
HAL Id: hal-00684495
https://hal.science/hal-00684495

Submitted on 2 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy structure theory modeling of sound-insulation
layers in complex vibroacoustic uncertain systems:

Theory and experimental validation
C. Fernandez, Christian Soize, L. Gagliardini

To cite this version:
C. Fernandez, Christian Soize, L. Gagliardini. Fuzzy structure theory modeling of sound-insulation
layers in complex vibroacoustic uncertain systems: Theory and experimental validation. Journal of
the Acoustical Society of America, 2009, 125 (1), pp.138-153. �10.1121/1.3035827�. �hal-00684495�

https://hal.science/hal-00684495
https://hal.archives-ouvertes.fr


AIP/123-QED

Fuzzy structure theory modeling of sound-insulation layers in complex

vibroacoustic uncertain sytems - Theory and experimental validation

Charles Fernandez and Christian Soize∗

Universite Paris-Est,

Laboratoire Modelisation et Simulation Multiechelle FRE3160 CNRS,

5 bd Descartes,

77454 Marne-la-Vallee,

France

Laurent Gagliardini

PSA Peugeot-Citroen,

CTV,

route de Gisy,

78943 Velizy-Villacoublay Cedex France

(Dated: September 11, 2008)

Fuzzy structure theory for sound-insulation layers 1



Abstract

The fuzzy structure theory was introduced twenty years ago in order to

model the effects of complex subsystems unprecisely known on a master

structure. This theory was only aimed at structural dynamics. In this

paper, an extension of that theory is proposed in developing an elas-

toacoustic element useful to model sound-insulation layers for compu-

tational vibroacoustics of complex systems. The simplified model con-

structed enhances computation time and memory allocation because

the number of physical and generalized degrees of freedom in the com-

putational vibroacoustic model is not increased. However, these simpli-

fications introduce model uncertainties. In order to take into account

these uncertainties, the nonparametric probabilistic approach recently

introduced is used. A robust simplified model for sound-insulation lay-

ers is then obtained. This model is controlled by a small number of

physical and dispersion parameters. Firstly, the extension of the fuzzy

structure theory to elastoacoustic element is presented. Secondly, the

computational vibroacoustic model including such an elastoacoustic el-

ement to model sound-insulation layer is given. Then, a design method-

ology to identify the model parameters with experiments is proposed

and is experimentally validated. Finally, the theory is applied to an

uncertain vibroacoustic system.

PACS numbers: 43.40At
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I. INTRODUCTION

This paper deals with the construction of a robust model of sound-insulation layers re-

quired by computational vibroacoustics simulation of complex systems in low- and medium-

frequency ranges. The sound-insulation layer is assumed to behave as a resonant continuous

dynamical system in the frequency band of interest. In this paper, we will not consider

the high frequency range where more elastic modes may appear. For such a modeling in

the low- and medium-frequency ranges, a usual approach consists in modeling a sound-

insulation layer as a poro-elastic medium using the Biot theory; the finite element method

is then classically used to solve the associated boundary value problem. In this case, both

vibroacoustic system and sound-insulation layers are modeled by the finite element method

(see for instance Refs. [1–7]). When the first thickness eigenfrequencies belong to the fre-

quency band of analysis, as assumed here, such a finite element model of sound-insulation

layer introduces a large number of physical degrees of freedom (DOF) in the computational

model as well as numerous elastic modes in the band. The size of the associated reduced

computational model is then amply increased. For instance, in a car booming noise analysis

(frequency range [20, 200] Hz later referred as low frequency range), the finite element model

may involve up to two millions of DOF for the structure and the reduced model requires

about one thousand elastic modes. If the sound-insulation layers were modeled by the finite

element method, an additional number of about five millions of DOF would be necessary.

Twenty thousand additional elastic modes then appear in the reduced computational model

exceeding the limits of current computational ressources. Consequently, there is a great

interest to construct simplified sound-insulation layer models without adding neither physi-

cal DOF nor generalized DOF. Representing the sound-insulation layer by an adapted wall

impedance can be a way to avoid the increase of DOF number (see for instance Refs. [8–12]

for the notion of wall impedance in vibroacoustics). A great number of publications has been

devoted to this subject in the last three decades. It should be noted that the largest part of
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these works deals with the medium- and high-frequency ranges, where the sound-insulation

layer behavior differs from the lower frequency range that is investigated here. Since the

objective of this paper is not to give a state of the art on this particular topic, we simply

refer to a few papers such as Refs. [13–23].

In this paper, an alternate construction to the finite element approach or to the usual

wall impedances is presented. Firstly, this construction does not increase the number of

physical and generalized DOF in the computational vibroacoustic model. Secondly, it does

not involve the poroelastic equations because the sound-insulation layers considered here

have a rather simple dynamic behavior which does not require advanced material modeling.

As explained above, in the frequency band of analysis, the simplified model can be originated

from a single DOF dynamical system. Due to the large variability of geometry, materials

properties and connections to the master structure -mainly induced by the industrial process

as well as vehicle diversity in the automotive industry for example-, the sound-insulation

layer is considered as complex and therefore, a statistical description of its internal dynam-

ical DOF is proposed. We are naturally leaded to use the fuzzy structure theory which fits

this framework and has already been validated. A representation of the sound-insulation

layer based on the fuzzy structure theory benefits from an understandable interpretation

of complex dynamical systems behavior. It is simply characterized by a few physical pa-

rameters: the participating mass, the modal density and the internal damping rate. The

fuzzy structure theory was introduced twenty years ago in order to model the effects on a

master structure of complex subsystems imprecisely known (see Refs. [24–28]). This theory

is developed in the context of the probability theory which is well adapted to this kind

of problem that carries many uncertainties (geometry, material and boundary conditions).

Many other works have been developed in this field, completing the initial construction (see

Refs. [29–36]). Most of these developments are related to complex structural subsystems

coupled to a master vibroacoustic system. No attempt has been performed to develop a

specific sound-insulation layer model using the fuzzy structure theory. The known results

have to be extended in order to build an elastoacoustic element. That is the aim of this pa-

4



per. However, such a simplified model introduces model uncertainties. In the original theory

introduced in Ref. [24], the system parameters uncertainties were already taken into account

with a parametric probabilistic approach. Today, it is well understood that the paramet-

ric probabilistic approach can only address system parameters uncertainties but not model

uncertainties. Recently, a nonparametric probabilistic approach has been introduced (see

Refs. [37–40]), allowing both system parameters uncertainties and model uncertainties to be

taken into account in the computational model. The use of a nonparametric probabilistic

approach to take into account model uncertainties in the sound-insulation layer simplified

model constitutes a new extension of the fuzzy structure theory with respect to the model

uncertainties problems. In addition, a complete design methodology is experimentally val-

idated; this two-steps methodology can easily be implemented in the current engineering

process of mechanical devices.

In order to help the understanding, we summarize below the modeling strategy used

in this paper. As explained above, a complete three dimensional modeling of the sound-

insulation layer would consist in introducing a poroelastic medium and such an approach

would lead us to introduce a large additional number of DOF in the computational model.

A way to construct a simplified model could have consisted in introducing an empirical sim-

plified model for which the identification would have been equivalent to a “curve-fitting”.

