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ABSTRACT
In the context of turbomachinery design, a small variation in

the blade characteristics due to manufacturing tolerances can af-

fect the structural symmetry creating mistuning which increases

the forced response. However, it is possible to detune the mis-

tuned system in order to reduce the forced response amplifica-

tion. The main technologic solutions to introduce detuning are

based on modifying blade material properties, the interface be-

tween blade and disk, or the blade shape. This paper presents a

sensitivity analysis of mistuning for a given detuning in unsteady

aeroelasticity. Detuning is performed by modifying blade shapes.

The different kinds of blades obtained by those modifications are

then distributed on the disk circumference. A new reduced-order

model of the detuned disk is constructed using the cyclic modes

of the different sectors which can be obtained from a usual cyclic

symmetry modal analysis. Finally a stochastic analysis using

a non-parametric probabilistic method to take model and sys-

tem parameters uncertainties into account in the computational

model is performed.

INTRODUCTION

Small variations in the blade characteristics of cyclic struc-

tures due to manufacturing tolerances affect the structural cyclic

symmetry creating mistuning which increases the forced re-

sponse amplitudes (e.g. see [1–3]). However, it is possible (e.g.

see [4–8]) to intentionally detune the mistuned system in order to

∗Adress all correspondance to this author.

reduce the forced response amplification. The main technologic

solutions to introduce detuning are based on modifying blade

material properties, the interface between blade and disk, or the

blade shape by introducing several types of blades with different

geometries corresponding to finite geometric perturbations of the

nominal blades. In the present paper, it is assumed that detuning

is performed by modifying blade shapes and the disk is not mis-

tuned.

Vibration analysis of cyclic structures is usually performed

using their cyclic symmetry and formulated for one sector from

which the dynamics of the structure is obtained. This is no longer

the case for mistuned structures which need a full structure for-

mulation. To reduce numerical computational costs while solv-

ing the mistuning problem on finite element meshes of realis-

tic bladed disks, many reduced-order methods have been intro-

duced. In general, reduced-order models are obtained by sub-

structuring a bladed disk into disk and blade components, as this

allows for easy implementation of blade mistuning. However, a

different approach [9] has been proposed by Yang and Griffin,

in which the tuned system cyclic modes are used without sub-

structuring to generate a reduced-order model. This technic is

very efficient in the case of cyclic structures with material prop-

erties perturbations but do not solve the case of finite geometric

perturbations. In fact, in the latter case, the tuned bladed disk

sector cyclic modes are computed on a finite element mesh re-

lated to the nominal geometry and the finite mass and stiffness

matrices relative to the finite geometric perturbations of certain

blades are constructed with another finite element mesh which
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is not compatible with the nominal finite element mesh. Con-

sequently, these non compatible finite element meshes induce a

difficulty for constructing the projection of the finite perturbation

mass and stiffness matrices using the tuned bladed disk sector

cyclic modes. That is why in [9], proportional mistuning by per-

turbing the Young moduli of individual blades is only simulated.

To solve the problem of geometric mistuning, researchers have

developed different reduced-order models among which, a sim-

ple model known as the Fundamental Mistuning Model (FMM)

that reduces the set of nominal modes to a single modal fam-

ily [10, 11]. Nevertheless, its application field is limited to a

modal family with nearly equal frequency. Another method is

the Static Mode Condensation (SMC) proposed in [12], in which

the mistuned system is represented by the full tuned system and

by virtual mistuning components, with convergence acceleration

performed by static mode condensation. But this method needs

a large amount of calculation.

In this paper, for solving the problem of detuning with ge-

ometric modification, it is assumed that a commercial software

(black box) is used to compute the cyclic modes and mass and

stiffness matrices of the different bladed disk sector types in inde-

pendent calculations. In this particular context, we propose here

a new method introduced in [13] which uses the cyclic modes of

the different bladed disk sectors and which consist on reducing

each sector mass and stiffness matrices by its own modes. Lin-

ear constraints are then applied on common boundaries between

sectors to make the displacement field admissible.

The random nature of blade mistuning due to manufacturing

tolerances and dispersion of materials has been a motivation to

construct a probability model of random uncertainties to solve

the stochastic forced response and to perform statistical analysis

in order to predict the effects of mistuning. In this context we use

a non parametric probabilistic approach which is one of the most

complete probabilistic approaches by the way it takes data and

model uncertainties into account, while classical parametric ap-

proaches do not allow model uncertainties to be considered. This

nonparametric probability model is directly constructed using the

mean reduced matrix model, and the entropy maximization prin-

ciple with the available information.

