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SUMMARY

The construction of probabilistic models in computational mechanics requires the effective construction
of probability distributions of random variables in high dimension. This paper deals with the effective
construction of the probability distribution in high dimension of a vector-valued random variable using
the maximum entropy principle. The integrals in high dimension are then calculated in constructing the
stationary solution of an Itô stochastic differential equation associated with its invariant measure. A
random generator of independent realizations is explicitly constructed in the paper. Three fundamental
applications are presented. The first one is a new formulation of the stochastic inverse problem relative
to the construction of the probability distribution in high dimension of an unknown non-stationary
random time series (random accelerograms) for which the Velocity Response Spectrum is given. The
second one is also a new formulation related to the construction of the probability distribution of
positive-definite band random matrices. Finally, we present an extension of the theory when the
support of the probability distribution is not all the space but is any part of the space. The third
application is then a new formulation related to the construction of the probability distribution of the
Karhunen-Loeve expansion of Non-Gaussian positive-valued random fields. Copyright c© 2008 John
Wiley & Sons, Ltd.

key words: Maximum entropy principle; High dimension; Stochastic process; Random matrix,

Karhunen-Loeve expansion, Random fields

1. Introduction

The probabilistic modeling of uncertainties in computational sciences such as in computational
mechanics is a great challenge. For instance, the parametric probabilistic approach which
allows data uncertainties to be taken into account consists in modeling uncertain parameters
of the computational model by random variables, stochastic processes and random fields. Such
approaches have extensively been developed in the two last decades [1, 2]. In particular, the use
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2 C. SOIZE

of the Gaussian Chaos representation for stochastic processes and random fields [3] has been
used to introduce and to develop useful and very efficient tools for analyzing stochastic systems
using stochastic finite elements (see [4, 5, 6]). More recently, additional developments have been
proposed to construct Chaos representations with arbitrary probability measures [7]. Model
uncertainties introduced by the mathematical-mechanical process used during the construction
of the computational model of complex systems are much more difficult to take into account
because the parametric probabilistic approach cannot address such model uncertainties. In
this context, a nonparametric probabilistic approach of model uncertainties has recently been
proposed as a possible way to circumvent these difficulties [8, 9, 10] and is based on the use of
the random matrix theory.
In general, the response of a computational model is a nonlinear mapping of the uncertain
parameters and consequently, a complete probability model of these uncertain parameters has
to be constructed. This means that the probability distributions of the random quantities of
interest such as vector-valued random variables, random matrices, etc, have to be constructed
and random generators of independent realizations have to be derived from the knowledge of
the probability distributions. It is well known that the Maximum Entropy (MaxEnt) Principle
[11, 12] is certainly one of the most efficient method allowing an explicit construction of such
probability distributions to be performed using only the available information. This powerful
method developed by Shannon in the context of the Information Theory is extremely useful
in many situations for which statistical data related to the random variable of interest are
either partially available or not available at all. We are then considering the case for which the
number of independent realizations (which constitute the available statistical data obtained
from measurements) is too small to obtain a good convergence of the statistical estimator
of the probability density function using nonparametric statistics [13]. The MaxEnt principle
has been used for different cases and in many applications (see for instance: [14] for a simple
overview concerning the MaxEnt Principle with applications, [15] for advanced developments
in Physics, [16] for the use of the MaxEnt principle in stochastic dynamics). It should be noted
that this paper does not deal with the maximum entropy in the moment problem [17, 18, 19, 20]
but is devoted to general nonlinear constraints in high dimension which are not polynomials,
that is to say, which are not expressed as a linear combination of moments.
Let us consider a �

N -valued random variable A = (A1, . . . , AN ) in which N is large (high
dimension). For instance, the set {A1, . . . , AN} can represent a random time series constructed
from the time sampling �(t1), . . . ,�(tN ) of a stochastic process {�(t), t ∈ T }. Random vector A
can also be used to generate a sparse random matrix [G] whose non zero random elements are
expressed in function of A. Finally, A can be the vector constituted of the random coordinates
in the Karhunen-Loeve expansion of a random field. The use of the MaxEnt principle allows
the probability density function a �→ pA(a) on �

N (with respect to the Lebesgue measure
da) of random variable A to be constructed using the available information. Introducing the
Lagrange multiplier � ∈ Lμ ⊂ �

μ associated with the constraints defined by the available
information, in which Lμ is the subset of �μ of all the admissible values of �, it can be proven
that pA depends on �. Lagrange multiplier � is then calculated solving a nonlinear algebraic
equation or equivalently, solving an optimization problem for a convex cost function. For
each given value of � in Lμ ⊂ �

μ, an integral iN (�) on �
N must be computed. In high

dimension, such a calculation is very difficult to perform and in general, induces a high
numerical cost. Thus there are two main problems. The first one is related to the effective
calculation of Lagrange multiplier � using an adated algorithm which requires the evaluation
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CONSTRUCTION OF PROBABILITY DISTRIBUTIONS IN HIGH DIMENSION 3

of a large number of integral iN (�) in high dimension. The second one is to construct a random
generator of independent realizations of random variable A whose pA has been constructed
with the MaxEnt principle. It should be noted that these two problems are not trivial in high
dimension. In this paper, we propose a method to solve these two main problems. Integral iN (�)
is calculated in constructing the stationary solution associated with the invariant measure of
a nonlinear Itô stochastic differential equation (ISDE) depending on �. This proposed method
is an alternative to the Metropolis-Hastings algorithm or to the Gibbs sampling (see Section
4). Such a nonlinear ISDE is solved by using either an explicit Euler scheme or a semi-implicit
scheme. Integral iN (�) is then calculated using (1) either the ergodic method or (2) the Monte
Carlo method with the usual estimator of the mathematical expectation with ns independent
realizations constructed with a generator. This generator of independent realizations of A is
then constructed solving ns times the ISDE with ns independent Wiener stochastic processes.
Three fundamental applications are presented. The first one is a new formulation of the
stochastic inverse problem relative to the construction of the probability distribution in high
dimension and of its generator for a vector-valued random variable corresponding to an
unknown non-stationary random time series (random accelerograms) for which the Velocity
Response Spectrum is given (see Section 7). The second one is also a new formulation related
to the construction of the probability distribution in high dimension and of its generator for
positive-definite band random matrices (see Section 8). Finally, we present an extension of the
theory corresponding to the case for which the support of the probability distribution in high
dimension of random variable A is not �N but is any part A of �N (see Section 9). The third
application is then a new formulation related to the construction of the probability distribution
in high dimension for the Karhunen-Loeve expansion of Non-Gaussian positive-valued random
fields.

2. Construction of probability distributions using the maximum entropy principle

Let a = (a1, . . . , aN ) be any vector in �
N . Let A = (A1, . . . , AN ) be a �

N -valued second-
order random variable for which the probability distribution PA(da) on �

N is unknown but
is represented by a probability density function a �→ pA(a) from �

N into �
+ = [0 , +∞[

with respect to the Lebesgue measure da = da1 . . . daN and which has to verify the following
normalization condition, ∫

�N

pA(a) da = 1 . (1)

Presently, it is assumed that the support of the probability density function pA is �N . The
case for which the support of pA is any part A of �N will be treated in Section 9.

The problem to be solved is the construction of the unknown probability density function
pA by using the MaxEnt principle for which the constraints associated with the available
information are assumed to be defined by the following equation on �

μ,

E{g(A)} = f , (2)

in which f = (f1, . . . , fμ) is a given vector in �
μ with μ ≥ 1, where a �→ g(a) =

(g1(a), . . . , gμ(a)) is a given measurable mapping from �
N into �

μ and where E is the
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4 C. SOIZE

mathematical expectation. Equation (2) can then be rewritten as∫
�N

g(a) pA(a) da = f . (3)

Let C be the set of all the probability density functions a �→ pA(a) defined on �
N with values

in �
+ such that Eqs. (1) and (3) hold. The maximum entropy principle [11, 12] consists in

constructing pA ∈ C such that
pA = argmax

p∈C
S(p) , (4)

in which the entropy S(p) of probability density function p is defined by

S(p) = −
∫
�N

p(a) log(p(a)) da , (5)

where log is the Neperian logarithm. In order to solve the optimization problem defined by
Eq. (4), a Lagrange multiplier λ0 ∈ �

+ associated with the constraint defined by Eq. (1) and
a Lagrange multiplier � ∈ Lμ ⊂ �

μ associated with the constraint defined by Eq. (3) are
introduced, in which Lμ is the subset of �μ of all the admissible values of �. It can then be
proven that the solution of Eq. (4) can be written as

pA(a) = csol
0 exp(− < �sol, g(a) >μ) , ∀a ∈ �

N , (6)

with csol
0 = exp(−λsol

0 ) in which (λsol
0 ,�sol) ∈ �

+×Lμ is such that Eqs. (1) and (3)) are verified.
In Eq. (6), < x , y >μ= x1y1 + . . . + xμyμ is the Euclidean inner product on �

μ.
For � fixed in Lμ, let B� be the �

N -valued random variable whose probability density
function b �→ p(b,�) from �

N into �
+ (with respect to the Lebesgue measure db on �

N ) is
written as

p(b,�) = c� exp(− < �, g(b) >μ) , ∀b ∈ �
N , (7)

in which c� is a finite positive constant depending on � defined by the following normalization
condition ∫

�N

p(b,�) db = 1 . (8)

Taking c�sol = csol
0 , Eqs. (6) and (7) yield

pA(a) = p(a,�sol) , ∀ a ∈ �
N , . (9)

which means that we have the following equality A = B�sol of random variables for the
convergence in probability distribution. From Eqs. (3), (6), (7) and (9), it can then be deduced
that �sol is a solution of the following equation in �,

E{g(B�)} = f , (10)

in which the integral E{g(B�)} which depends on � is such that

E{g(B�)} =
∫
�N

g(b) p(b,�) db . (11)

We must then construct a solution �sol in Lμ ⊂ �
μ of Eq. (10) in �. By construction, the

constraints associated with the available information (see Eq. (3)) are such that the algebraic

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; :1–29
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CONSTRUCTION OF PROBABILITY DISTRIBUTIONS IN HIGH DIMENSION 5

equation in � (defined by Eq. (10)) admits a unique solution in Lμ ⊂ �
μ (it should be noted

that, if it was not the case, it would mean that the available information defined was not
consistent and consequently, should be re-examined and then modified). We will denote any
one of this by �sol ∈ �

μ. Consequently, for such a solution, Eqs. (1) and (3) are verified and
the probability density function pA is given by Eq. (6) with csol

0 = c�sol . Equation (10) can be
solved in � with an appropriate algorithm such that the interior-reflective Newton method or
the trust-region dodleg algorithm which is a variant of the Powell dogleg method described
in [21, 22] (as used in Matlab for large-scale or medium-scale algorithm). It should be noted
that �sol could also be calculated in solving a convex optimization problem but the experience
proves that there is no numerical gain with respect to the previous one.

3. Difficulties of the construction in high dimension

The vector-valued Lagrange multiplier �sol must be computed in solving Eq. (10) which requires
to evaluate the integral on �N defined by Eq. (11). For the high-dimension case, that is to say
for a large value of N , this problem is very difficult. Below, for a given value of � in Lμ ⊂ �

μ,
we present some explanations concerning the difficulties of the calculation of E{g(B�)}.

For � fixed in Lμ ⊂ �
μ, there exist methods to perform the evaluation of the integral

E{g(B�)} with respect to the probability distribution p(b,�) db in high dimension (see for
instance [23]). The first class of methods corresponds to the exact evaluation of the integral
using analytical calculation (for instance using integration on Gaussian spaces). It should
be noted that integral E{g(B�)} defined by Eq. (11) cannot exactly be calculated and
consequently, an approximation must be carried out in order to evaluate it. The second class
of methods corresponds to approximate methods. For the high-dimension case, an usual and
efficient method consists in using the Monte Carlo method (see for instance [23, 24, 25]).

Formulation 1. A first method consists in rewriting E{g(B�)} as the mathematical
expectation E{h(Z,�)} of a �μ-valued random variable h(Z,�) in which z �→ h(z,�) is a given
measurable mapping from �

N into �μ and where Z is a given �N -valued random variable (1)
whose probability distribution pZ(z) dz on �N is known and (2) for which a random generator
can easily be constructed. We can then write E{g(B�)} = E{h(Z,�)} and the Monte Carlo
method consists in evaluating E{g(B�)} by

E{g(B�)} 	 1
ns

ns∑
�=1

h(Z(θ�),�) , (12)

in which Z(θ1), . . . , Z(θns) are ns independent realizations of random variable Z whose
probability distribution is pZ(z) dz. Clearly, such a computation can be carried out only if
a random generator can easily be constructed. For instance, let us assume that, for admissible
values of �, the expression exp(− < �, g(z) >μ +‖z‖2

N/2) tends to zero when ‖z‖N goes to
infinity in which ‖z‖2

N = z2
1+. . .+z2

N . Choosing Z as a normalized Gaussian �N -valued random
variable, we have pZ(z) = (2π)−N/2 exp(−‖z‖2

N/2) and h(z,�) = (2π)N/2g(z) c� exp(− <
�, g(z) >μ +‖z‖2

N/2). If p defined by Eq. (7)“is not close” to pZ, then the speed of convergence
of the right-hand side of Eq. (12) can be extremely low with respect to ns and consequently, is
not efficient at all. This situation corresponds to the case for which (1) the realizations Z(θ�)
of Z yield very small contributions in the right-hand side of Eq. (12) and (2) the significant

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; :1–29
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6 C. SOIZE

contributions correspond to events having a very small probability due to the presence of the
term exp(− < �, g(z) >μ +‖z‖2

N/2) in h(z,�).

Formulation 2. A second method consists in using the Monte Carlo method to evaluate
E{g(B�)} by

E{g(B�)} 	 1
ns

ns∑
�=1

g(B�(θ�)) , (13)

in which B�(θ1), . . . , B�(θns) are ns independent realizations of random variable B� whose
probability distribution is p(b,�) db. Consequently, a random generator must be constructed
and this difficult problem is the subject of this paper.

Considering that Formulation 1 cannot be used for the reasons given above, Formulation 2
will be used and the objectives of this paper are to propose (1) a methodology to calculate
Lagrange multiplier �sol ∈ Lμ ⊂ �

μ and (2) the construction of a random generator of
independent realizations for �N -valued random variable A.

4. Construction of probability distributions in high dimension using stochastic analysis

For � fixed in Lμ ⊂ �
μ, the evaluation of E{g(B�)} defined by Eq. (11) can be performed

using the Markov Chain Monte Carlo method (MCMC) [26, 27, 24] which is an alternative
efficient approach to Formulation 1 presented in Section 3. The transition kernel of the
homogeneous Markov chain of the MCMC method can be constructed using the Metropolis-
Hastings algorithm [25] or the Gibbs sampling [28] which is a slightly different algorithm for
which the kernel is directly deduced from the probability density function and for which the
Gibbs samplers are always accepted. These two algorithms allow the transition kernel to be
constructed for which the invariant measure is p(b,�) db. In general, these two algorithms are
efficient, but can also be not efficient if there exists attraction regions which do not correspond
to the invariant measure under consideration. These cases cannot be easily detected and are
time consuming. The method presented below looks like to the Gibbs approach but corresponds
to a more direct construction of a random generator of realizations of random variable B�

whose probability distribution is p(b,�) db. The difference between the Gibbs algorithm and
the proposed algorithm is that the convergence in the proposed method can be studied with all
the mathematical results concerning the existence and uniqueness of Itô stochastic differential
equation. In addition, a parameter is introduced which allows the transient part of the response
to be killed in order to get more rapidly the stationary solution corresponding to the invariant
measure. Thus following [29], the construction of the transition kernel by using the detailed
balance equation is replaced by the construction of an Itô Stochastic Differential Equation
(ISDE) (depending on �) which admits p(b,�) db defined by Eq. (7) as a unique invariant
measure. In addition, either the ergodic method (that we will present below) or the Monte
Carlo method (see Eq. (13)) can be used to estimate E{g(B�)} in order to calculate �sol.

4.1. Construction of the probability distribution of B� as the invariant measure of an ISDE

For � fixed in Lμ ⊂ �
μ, let u �→ Φ(u,�) be the function from �

N into � defined by

Φ(u,�) =< �, g(u) >μ . (14)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; :1–29
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CONSTRUCTION OF PROBABILITY DISTRIBUTIONS IN HIGH DIMENSION 7

Let {(U(r), V(r)), r ∈ �
+} be the Markov stochastic process defined on the probability space

(Θ, T, P) indexed by �
+ = [0 , +∞[ with values in �

N × �
N satisfying, for all r > 0, the

following Itô stochastic differential equation

dU(r) = V(r) dr , (15)

dV(r) = −∇uΦ(U(r),�) dr − 1
2
f0V(r) dr +

√
f0 dW(r) , (16)

with the initial condition

U(0) = U0 , V(0) = V0 a.s. , (17)

in which f0 is a free parameter which has to be fixed to any positive value (f0 > 0), where
W = (W1, . . . , WN ) is the normalized Wiener process defined on (Θ, T, P) indexed by �+ with
values in �N and where the random initial condition (U0, V0) is a �N ×�N -valued second-order
random variable independent of the family of random variables {W(r), r ≥ 0}. The probability
distribution PU0,V0(du, dv) on �N×�N of random variable (U0, V0) is assumed to be given. The
matrix-valued autocorrelation function [RW(r, r′)] = E{W(r) W(r′)T } of W is then written as
[RW(r, r′)] = min(r, r′) [ IN ] with [ IN ] the identity (N × N) matrix. In Eq. (16), the free
parameter f0 > 0 will allow a dissipation term to be introduced in the nonlinear dynamical
system in order to kill the transient part of the response and consequently, to get more rapidly
the stationary solution corresponding to the invariant measure (see the end of Subsection 4.1).