Such a way is not used here. In opposite, the proposed simplified model is constructed using

the fuzzy structure theory for which the main dynamical physical phenomena are captured

and are taken into account. In the frequency band of interest, the major phenomena are due

to the internal resonances of the sound-insulation layer. The fuzzy structure theory allows

hidden dynamical DOF effects on the master structure to be taken into account in the sense

of in statistical averaging. With such a theory, the power flow between the fuzzy subsystem

(the sound-insulation layer) and the master vibroacoustic system is mainly controlled by the

resonances of the sound-insulation layer, by the participating dynamical mass and by the

internal damping. The corresponding parameters of the model are, as explained above, the

mean modal density of the internal resonances, the coefficient of participating mass defined
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with respect to the total physical mass and finally, the damping rate. It should be noted

that the mean modal density which strongly depends on the geometry and on the materials

is unknown but can be estimated with a usual computational model of the sound-insulation

layer as proposed in this paper. Note that such computations are usually performed in

industrial engineering processes. Such an estimation is then realistic for practical applica-

tions of complex systems. The total mass of the sound-insulation layer is known but the

coefficient of participating mass is generally unknown for frequencies larger that the cut-off

frequency (which is the known first eigenfrequency of the sound-insulation layer) and has to

be identified, for instance using experiments. This coefficient is less sensitive to the geometry

than the modal density. In engineering practice, when this coefficient has been identified for

given materials and a given thickness, the identified value can be reused for similar sound-

insulation layers without performing a new identification. Clearly, an error is introduced but

this error is taken into account by the probabilistic model of uncertainties. So, as soon as a

class of sound-insulation layers has been identified, the model can be used for any geometry

because for each fixed geometry of a sound-insulation layer, its cut-off frequency and modal

density are computed with a usual finite element model. This methodology shows that the

proposed model of the sound-insulation layer does not correspond to the ”curve-fitting” of

an empirical model.

Section II is devoted to the construction of the sound-insulation layer simplified mean

model using the fuzzy structure theory. As far as this model is part of a complex vibroa-

coustic system, the complete vibroacoustic model is presented. In this context, the nominal

model will also be called the “mean model” and it refers to the deterministic model which

does not take into account uncertainties. Section III deals with the finite element approxima-

tion which allows a computational vibroacoustic mean model to be constructed. In Section

IV, we present the first step of the methodology performing the experimental identification

of the mean parameters of the sound-insulation layer simplified model. Section V is devoted

to the construction of the computational stochastic model for the uncertain vibroacoustic

system including the uncertain sound-insulation layer. Some aspects relative to the stochatic
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solver are also presented in this section. Section VI addresses the second step of the method-

ology where the experimental identification of the dispersion parameters of the probabilistic

model is performed. The identification of the dispersion parameters relative to the structure

is performed using an experimental database while a reference numerical solution is used to

identify the dispersion parameters relative to the probabilistic model of the sound-insulation

layer. Finally, Section VII deals with the prediction of the system’s vibroacoustic response

using the previously identified computational stochastic model.

II. CONSTRUCTION OF A SIMPLIFIED MEAN MODEL OF THE

SOUND-INSULATION LAYER USING THE FUZZY STRUCTURE

THEORY IN A VIBROACOUSTIC SYSTEM

A. Definition of the vibroacoustic system

The physical space �
3 is referred to a cartesian system for which the generic point

is denoted by x = (x1, x2, x3). The Fourier transform with respect to time t is denoted

by u(ω) =
∫
�
e−iωtu(t) dt. The vibroacoustic system is analyzed in the frequency band

� = [ωmin, ωmax]. The structure occupies a three-dimensioned bounded domain Ωs and is

modeled by a nonhomogeneous anisotropic viscoelastic material. The boundary of Ωs is

written as ∂Ωs = Γs ∪Γ0 ∪Γ1 ∪Γ2 (see Fig.1) and the outward unit normal to ∂Ωs is ns(x).

The structure is fixed on Γ0, a surface force field gsurf(x, ω) is given on Γ1 and a body force

field gvol(x, ω) is given in Ωs. The acoustic cavity Ωa is filled with a dissipative acoustic

fluid, its boundary is written as ∂Ωa = Γ ∪ Γ2 and the inward unit normal to ∂Ωa is n(x)

(note that n(x) = ns(x) on Γ2 and that without sound-insulation layer, the coupling surface

∂Ωa between the structure and the cavity would be Γs∪Γ2). A sound-insulation layer which

occupies a bounded domain Ωh with boundary ∂Ωh = Γ∪Γs is attached to the part Γs of the

boundary of the structure (see Fig.1). Let x �→ us(x, ω) = (us
1(x, ω), us

2(x, ω), us
3(x, ω)) be

the structural displacement field defined on Ωs with values in �
3 and which is equal to zero

on Γ0. Let x �→ p(x, ω) be the pressure field inside Ωa with value in � for which the value on
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∂Ωa = Γ ∪ Γ2 is still denoted by p(x, ω). Let x �→ uh(x, ω) = (uh
1(x, ω), uh

2(x, ω), uh
3(x, ω))

be the sound-insulation layer displacement field defined on Ωh with values in �3 whose value

on interface Γ is still denoted by x �→ uh(x, ω). Finally, we need to introduce the admissible

spaces for the three fields of the problem. Let Cs
0 be the space of the admissible displacement

fields of the structure such that us = 0 on Γ0, let Ca be the space of the admissible pressure

fields in the acoustic cavity and Ch be the space of the admissible displacement fields of the

sound-insulation layer.

B. Coupling force fields

The coupling force field on boundary Γs that the structure exerts on the sound-insulation

layer is denoted by x �→ f s(x, ω) = (f s
1 (x, ω), f s

2(x, ω), f s
3(x, ω)) and can be written for all

x fixed in Γs as f s(x, ω) = f s(x, ω)ns(x) + f s
tang(x, ω). It is assumed that the tangential

force field f s
tang(x, ω) exerted by the structure on the sound-insulation layer is equal to

zero. This hypothesis is reasonable in vibroacoustics for the majority of the cases met

in the technologies such as the ones used in the automotive industry. Nevertheless, this

hypothesis is not perfectly satisfied for real complex systems and induces uncertainties in

the vibroacoustic model. This is a reason why a model of uncertainties will be introduced.

Consequently, we have

f s(x, ω) = f s(x, ω)ns(x) . (1)

Note that dimension of f s
i (x, t) is [M ][L]−1[T ]−2. The coupling force field x �→ f p(x, ω) =

(f p
1 (x, ω), f p

2 (x, ω), f p
3 (x, ω)) on boundary ∂Ωa = Γ∪Γ2 that the acoustic fluid exerts on the

structure (interface Γ2) and the sound-insulation layer (interface Γ) is written as,

fp(x, ω)ds(x) = −p(x, ω)n(x)ds(x) (2)

in which ds is the surface element on ∂Ωa. The equations of the boundary value problem

for the vibroacoustic system made up of the structure coupled with internal acoustic cavity

and with the sound-insulation layer are given in Appendix A. Eqs. (A4), (A5) and (A6) are

the equations for the structure, the acoustic cavity and the sound-insulation layer. There
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are coupling terms in these three equations. In particular, the coupling term between the

sound-insulation layer and the structure in the Eq. (A4) of the structure is represented

by the term c
Γs

(δus; ω); the coupling term between the sound-insulation layer and the

acoustic cavity in Eq. (A5) of the acoustic cavity is represented by the term c
Γ
(uh, δp). The

principle of construction of the simplified model for the sound-insulation layer consists in

replacing Eq. (A6) by a simplified model obtained in using the fuzzy structure theory24,26,27

for which a synthesis is given in Ref [12]. This means that the two coupling terms c
Γs

(δus; ω)

and c
Γ
(uh, δp) have to be expressed as a function of us and p using the fuzzy structure

theory. This theory consists (1) in introducing an underlying deterministic dynamical model

(see Section II.C), (2) in introducing a probabilistic model of the eigenfrequencies of this

dynamical model (see Section II.D) and (3) in performing a statistical averaging (see Section

II.E).