CONSTRUCTION OF THE MEAN REDUCED MODEL

To construct the reduced model, we propose a new reduced-

order method which is an extension of the approach proposed by

Yang and Griffin in [9], and takes into account geometric modifi-

cations. Instead of projecting perturbed mass and stiffness matri-

ces on a basis of tuned cyclic modes, our idea is to project each

mass and stiffness matrix of a sector on a basis of its own cyclic

modes, and to assemble the whole bladed disk reduced model by

insuring the displacement field continuity between all adjacent

sectors.

Dynamic equation of the detuned system

Let us consider the finite element model of a detuned struc-

ture with N blades, with detuning resulting on finite geometric

perturbations of some blades, in the frequency band  defined

by  = [ωmin,ωmax],0 < ωmin < ωmax. Then, the dynamic equa-

tion of the detuned bladed disk can be written in the frequency

band B

(−ω2[M]+ iω[D]+ [K])u(ω) = f
exc

(ω)+ f
aero

(ω,u(ω)), (1)

where f
exc

denotes the vector of unsteady loads on blades due

to an aerodynamic excitation source and f
aero

denotes the vector

of unsteady coupling loads on blades due to blades motions, u

is the displacement field of the complete detuned structure, ma-

trices [M], [D], [K] represent real mass, damping and stiffness

matrices, and i2 = −1. ndof is the size of vectors u which is dif-

ferent to the entire bladed disk degrees-of-freedom number of

the whole structure, because their are some redondant degrees-

of-freedom in u due to the fact we consider each sector with its

inner and boundaries degrees of freedom. By introducing the

dynamic stiffness matrix

[E(ω)] = −ω2[M]+ iω[D]+ [K], (2)

the dynamic equation of the detuned bladed disk becomes

[E(ω)]u(ω) = f
exc

(ω)+ f
aero

(ω,u(ω)). (3)

Reduced-order model of the mistuned bladed disk

Let us reduce the model by using a modal basis [Ψ] of real

modes obtained in the global cyclic coordinates system. These

modes are obtained by performing a discrete Fourier transform

of the displacement field.

Projection basis: The projection basis is written

[Ψ] =







ψ
Ω0
1 · · · ψ

Ω0
α⋆

...
. . .

...

ψ
ΩN−1

1 · · · ψ
ΩN−1

α⋆






, (4)

where α⋆ is the number of modes selected, N is the number of

blades and Ω represent a sector domain. In this context, ψ
Ωp
α is

the real mode number α associated to the sector p. This real

mode is obtained by using the corresponding complex cyclic

mode φ̂β,n = φ̂
′

β,n + iφ̂
′′

β,n, i2 = −1
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ψ
p

β,n = φ̂
′

β,n cos

(

2npπ

N

)

− φ̂
′′

β,n sin

(

2npπ

N

)

. (5)

where n is the circumferential wave number and β is the mode

family.

However, by the fact each sector type mode is computed

independently to the others, a phase shift can appear between

cyclic modes of a modified blade computed on a sector p and

the cyclic modes of the nominal blade, computed on the same

sector. In fact, in tuned conditions, the location of the twin or-

thogonal modes on the bladed disk is indeterminate as shown on

Fig. 1. On this figure, the two sub-figures on left represent the

twin orthogonal modes, for the first computation. To address this

(a) (b) (c) (d)

Figure 1. Geometries of twin modes with one nodal diameter obtained

by two independent computations : first computation ((a),(b)) and second

computation ((c),(d)).

problem, we introduce a modal scale factor MSF to make sure

that cyclic modes of different sector kinds computed separately

are taken in the same phase reference system. This modal scale

factor is a complex number defined by

MSF(x,y) =
{x}T{y}

{x}T{x}
, where x and y are complex vectors.

(6)

The argument of this modal scale factor represents the phase shift

between the vectors x and y. By applying this scaling factor to

the complex cyclic mode φ̂
ini

β,n associated to the circumferential

wave number n of one type of sector, we obtain the new modes

φ̂β,n expressed in the phase reference system of the nominal blade

φ̂β,n =
MSF(φ̂

nom

β,n , φ̂
ini

β,n)

|MSF(φ̂
nom

β,n , φ̂
ini

β,n)|
φ̂

ini

β,n, (7)

where φ̂
nom

β,n is the corresponding cyclic mode computed on the

nominal sector.

