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Abstract

In this paper, one provides a robust modelling for the screw-attachment of large
light partition wall between plasterboard (CPC) plate and metallic frame. The anal-
ysis of shear behaviour of this attachment under mechanic loads has been carried
out by using an experimental approach taking into account the complexity of the
mechanical systems. A deterministic model is then proposed to fit the experimental
results. A mean model is identified using the experiments. Since there is variabil-
ity in the experimental results and since the mean model corresponds to a rough
approximation, there are uncertainties in the mean model which are taken into
account with a parameter probabilistic approach. The probabilistic approach of
uncertain parameters is constructed using the Maximum Entropy Principle under
the constraints defined by the available information. The identification of unknown
parameters of the probability model is performed using the experimental data which
lead us to an optimization problem which has to be solved. Finally, the numerical
results are presented and validated with experiments.

Keywords: Screw attachment; Plasterboard; Probabilistic model; Experimental
identification.



1 Introduction

Nowadays, lightweight metal frames are widely used in construction. This type of
frames has many advantages such as, rapidity construction and building flexibility,
the facility of assemblage and of dismantiling. . . They are used either as load-
bearing elements such as in residential, office or industrials buildings, or as non
load-bearing elements in partition walls and suspended ceilings. In this research,
we are concerned by the behaviour of a non load-bearing element. The chosen
element is a large light partition wall with plasterboard using metallic frame. The
plasterboard [cardboard-plaster-cardboard (CPC) multilayer] screwed with a metal
frame on both sides, and are made of a body of plaster stickled with two sheets
of cardboard on both sides. They are linked with the metal frame using screws.
The dimension of a large light partition currently reaches more than 10 meters. Its
mechanical and thermomechanical behaviour can be analyzed with computational
models such as finite element models. Validation can be obtained using experimen-
tal tests . However, experimental tests cannot be carried out when the structural
dimensions exceed those of the testing furnaces (generally up to three meters).
Given the complexity of such a mechanical system, uncertainties exist in the sys-
tem parameters. One very efficient way to take into account uncertainties in the
computational model is using the probability theory. Some previous works have
been carried out in this field and a deterministic and a probabilistic model for
thermomechanical analysis of plasterboard plate submitted to fire load was pro-
posed [8][9][10] .The present work is a extension to large light partitions. The
work is focused on the screwed attachment between the plasterboard plate and the
metallic frame. A full computational model of the structure with the attachments
would require to introduce a multiscale nonlinear micro-macro model to describe
the behaviour of the screw between the plasterboard plates and the metallic frame.
Such a model would be very difficult to develop and a lot of data would be miss-
ing to perform efficient caculations.This is why we didn’t try to develop such an
approach and we have preferred to analyze a shear behaviour of the screw in the
plasterboard plate using an experimental analysis and then fitting an equivalent
constitutive equation with the experimental databases. The first section deals with
a shear analysis of such an attachment under mechanical loads which is carried
out by using an experimental approach. The experimental results were performed
by the load-displacement curves. In the second section, a deterministic model is
then proposed to fit the average experimental results. The parameters of this mean
model are identified experimentally. Since there are variability in the experimental
results due to materials and manufacturing processes, and since the mean model
corresponds to a rough approximation, uncertainties in the mean model are taken
into account using a probabilistic approach. The next section consists in developing
the probabilistic model which is constructed using the Maximum Entropy Principle
[4][5] under the constraints defined by the available information. The identification
of the unknown parameters of the probability model is performed again using the
experimental data which leads us to the solution of the optimization problem to be
solved. Finally, the numerical results are presented and validated with experiments.



Concerning the methodology used, the identification of the probabilistic model
is performed in 2 steps. The first one is devoted to the first identification of the
mean parameters of the shear behaviour for the screw attachment in minimizing a
distance between the experimental average value and the average mean prediction.
The second one consists in identifying both the mean parameter and the dispersion
parameter of the probabilistic model starting from the mean value identified in step
one. This means that step one must be viewed as the primary computation step to
perform the global identification in step 2.