In a first stage, for an admissible value of � fixed in Lμ ⊂ �
μ, it is assumed that the

problem defined by Eqs. (15) to (17) has a unique solution defined almost surely for all r ≥ 0
(no explosion of the solution, see for instance Theorems 4 and 5 in pages 154 to 157 of Ref.
[30]) which is a diffusion stochastic process with drift vector b(u, v) ∈ �

2N and diffusion matrix
[ σ ] ∈ �2N (�) such that

b(u, v) =
[

v
−∇uΦ(u,�) − 1

2f0v

]
, [ σ ] =

[
0N 0N

0N f0IN

]
, (18)

in which [ 0N ] is the zero (N ×N) matrix, [ IN ] is the identity (N ×N) matrix and �2N (�) is
the set of all the square (2N × 2N) real matrices. Let 0 ≤ s < r < +∞, u and v in �

N and
let Bu and Bv belonging to the Borel σ-algebra of �N . Since the drift vector and the diffusion
matrix are independent of r, the diffusion stochastic process {(U(r), V(r)), r ≥ 0} admits a
system of homogeneous transition probabilities such that

P (u, v; r − s, Bu, Bv,�) = P{U(r) ∈ Bu, V(r) ∈ Bv |U(s) = u, V(s) = v} , (19)

in which P{U(r) ∈ Bu, V(r) ∈ Bv |U(s) = u, V(s) = v} is the conditional probability for that
U(r) ∈ Bu and V(r) ∈ Bv if U(s) = u and V(s) = v. Let Ps(du, dv,�) be an invariant measure,
i.e. a probability measure on �

N × �
N independent of r which is a solution of the integral

equation

Ps(du, dv,�) =
∫
�N

∫
�N

Ps(du′, dv′,�)P (u′, v′; r, du, dv,�) , ∀ r > 0 . (20)

If the probability distribution PU0,V0(du, dv) on �N ×�
N of the second-order random variable

(U0, V0) is equal to Ps(du, dv,�), then the unique solution of the problem defined by Eqs. (15)

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; :1–29
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8 C. SOIZE

to (17) is a stationary diffusion stochastic process on �
+ for the shift semi-group r �→ r + s,

s ≥ 0 and is assumed to be ergodic. This stationary and ergodic solution is then denoted by
{(Us(r), Vs(r)), r ≥ 0}. In addition, for any probability distribution PU0,V0(du, dv) (not equal
to the invariant measure), the diffusion stochastic process {(U(r), V(r)), r ≥ 0} converges to
the stationary diffusion stochastic process {(Us(r), Vs(r)), r ≥ 0} when r goes to infinity. Let
us assume that the invariant measure can be written as Ps(du, dv,�) = ρs(u, v,�) du dv. Then
the probability density function ρs(u, v,�) with respect to the Lebesgue measure du dv on
�

N ×�
N is a solution of the steady state Fokker-Planck equation (see Propositions 8 and 9 in

pages 120 to 123 of Ref. [30]),

N∑
j=1

∂

∂uj
{vjρs} +

N∑
j=1

∂

∂vj
{(−∂Φ(u,�)

∂uj
− f0

2
vj)ρs} − f0

2

N∑
j=1

∂2ρs

∂v2
j

= 0 , ∀ (u, v) ∈ �
N × �

N ,

(21)
with the normalization condition∫

�N

∫
�N

ρs(u, v,�) du dv = 1 . (22)

In a second stage, it is assumed that, for all � ∈ Lμ ⊂ �
μ, function u �→ Φ(u,�) is continuous

on �N and is such that u �→ ‖∇uΦ(u,�)‖N is a locally bounded function on �N (i.e. is bounded
on all compact set in �

N ) and is such that

inf
‖u‖

N
>R

Φ(u,�) → +∞ if R → +∞ , (23)

inf
u∈�N

Φ(u,�) = Φmin with Φmin ∈ � , (24)∫
�N

‖∇uΦ(u,�)‖
N

p(u,�) du < +∞ . (25)

Under these above hypotheses and using Theorems 4 to 7 in pages 211 to 216 of Ref. [30]
in which the Hamiltonian is taken as H(u, v) = ‖v‖2

N
/2 + Φ(u,�), it can be deduced that

Eqs. (21) and (22) have a unique solution which is written as

ρs(u, v,�) = c′
�

exp{−1
2
‖v‖2

N − Φ(u,�)} , ∀ (u, v) ∈ �
N × �

N , (26)

in which c′
�

is the constant of normalization defined by Eq. (22) (for regular functions Φ, the
expression (26) of the invariant measure of Eqs. (15) and (16) has been obtained by Caughey
in [31]). It should be noted that the conditions defined by Eqs. (23) to (25) are not related
to the existence of a unique solution of the optimization problem defined by Eq. (4). These
conditions are required in order that this unique solution can be interpreted as the unique
invariant measure of an ISDE. From Eqs. (7), (14) and (26), it can be deduced that the
probability density function p(b,�) of random variable B� is related to the invariant measure
ρs(u, v,�) du dv by the following equation,

p(b,�) =
∫
�N

ρs(b, v,�) dv , ∀b ∈ �
N . (27)

Let us consider U0 = u0 and V0 = v0 as initial condition defined by Eq. (17) with u0 and
v0 two given vectors in �

N . Thus probability distribution PU0,V0(du, dv) is then equal to the

Copyright c© 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; :1–29
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CONSTRUCTION OF PROBABILITY DISTRIBUTIONS IN HIGH DIMENSION 9

measure δ0(u− u0)⊗ δ0(v − v0) on �N ×�
N in which δ0(u) is the Dirac measure at the origin

of �N . Let {(U(r), V(r)), r ≥ 0} be the unique solution of Eqs. (15) and (16) with the initial
condition

U(0) = u0 , V(0) = v0 a.s. . (28)

Let B� be the random variable defined in Section 2 for which the probability density function
is p(b,�) defined by Eq. (7). Consequently, the random variable U(r) converges in probability
distribution to the random variable B� when r goes to infinity. We can then write

lim
r→+∞ U(r) = B� in probability distribution. (29)

As explained above, the free parameter f0 > 0 introduced in Eq. (16), allows a dissipation
term to be introduced in the nonlinear dynamical system and consequently, allows the transient
response generated by the initial conditions (u0, v0) to be rapidly killed in order to get more
rapidly the asymptotic behavior defined by Eq. (29) and corresponding to the stationary
solution associated with the invariant measure.

4.2. Random generator of independent realizations

In this subsection, we propose a random generator of ns independent realizations
B�(θ1), . . . , B�(θns) of random variable B� whose probability distribution is p(b,�) db. For
θ1, . . . , θns in Θ, let {W(r, θ1), r ≥ 0}, . . . , {W(r, θns), r ≥ 0} be ns independent realizations
of the normalized Wiener stochastic process W introduced in Subsection 4.1. For all 	 fixed
in {1, . . . , ns}, let {(U(r, θ�), V(r, θ�)), r ≥ 0} be the unique solution of the following equation
(see Eqs. (15) and (16)) defined for all r ≥ 0 by

dU(r, θ�) = V(r, θ�) dr , (30)

dV(r, θ�) = −∇uΦ(U(r, θ�),�) dr − f0

2
V(r, θ�) dr +

√
f0 dW(r, θ�) , (31)

with the initial condition

U(0, θ�) = u0 , V(0, θ�) = v0 . (32)

From Eq. (29), we deduce that each independent realization B�(θ�) can be constructed by

B�(θ�) = U(r, θ�) for r sufficiently large. (33)

4.3. Estimation of mathematical expectations

In this subsection, we propose two estimations of the mathematical expectation E{g(B�)}
defined by Eq. (11) and one estimation of E{Y} in which Y = q(A) is the random response of
a large computational model depending on the random parameter A.