In fact, we can verify in (8) that the new mode φ̂β,n is in

phase with the nominal mode because its MSF referred to the

nominal mode is real, implying that its argument is null.

MSF(φ̂
nom

β,n , φ̂β,n) =
{φ̂

nom

β,n }T{φ̂β,n}

{φ̂
nom

β,n }T{φ̂
nom

β,n }
= |MSF(φ̂

nom

β,n , φ̂
ini

β,n)| ∈ ,

(8)

where |z| represents the modulus of complex z.

Then, after correcting the mode shapes obtained by two in-

dependent computations with their modal scale factor, Fig. 1 be-

comes Fig. 2, which exhibits phased mode shapes.

(a) (b) (c) (d)

Figure 2. Geometries of twin modes with one nodal diameter obtained

by two independent computations after correction using MSF: first com-

putation ((a),(b)) and second computation ((c),(d)).

Generalized dynamic equation of the mistuned

system: Let us introduce generalized coordinates represent-

ing the contribution of selected modes on the displacement field.

Then, the displacement field can be written

u(ω) = [Ψ]q(ω), (9)

where q = [q
0
, . . . ,q

N−1
]T is the complex-valued generalized co-

ordinates vector associated to the system.

Thus, the generalized problem in global coordinates system

becomes

[Ered(ω)]q(ω) = [Ψ]T f
exc

(ω)+ [Ψ]T f
aero

(ω, [Ψ]q(ω)), (10)

where the reduced dynamic (α⋆,α⋆) operator is a bloc diagonal

matrix, because of the assumption of blade geometric detuning,

defined by

[Ered(ω)] = [Ψ]T [E(ω)][Ψ], (11)

[Ered(ω)]β,α =
N−1

∑
p=0

(

ψ
Ωp

β

)T

[E(ω)]pp
(

ψ
Ωp
α

)

, (12)
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and the generalized forces are defined by

g
exc

(ω) = [Ψ]T f
exc

(ω),

g
aero

(ω,q(ω)) = [Ψ]T f
aero

(ω, [Ψ]q(ω)), (13)

Clearly, the projection basis is constructed with respect to the dis-

tribution of the different sector’s types and by keeping orthogo-

nality properties between modes. Note that the reduced dynamic

operator exhibits off diagonal. This implies that the detuning

couples tuned cyclic modes with different number of nodal di-

ameters.

Aerodynamic generalized forces can be express using a

complex-valued aeroelastic matrix as:

g
aero

(ω, [Ψ]q(ω)) = −[Ared(ω)]q(ω), (14)

The real part of this aeroelastic matrix can be considered as a

stiffness matrix and the imaginary part as a damping matrix.

Then this matrix can be written

[Ared(ω)] = [AR
red(ω)]+ i[AI

red(ω)], i2 = −1, (15)

and the complete dynamic equation in generalized coordinates

system yields

{−ω2[Mred ]+ iω([Dred ]+ [AI
red(ω)])+ [Kred ]+ [AR

red(ω)]}q(ω)

= g
exc

(ω), (16)

Displacement field at coupling sector interfaces:
To solve the dynamic equation of motion of the detuned bladed

disk, by using a projection basis made of different sector types

cyclic modes, we must insure an admissible displacement field

on the coupling sector interfaces. This admissibility is defined by

two conditions on interfaces: a compatibility of meshes which is

naturally insured because geometric modifications are only done

on blades, and the displacement field continuity between two ad-

jacent sectors which can be insured by linear constraints on the

interface. These constraints can be introduced by using a La-

grange multiplier field (see [14]) or by expressing constrained

generalized coordinates as a function of non constrained ones.

The latter formulation is made here. Let us consider two sectors

Ωp and Ωp+1, with p ∈ [0,N−1], interacting through a common

boundary Γp. The linear coupling condition on Γi can be written

up = up+1 on Γp. (17)

Then, on the entire structure, the physical displacement field uc

can be written as a function of the free (non-constrained) dis-

placement field u by

uc = [B]u, (18)

where [B] is an (ndof,(ndof) integer continuity matrix in physical

coordinates system, where ndof is the sector degrees-of-freedom

number. Thus, with generalized coordinates, we have

q
c
= [Bred ]q, [Bred ] = ([Ψ]T [Ψ])−1[Ψ][B][Ψ], (19)

where [Bred ] is a (α⋆ ×α⋆) real continuity matrix in generalized

coordinates system.