In this paper the number of experiments is limited to a small number which is 10.
It should be noted that such a number is always small due to the cost of experiments.
In this condition, the variability observed with this small number of experiments is
not representative of real statistical fluctuations which could be observed if a large
number of experiments was available. A simply average deterministic function with
known limits for variability can not be used. Such a deterministic approach would
not allow the probability to reach the bounds to be known. This is the reason why
a probabilistic approach is used and the probability model is constructed with the
powerful Information Theory. Finally, the great interest of such an approach is to
propose a practical design solution based on a probabilistic approach and not in an
usual deterministic approach. With such an approach, a nonlinear structural statis-
tical probabilistic analysis of large light partition walls with plasterboards screwed
with metallic frames on both sides can be carried out to take into account large
statistical fluctuations in due to the shear behaviour for the screw attachment.

2 Experimental analysis of the shear behaviour for the
screw-attachment

2.1 Description of the experimental data

In order to analyze the shear behaviour of the screw-attachment, experiments have
been carried out using the experimental setup shown in Fig. 1 consisting in impos-
ing a relative displacement between the plasterboard plate and the metallic frame.
A sensor directly measures the vertical relative displacement between the plaster-
board plate at the screw level and the metallic frame while another load sensor
measures the load applied to the sample.

The experiments have been carried out with 10 samples. The relative displace-
ment at the screw level has been limited toxmax = 5.17mm. This limit corresponds
to the upper value for practical application (see Figure 2 left). Figure 2 displays the
measurements obtained.

2.2 Analysis of the experimental results

The experimental results for the 10 samples are presented by 10 load-displacement
curves (see Figure 2 left). Figure 2 right displays the averaging of the 10 exper-
imental curves. It can be seen that the experimental averaging curve is monotone



Figure 1: Photo of the experimental setup.

Figure 2: Experimental results of shear behavior of the screw-attachment. Load
applied (vertical axis in N) as a function of displacement (horizontal axis
in mm). 10 measures curves (left figure), averaging of the 10 curves (right
figure).

increase, and then a strictly concave function on interval[0, xmax]. The mean model
of the shear behaviour which is constructed in the next Section will satisfy this fun-
damental property. It can also be seen that for the same value of the displacement,
corresponding loads is uncertain, and conversely. Hence, a stochastic modelling is
used to take into account these uncertainties



3 Mean model of shear behaviour of the screwed attachment
and experimental identification of the mean model
parameters.

The mean model of shear behaviour is constructed as an algebraic function which
fits the experimental averaging curve. Denotingx the relative displacement andy
the applied load, the mean model is written as

y (x) = a [(x + b)α − bα] (1)

In Eq (1)a, b andα are three positive real parameters. parameter. We introduce
the vector parameterr such thatr = (a, b, α) which belongs to an admissible subset
<. Parameterr is a parameter which has to be identified using the experimental
averaging curve and which will be called the identification parameter of the mean
model.

Since functionx 7→ y (x) must be strictly concave in[0, xmax] with positive
values and such that the relative displacement is zero if load applied is zero, it can
be deduced that for allr in < and for allx ∈ [0, xmax] ,

y (x) ≥ 0
y (0) = 0
y′ (x) = αa (x + b)α−1

> 0
y′′ (x) = α (α− 1) a (x + b)α−2

< 0

(2)

From Eq. (2), it can easily be deduced that parametersa, b andα have to be such
that

a > 0, b > 0, 0 < α < 1 (3)

which shows that< = ]0, +∞[× ]0, +∞[× ]0, 1[ .
The mean model is fitted with the experimental average curve using the mean-

square method solving the following optimization problem

r = arg min
r ∈ <

∫ xmax

0

(
y (x)− yexp (x)

)2
dx (4)

whereyexp is the experimental averaging curve.

4 Construction of the probability model to take into account
uncertainties

As explained in Section 2, the variability of the experimental result are taken into
account in modelling parametersa andb by two independent random variablesA
andB for which the mean values areE {A} = a andE {B} = b whereE is
the mathematical expectation. It should be noted that the independence hypothesis
of random variablesA andB is justified by the fact that no information variable



concerning the statistical dependence ofA andB. In addition,α is not modelled by
a random variable andr=(a, b, α) will be considered as an updating deterministic
parameter. Consequently, deterministic Eq. (1) is replaced by the random equation

Y (x) = A [(x + B)α −Bα] (5)