C. Definition of the underlying deterministic model for the fuzzy structure

We introduce the following hypothesis for the sound-insulation layer (see Fig. 2): the

surfaces Γ and Γs are assumed to be geometrically equivalent and consequently, for all x in

Γs � Γ, ns(x) � n(x). The normal component to Γs of the structural displacement field is

ns(x).us(x, ω) = ws(x, ω) , x ∈ Γs . (3)

The normal component to Γ of the displacement field of the sound-insulation layer is

n(x).uh(x, ω) = w(x, ω) (4)

in which n(x) � ns(x), for x ∈ Γs � Γ. Using the first step of the fuzzy structure

theory and taking into account the hypothesis introduced in Section II.B, the underlying

deterministic model is made up of a density of damped linear oscillators acting in the normal

direction to Γ. For a fixed frequency ω and for a fixed x in Γs, the displacement of the base

of an oscillator is ws(x, ω) and the displacement of its mass μ(x, ω) > 0 is w(x, ω). The

mass density μ(x, ω) ([M ][L]−2) is distributed on Γ. The corresponding stiffness density
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k(x, ω) associated with this oscillator is k(x, ω) = μ(x, ω)ω2
p(x, ω) where ωp(x, ω) > 0 is the

eigenfrequency (rad.s−1) of the undamped linear oscillator with fixed base. The damping

rate of this oscillator is denoted by ξ(x, ω). Let f s(x, ω) be the force applied to the base

of this oscillator and corresponding to the force density induced by the structure on the

sound-insulation layer (see Eq. (1)). Let f p(x, ω) be the force applied to the mass of the

oscillator and corresponding to the force density induced by the acoustic pressure p(x, ω)

on the sound-insulation layer (see Eq. (2)). Removing x and ω for brevity, the equation of

this oscillator is written as

μ

⎡⎢⎢⎣ −ω2 + 2iωξωp + ω2
p −2iωξωp − ω2

p

−2iωξωp − ω2
p 2iωξωp + ω2

p

⎤⎥⎥⎦×

⎡⎢⎢⎣ w(x, ω)

ws(x, ω)

⎤⎥⎥⎦ =

⎡⎢⎢⎣ −p(x, ω)

f s(x, ω)

⎤⎥⎥⎦ . (5)

For all ω in �, from Eq. (5), it can be deduced that

w(x, ω) = ac(x, ω)ws(x, ω) +
1

ω2
aa(x, ω)p(x, ω) , (6)

f s(x, ω) = as(x, ω)ws(x, ω) + ac(x, ω)p(x, ω) (7)

in which

as(x, ω) =

−ω2 μ(x, ω) (2iω ξ(x, ω)ωp(x, ω) + ωp(x, ω)2)

−ω2 + 2iω ξ(x, ω)ωp(x, ω) + ωp(x, ω)2
, (8)

aa(x, ω) =

−ω2/μ(x, ω)

−ω2 + 2iω ξ(x, ω)ωp(x, ω) + ωp(x, ω)2
, (9)

ac(x, ω) =

2iω ξ(x, ω)ωp(x, ω) + ωp(x, ω)2

−ω2 + 2iω ξ(x, ω)ωp(x, ω) + ωp(x, ω)2
. (10)
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As explained in Section II.B, we have to express the two terms c
Γ
(uh, δp) and c

Γs
(δu; ω).

Using Γ � Γs, substituting Eq. (4) into c
Γ
(uh, δp) defined by Eq. (A2), substituting Eq. (6)

again into Eq. (A2) and using Eq. (3) yield

ω2c
Γ
(uh, δp)

=ω2

∫
Γs

ac(x, ω) ns(x).us(x, ω) δp(x) ds(x)

+

∫
Γs

aa(x, ω) p(x, ω) δp(x) ds(x) . (11)

Substituting Eq. (1) into c
Γs

(δu; ω; ω) defined by Eq. (A3), substituting Eq. (7) again into

Eq. (A3) and using Eq. (3) yield

c
Γs

(δus; ω)

=

∫
Γs

as(x, ω) (ns(x).us(x, ω))(ns(x).δus(x))ds(x)

+

∫
Γs

ac(x, ω)p(x, ω) (ns(x).δus(x)) ds(x) . (12)

D. Probabilistic model of the eigenfrequency of the oscillators

The second step of the fuzzy structure consists in modeling ωp(x, ω) by a random variable

Ωp(x, ω). In this section, we then introduce the random bilinear form associated with

c
Γ
(uh, δp) and the random linear form associated with c

Γs
(δus; ω) defined by Eqs. (11)

and (12). For all ω in �, we choose to represent μ(x, ω) and ξ(x, ω) by their mean values

μ(x, ω) = μ(ω) > 0 and ξ(x, ω) = ξ(ω) where ω �→ μ(ω) and ω �→ ξ(ω) are two deterministic

functions independent of x with 0 < ξ(ω) < 1. The mean participating mass can be

written24,26,27 as μ(ω) = ν(ω)mtot/|Γs| where 0 ≤ ν(ω) ≤ 1 is the mean coefficient of

participating mass, mtot is the total mass of the density of oscillators and |Γs| is the measure

of surface Γs. It should be noted that if there are several sound-insulation layers with

different values of parameters μ and ξ, domain Ωh is subdivised into several subdomains

and thus, their parameters have to be constant with respect to x in every subdomain. For

all x fixed in Γs and ω fixed in �, the eigenfrequency ωp(x, ω) is modeled by a positive
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random variable Ωp(x, ω) whose probability distribution PΩp(x;ω)(dωp, ω) is assumed to be

independent of x and is defined by the probability density function pΩp(x;ω)(ωp, ω) with

respect to dωp, such that24,26

pΩp(x;ω)(ωp, ω) = �(ω)�[a(ω),b(ω)](ωp) , (13)

with �B(x) = 1 if x ∈ B and = 0 if x /∈ B and where

a(ω) = sup

{
0, ω − 1

2n(ω)

}
, (14)

b(ω) = ω +
1

2n(ω)
, (15)

�(ω) =
1

b(ω) − a(ω)
(16)

in which n(ω) is the mean modal density of the sound-insulation layer. In order to better

explain the meaning of parameters n(ω) and μ(ω), we define them in the simplest case for

which the fuzzy structure Ωh would be made up of Nosc oscillators uniformly distributed in

the frequency band � and uniformly distributed on surface Γs. In this case, the mass of

each oscillator would be mosc. Consequently, the total mass of the fuzzy structure would

be mtot = Noscmosc and for all x in Γs, we would have μ(x, ω) = μ(ω) =
√

Noscmosc/|Γs|,∫
�

n(ω)dω =
√

Nosc and
∫
�

μ(ω)n(ω)dω = mtot/|Γs|. Coming back to the general case, for

all x fixed in Γs and ω fixed in �, the coefficients as(x, ω), aa(x, ω) and ac(x, ω) defined by

Eqs. (8), (9) and (10) become random variables denoted by As(x, ω), Aa(x, ω) and Ac(x, ω).

For all us and δus in Cs
0 and for all p and δp in Ca, the forms c

Γ
(uh, δp) and c

Γs
(δus; ω)

defined by Eqs. (11) and (12) become random variables which are rewritten in terms of

us, p, δus and δp as C
Γ
(us, p, δp; ω) and C

Γs
(us, p, δus; ω) and which are such that

ω2C
Γ
(us, p, δp; ω)

=ω2

∫
Γs

Ac(x, ω) ns(x).us(x, ω) δp(x) ds(x)

+

∫
Γs

Aa(x, ω) p(x, ω) δp(x) ds(x) (17)
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and

C
Γs

(us, p, δus; ω)

=

∫
Γs

As(x, ω) (ns(x).us(x, ω)) (ns(x).δus(x)) ds(x)

+

∫
Γs

Ac(x, ω)p(x, ω) (ns(x).δus(x)) ds(x) . (18)

E. Statistical averaging and simplified mean model of the sound-insulation

layer

The last step of the fuzzy structure theory consists in defining the simplified mean model

taking the statistical averaging of random variables C
Γ
(us, p, δp; ω) and C

Γs
(us, p, δus; ω) de-

fined by Eqs. (17) and (18). As we have explained in section II.B, the simplified mean model

thus consists in replacing the two coupling terms c
Γ
(uh, δp) and c

Γs
(δus; ω) by c

Γ
(us, p, δp; ω)

and c
Γs

(us, p, δus; ω) such that,

c
Γ
(us, p, δp; ω) = E{C

Γ
(us, p, δp; ω)} , (19)

c
Γs

(us, p, δus; ω) = E{C
Γs

(us, p, δus; ω)
}

(20)

in which E is the mathematical expectation. Analyzing Eqs. (17) and (18) leads us to

introduce the following deterministic bilinear forms bs(us, δus) on Cs
0 × Cs

0, cs(p, δus) on

Ca × Cs
0 and ba(p, δp) on Ca × Ca,

bs(us, δus) =

∫
Γs

(ns(x).us(x)) (ns(x).δus(x)) ds(x) , (21)

cs(p, δus) =

∫
Γs

p(x) (ns(x).δus(x)) ds(x) , (22)

ba(p, δp) =

∫
Γs

p(x) δp(x) ds(x) . (23)