Thus, the problem, formulated on constrained-generalized

coordinates system can be written

[Ered ]qc
= g

c
, (20)

Consequently, the problem, formulated on free-generalized co-

ordinates system and including linear constraints that make the

displacement field admissible over the entire structure is such

that

[Bred ]
T [Ered ][Bred ]q = [Bred ]

T g. (21)

Note that while solving a reduced size problem, α⋆ is small and

the (α⋆ ×α⋆) matrix [Ψ]T [Ψ] can easily be inverted.

VALIDATION OF THE REDUCTION METHOD
The realistic test case considered here is an industrial bladed

disk with 23 blades. The commercial software used to compute

the cyclic modes and mass and stiffness matrices for the reduced-

order model inputs, and the forced response and resonant fre-

quencies of the 360-deg full-rotor model is ANSYS.

Fig. 3 displays the eigenfrequencies of the generalized

eigenproblem associated with the tuned bladed disk in function

of the circumferential wave number.

To validate our method, we are going to approximate the

76 first modes of the mistuned bladed disk and to compute the

forced response under 2 engine order excitation numbers. Note

that the 100 first natural frequencies of the tuned bladed disk are

above 5000Hz.

For the detuned system, two other kinds of blades are created

from the nominal one by shape modification of the blade upper

part: a blade with increased thickness called ”heavy blade” and a

blade with decreased thickness called ”light blade” (see Fig. 4).
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Figure 3. Natural frequencies versus circumferential wave numbers of

the tuned bladed disk.

(a) (b) (c)

Figure 4. Finite element models of blades: a reference blade (a), a light

blade (b) and a heavy blade (c).

Figure 5. Complete intentionally detuned bladed disk with arbitrary geo-

metric modification of two blades.

The bladed disk is detuned by modifying arbitrarily two of

is blades to make them have the shapes shown on Fig. 4. The

test case we study is shown on Fig. 5.

Fig. 6 and Fig. 7 display the 76 first eigenfrequencies of the

generalized eigenproblem associated with the mistuned bladed

disk and the corresponding mistuned frequencies errors. The-

ses eigenfrequencies are those of the tuned bladed disk under

5000Hz. Different analysis are carried out by taking differ-

ent sizes of projection basis to obtain different reduced-order

models (ROM): ROM-76-dof, ROM-133-dof, ROM-144-dof,

ROM-160-dof, ROM-177-dof, obtained with tuned modes under

5000Hz, 8000Hz, 9000Hz, 10000Hz, 11000Hz, 12000Hz.

In this test, the natural frequency errors obtained for all

approximated mistuned modes are below 0.4%, which demon-

strates a sufficient accuracy in capturing the resonances of the

detuned bladed disk.
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Figure 6. Comparison of the 76 first mistuned natural frequencies be-

tween the full model and several ROM sizes.
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Figure 7. Comparison of the 76 first mistuned natural frequencies errors

between the full model and several ROM sizes.

Note that the maximum error levels are obtained for reso-

nances in which the vibrational energy is mainly located on the

disk, and that the resonances for which the vibrational energy is

mainly located on the blades are precisely obtained, with an error

level below 0.01%. The latter case resonances can be easily iden-

tified as the clustered modes near frequencies 1000Hz, 4000Hz
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and 4400Hz on Fig. 6. Note also the ROM-76-dof accuracy in

predicting the 76 first resonances of the mistuned bladed disk,

which shows a quite compact model.

For the forced response consideration, all blades responses

under engine orders excitation 5 and 9 are computed in the fre-

quency band 4150-4550 Hz and displayed on Fig. 8 and Fig.

9.
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Figure 8. Forced response of the 23 blades to an engine order excitation

5 in the frequency band 4150-4550 Hz: Full model (left) and ROM (right).
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Figure 9. Forced response of the 23 blades to an engine order excitation

9 in the frequency band 4150-4550 Hz: Full model (left) and ROM (right).

On these figures, both the 360-deg full-rotor model and the

ROM exhibit a clustered response of 21 blades and 2 isolated re-

sponses which are thee modified blades responses. Moreover, the

dynamic behavior of the full bladed disk model is quite similar

to the ROM one.

