discernment forms itself a lattice for somepartial ordering, the set of
events may be defined as the set of intervals in that lattice. Using this method, it is possible
to define and manipulate belief functions in very large frames such as the power set of a
finite set, the set of partitions ofn objects or the set of preorders over a set of alternatives.
This approach opens the way to the application of Dempster-Shafer theory to a wide range
of computationally demanding tasks in Decision Analysis and Machine Learning.
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