From Eqs. (17) and (18) and using Eqs. (19) and (20) with Eqs. (13) to (16) yield

ω2c
Γ
(us, p, δp; ω) = ω2ac(ω) cs(δp, us) + aa(ω) ba(p, δp) , (24)

c
Γs

(us, p, δus; ω) = as(ω) bs(us, δus) + ac(ω) cs(p, δus) (25)
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in which

as(ω) = −ω2as
R(ω) + iωas

I(ω) , (26)

aa(ω) = aa
R(ω) + iωaa

I (ω), (27)

ac(ω) = ac
R(ω) + iac

I(ω) , (28)

with

as
R(ω) = μ(ω)n(ω)

[
1

n(ω)
− ω λ(ω) Θ

R
(ω)

]
, (29)

as
I(ω) = μ(ω)n(ω) ω2λ(ω) Θ

I
(ω) , (30)

aa
R(ω) = ω n(ω)

λ(ω)

μ(ω)
Θ

R
(ω) , (31)

aa
I(ω) = n(ω)

λ(ω)

μ(ω)
Θ

I
(ω) , (32)

ac
R(ω) = 1 − ω n(ω)λ(ω) Θ

R
(ω) , (33)

ac
I(ω) = −ω n(ω)λ(ω) Θ

I
(ω) . (34)

In these equations, the functions λ, Θ
R

and Θ
I

are defined in Appendix B. We then deduce

the simplified mean model of the sound-insulation layer: Find us in Cs
0 and p in Ca such

that, for all δus in Cs
0 and δp in Ca, we have

− ω2ms(us, δus) + iω ds(us, δus; ω)

+ ks(us, δus; ω) + c
Γ2

(δus, p) (35)

+ as(ω)bs(us, δus) + ac(ω)cs(p, δus) = ls(δus; ω) ,

− ω2ma(p, δp) + iω da(p, δp; ω) + ka(p, δp)

+ ω2c
Γ2

(us, δp) + ω2ac(ω)cs(δp, us) (36)

+ aa(ω)ba(p, δp) = la(δp; ω)

in which the bilinear forms bs, cs and ba are defined by Eqs. (21), (22) and (23) and where

ms, ds, ks, ma, da, ka and c
Γ2

are defined by Eqs. (A7) to (A13).
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III. COMPUTATIONAL VIBROACOUSTIC MEAN MODEL

The finite element discretization12,44 of Eqs. (35) and (36) yields the following matrix

equation on �
ms × �

ma defined by Eqs. (17) and (18),⎡⎢⎢⎣ [As(ω)]+as(ω)[Bs] [C] + ac(ω)[Cs]

ω2
{
[C]T +ac(ω)[Cs]T

}
[Aa(ω)] + aa(ω)[Ba]

⎤⎥⎥⎦×

⎡⎢⎢⎣ us(ω)

p(ω)

⎤⎥⎥⎦ =

⎡⎢⎢⎣ �
s(ω)

�
a(ω)

⎤⎥⎥⎦ ,

(37)

where [As(ω)] is a complex (ms × ms) matrix such that

[As(ω)] = −ω2 [Ms] + iω [Ds(ω)] + [Ks(ω)] (38)

in which [Ms], [Ds(ω)] and [Ks(ω)] are the mass, damping and stiffness matrices of the

structure in vacuo. In Eq. (37), [Aa(ω)] is a complex (ma × ma) matrix,

[Aa(ω)] = −ω2 [Ma] + iω [Da(ω)] + [Ka] (39)

in which [Ma], [Da(ω)] and [Ka] are the “mass”, “damping” and “stiffness” matrices of the

acoustic cavity with rigid wall. The real (ms × ma) matrix [C] is the usual vibroacoustic

coupling matrix relative to boundary Γ2 (which is without sound-insulation layer). The

matrices [Bs], [Cs] and [Ba] correspond to the finite element approximation of the bilinear

forms defined by Eqs. (21), (22) and (23) respectively. Using ns structural elastic modes in

vacuo and na acoustic modes of the cavity with rigid walls including the constant pressure

mode, the mean reduced matrix model of the vibroacoustic system is written as

us(ω) = [Φs]qs(ω) , p(ω) = [Φa]qa(ω) , (40)⎡⎢⎢⎣ [As(ω)] + as(ω)[Bs] [C] + ac(ω)[Cs]

ω2
{
[C]T + ac(ω)[Cs]T

}
[Aa(ω)] + aa(ω)[Ba]

⎤⎥⎥⎦×

⎡⎢⎢⎣ qs(ω)

qa(ω)

⎤⎥⎥⎦ =

⎡⎢⎢⎣ f s(ω)

fa(ω)

⎤⎥⎥⎦
(41)
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in which [Φs] is the (ms × ns) real matrix of the structural modes, [Φa] is the (ma ×na) real

matrix of the acoustic modes, [C] is the (ns ×na) generalized vibroacoustic coupling matrix,

as(ω)[Bs] is the (ns × ns) generalized matrix, ac(ω)[Cs] is the (ns × na) generalized matrix

and aa(ω)[Ba] is the (na×na) generalized matrix corresponding to the vibroacoustic coupling

induced by the sound-insulation layer. The (ns×ns) matrix [As(ω)] and the (na×na) matrix

[Aa(ω)] are written as

[As(ω)] = −ω2 [M s] + iω [Ds(ω)] + [Ks(ω)] , (42)

[Aa(ω)] = −ω2 [Ma] + iω [Da(ω)] + [Ka] (43)

in which [Ms], [Ds(ω)] and [Ks(ω)] are the generalized mass, damping and stiffness matrices

of the structure and [Ma], [Da(ω)] and [Ka] are the generalized “mass”, “damping” and

“stiffness” matrices of the acoustic cavity.

IV. EXPERIMENTAL IDENTIFICATION OF THE MEAN PARAMETERS

OF THE FUZZY STRUCTURE MODEL FOR THE SOUND-INSULATION

LAYER - DESIGN METHODOLOGY PART 1

We propose to validate the simplified mean model of the sound-insulation layer by using

experiments. The methodology used is the following:

(1) We consider a structure for which the experimental frequency response functions

(FRF) are measured on frequency band �.

(2) A sound-insulation layer is laid on this structure and the experimental FRF are

measured again for the structure coupled with the sound-insulation layer.

(3) A mean computational model of the structure is developed and the model is updated

using the experimental FRF measured in point (1) above.

(4) A mean computational model of the structure coupled with the sound-insulation

layer is developed using the updated mean computational model of the structure and the

simplified mean model of the sound-insulation layer. This simplified model provided by

the fuzzy structure theory depends on unknown parameters ξ(ω), n(ω) and ν(ω) that we
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propose to identify using the experimental FRF measured in point (2) above. The following

methodology is carried out:

(4.i) Over all the frequency band �, the mean damping rate ξ of the fuzzy part is assumed

to be independent of ω and is fixed to its estimated value corresponding to the damping

rate at the first experimental eigenfrequency.

(4.ii) The mean modal density n(ω) is obtained by performing a modal analysis with a

very fine mesh finite element model of the sound-insulation layer embedded on its base. We

then calculate the mean number N(ω) of eigenfrequencies in the frequency band [0, ω] and

then, by a numerical derivative, we deduce the mean modal density n(ω) which is such that

N(ω) =
∫ ω

0
n(α)dα. The first eigenfrequency for which the mean modal density is different

from zero is defined as the cut-off frequency ΩC . This cut-off frequency can be viewed as

the frequency for which the sound-insulation layer begins to act as a power flow transmitter

due to its own thickness resonances (the internal dynamical resonances taken into account

by the fuzzy structure theory).