The results obtained above demonstrate a sufficient accuracy

of the proposed ROM in capturing the detuned bladed disk, in

both free and forced response configurations.

NONPARAMETRIC MODEL OF RANDOM UNCERTAIN-

TIES FOR BLADE MISTUNING
The purpose here is to model the random uncertainties due

to mistuning. Mistuning is assumed to be statistically indepen-

dent from blade to blade. To take into account model and data

uncertainties, a nonparametric probability model of random un-

certainties is used. The main results concerning this nonpara-

metric probability model of random uncertainties construction in

structural dynamics can be found in [15]. This probabilistic ap-

proach requires the construction of a mean reduced matrix model

for each uncertain sector. The probability model has to be con-

sistent with the mechanical problem. Thus, it has to satisfy the

following constraints which constitute the only available infor-

mation:

- C1: the mean reduced matrix is equal to the mean value of

the random reduced matrix;

- C2: the signature of the random reduced matrix is re-

spected: it means that the random reduced matrix has to be posi-

tive definite if its corresponding mean reduced matrix is positive

definite;

- C3: the second-order moment of the physical random re-

sponse of the bladed disk has to exist, for getting a second-order

displacement field.

The probability model is then derived from these three con-

straints by using the entropy maximization principle.

Random Reduced Matrix Model for the Bladed-Disk

using the methodology derived from [3, 15], the nonpara-

metric probabilistic approach consists in modeling the reduced

dynamic stiffness matrix for sector p as the random matrix

[Ered(ω)p] = −ω2[M
p
red ]+ iω[D

p
red ]+ [K

p
red ], (22)

in which [M
p
red ], [D

p
red ] and [K

p
red ] are independent random ma-

trices corresponding to the random reduced mass, damping, and

stiffness matrices of sector p, and modeling the complex aeroe-

lastic matrix as the random matrix [Ared(ω)p].
Then, constraints C1 can be written on random matrices

E
{

[M
p
red ]

}

= [M
p
red ], E

{

[D
p
red ]

}

= [D
p
red ],

E
{

[K
p
red ]

}

= [K
p
red ], E

{

[A
p
red ]

}

= [A
p
red ], (23)

where E{.} is the mathematical expectation.

To do so, we need to normalize the mass, damping, stiffness

and aeroelastic random matrices as well as the mean value of

each normalized random matrix is the unity matrix. Such a con-

struction requires the factorization of the mean reduced matrices.

The mean reduced mass, damping and stiffness matrices are

real positive definite matrices. So, their Choleski factorization

yields

[M
p
red ] = [L

p
M]T [L

p
M], [D

p
red ] = [L

p
D]T [L

p
D], [K

p
red ] = [L

p
K ]T [L

p
K ],

(24)
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Then, the real random matrices can be written as

[M
p
red ] = [L

p
M]T [G

p
M][L

p
M], [D

p
red ] = [L

p
D]T [G

p
D][L

p
D],

[K
p
red ] = [L

p
K ]T [G

p
K ][L

p
K ], (25)

where [G
p
M], [G

p
D] and [G

p
K ] are real normalized random matrices

whose mean value is the unity matrix.

For the complex aeroelastic matrix, we use a singular value

decomposition in the factorization process defined in [16]. By

this way, the complex matrix [Ared ] can be written

[Ared(ω)] = [U(ω)][T (ω)], (26)

where [U(ω)] is a complex unitary matrix and [T (ω)] is a com-

plex positive definite matrix admitting a Choleski factorization.

Then, we propose a random modeling of the aeroelastic ma-

trix

[Ared(ω)] = [U(ω)][LT (ω)]T [GA][LT (ω)], (27)

where [GA] is a real normalized random matrix whose mean

value is the unity matrix.

Constraints C2 and C3 mean that the normalized random

matrices [G
p
M], [G

p
D], [G

p
K ] and [GA] are real positive definite ma-

trices verifying

E
{

||[G
p
M]−1||2

F

}

< +∞, E
{

||[G
p
D]−1||2

F

}

< +∞,

E
{

||[G
p
K ]−1||2

F

}

< +∞, E
{

||[GA]−1||2
F

}

< +∞, (28)

where ||[.]||
F

= (tr([.][.]T ))
1
2 . The dispersion level of these four

normalized random matrices can be controlled by the positive

real parameters δ
p
M , δ

p
D, δ

p
K and δA defined by

δF =

{

E
{

||[GF ]− [GF ]||2
F

}

[GF ]

} 1
2

with F = {M,D,K,A}.