For physical reason,Y must be a second-order random variable which means that
E

{
Y 2

}
< +∞. It can be verified that this condition is satisfied ifE

{
A2

}
< +∞

andE
{
B2

}
< +∞. From Eq. (5), it can be deduced that, if the applied loady is

given, then the relative displacementx becomes a random variableX such that

X =
( y

A
+ Bα

) 1
α −B (6)

Identically, for physical reason,Xα must be a second-order random variable for
all α in ]0, 1[ which means thatE

{
X2α

}
< +∞. Such a condition is satisfied if

E
{
A−2

}
< +∞. In addition this last condition implies thatE

{
A2

}
< +∞. The

available information of random variableA are then: (i) its support is]0; +∞[
, (ii) its mean valueE {A} = a , (iii) E

{
A−2

}
< +∞. The maximum entropy

principle with this available informations yields for the probability density function
pA(a) of A,

pA(a) = 1]0, +∞[ (a)
1
a

(
1
δ2
A

)(
1

δ2
A

)
1

Γ
(

1
δ2

A

) (
a

a

) 1
δ2
A

−1

exp
(
− a

aδ2
A

)
(7)

whereδA = σA/a is the coefficient of variation ofA, satisfyingδA <
√

α/2,
σA is the standard deviation ofA, Γ is the Gamma function and where1K (a) = 1
if a ∈ K and= 0 if a /∈ K. For the random variableB, the available information
are (i) its support is]0; +∞[ , (ii) its mean valueE {B} = b, (iii) E

{
B2

}
=

b2
(
1 + δ2

B

)
< +∞. The probability density function is a truncated Gaussian func-

tion written as

pB(b) = 1]0, +∞[ (b)C0 exp
(
−λ1b− λ2b

2
)

(8)

where(C0, λ1, λ2) are the value calculated by solving the system of equations

C0

∫ +∞

0

b. exp
(
−λ1b− λ2b

2
)
db = b

C0

∫ +∞

0

b2. exp
(
−λ1b− λ2b

2
)
db = b2

(
1 + δ2

B

)
C0

∫ +∞

0

exp
(
−λ1b− λ2b

2
)
db = 1

(9)

Consequently, probability density functionspA andpB depend only on vectorr
and on dispersion vector parameterδ = (δA, δB) belonging to an admissible set∆.
Parameterδ allows the dispersion induced by uncertainties to be controlled.



5 Experimental identification of parameter

As explained in Section 4 there are two types of parameters which can be identified:
the updating parameterr and the dispersion parameterδ. Below these two param-
eters are identified by using the 10 experimental curvesyexp, 1 (x) , ..., yexp, 10 (x)
for x ∈ [0, xmax]. The identification is performed in two steps. The first one con-
sists in calculatingr0 andδ0 as the solution of the optimization problem based on
mean-squared method. The second step consists in improving this first identifica-
tion using the maximum likelihood method. This non convex optimization problem
is solved around the optimal points(r0, δ0) using the trial method.

6 Application and experimental validation

In this section, one presents the numerical application for the parameter identi-
fication and the validation with experimental data. The parameter of the mean
model for shear behaviour screw attachment between plasterboard plate and the
metallic frame defined in Section 3 is identified by minimizing the cost func-
tion defined in Eq. (4). The optimal parameter obtained isropt

0 = (a, b, α) =
(16598.73; 0.215; 0.028) .The comparison between mean model and average exper-
imental result is presented in the figure 3.
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Figure 3: Comparison of the average experimental curve (thick solid line) with the
mean model (thin solid line).

The stochastic model is then constructed by using Section 4. The vector-valued
parameter(r, δ) = (a, b, α, δA, δB) is identified as explained in Section 5 and
yields ropt = (16210; 0.172; 0.0255) andδopt = (0.012, 0.2389). Figure 4 dis-
plays the confidence region for a probability levelPC = 0.95.
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Figure 4: Maximum likelihood method. Comparison of the 10 experimental curves
(ten thin solid lines) with (1) Average experimental data (thick solid line);
(2) Confidence region of the optimal stochastic model (grey region)

7 Conclusion

In this paper, one has presented the construction and the experimental validation of
a stochastic constitutive equation for screw-attachment. An experimental approach
has been carried out to identify the shear behaviour of the attachment. A mean
model then has been proposed to fit with the average experimental data. Due to
data uncertainties and due to the variability of experimental data, a probabilistic
model has been introduced to increase the robustness of the constitutive equation.
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