(i) Use of the ergodic method. For any realization θ, let {U(r, θ), r ≥ 0} be the solution of
Eqs. (30) to (32). Then using the ergodic theorem [32], we can estimate E{g(B�)} by

E{g(B�)} = lim
R→+∞

1
R

∫ R

0

g(U(r, θ)) dr . (34)
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(ii) Use of the Monte Carlo method. Let B�(θ1), . . . , B�(θns) be ns independent realizations
of random variable B� constructed using the random generator presented in Subsection 4.2.
Then the mathematical expectation E{g(B�)} can be estimated (see also Eq. (13 )) by

E{g(B�)} = lim
ns→+∞

1
ns

ns∑
�=1

g(B�(θ�)) . (35)

Let us now consider a computational stochastic model for which we are interested in estimating
E{Y} in which Y = q(A) is the random response calculated with a large computational
model. Such a mathematical expectation E{Y} cannot generally be estimated using the ergodic
method (see the Remark below). Since A = B�sol for the convergence in probability distribution,
we then propose to use the Monte Carlo method which yields the following estimation

E{Y} = lim
ns→+∞

1
ns

ns∑
�=1

q(B�sol(θ�)) . (36)

Remark. It should be noted that, if the ergodic method can effectively be used to estimate
E{g(B�)} in order to calculate �sol, it can generally not be used to estimate statistics of random
responses of uncertain complex mechanical systems in computational stochastic mechanics
as soon as �sol has been calculated. Let us consider a computational stochastic model for
which we are interested in estimating E{Y} in which Y = q(A) is the random response
calculated with a large computational model and depending on the uncertain parameter
A whose probability distribution is p(b,�sol) db. Note that for large computational models
the numerical construction of one evaluation y = q(a) for a given in �

N is generally very
high. In practice, the total number of such evaluations is restricted to a low number (a few
hundred but certainly not a few thousands, a ten thousands or more). The MCMC method
and then the method proposed consist in constructing an ergodic homogeneous Markov chain
{U(rk), k = 1, . . . , M} admitting as invariant measure the measure p(b,�sol) db. Since Y can be
rewritten as Y = q(B�sol), the use of the ergodic method yields E{Y} 	 1/M

∑M
k=1 q(U(rk, θ))

in which {U(rk, θ), k = 1, . . . , M} is a realization of {U(rk), k = 1, . . . , M}. In general,
convergence is reach for large value of M (several ten thousands or more) and consequently,
would require a very large number M of evaluations y = q(a) that is not realistic. This is the
reason why the ergodic method cannot easily be used to estimate E{Y} when �sol is known
but can effectively be used to estimate �sol.

5. Discretization of the Itô stochastic differential equation

In this section, we construct the discretization of the Itô stochastic differential equation (ISDE)
defined by Eqs. (15) to (17) with the initial condition U0 = u0 and V0 = v0 in which u0 and
v0 are two given vectors in �N . The objective is to construct an approximation of the solution
{(U(r), V(r)), r ≥ 0} of this ISDE. Two integration schemes will be proposed. The first one
will be an explicit Euler scheme and the second one a semi-implicit scheme.

Let m and M two integers such that m < M . The Itô stochastic differential equation will be
solved on the finite interval [0 , (M − 1)Δr] in which Δr is the sampling step of the continous
index parameter r. The integration scheme will be based on the use of the M sampling points
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CONSTRUCTION OF PROBABILITY DISTRIBUTIONS IN HIGH DIMENSION 11

rk such that

Δr =
β

m
, {rk = (k − 1)Δr , k = 1, . . . , M} , (37)

in which β is a given positive real number. Consequently, the two parameters for studying
the convergence of the constructed approximation will be m and M . We then introduce the
following notation

Uk = U(rk) , Vk = V(rk) , Wk = W(rk) for k = 1, . . . , M . (38)

5.1. Explicit Euler scheme

The explicit Euler scheme (see for instance [33, 34]) applied to the ISDE defined by Eqs. (15)
to (17) yields the following scheme for k = 1, . . . , M − 1

Uk+1 = Uk + Δr Vk , (39)

Vk+1 = (1 − f0

2
Δr) Vk + Δr Lk +

√
f0 ΔWk+1 , (40)

with the initial condition
U1 = u0 , V1 = v0 . (41)

In Eq. (40), ΔWk+1 = Wk+1 − Wk is a second-order Gaussian centered �
N -valued random

variable with covariance matrix E{ΔWk+1 (ΔWk+1)T } = Δr [ IN ], with W1 = 0N and where
all the random variables ΔW2, . . . , ΔWM are mutually independent. We have introduced the
�

N -valued random variable Lk = (Lk
1 , . . . , L

k
N) such that for all j, Lk

j = −{∂Φ(u,�)/∂uj}u=Uk

which is the partial derivative of Φ(u,�) with respect to uj in u = Uk. When Lk has to be
calculated, Uk+1 is known by Eq. (39). Consequently, for each j, we approximate Lk

j by the
forward finite difference in the direction defined by Uk+1. Then introducing the �

N -valued
random variable ΔUk,j such that

ΔUk,j = (Uk
1 , . . . , Uk

j−1, U
k
j + ΔUk+1

j , Uk
j+1, . . . , U

k
N) , ΔUk+1

j = Uk+1
j − Uk

j , (42)

for all j in {1, . . . , N} we write

Lk
j 	 −Φ(ΔUk,j ,�) − Φ(Uk,�)

Uk+1
j − Uk

j

. (43)

This scheme is conditionally stable and Δr has to be taken sufficiently small. In pratice,
convergence of the solution has to be analyzed in function of integer m which must be taken
sufficiently large.

5.2. Semi-implicit scheme

The use of an implicit scheme to solve an ISDE (see for instance [34, 30, 35]) requires to solve
a nonlinear algebraic equation for every sampling point rk (for instance, using an iteration
algorithm). Such an implicit scheme allows the step size Δr to be increased in preserving the
stability of the scheme. Nevertheless, such an implicit scheme is time consuming because a very
large number of evaluations of Lk is required due to the nonlinear algebraic equation which
has to be solved at every sampling point. Below we propose a semi-implicit scheme which is
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12 C. SOIZE

a compromise between the explicit scheme presented in Section 5.1 and an implicit scheme.
Such a scheme is restricted to the class of functions Φ(.,�) for which ∇uΦ(u,�) is made up
of a linear part with respect to u and a nonlinear part. The semi-implicit scheme consists in
impliciting the linear part and in expliciting the nonlinear part avoiding the nonlinear algebraic
equation to be solved at every sampling point. Function Φ is then assumed to be written as

Φ(u,�) =
1
2

< [K�] u , u >N +ΦNL(u,�) , (44)

in which the matrix [K�] depends on � and is such that, for all admissible values of
� ∈ Lμ ⊂ �

μ, [K�] belongs to the set �+
N (�) of all the positive-definite symmetric (N × N)

real matrices. Consequently, the random vector L(u) = −∇uΦ(u,�) can be written as

L(u) = LL(u) + LNL(u) , LL(u) = −[K�] u , LNL(u) = −∇uΦNL(u,�) . (45)

The semi-implicit scheme applied to the ISDE defined by Eqs. (15) to (17) yields the following
scheme for k = 1, . . . , M − 1

Uk+1 − Uk =
Δr

2
(Vk+1 + Vk) , (46)

Vk+1 − Vk = −Δr

2
[K�] (Uk+1 + Uk) + Δr Lk

NL − f0

4
Δr (Vk+1 + Vk) +

√
f0 ΔWk+1 , (47)

with the initial condition
U1 = u0 , V1 = v0 . (48)

In Eq. (47), ΔWk+1 is defined in Section 5.1, Lk
NL = (Lk

NL,1, . . . , L
k
NL,N ) and for all j in

{1, . . . , N}, we have (see Eq. (43)),

Lk
NL,j 	 −ΦNL(ΔUk,j ,�) − ΦNL(Uk,�)

Uk+1
j − Uk

j

, (49)

in which ΔUk,j is defined by Eq. (42). Equations (46) and (47) can be rewritten as

[A�] Vk+1 = [B�] Vk − Δr [K�] Uk + Δr Lk
NL +

√
f0 ΔWk+1 , (50)

Uk+1 = Uk +
Δr

2
(Vk+1 + Vk) , (51)

in which the matrices [A�] and [B�] are defined by

[A�] = (1 +
f0

4
Δr) [ IN ] +

Δr2

4
[K�] , [B�] = (1 − f0

4
Δr) [ IN ] − Δr2

4
[K�] . (52)

First, the linear Eq.(50) is solved to calculate Vk+1 and then Eq.(51) yields Uk+1.

6. Estimation of the mathematical expectations and random generator of independent
realizations

In this subsection, we give the estimations of E{g(B�)} (defined by Eq. (11)) and E{Y}
(defined in Section 4.3-(ii)) and we explicit the random generator of independent realizations
of B� using Sections 4.3 and 5.
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CONSTRUCTION OF PROBABILITY DISTRIBUTIONS IN HIGH DIMENSION 13

6.1. Estimation of the mathematical expectation using ergodic method

For θ in Θ, let {Uk(θ), k = 1, . . . , M} be any realization of the family of vector-valued random
variables {Uk, k = 1, . . . , M} calculated by using Eqs. (39) to (41) (explicit Euler scheme) or
Eqs. (50),(51) and (48) semi-implicit scheme). From Eq. (34), for m and M0 fixed, and for M
sufficiently large, E{g(B�)} can be estimated by

E{g(B�)} 	 1
M − M0 + 1

M∑
k=M0

g(Uk(θ)) . (53)

The parameter M0 allows to remove the transient part of the response induced by the intial
conditions. By defintion of M0, the stochastic process is stationary for k ∈ {M0, . . . , M}.
Convergence has to be studied with respect to the two other parameters m and M .