(4.iii) For ω < ΩC , the coefficient of participating mass ν(ω) is equal to 1 and the mean

modal density n(ω) is equal to 0. The three coefficients as(ω), aa(ω) and ac(ω) (defined by

Eqs (26), (27), (28)) are then taken as as(ω) = −μ(ω)ω2, aa(ω) = 0 and ac(ω) = 1.

(4.iv) For ω ≥ ΩC , the parameter ν(ω) is either experimentally identified by solving an

inverse problem which is formulated as an optimization problem or is taken from a previous

identified database.

A. Experimental configuration and measurements

The experimental configuration is made up of a homogeneous, isotropic and slightly

damped thin plate (steel plate with a constant thickness) connected to an elastic framework

on its edges. This structure is set horizontally and is hung up by four soft springs in order

to avoid rigid body modes. The highest eigenfrequency of suspension is 9 Hz while the

17



lowest elastic mode of the structure is 43 Hz. The excitation is a point force applied to

the framework and excites the dynamical system mainly in bending mode in the frequency

band of analysis � =]0, 300] Hz. The number of sampling frequencies is nfreq = 300. The

frequency resolution is Δf = 1 Hz. Sixty frequency response functions are performed for this

structure. The frequency response functions ω �→ γexp
i (ω) are identified on frequency band �

for nobs = 60 normal accelerations in the plate measured with a laser velocimeter. We then

construct the following experimental frequency response function (FRF), ω �→ rexp(ω) =

10 log10 (
∑nobs

i=1 |γexp
i (ω)|2). This FRF has been chosen because it gives a robust and simple

way to obtain the dynamical behavior of all the structure.

B. Experimental updating of the mean model of the structure without

sound-insulation layer

The mean computational model of the structure is made up of a finite element model

having ms = 57, 768 structural DOF. The reduced mean computational model is constructed

with ns = 240 structural modes. The mean computational model has been updated with

respect to the Young modulus, the mass density and the damping rate of the plate and of

the elastic framework using the experimental response of the system. The updated mean

computational model will simply be called below the mean computational model. We in-

troduce the function ω �→ r(ω) = 10 log10 (
∑nobs

i=1 |γi(ω)|2). Figure 3 shows the comparison

between the experimental measurements and the updated FRF of the mean computational

model for the structure without the sound-insulation layer. We made the choice to update

the mean computational model as follows. The level of the FRF has been updated at its

experimental value of 29.9 dB at the first eigenfrequency. However, after such an updating,

the first eigenfrequency given by the model stays at 42 Hz while the experimental value is at

43 Hz. We have also updated the first torsion eigenfrequency which is at 178 Hz (due to the

framework) and nevertheless, the FRF level at this frequency is 37 dB while the experimen-

tal value is 42 dB. This strategy of updating has been chosen because the first elastic mode
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and the torsion of the structure lightly depend on the sound-insulation layer. The other

eigenfrequencies and the corresponding amplitudes of the responses have not specifically

been updated. This is a source of uncertainties which is addressed below.

C. Experimental Identification of the parameters of the simplified model of the

sound-insulation layer using a design methodology

A similar experimentation to the experiments described in section IV.B has been car-

ried out when the structure is coupled with the sound-insulation layer which is made

up of a heterogeneous, anisotropic, poroelastic foam and of a heavily damped septum

(EPDM). The sound-insulation layer is laid on the plate and is not connected to the

elastic framework. The reduced mean computational model is written (see Eq. (41)) as

[As(ω) + as(ω)[Bs]]qs(ω) = f s(ω). We use this reduced mean computational model to iden-

tify the three parameters ξ, n(ω) and ν(ω) of the simplified model of the sound-insulation

layer for ω in �. The methodoly used is the following:

(IV.C.1) As previously explained, the mean modal density is calculated using a refined fi-

nite element model of the sound-insulation layer (33, 210 DOF for the foam and 13, 284 DOF

for the septum; there are N = 1900 elastic modes in the frequency band ]0, 450] Hz). The

cut-off frequency ΩC and the mean modal density n(ω) are then deduced in the frequency

band �. We obtain ΩC = 67×2π rad.s−1 and the graph of the smoothed function ω �→ n(ω)

is given in Fig. 4 for frequency band �. It should be noted that the modal density increases

in the frequency band [250 , 300] Hz.

(IV.C.2) In the frequency band [ωmin, ΩC [, we remind that the sound-insulation layer

is equivalent to an added mass. The expression for the fuzzy coefficient as(ω) is then

as(ω) = −μω2 for ω < ΩC . As explained in point (4.i) above, ξ is experimentally identified

as the damping rate of the first elastic eigenmode of the structure with the sound-insulation

layer. The identified values are ξ = 0.01 and μ = 5.9 kg.m−2 .

(IV.C.3) We have chosen to directly identify the function ω �→ ν(ω) as explained
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in points (4.iii) and (4.iv) above. The optimization problem consists in minimizing

the distance between the model and the experiments for the FRF ω �→ r(ω; ν(ω)) =

10 log10 (
∑nobs

i=1 |γi(ω; ν(ω))|2).
(IV.C.4) In the frequency band [ωmin; ΩC [, we have ν(ω) = 1 and the modal density n(ω)

which is equal to zero. In the frequency band [ΩC , ωmax], we use the calculated mean modal

density n(ω) and the mean damping rate ξ in order to identify the mean coefficient of the

participating mass ν(ω) as explained in point (4.iv) above. Figure 5 displays the updated

mean coefficient ν(ω) of the participating mass and Fig. 6 shows the comparison between

the experimental FRF and the FRF of the mean computational model for the structure with

the sound-insulation layer calculated with the parameters experimentally identified.

(IV.C.5) The use of the structural part of the vibroacoustic model allows the identification

of the mean parameters ν(ω), ξ and n(ω). It should be noted that this identification al-

lows not only the coefficient as(ω) to be identified but also the coefficients ac(ω) and aa(ω).

Therefore, we only need the structural part of the vibroacoustic model to identify all of the

mean computational simplified model of the sound-insulation layer (i.e. the structural, the

coupling and the acoustic parts).

V. COMPUTATIONAL STOCHASTIC MODEL FOR THE UNCERTAIN

VIBROACOUSTIC SYSTEM INCLUDING THE SOUND-INSULATION

LAYER

A. Stochastic vibroacoustic system

As we have explained in Section I, there are two sources of uncertainties. The first source

is relative to the mean computational model of the structure without the sound-insulation

layer coupled with the acoustic cavity. Concerning the structure in vacuo, Fig. 3 shows that

the mean computational model gives a good enough prediction but some significant differ-

ences exist between the prediction and the experimental results. Consequently, the quality

of the predictions of the mean computational model can be improved in implementing a
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nonparametric probabilistic model of uncertainties to take into account both system param-

eters uncertainties and model uncertainties. Therefore, (1) the mean generalized matrices

[M s], [Ds(ω)] and [Ks(ω)] in Eq. (42) relative to the structure are replaced by the random

matrices [Ms], [Ds(ω)] and [Ks(ω)], (2) the mean generalized matrices [Ma], [Da(ω)] and

[Ka] in Eq. (43) relative to the acoustic cavity are replaced by the random matrices [Ma],

[Da(ω)] and [Ka] and (3) the mean generalized coupling matrix [C] is replaced by the ran-

dom matrix [C]. The level of uncertainties of these random matrices is controlled by the

dispersion parameters δMs, δDs , δKs, δMa , δDa , δKa and δC which are independent of the

matrix dimension and of the frequency. The second source of uncertainties is introduced by

the use of the simplified model of the sound-insulation layer based on the fuzzy structure

theory. In fact, if this simplified model has the capability to predict in mean the effects of

the sound-insulation layer on the structure and on the acoustic cavity, this simplified model

does not describe the fluctuations around the mean value induced by these uncertainties.