(29)

From equations (25) and (27), it can be deduced that these pa-

rameters allow the dispersion level of random matrices [M
p
red ],

[D
p
red ], [K

p
red ] and [Ared ] to be controlled.

Probability Model of the Random Matrices

Using the entropy maximization principle with available in-

formation defined by constraints C1, C2 and C3 related to the

normalized random matrices, it can be proved, [15], that the al-

gebraic representation of matrix [G] allows a procedure for the

Monte Carlo numerical simulation of random matrix [G] to be

defined. According to [15] in which all the details concerning the

construction of the probability model of the normalized random

matrix [G] can be found, the random matrix [G] can be written

[G] = [LG]T [LG], (30)

in which [LG] is an n× n real upper triangular random matrix

such that

- random variables
{

[LG] j j′ , j ≤ j′
}

are independent;

- for j < j′, real-valued random variable [LG] j j′ can be writ-

ten as

[LG] j j′ = δ(n+1)−1/2U j j′ , (31)

in which U j j′ is a real-valued Gaussian random variable with zero

mean value and variance equal to 1;

- for j = j′, positive-valued random variable [LG] j j can be

written as

[LG] j j = δ(n+1)−1/2
√

2Vj, (32)

in which Vj is a positive-valued gamma random variable whose

probability density function pV j
(v) with respect to dv is written

as

pV j
(v) =  

!

+(v)
1

Γ(αn, j)
v(αn, j)

−1

e−v, αn, j =
n+1

2δ2
+

1− j

2
.

(33)

NUMERICAL EXAMPLE FOR AN INDUSTRIAL BLADED
DISK

The bladed disk considered is the same blade disk used to

validate the reduced-order model. This bladed disk is consid-

ered under rotation. Mistuning is modeled here using the non

parametric probabilistic method and detuning is introduced by

performing a shape modification of some blades and distributing

these blades so that they create alternate mistuning.

For the forced response considerations, a conventional 9 en-

gine order excitation is considered in the analysis over an excita-

tion frequency range "= [4400,4750] Hz.

Forced response amplitudes of the mistuned system are nor-

malized with respect to the maximum amplitudes of the equiva-

lent tuned bladed disk under the same excitation conditions. The

structural damping loss factor is set to 0.003. For the reduced or-

der model, the projection basis is constituted of modes belonging

to the frequency band [0,5000] Hz.

7 Copyright c© 2009 by ASME



Detuning method

Different types of intentional mistuning patterns have been

adopted in the past, such as alternate mistuning, by alternating

high and low frequency blades [17], periodic mistuning [18, 19],

harmonic mistuning [6–8, 20], and linear mistuning [21]. The

purpose here is not to find the best intentional mistuning pattern

but to analyze the the forced response sensitivity to mistuning,

of a detuned system with a fixed chosen pattern. For the sake

of simplicity, we only consider two kinds of blades : a reference

blade and a lower frequency blade. So the fixed pattern chosen

here is an alternate mistuning pattern which consist on alternat-

ing 6 reference blades and 6 lower frequency blades.

To get the lower frequency blades, blade shapes are modified

by retrieving locally 20% of the blade thickness on the upper

part of the blade and adding locally 20% of the blade thickness

on the lower part. This can be called a 20% modification. We

present on Fig. 10, a 80% modification to highlight the geometric

modification performed.

(a) (b)

Figure 10. Reference blade shape (a) and modified blade shape (b).

To estimate the level of perturbation induced by this mod-

ification on aerodynamic characteristics, the Mach field (see

Fig. 11) has been displayed on the different kinds of blades in

cyclic symmetry configuration. Thus, we can see that the air flow

has not greatly been perturbed, but little differences may appear

on the damping characteristics of the two kinds of blade. These

differences can be taken into account by the stochastic process,

but to do so, we need a method of estimating the aeroelastic dis-

persion parameter between the two configurations like the one

developed in [22]. For the sake of simplicity, this will not be

treated here, and an aeroelastic null dispersion parameter is con-

sidered here for the test.

Random magnification factor

Mistuning is expressed in terms of dispersion level of the

stiffness matrix. In fact, in [22], by solving the inverse problem

of specifying the blade manufacturing tolerances, it was found

Figure 11. Comparison of the Mach field on reference and modified

blades.

that the dispersion level of the mass matrix induced by manu-

facturing tolerances is about 1000 times less than the stiffness

matrix one.