6.2. Random generator of independent realizations

The random generator is described in Section 4.2. For all � (or for � = �sol and then A = B�sol)
and for all 	 in {1, . . . , ns}, let {Uk(θ�), k = 1, . . . , M} be ns independent realizations of the
family of vector-valued random variables {Uk, k = 1, . . . , M} calculated by Eqs. (39) to (41)
(explicit Euler scheme) or by Eqs. (50),(51) and (48) (semi-implicit scheme). From Eq. (29)
and for m and M sufficiently large, we can write

B�(θ�) 	 UM (θ�) , ∀ 	 ∈ {1, . . . , ns} . (54)

Consequently, B�(θ1), . . . , B�(θns) are ns independent realizations of random variable B�

constructed using Eq. (54).

6.3. Estimation of the mathematical expectations using the Monte Carlo method

For all � (or for � = �sol), let B�(θ1), . . . , B�(θns) be ns independent realizations of random
variable B� constructed with the random generator as explained in Subsection 6.2. Then, from
Eqs. (35) and (36) and for ns sufficiently large, it can be deduced that the mathematical
expectations E{g(B�)} and E{Y} can be estimated by

E{g(B�)} 	 1
ns

ns∑
�=1

g(B�(θ�)) , E{Y} 	 1
ns

ns∑
�=1

q(B�sol(θ�)) . (55)

Convergence has to be studied with respect to parameters m, M and ns. Parameter m is related
to the precision of the approximation. Since the invariance measure cannot be chosen as the
probability distribution of the initial conditions, M must be chosen for that the stationarity
of the sequence {Uk}k be obtained. Parameter ns must be chosen such that the estimator of
the mathematical expectation be converged.

7. Construction of a probability model for a nonstationary time series and application to the
construction of random accelerograms for a given Velocity Response Spectrum

This application is devoted to the construction of a probabilistic model of a nonstationary
random time series corresponding to the sampling of a continuous-time stochastic process
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14 C. SOIZE

(random accelerograms) for which the mean value, the standard deviation and the mean
Velocity Response Spectrum (VRS) as a function of the frequency are given (see for instance
[36] for the notion of VRS). We then propose a new formulation to solve this stochastic inverse
problem.

7.1. Definition of the time series and its available information

Let {Γ1, . . . , ΓN} be a real-valued random time series in which N = 128. Let � = (Γ1, . . . , ΓN )
be the �N -valued random vector associated with this random time series. The problem is the
construction of the probability distribution on �

N of the random vector � using the MaxEnt
principle for which the available information is defined below.

(i) The mean value E{�} =∈ �
N is zero.

(ii) For all j in {1, . . . , N}, since the random variable Γj is centered, the variance of
Γj is written as σ2

j = E{Γ2
j} < +∞. Thus � is a second-order random variable because

E{‖�‖2
N} =

∑N
j=1 σ2

j < +∞. Figure 1 (left) displays the graph of the standard-deviation
function j �→ σj from {1, . . . , N} into �+.

(iii) Let {Sk(�), k = 1, . . . , ν} be the random VRS with ν = 40 in which index k is associated
with the given frequencies ω1, . . . , ων and where � �→ S(�) = (S1(�), . . . , Sν(�)) is a given
nonlinear mapping from �

N into �ν such that

Sk(�) = ωk max{|xk
1 |, . . . , |xk

N |} , xk
j =

N∑
j′=1

[Bk]jj′ γj′ , (56)

in which � = (γ1, . . . , γN ) and where {[Bk], k = 1, . . . , ν} is a given family of (N × N) real
matrices. Consequently, we have S(−�) = S(�). Let S(�) be the �ν-valued random variable
such that

S(�) = (S1(�), . . . , Sν(�)) , (57)

for which the mean value E{S(�)} = S is a given vector S in �
ν . Figure 1 (right) displays

the graph of function k �→ Sk from {1, . . . , ν} into �+.
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E{Γ2
j} (left figure) and graph of k �→ Sk (right figure).
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7.2. Normalization

In this section we construct the random vector A with values in �
N as a normalization of

random vector �. We then construct the probability distribution and the random generator
of A and it will be easy to deduce the probability distribution and the random generator of
random vector �. Let A = (A1, . . . , AN ) be the �N -valued random variable defined, for all j
in {1, . . . , N}, by Γj =

√
N σj Aj . We can then rewrite � as

� =
√

N [σ] A , [ σ ]jj′ = σj δjj′ , (58)

in which [ σ ] is a (N×N) real diagonal matrix. The available information introduced in Section
7.1 for � allows the corresponding available information for A to be easily deduced.

(i) The mean value E{A} =∈ �
N because E{A} = N−1/2 [σ]−1 E{�}. Consequently, A is a

centered random variable,
E{A} = . (59)

(ii) For all j in {1, . . . , N}, the second-order moment of random variable Aj is thus equal to
1/N and consequently, we have

E{A2
j} =

1
N

, ∀ j ∈ {1, . . . , N} , (60)

and then E{‖A‖2
N} = 1.

(iii) Let s = (s1, . . . , sν) ∈ �
ν in which sk = 1 for all k = 1, . . . , ν (all the components of

vector s are equal to 1). Let a �→ s(a) = (s1(a), . . . , sν(a)) be the nonlinear mapping from �
N

into �ν such that

sk(a) =
Sk(

√
N [σ] a)
Sk

, ∀ k = 1, . . . , ν . (61)

It can then easily be deduced that

E{s(A)} = s ∈ �
ν . (62)

Therefore, the available information which allows the probability distribution of random vector
A to be constructed is maded up of Eqs. (59), (60) and (62).

7.3. Defining the unknown Lagrange multipliers and function Φ

Taking into account the normalization condition for the probability density function pA and
the available information defined by Eqs. (59), (60) and (62), the use of the MaxEnt principle
yields

pA(a) = csol
0 exp{− < �sol

1 , a >N − < �sol
2 , a2 >N − < �sol

3 , s(a) >ν)} , ∀a ∈ �
N , (63)

in which a2 denotes the vector (a2
1, . . . , a

2
N) in �

N and where, for the solution, �sol
1 ∈ �

N ,
�sol

2 ∈ �
N and �sol

3 ∈ �
ν are the values of the Lagrange multipliers associated with the

constraints defined by Eq. (59), (60) and Eq. (62) respectively. Since S(−�) = S(�) (see
Section 7.1) and from Eqs. (59) and (63), it can be proven that �sol

1 =. Therefore, the Lagrange
multiplier � introduced in Section 2 can be written as � = (�2,�3) ∈ Lμ ⊂ �

μ = �
N × �

ν in
which μ = N + ν and where the admissible set Lμ of � is such that Lμ = (]0 , +∞[)N × �

ν .
We then have μ = 168. The mapping a �→ g(a) from �

N into �μ introduced in Section 2 can
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then be written as g(a) = (a2, s(a)) ∈ �
N × �

ν = �
μ. Let h = (h1, . . . , hN ) be the vector

in �
N such that hj = 1/N for all j. Vector f ∈ �

μ introduced in Eq. (2) is then written
as f = (h, s) ∈ �

N × �
ν = �

μ. We use the semi-implicit scheme presented in Section 5.2
for the discretization of the Itô stochastic differential equation. Function Φ(u,�) defined by
Eq. (14) is then written as Φ(u,�) = 1

2 < [K�] u , u>N + ΦNL(u,�) (see Eq. (44)) in which
matrix [K�] is such that [K�]jj′ = 2{�2}j δjj′ and where ΦNL(u,�) = <�3 , s(u)>ν . For all
j fixed in {1, . . . , N}, the generalized partial derivative of function s with respect to uj is
represented by the function u �→ ∂s(u)/∂uj which is locally bounded on �N . Therefore, for all
�2 in (]0 , +∞[)N ⊂ �

N and for all �3 in �
ν , Eqs. (23) to (25) are satisfied.

7.4. Computation of the vector-valued Lagrange multipliers using ergodic method

Lagrange multiplier �sol = (�sol
2 ,�sol

3 ) ∈ Lμ ⊂ �
μ = �

N × �
ν are computed in solving Eq. (10)

as explained at the end of Section 2.

(i) The interior-reflective Newton method used to solve Eq. (10) is initialized with �0 =
(�0

2,�
0
3) ∈ (]0 , +∞[)N × �

ν = Lμ with �0
2 = 0.5 η N 1N and �0

3 = 0.5 ν−1(1 − η)N 1ν with
η = 0.98 and where 1N and 1ν are the vectors in �

N and �
ν for which all the components

are equal to 1. The solution has been calculated in four steps (in order to optimize the
computer time). For step 1, the parameters are M = 600 and iter = 1, . . . 16 and for step
2, are M = 2800 and iter = 17, . . . 30. Figure 2 (right) displays the graph of the function
iter �→ convALG(iter) = ‖E{g(B�(iter))} − f‖2

μ. This calculation is completed by two other
steps, one for which M = 8300 with 7 iterations and the last one for which M = 20000 with
7 iterations.