We then propose to use again the nonparametric probabilistic approach to take into account

uncertainties in the simplified model. Consequently, the matrices [Bs], [Cs] and [Ba] of the

mean simplified model of the sound-insulation layer are replaced by the random matrices

[Bs], [Cs] and [Ba]. The level of uncertainties of these random matrices is controlled by

the dispersion parameters δBs , δCs and δBa which are independent of the matrices dimen-

sion and of the frequency. The development of the construction of the probability model of

all these random matrices with a nonparametric approach will not be detailed here. Such

an approach is presented in Ref. [37, 40] and its application to a structural-acoustic system

without sound-insulation layer can be found in Ref. [41, 42]. However, some details are given

in Appendix D. Taking into account Eqs. (40), the vectors Us(ω) of the random structural

displacement and P(ω) of the random acoustic fluid pressure are written

Us(ω) = [Φs]Qs(ω) , P(ω) = [Φa]Qa(ω) . (44)
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The stochastic reduced computational vibroacoustic model can then be deduced and is

written as, for all ω ∈ �,

⎡⎢⎢⎣ [As(ω)] + as(ω)[Bs] [C] + ac(ω)[Cs]

ω2
{
[C]T + ac(ω)[Cs]T

}
[Aa(ω)] + aa(ω)[Ba]

⎤⎥⎥⎦×

⎡⎢⎢⎣ Qs(ω)

Qa(ω)

⎤⎥⎥⎦ =

⎡⎢⎢⎣ f s(ω)

fa(ω)

⎤⎥⎥⎦
(45)

in which the random vectors Qs(ω) and Qa(ω) are the solution of the stochastic computa-

tional model and where the random matrices [As(ω)] and [Aa(ω)] are defined by Eqs. (D2)

and (D3).

B. Solver for the stochastic reduced computational model

This section is devoted to the construction of the random solution of the stochastic

computational model defined by Eq. (45). The stochastic solver is based on the use of the

Monte Carlo method. The methodology used is then the following. For ω fixed in �, (1) nr

independent realizations of the random variables Us(ω) = (Us
1 (ω), . . . , Us

ms
(ω)) and P(ω) =

(P1(ω), . . . , Pma(ω)) are constructed. For each realization Us(ω; θ�) and P(ω; θ�) of the ran-

dom vectors Us(ω) and P(ω), the realizations of Rs(ω; θ�) = 10 log10

(∑nobs

i=1 |ω2Us
ki

(ω; θ�)|2
)

and Ra(ω; θ�) = 10 log10 (
∑mobs

i=1 |Pki
(ω; θ�)|2) are calculated in which mobs is the number of

pressure observations. (2) A convergence analysis is performed with respect to the number

nr of realizations and to the numbers ns and na of modes. The order statistics and the

method of quantiles (see Ref. [43]) are used to construct an estimation of the confidence

regions of the observations.
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C. Convergence analysis

For fixed values of the dispersion parameters, the convergence analysis with respect to

nr, ns and na is carried out in studying the function,

(nr, ns, na) �→ Convj(nr, ns, na) =
1

nr

nr∑
�=1

||Qj(ω, θ�)||2, (46)

with j = s or a.

D. Estimation of the mean value and of the confidence region

Let W (ω) be the random variable representing Rs(ω) or Ra(ω). Let FW (ω)(w) be the

cumulative distribution function (continuous from the right) of the random variable W (ω),

such that FW (ω)(w) = P (W (ω) ≤ w). For 0 < p < 1, the pth quantile or fractile of FW (ω) is

defined as

ζ(p) = inf
FW (ω)(w)≥p

{w} . (47)

Then, the upper envelope w+(ω) and the lower envelope w−(ω) of the confidence region are

defined by

w+(ω) = ζ

(
1 + Pc

2

)
, w−(ω) = ζ

(
1 − Pc

2

)
, (48)

and are such that

P(w−(ω) < W (ω) ≤ w+(ω)) = Pc . (49)

The estimation of w+(ω) and w−(ω) is performed by using the sample quantiles43. Let

w1(ω) = W (ω; θ1), . . . , wnr(ω) = W (ω; θnr) be the nr independent realizations of the random

variable W (ω) computed as explained in section V. Let w̃1(ω) < . . . < w̃nr(ω) be the order

statistics associated with w1(ω), . . . , wnr(ω). Therefore, one has the following estimation

w+(ω) � w̃j+(ω), j+ = fix (nr(1 + Pc)/2) , (50)

w−(ω) � w̃j−(ω), j− = fix (nr(1 − Pc)/2) , (51)

where fix(z) is the integer part of the real number z.
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VI. IDENTIFICATION OF THE DISPERSION PARAMETERS OF THE

PROBABILISTIC MODELS USING EXPERIMENTS - DESIGN

METHODOLOGY PART 2

A. Convergence of the stochastic solver

In this section, we perform the experimental identification of the dispersion parameters

δMs, δDs and δKs for the structure and δBs for the sound-insulation layer. This identification is

carried out using the stochastic reduced computational model [As(ω) + as(ω)[Bs]]Qs(ω) =

f s(ω) for the structure coupled with the sound-insulation layer and not coupled with the

acoustic cavity (see Eq. (45)). Consequently, for the largest possible values fixed at 0.8

of the dispersion parameters δMs, δDs , δKs and δBs , we need to calculate the values of the

parameters nr and ns in order that the mean-square convergence is reached, i.e. in studying

the function (nr, ns) �→ Convs(nr, ns). The graph of this function is shown in Fig. 7. It can

be deduced that the convergence is reasonably reached for ns = 103 modes and nr = 800

realizations. Below, in the identification procedure presented, the parameters nr and ns are

fixed to these values.

B. Description of the dispersion parameters identification

(i) In a first step, we use the experimental configuration (described in Section IV.A) in

order to identify the dispersion parameters δMs, δDs and δKs for the structure. The value

of the damping dispersion parameter δDs is fixed a priori to δDs = 0.3 according to the

conclusion of Ref. [41]. In order to verify that the random response is not really sensitive41

to the value of the parameter of dispersion δDs, we have performed a sensitivity analysis

with respect to δDs varying in the interval [0.2, 0.4] where δMs and δKs are fixed to the value

0.1 (small value of the dispersion parameter for the structural mass and stiffness matrices).

With this sensitivity analysis, we have effectively verified that the influence of this dispersion

parameter is negligible. Concerning the identification of the dispersion parameters δMs and
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δKs, we use the maximum likelihood method with a statistical reduction method45 (the

method is recalled in Section VI.C) and we use41,42 the assumption δ = δMs = δKs. For this

first step, Eq. (45) is then replaced by the random equation [As(ω)]Qs(ω) = f s(ω) relative

to the uncertain structure without sound-insulation layer and without coupling with the

acoustic cavity.

(ii) The second step is devoted to the identification of the dispersion parameter δBs relative

to the stochastic simplified model of the sound-insulation layer. Numerical simulations have

shown that the sensitivity of the response of the structure coupled with the sound-insulation

layer is smaller than the sensitivity of the response induced by the dispersion parameters

of the structure. Consequently, the identification of δBs cannot be carried out with the

uncertain structure. Parameter δBs must thus be identified with a “reference structure” for

which there are no uncertainties (note that the sound-insulation layer cannot be analyzed

alone and has to be coupled with a structure). The methodology proposed consists

(1) in defining a “reference structure” and analyzing the response of this “reference

structure” coupled with the sound-insulation layer. This reference coupling system is

analyzed by the finite element method using a fine mesh for the sound-insulation layer and

the “reference structure”. This deterministic computational model allows the responses to

be computed. These responses are defined below as the “numerical experiments”. Note that

this computational model does not represent the experimental configuration, but this choice

is completely coherent because the stochastic simplified model of the sound-insulation layer

is independent of the choice of the structure. This model is constituted of a thin plate

similar to the plate of the experimental configuration presented in Section IV.B;

(2) in constructing a stochastic computational model constituted of the computational

model above for the “reference structure” and of the stochastic simplified model for the

sound-insulation layer which depends on δBs. The sound-insulation layer model is similar

to the one presented in Section IV.B For this second step, Eq. (45) is then replaced by the

random equation [As
ref(ω) + as(ω)[Bs]]Qs(ω) = f s(ω).
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The method then consists in minimizing the distance between the “numerical exper-

iments” and the response of the stochastic reduced computational model. We then use

again the maximum likelihood method with a statistical reduction.