The observation considered here to control the forced re-

sponse is the random dynamic magnification factor {B(ω),ω ∈
 } which is such that

B(ω) = sup
p∈{0,...,N−1}

B
p(ω), B

p(ω) =
|up(ω)|

u
p
∞

,

up
∞ = sup

ω∈ (ω)

|up(ω)|, B∞ = sup

ω∈ (ω)

B(ω), (34)

in which for blade p, u
p(ω) is the random variable of the physical

displacement of a tip node of the vibrating blade p, up(ω) is the

mean random variable of the physical displacement of a tip node

of the vibrating blade p and (sup
n

M) is the maximum value

of M over the domain defined by n. B∞ is the random dynamic

magnification factor over the frequency band  .

The realizations of random observation B∞ are deduced from

the Monte Carlo numerical simulations and mathematical statis-

tics are used for estimating probability.

A convergence analysis has been carried out for the magni-

fication factor. Since the second-order mean convergence yields

the convergence in law, the convergence analysis can be limited

to the second-order convergence of random magnification factor

and damping coefficient.

A 1000 Monte Carlo simulation has been performed for

each value of δK and Fig. 12 shows that convergence is already

reached for 500 simulations.

Fig. 13 shows a well known behavior of small mistuned

bladed disks: the forced response increases for low rates of mis-
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Figure 12. Second-order mean convergence of B∞ with mistuning:

(curves, from the lower to the upper correspond respectively at Monte

Carlo simulation number 1000 to δK=0.005, δK=0.01, δK=0.1, δK=0.02,

δK=0.07, δK=0.06, δK=0.05, δK=0.04 and δK=0.03.)
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Figure 13. Influence of the mistuning rate: graph such that P(B∞ ≤
Bp) = p (the lower, middle and upper curves correspond respectively to

a probability level p=0.50, p=0.95 and p=0.99.)

tuning, reaches a maximum value and decreases slightly while

the level of mistuning still increases.

Sensitivity analysis of mistuning for a given detuning

The purpose here is to reduce the bladed disk sensitivity

to mistuning by reducing the forced response magnification in-

duced. Thus, we are interested in relatively small mistuning.

A 1000 Monte Carlo simulation has also been performed

here for each value of δK and Fig. 14 shows that convergence is

reached for this number simulation, although the bladed disk is

detuned. The detuning performed here is very effective for low

mistuning levels as shown on Fig. 15. While the reference mag-

nification factor has a bell behavior, the detuned system magni-

fication factor has a continuous lightly increasing curve which

still remain under reference curve for the three probability levels

observed. Moreover, at high mistuning levels, the detuned mag-

nification factor curves tends to the reference one, showing that

at high mistuning levels, the disorder degree is so high that the

detuning performed is cover by the mistuning.
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Figure 14. Second-order mean convergence of B∞ with mistuning and

detuning: (curves, from the lower to the upper correspond respectively

at Monte Carlo simulation number 600 to δK=0.005, δK=0.01, δK=0.01,

δK=0.03, δK=0.04, δK=0.05, δK=0.1, δK=0.06 and δK=0.07.)
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Figure 15. Influence of the mistuning rate: graph such that P(B∞ ≤
Bp) = p (the continuous curves with circles (and non continuous curves

with triangles) are related to the tuned (and detuned) system. The lower,

middle and upper curves correspond respectively to a probability level

p=0.50, p=0.95 and p=0.99.)

CONCLUSION

A way to perform robust design of bladed disks in forced

response considerations by geometric modification of blades is

investigated. In this context, a new reduction method using the

cyclic modes of the different kinds of sectors is developed. De-

tuning is performed here by modifying blade shapes without per-

turbing a lot the aerodynamic characteristics. To take into ac-

count mistuning, a non parametric probabilistic model taking

into account model and parameters uncertainties is built on the

mean reduced model. An example of reducing a bladed disk sen-

sitivity to mistuning is finally presented. This analysis shows

that although the detuning pattern is not optimized, the geomet-

ric modifications of blades can reduce blade sensitivity to mis-

tuning. Then, by combining a blade geometric modification with

a detuning pattern optimization like the one proposed in [5, 23],

an optimal robust design model minimizing the forced response

while keeping stability could be obtained. This is the purpose of

our future works.
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