(ii) The mathematical expectation defined by Eq. (11) is estimated by using the ergodic
method (see Eq. (53)) with M0 = 300 and the semi-implicit scheme presented in Section 5.2
is used to construct a realization {Uk(θ), k = 1, . . . , M} of the sequence of the vector-valued
random variables {Uk, k = 1, . . . , M} . For each value of vector � = (�2,�3) corresponding
to an iteration of the algorithm, the sampling step defined by Eq. (37) has been written
as Δr = β/m with β = 2π/(

√
2λmax

2 ) in which λmax
2 = max{(�2)1, . . . , (�2)N} and with

m = 5. Parameter f0 has been fixed to 1. These values of parameters Δr and f0 have been
deduced from a convergence analysis. For instance, Figure 2 (left) displays the graph of the
function M �→ conv(M) = 1

M

∑M
k=1 ‖Uk(θ)‖2

N for � = �sol and for realization θ. Therefore
limM→+∞ conv(M) = E{‖B�sol‖2

N} = E{‖A‖2
N} and we must have limM→+∞ conv(M) = 1

(see Eq. (60)). For M = 20000, we have conv(M) = 0.982 instead of 1 which corresponds to
an error of about 1.8%. The convergence is then reasonably reached for M = 20000.

(iii) Figure 3 shows solution �sol and displays the graph of j �→ (�sol
2 )j (left figure) and the

graph of k �→ (�sol
3 )k (right figure).

7.5. Estimation of the constraints using the Monte Carlo method with the random generator

Solution �sol of Eq. (10) being known, ns independent realizations of random variable A = B�sol

are constructed using the method presented in Section 6.2. The estimation of the mathematical
expectation E{g(A)} of the constraint is carried out with the Monte Carlo method as explained
in Section 6.3 (see Eq. (55)). Computation is performed with m = 5 (as in Section 7.4),
M = 400 and ns = 300. (i) Concerning the value of M , Figure 4 (left) displays the graph
of the function M �→ conv�(M) = 1

M

∑M
k=1 ‖Uk(θ�)‖2

N for � = �sol and for a realization θ�
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2 )j (left figure) and graph of k �→ (�sol

3 )k (right figure).
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Figure 4. Graph of M �→ conv�(M) (left figure) and graph of j �→ Γj(θ�) for a realization θ� (right
figure).
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Figure 6. Graph of j �→ σj = E{Γ2
j}1/2

(left figure) and graph of k �→ Sk (right figure). Reference
(dashed lines). Estimation with the random generator (solid lines).

(it should be noted that all the graphs are similar for 	 = 1, . . . , ns). This graph allows the
value of M to be estimated in order to obtain a realization UM (θ�) of the stationary solution
of the ISDE. Therefore, M must be such that the graph be flat that is reasonably true for
M = 400. Therefore Eq. (54) is satisfied in the mean-square sense for M = 400. Figure 4
(right) displays the corresponding trajectory of the random time series �, that is to say the
graph of the realization j �→ Γj(θ�) in which �(θ�) =

√
N [σ] A(θ�) with A(θ�) 	 UM (θ�).

(ii) Concerning the value of ns, Figure 5 shows the graph of ns �→ convMC(ns) =
1

ns

∑ns

�=1 ‖A(θ�)‖2
N which is an estimation of the second-order moment E{‖A‖2

N} =
E{‖B�sol‖2

N} of the random variable ‖A‖N .

(iii) Figure 6 shows the estimation of the constraints (standard deviation and mean velocity
response spectrum) constructed with the random generator and compares this estimation
with the references defined in Figure 1. Figure 6 (left) displays the graph of the standard-
deviation function j �→ σj from {1, . . . , N} into �+. Figure 6 (right) displays the graph of the
mean velocity response spectrum k �→ Sk from {1, . . . , ν} into �+. The comparisons are good
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and validate the method proposed. The small fluctuations of the estimation of the standard-
deviation function computed by the Monte Carlo method using the random generator can be
reduced in increasing the value of ns.

8. Construction of a probability model for positive-definite band random matrices

This application is devoted to the construction of a probabilistic model of a band random
matrix with values in the set of all the symmetric positive-definite (n×n) real matrices �+

n (�),
for which the available information is made of the mean value, the norm and the norm of its
inverse are given. With such an available information, if the matrix is not a band matrix but
a full matrix, an explicit construction can be performed for any value of the matrix dimension
(see [8, 9, 10]). If the matrix is a band matrix, such an explicit construction cannot be carried
out and a numerical construction must be done. We then propose hereinafter such a numerical
construction.

8.1. Definition of the band random matrix and available information

Let [ G ] be the band random matrix with values in �
+
n (�) with n = 4, for which the band

structure is such that

[ G ] =

⎡
⎢⎢⎣

G11 G12 0 0
G12 G22 G23 0
0 G23 G33 G34

0 0 G34 G44

⎤
⎥⎥⎦ , (64)

The problem is the construction of the probability distribution on �
+
n (�) of [ G ] using the

MaxEnt principle for which the available information is defined by

E{[ G ]} = [ In] ,
E{‖[ G ] − [ In]‖2

F }
‖[ In]‖2

F

= δ2 < +∞ , E{‖[ G ]−1‖2
F} = α < +∞ , (65)

in which [ In] is the identity (n × n) matrix, ‖[Mat]‖2
F = tr([Mat]T [Mat]) is the square of

the Frobenius norm of the real matrix [Mat], δ = 0.35 which controls the dispersion of
random matrix [ G ] and α = 5.6 which must be a positive and finite real number. The first
equation shows that [ G ] is not a centered random variable and its mean value is equal to
the identity matrix. The second equation means that [ G ] is a second-order random variable.
By construction, band random matrix [ G ] belongs to �+

n (�) almost surely. Therefore, [ G ]−1

exists almost surely but, in general, is not a second-order random variable that is to say,
E{‖[ G ]−1‖2

F } = +∞. This is the reason why the third equation is considered as an available
information.

Since [ G ] is positive definite almost surely, random matrix [ G ] can be written (Choleski
decomposition) as

[ G ] = [ L ]T [ L ] , [ L ] =

⎡
⎢⎢⎣

A2
1 A2 0 0

0 A2
3 A4 0

0 0 A2
5 A6

0 0 0 A7

⎤
⎥⎥⎦ , (66)
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in which A = (A1, . . . , AN ) is a �
N -valued random vector with N = 7. Clearly, Eq. (66)

defines a unique nonlinear deterministic mapping a �→ [ G(a) ] from �
N into �+

n (�) such that
[ G ] = [ G(A) ] and a unique nonlinear deterministic mapping a �→ e(a) from �

N into �N such
that (G11, G12, G22, G23, G33, G34, G44) = e(A). The problem above is then equivalent to the
construction of the probability distribution on �

N of the random vector A using the MaxEnt
principle for which the available information is deduced from Eq. (65) and can be rewritten as

E{e(A)} = e ∈ �
N , E{‖[ G(A) ]‖2

F} = n(δ2 + 1) , E{‖[ G(A) ]−1‖2
F} = α < +∞ , (67)

in which e = (1, 0, 1, 0, 1, 0, 1) ∈ �
N .

8.2. Defining the unknown Lagrange multipliers and function Φ

Comparing Eq. (67) with Eq. (2), the nonlinear mapping a �→ g(a) from �
N into �μ introduced

in Section 2 can be written as g(a) = (e(a), ‖[ G(a) ]‖2
F , ‖[ G(a) ]−1‖2

F ) ∈ �
N × � × � = �

μ in
which μ = N + 2 = 9. Vector f ∈ �

μ introduced in Eq. (2) is written as f = (e, n(δ2 + 1), α).
The Lagrange multiplier � introduced in Section 2 can then be written as � = (�1, λ2, λ3) ∈
Lμ ⊂ �

μ = �
N × �× �. The admissible set Lμ is such that Lμ = �

N×]0 , +∞[×]0 , +∞[. We
use the explicit Euler scheme presented in Section 5.1 for the discretization of the Itô stochastic
differential equation. Function Φ(u,�) is then defined by Eq. (14) and for all �1 in �N , for all
λ2 and λ3 in ]0 , +∞[, Eqs. (23) to (25) are satisfied.

8.3. Computation of the vector-valued Lagrange multipliers

Lagrange multiplier �sol = (�sol
1 , λsol

2 , λsol
3 ) ∈ Lμ ⊂ �

μ are computed in solving Eq. (10) as
explained at the end of Section 2. The probability density function defined by Eq. (6) is then
written as

pA(a) = csol
0 exp{− < �sol

1 , e(a) >N −�sol
2 ‖[ G(a) ]‖2

F − �sol
3 ‖[ G(a) ]−1‖2

F } , ∀a ∈ �
N , (68)

(i) The interior-reflective Newton method used to solve Eq. (10) is initialized with �0 =
(�0

1, λ
0
2, λ

0
3) ∈ Lμ ⊂ �

μ with �0
1 = 1N and λ0

2 = λ0
3 = 2 where 1N is the vector in �

N for
which all the components are equal to 1. Figure 7 (right) displays the graph of the function
iter �→ convALG(iter) = ‖E{g(B�(iter))} − f‖2

μ.