C. Statistical reduction and maximum likelihood method

An efficient method has recently been proposed45 to identify the dispersion parameters

with the maximum likelihood method for a stochastic process such as the modulus of a FRF

indexed by the frequency ω. This method consists in introducing a statistical reduction

of the data and then applying the maximum likelihood method to the reduced random

variables.

Firstly, we set the problem for both the steps described in points (i) and (ii) above.

Secondly, we present the results for step 1 of point (i) above and thirdly, we simply give the

results for step 2 of point (ii) above.

In this section, the optimization parameter is denoted by δ and represents the dispersion

parameter δMs = δKs or δBs . For ω in band �, let ω �→ W (δ, ω) be the second-order stochas-

tic process defined on a probabilistic space (Θ, T,P) which depends on the optimization

parameter δ ∈ Δ ⊂ � and which represents the FRF Rs(δ, ω) either for step 1 or step 2

defined in Section V.B. Let ω �→ W exp(ω) be the experimental observation corresponding

to the random observation W (δ, ω) of the stochastic system. It should be noted that

W exp(ω) represents either the experimental observation W exp
step 1(ω) of step 1 in point (i) or

the reference calculation W ref
step 2(ω) of step 2 in point (ii) above. Let {ω1, . . . , ωnfreq

} be the

frequency sampling of band �.

Let PW (δ,ω1),...,W (δ,ωnfreq
)(dw1, . . . , dwnfreq

, δ) be the joint probability distribution on �
nfreq
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of random variables W (δ, ω1), . . . , W (δ, ωnfreq
) depending on the dispersion parameter δ. For

δ in Δ, this joint probability is assumed to be written as

PW (δ,ω1),...,W (δ,ωnfreq
)(dw1, . . . , dwnfreq

, δ)

= p(w1, . . . , wnfreq
, δ)dw1 . . . dwnfreq

(52)

in which p(w1, . . . , wnfreq
, δ) is the probability density function on �

nfreq with respect to the

volume element dw1 . . . dwnfreq
. For all δ fixed in Δ and for all w1, . . . , wnfreq

given in �,

the estimation of p(w1, . . . , wnfreq
, δ) is performed by using the stochastic computational

model and the Monte Carlo method (described in Section V.B) with nr independent re-

alizations {W (δ, ω1, θ1), . . . , W (δ, ωnfreq
, θ1)}, . . . , {W (δ, ω1, θnr), . . . , W (δ, ωnfreq

, θnr)} of the

�
nfreq-valued random observation {W (δ, ω1), . . . , W (δ, ωnfreq

)} with θ1, . . . , θnr in Θ. In prac-

tice, the sampling {ω1, . . . , ωnfreq
} of � is used and the experimental observation is

{W exp(ω1), . . . , W
exp(ωnfreq

)} . (53)

The problem to be solved then is to find the optimal value δopt of the dispersion parameter

δ of the stochastic computational model using the experimental values defined by Eq. (53),

such that

δopt = arg max
δ∈Δ

L(δ) , (54)

with

L(δ) = log10 p(W exp(ω1), . . . , W
exp(ωnfreq

), δ) , (55)

because there is only one experiment. Since nfreq is large (for instance nfreq = 300), the

numerical cost to solve Eq. (54) is very high. A usual possible approximation consists in re-

placing the likelihood function L(δ) by the following L̃(δ) =
∑nfreq

k=1 log10pW (δ,ωk)(W
exp(ωk), δ)

in which pW (δ,ωk) is the probability density function of the random variable W (δ, ωk). This

approximation is not efficient and gives an overestimation of δopt due to the statistical de-

pendence of W (δ, ω1), . . . , W (δ, ωnfreq
). The method proposed45 consists in the following

methodology. Firstly, a statistical reduction of information using a principal component

analysis is performed and secondly, the maximum likelihood method is applied in the space
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of the uncorrelated random variables related to the reduced statistical information. For all

δ in Δ, we define the random vectors �(δ) = (W (δ, ω1), . . . , W (δ, ωnfreq
)), �(δ) = E{�(δ)}

and �exp = (W exp(ω1), . . . , W
exp(ωnfreq

)). Let [C�(δ)] be the (nfreq×nfreq) covariance matrix

defined by

[C�(δ)] = E{(�(δ) − �(δ))(�(δ) − �(δ))T
}

, (56)

where �(δ) and [C�(δ)] are estimated with the Monte Carlo method. We introduce the

eigenvalue problem

[C�(δ)]�(δ) = λ(δ)�(δ) (57)

for which the positive eigenvalues are such that λ1(δ) ≥ λ2(δ) ≥ . . . ≥ λnfreq
(δ). The

corresponding vectors �1(δ), �2(δ), . . . , �nfreq(δ) are orthonormal in �
nfreq and are written as

�α(δ) = (xα1(δ), . . . , xαnfreq(δ)). Let Nred be an integer lesser than nfreq. We can then

introduce the approximation �Nred(δ) of �(δ) defined by

�
Nred(δ) = �(δ) +

Nred∑
α=1

√
λα(δ) Yα(δ) �α(δ) (58)

in which Y1(δ), . . . , YNred
(δ) are Nred real-valued uncorrelated random variables such that,

for all α = 1, . . . , Nred,

Yα(δ) =
1√

λα(δ)
< �(δ) − �(δ) , �α(δ) >� , (59)

where < . , . >� is the euclidian inner product on �nfreq and ||.||
�

is its associated norm. Let

|||.||| be the norm defined by |||W |||2 = E{||W ||2
�
}. The order Nred of the statistical reduction

is calculated to get an approximation with a given accuracy ε independent of Nred and δ,

such that max
δ

{|||�−�red|||2/|||�|||2} ≤ ε with � = �(δ)−�(δ) and �red = �
Nred(δ)−�(δ).

The value of Nred has then to be such that,

max
δ∈Δ

(
1 −

∑Nred

α=1 λα(δ)

tr[C�(δ)]

)
≤ ε . (60)

The statistical reduction is efficient when Nred � nfreq.
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Let (y1, . . . , yNred
) �→ pY1(δ),...,YNred

(δ)(y1, . . . , yNred
, δ) be the probability density function

on �
Nred with respect to dy1, . . . , dyNred

of the uncorrelated (but not independent) random

variables Y1(δ), . . . , YNred
(δ). From Eq. (59), it can be deduced that, for all α in {1, . . . , Nred},

the experimental realization Y exp
α (δ) which now depends on δ is given, for all α = 1, . . . , Nred,

by

Y exp
α (δ) =

1√
λα(δ)

< �
exp − �(δ) , �α(δ) >� . (61)

Let L̃red
be the following approximation of the reduced log-likelihood function which is

defined, for all δ fixed in Δ, by

L̃red
(δ) =

Nred∑
α=1

log10 pYα(δ)(Y
exp
α (δ), δ) (62)

in which y �→ pYα(δ)(y, δ) is the probability density function on � of the real-valued

random variable Yα(δ). This approximation would be exact if the random variables

Y1(δ), . . . , YNred
(δ) were mutually independent and so the joint probability density func-

tion could be written as the product of the marginal probability density functions which is

not true in the present case. Nevertheless, this approximation is reasonably good because

the centered random variables Y1(δ), . . . , YNred
(δ), although they are mutually dependent,

are uncorrelated. The optimization problem to be solved is then given by the following one,

δopt = arg max
δ∈Δ

L̃red
(δ) . (63)

D. Summary of the identification method

From the experimental measurements W exp(ω1), . . . , W
exp(ωnfreq

) and using Eq. (61)

yield the values Y exp
1 (δ), . . . , Y exp

Nred
(δ), for all δ in Δ. The use of the stochastic computa-

tional model and the Monte Carlo method allows to compute independent realizations of

the dependent random variables W (δ, ω1), . . . , W (δ, ωnfreq
), for all δ in Δ. For a fixed accu-

racy parameter ε, the smallest value of Nred ≤ nfreq is calculated with the use of Eq. (60).