(ii) The mathematical expectation defined by Eq. (11) is estimated by using the Monte
Carlo method (see Eq. (55)), the random generator (see Eq. (54)) with the Explicit Euler
scheme presented in Section 5.1. For any value of vector � corresponding to an iteration
of the algorithm, parameter f0 is fixed to 1 and the sampling step defined by Eq. (37)
is deduced from a convergence analysis and is written as Δr = β/m with β = 1 and
m = 5. Concerning the value of M , Figure 7 (left) displays the graph of the function
M �→ conv�(M) = 1

M

∑M
k=1 ‖Uk(θ�)‖2

N for � = �sol and for a realization θ� (it should be
noted that all the graphs are similar for 	 = 1, . . . , ns and for any admissible value of vector
�). This graph allows the value of M to be estimated in order to obtain a realization UM (θ�)
of the stationary solution of the ISDE. Therefore, M must be such that the graph be flat that
is reasonably true for M = 5000. Therefore Eq. (54) is satisfied in the mean-square sense for
M = 5000.
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(iii) The value of ns has also been deduced from a convergence analysis. For instance,
at solution � = �sol, Figures 8 (left and right) show the graphs of ns �→ δ(ns) such that
1

ns

∑ns

�=1 ‖[ G(A(θ�)) ]‖2
F = n(δ(ns)2 + 1) and ns �→ α(ns) = 1

ns

∑ns

�=1 ‖[ G(A(θ�)) ]−1‖2
F =

n(δ(ns)2 + 1) An excellent convergence is obtained for ns = 600 which is the value used in the
computation.

(iv) Concerning solution �sol, we get �sol
1 = (0.7381, 4.1697, 1.2465,−0.9248, 0.8998, 4.2584,

0.8714), λsol
2 = 2.2293 and λsol

3 = 1.7749.
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Figure 7. Graph of M �→ conv�(M) (left figure) and graph of iter �→ convALG(iter) (right figure).
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Figure 8. Graph of ns �→ δ(ns) (left figure) and graph of ns �→ α(ns) (right figure).

8.4. Estimation of the constraints with the random generator

Solution �sol of Eq. (10) being known, ns independent realizations of random variable A = B�sol

are constructed using the random generator presented in Section 6.2 (exactly, as we have
performed to calculate �sol in Section 8.3). The estimations of the mathematical expectations
E{g(A)} of the constraints are calculated by the Monte Carlo method as explained in Section
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6.3 (see Eq. (55)) and as performed above in Section 8.3. Computation is then performed with
f0 = 1, m = 5, M = 5000 and ns = 600.

(i) Concerning the estimation of the constraints, we obtain

E{[ G ]} 	

⎡
⎢⎢⎣
1.0001 0.0051 0 0
0.0051 0.9910 0.0057 0

0 0.0057 1.0222 0.0077
0 0 0.0077 1.0056

⎤
⎥⎥⎦ , (69)

which has to be compared to the identity matrix, δ 	 0.3529 which has to be compared to
0.3500 and finally, α 	 5.6053 which has to be compared to 5.6000. We then have a good
comparison.

9. Extension of the theory to the case of a probability density function with any support and
application to the Karhunen-Loeve expansion of a Non-Gaussian positive-valued random

field

In a first subsection, we show how the previous developments can be used for a probability
density function for which its support is not �N but is any part A of �N . The second subsection
will deal with an application devoted to the construction of the Karhunen-Loeve expansion of
a subclass of Non-Gaussian positive-valued random fields for which the general class has been
introduced and analyzed in [37].

9.1. Extension of the theory to a probability density function with any support

Let A be any part of �N , x = (x1, . . . , xN ) be any vector in �
N and let dx = dx1 . . . dxN be

the Lebesgue measure on �
N . Let X = (X1, . . . , XN ) be a �

N -valued second-order random
variable for which the probability distribution PX(dx) = pX(x) dx on �

N is unknown and is
represented by a probability density function x �→ pX(x) from �

N into �
+ whose support is

A ⊂ �
N (consequently, pX(x) = 0 for all x /∈ A). We then have

Supp pX = A ,

∫
�N

pX(x) dx =
∫

A

pX(x) dx = 1 . (70)

The problem to be solved is the construction of pX using the MaxEnt principle for which the
constraints associated with the available information (see Eq. (2)) is

E{g(X)} = f , (71)

in which f = (f1, . . . , fμ) is a given vector in �
μ and where x �→ g(x) = (g1(x), . . . , gμ(x)) is a

given measurable mapping from �
N into �μ. We then obtain (see Section 2 and Eq. (6)),

pX(x) = �A(x) csol
X exp(− < �sol, g(x) >μ) , ∀x ∈ �

N , (72)

in which �A(x) = 1 if x ∈ A and �A(x) = 0 if x /∈ A and where csol
X = exp(−λsol

0 ) is the
constant of normalization calculated with Eq. (70). It should be noted that we cannot directly
used the previous theory in introducing the function Φ(u,�) = − ln(�A(u))+ < �, g(u) >μ

(see Eq. (14)) because the function u �→ ‖∇uΦ(u,�)‖N is not a locally bounded function on
�

N (it is a distribution or a generalized function). We must then proceed differently.
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Note that (1) the calculation of the cumulative distribution function (probability
distribution) or the calculation of the moments for the random responses of the computational
model or (2) the calculation of the left-hand side of Eq. (71) lead us to calculate quantities
of the type E{h(X)} in which x �→ h(x) is a given vector-valued function defined on �

N . Let
pA be the probability density function of the �N -valued random variable A = (A1, . . . , AN )
defined in Section 2 and constructed using the method presented in Sections 3 to 6. We then
have

E{h(X)} =
∫
�N

h(x)�A(x) csol
X exp(− < �sol, g(x) >μ) dx , (73)

which can be rewritten as

E{h(X)} =
csol
X

csol
0

∫
�N

h(a)�A(a) pA(a) da , (74)

in which pA is defined by Eq. (6). Taking h(a) = 1, it can be deduced that csol
X /csol

0 =
1/E{�A(A)}. Finally, E{h(X)} can be calculated by

E{h(X)} =
E{h(A)�A(A)}

E{�A(A)} , (75)

where the mathematical expectations in the right-hand side of Eq. (75) are calculated by the
theory developed in Sections 2 to 6.

Remark. It should be noted that the proposed method consists in solving the problem on an
unconstrained support and then in restricting the solution on the desired support A, rescaling
the probability density function. This implies that the solution on the unrestricted support
exists, that is to say that the function x �→ g(x) = (g1(x), . . . , gμ(x)) from �

N into �μ be such
that the conditions defined by Eqs. (23) to (25) hold. This is the case for the fundamental
application presented below for which the proposed method is very efficient. Nevertheless,
such a solution may not exist. In order to explain the difficulties and to give a few ideas to
construct the solution in such a case, we then propose to analyze below the ”extreme” case
for which the probability density function is uniform on a compact support A. In this case
g is zero and Eq. (72) yields pX(x) = �A(x) csol

X for all x in �
N . Clearly, the solution pA on

the unrestricted support �N does not exist. To analyze such a case, a regularization gε of the
function g depending on a parameter ε > 0 can be introduced such that, for all ε > 0, (1)
the function x �→ gε(x) is differentiable on �

N , (2) for all x in A, we have gε(x) = 0, (3) the
conditions defined by Eqs. (23) to (25) hold for gε and (4) the support of gε(x), which is �N

tends to the compact support A when ε goes to zero. Such a regularization is not always easy
to construct, but if it is possible, then this method is very efficient. In order to illustrate such
a method, let us consider the simple case for which N = 1 and A = [−1 , +1]. We can the
choose the following regularization: gε(x) = 0.5 ε−2(x − 1)2 if x > 1, gε(x) = 0 if x ∈ A and
gε(x) = 0.5 ε−2(x + 1)2 if x < −1. In this case, x �→ dgε(x)/dx is a continuous function on �

such that dgε(x)/dx = ε−2(x−1) if x > 1, dgε(x)/dx = 0 if x ∈ A and dgε(x)/dx = ε−2(x+1)
if x < −1. Then for ε sufficiently small (but not to small), the method would be very efficient.

9.2. Application to the Karhunen-Loeve expansion of a Non-Gaussian positive-valued random
field

We consider the following computational model resulting from the finite element discretization
of an elliptic boundary value problem (for instance, a linear elastostatic problem on a bounded
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3D domain) and written as

[K] Y = r , [K] =
n∑

j=1

Zj [kj ] , (76)

in which Z = (Z1, . . . , Zn) is the spatial sampling of a positive-valued random field (for
instance, the Young modulus in linear isotropic elasticity for a heterogeneous material), where
[k1], . . . , [kn] are n given symmetric real matrices, where r is a given vector and where Y is
the unknown random vector. The random matrix [K] is assumed to be positive-definite almost
surely (a.s) and consequently, Y = [K]−1 r almost surely. The mean value z = (z1, . . . , zn) of Z
is z = E{Z}. Since Z corresponds to the sampling of a positive-valued random field, then for
all j ∈ {1, . . . , n}, it is assumed that zj > 0 and Zj > 0 almost surely. We then introduce the
normalized random vector G = (G1, . . . , Gn) with values in �

n such that Zj = zj Gj for all
j ∈ {1, . . . , n}. Therefore, we have Gj > 0 almost surely for all j ∈ {1, . . . , n}. The probability
distribution of random vector G must be such that Y is a second-order random variable, i.e
E{‖Y‖2} = cY < +∞. Using similar developments to those given in Ref. [37] and taking into
account that for all g1 > 0, . . . , gn > 0, we have

(max{ 1
g1

, . . . ,
1
gn

})2 ≤ 1
g2
1

+ . . . +
1
g2

n

, (77)

it can be proven that E{‖Y‖2} = cY < +∞ if the following inequality holds,

E{ 1
G2

1

+ . . . +
1

G2
n

} = cG < +∞ . (78)

The Karhunen-Loeve expansion GN at order N of the random field G yields the following
approximation for the �n-valued random vector G,

GN = G +
N∑

α=1

√
vα Xα �

α , (79)

in which G = (G1, . . . , Gn) with Gj = 1 for all j. In Eq. (79), �1, . . . ,�N are the orthonormal
eigenvectors (<�α ,�β >= δαβ) associated with the N largest eigenvalues v1 > v2 > . . . > vN

of the covariance matrix [CG] = E{(G − G) (G − G)T } of G which is assumed to be given.
For the construction by the MaxEnt principle of the probability distribution on �

N of the
second-order �N -valued random variable X = (X1, . . . , XN ), the available information is the
following,

Supp pX = A ⊂ �
N , (80)

E{X} = 0 , (81)

E{X XT } = [IN ] , (82)

E{s(X)} = κ < +∞ , (83)

in which for all x = (x1, . . . , xN ) ∈ A, we have

s(x) =
n∑

j=1

(Gj +
N∑

α=1

√
vα xα ϕα

j )−2 . (84)
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The support A of pX is defined by

A = {x ∈ �
N such that ∀j ∈ {1, . . . , n} , Gj +

N∑
α=1

√
vα xα ϕα

j > 0} . (85)

The nonlinear mapping x �→ g(x) from �
N into �μ introduced in Section 2 can be written as

g(x) = (x , e(x) ,
1
κ

s(x)) , (86)

in which μ = N + N(N + 1)/2 + 1 and where e(x) is a vector in �
N(N+1)/2 constituted of

the elements (stored column rise) of the upper triangular part (including the diagonal) of the
matrix x xT . The vector f in �

μ introduced in Eq. (71) is then written as

f = (0N , e , 1) , (87)

in which 0N = (0, . . . , 0) ∈ �
N and where e = E{e(X)} is the vector in �

N(N+1)/2 constituted
of the elements (stored column rise) of the upper triangular part (including the diagonal) of
the matrix [IN ] (and consequently, constituted of 0 and 1).

The Lagrange multiplier � introduced in Section 2 can then be written as � = (�1,�2, λ3) ∈
Lμ ⊂ �

μ = �
N × �

N(N+1)/2 × �. The semi-implicit scheme defined is Subsection 5.2 is used
to discretize the Itô stochastic differential equation. Function Φ(u,�) is defined by Eq. (44) in
which matrix [K�] is such that, for all u in �

N ,

< �2 , e(u) >
N(N+1)/2=

1
2

< [K�] u , u >N , (88)

and vector LNL(u) is given by

LNL(u) = −�1 − λ3

κ
∇us(u) . (89)

The gradient ∇us(u) = (∂s(u)
∂u1

, . . . , ∂s(u)
∂uN

) at point u = (u1, . . . , uN) is such that, for all
α ∈ {1, . . . , N},

∂s(u)
∂uα

= −2
n∑

j=1

√
vαϕα

j

(Gj +
∑N

β=1

√
vβ uβ ϕβ

j )3
. (90)

It should be noted that the subset of the admissible values of �2 is such that [K�] is a positive-
definite matrix and the subset of the admissible values of λ3 is ]0 , +∞[. Since the value of κ
is arbitrary, λ3 can be fixed to a given value denoted by λsol

3 . The Lagrange multipliers �sol
1

and �sol
2 are computed in solving Eq. (71) by using Eq. (75). The probability density function

defined by Eq. (6) is written as

pA(a) = csol
0 exp{− < �sol

1 , a) >N − < �sol
2 , e(a) >

N(N+1)/2 −λsol
3 s(a)} , ∀a ∈ �

N , (91)

For the numerical application, n = 100 and the values of
√

v1, . . . ,
√

v20 are respectively,
2.78, 1.18, 0.82, 0.48, 0.38, 0.28, 0.23, 0.21, 0.18, 0.17, 0.15, 0.14, 0.13, 0.11, 0.106, 0.102,
0.09, 0.088, 0.081, 0.080. Figure 9 displays the graph of the function N �→ error(N) =
E{‖G − GN‖2/E{‖G‖2} = (tr{[CG]} − ∑N

α=1 vα)/tr{[CG]} which allows the error to be
measured when G is replaced by the K-L expansion GN . It can be seen that N = 10 implies
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Figure 9. Graph of N �→ error(N) showing the convergence of Karhunen-Loeve expansion.
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Figure 10. Graph of M �→ conv(M) (left figure) and graph of iter �→ convALG(iter) (right figure).

a reasonable relative error. The mathematical expectations in Eq. (75) are estimated by
using the ergodic theory (see Eq. (53)) and the semi-implicit scheme is used to construct a
realization {Uk(θ), k = 1, . . . , M} of the random variables {Uk, k = 1, . . . , M}. The sampling
step defined by Eq. (37) is taken as Δr = 0.01. Parameter f0 is equal to 0.5, M0 = 200, 000
and M = 600, 000. These values of parameters Δr, f0, M0 and M have been derived from a
convergence analysis. The value of λ3 is fixed to the value λsol

3 = 0.01 and Eq. (71) is solved
with respect to (�1,�2) by using the trust-region dogleg algorithm which is a variant of the
Powell dogleg method. The initial values used are �0

1 = 0.8 �N and �0
2 = 0.2 e. Figure 10 (left)

displays the graph of the function M �→ conv(M) showing the convergence of the estimation
of E{‖B

e�sol‖2
N} by using the ergodic method with �̃ = (�1,�2). Figure 10 (right) displays the

graph of the function iter �→ convALG(iter) = ‖E{g(B
e�(iter))}− f‖2

μ−1 showing the convergence
of trust-region dogleg algorithm in function of the iteration number. Figure 11 (left) compares
the graph α �→ (�sol

1 )α of the solution for �1 with the graph α �→ (�0
1)k of the initial value

�0
1 = 0.8 �N . Figure 11 (right) compares the graph k �→ (�sol

2 )k of the solution for �2 with the
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Figure 11. Left figure: Graph of α �→ (�sol
1 )α (circle marker) and graph of α �→ (�0

1)α (dot marker).

Right figure: Graph of k �→ (�sol
2 )k (circle marker) and graph of k �→ (�0

2)k (dot marker).

graph k �→ (�0
2)k of the initial value �0

2 = 0.2 e. For the solution obtained �sol = (�sol
1 ,�sol

2 , λsol
3 )

with λsol
3 = 0.01, Eq. (81) and Eq. (82) are satisfied at 10−11 for each components and Eq. (83)

yields κ = 140.027. The results obtained are thus very good.

10. Conclusions

We have proposed a method to effectively construct the probability density function of a
random variable in high dimension and for any support of its probability distribution by using
the MaxEnt principle. To calculate the integrals of the problem in high dimension and to
construct a generator of independent realizations, an alternative algorithm to the Metropolis-
Hastings or Gibbs algorithms is proposed. This algorithm is derived from the discretization
of an Itô stochastic differential equation for which the stability, the speed of convergence
and the transient part can be controlled. The method proposed is validated through three
fundamental applications. The first one is a new formulation of the stochastic inverse problem
consisting in constructing the probability distribution in high dimension and of its generator
for a vector-valued random variable corresponding to an unknown non-stationary random time
series (random accelerograms) for which the Velocity Response Spectrum is given. The second
one is also a new formulation related to the construction of the probability distribution in
high dimension and of its generator for positive-definite band random matrices. Clearly, the
method proposed can be used for any sparse random matrix. Finally, we present an extension
of the theory when the support of the probability distribution in high dimension of the random
variable is not all the space but is any part of the space. The third application is then a new
formulation related to the construction of the probability distribution in high dimension for
the Karhunen-Loeve expansion of Non-Gaussian positive-valued random fields.
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