The use of Eq. (59) then allows the independent realizations of the dependent but uncorre-

lated random variables Y1(δ), . . . , YNred
(δ) to be calculated and to deduce estimations of the
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marginal probability density function pYα(δ)(Y
exp
α (δ), δ). Using Eqs. (62) and (63) yields the

optimized dispersion parameter δopt.

E. Results

This section is devoted to the identification of the dispersion parameters δMs and δKs

of the structure according to step 1 of point (i) of Section VI.B. We then perform the

identification of the dispersion parameter δBs for the sound-insulation layer according to

step 2 of point (ii) of Section VI.B. First, Eq. (60) is used with Δ = [0.1, 0.95] to compute

the value of Nred and yields Nred = 100 for ε = 0.02. Figure 8 displays the graph of

the function δ �→ L̃red
(δ) for Nred = 100. The maximum of this function is reached for

δopt
Ms

= δopt
Ks

= δopt = 0.3. Figure 9 displays the graph of the FRF ω �→ Rs(ω) defined

in Section V.B for the uncertain structure without the sound-insulation layer and with

δDs = 0.3.

The identification of the dispersion parameter δBs is performed as explained is Sec-

tion VI.B (ii). For the sake of brevity, we only give the result obtained from the optimization

problem which is δopt
Bs

= 0.6. Figure 10 displays the graph of the FRF ω �→ Rs(ω) defined

in Section V.B for the uncertain structure coupled with the uncertain sound-insulation layer

and with δDs = 0.3.

The confidence region is computed with a probability level of 95 % and then the probability

that the experiments be outside the confidence region is non zero. Certainly, this predic-

tion could be improved both in increasing the number of realizations and in improving the

underlying deterministic model of the structure without the sound-insulation layer.
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VII. PREDICTION OF THE VIBROACOUSTIC RESPONSES WITH THE

IDENTIFIED COMPUTATIONAL STOCHASTIC MODEL

In this section, we use the identified computational stochastic model to predict a vibroa-

coustic response. The response of the identified model is compared to a reference solution

calculated with a commercial software. The structure and the sound-insulation layer models

are defined in Section IV. The sound-insulation layer is coupled with a parallelepipedic

acoustic cavity (ma = 23, 354 DOF and na = 67 modes) which is assumed to be without

uncertainties and which is filled with air. Firstly, we observe the pressure at mobs = 120

points in the acoustic cavity while the excitation force is applied to the elastic framework

of the structure as in Section IV. We then compute the FRF ω �→ ra(ω) relative to the

acoustic cavity and Fig. 11 displays its graph for the mean acoustic system with and with-

out the sound-insulation layer. This figure shows the effects of the sound-insulation layers

of the vibroacoustic responses of the reference configuration. It can be seen that there is

a significant effect on frequency band [200,450] Hz. Secondly, we use the same observation

in the acoustic cavity and the same structural excitation as above. Uncertainties are now

taken into account in the structure and in the sound-insulation layer. The random equation

which has to be solved is then the following,⎡⎢⎢⎣ [As(ω)] + as(ω)[Bs] ac(ω)[Cs]

ω2 ac(ω)[Cs]T [Aa(ω)] + aa(ω)[Ba]

⎤⎥⎥⎦×

⎡⎢⎢⎣ Qs(ω)

Qa(ω)

⎤⎥⎥⎦ =

⎡⎢⎢⎣ f s(ω)

f a(ω)

⎤⎥⎥⎦ .

(64)

The values of the dispersion parameters of the probabilistic model are the values identified

in Section VI.E, i.e. δopt
Ms

= δopt
Ks

= 0.3, δDs = 0.3 and δopt
Ba

= 0.6. It is assumed that the

dispersion parameters for the sound-insulation layer are equal, that is to say δopt
Cs

= δopt
Ba

=

δopt
Bs

= 0.6. Figure 12 defined in Section V.B for the uncertain structure coupled with the

uncertain sound-insulation layer and the acoustic cavity. The analysis of this figure shows
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that there are differences between the reference response (thick solid line) and the response

of the mean simplified computational model (these differences can be estimated looking

at the statistical mean response given by the mid-grey line). Nevertheless, the stochastic

simplified computational model allows the prediction to be improved in the probability

sense. It can be seen that the reference response belongs to the confidence region. Firstly,

the two responses coincide in the frequency band [0,40] Hz. Secondly, it can be seen that

the reference solution is close to the lower bound of the confidence region in the frequency

band [40,250] Hz. Finally, the reference solution reaches the lower- and the upper-envelopes

of the confidence in the frequency-band [250,450] Hz.

VIII. CONCLUSION

In this paper, a new extension of the fuzzy structure theory to elastoacoustic element is

presented in order to construct a simplified model of sound-insulation layers. Such a simpli-

fied model, based on an extension of the fuzzy structure theory, (1) allows the dynamics of

the sound-insulation layer to be taken into account without increasing the number of DOF

in the computational vibroacoustic model and (2) allows a representation of the sound-

insulation in terms of physical parameters such as its participating mass, its modal density

and its internal damping rate. This approach allows several kinds of sound-insulation layers

to be simultaneously taken into account in the computational vibroacoustic model of a com-

plex system such as a car with a very small increase of the computational cost. In addition,

taking into account the complexity of the actual sound-insulation layers design, it is neces-

sary to implement a model of uncertainties. This is a reason why a probabilistic approach

of both model and system parameters uncertainties is introduced in the simplified model of

the sound-insulation layer based on the fuzzy structure theory. The complete related devel-

opments are given and an experimental validation is presented. Figure 10 (relative to the

response of the structure coupled with the sound-insulation layer) and Fig. 12 (relative to the

response of the acoustic cavity for the vibroacoustic system constituted of the structure cou-
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pled with the sound-insulation layer and with the acoustic cavity) show that the predictions

are good from a stochastic point of view. Finally, an efficient design methodology is pro-

posed to identify the parameters of the simplified model of the sound-insulation layer. The

mean parameters are identified by solving an inverse problem formulated as an optimization

problem using an experimental database. The maximum likelihood method coupled to a

statistical reduction of information is performed to obtain the dispersion parameters.

The method proposed in this paper is not intended to give a tool for designing sound-

insulation layers (which are designed using high-frequency responses considerations). This

approach has been developed in the low- and medium-frequency bands in complex structural-

acoustics systems like cars for which, due to industrial processes and vehicle diversity, there

are very large variabilities induced by the kinematic conditions at the attachment interface

between the master structure and the sound-insulation layers.
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APPENDIX A: FORMULATION OF THE VIBROACOUSTIC PROBLEM

WITH A SOUND-INSULATION LAYER

In this section, we give additional explanations relative to Section II useful for the

construction of the simplified model of the sound-insulation layer. Let Cs
0 be the space of the

admissible displacement fields of the structure, Ca be the space of the admissible pressure

fields in the acoustic cavity and Ch be the space of the admissible displacement fields of the

sound-insulation layer. For all ω in �, we introduce the following bilinear form defined on

Cs
0 × Ca,

c
Γ2

(us, p) =

∫
Γ2

us(x).ns(x) p(x) ds(x) , (A1)
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the bilinear form defined on Ch × Ca,

c
Γ
(uh, p) =

∫
Γ

uh(x).n(x) p(x) ds(x) , (A2)

and the linear form defined on Cs
0 or Ch,

c
Γs

(u; ω) =

∫
Γs

f s(x, ω) u(x) ds(x) . (A3)

The weak formulation of the vibroacoustic boundary value problem is formulated as follows

(see Ref. [12]). For all ω in �, find (us, p, uh) in Cs
0 × Ca × Ch such that for all (δus, p, δuh)

in Cs
0 × Ca × Ch, we have, for the structure,

− ω2ms(us, δus) + iω ds(us, δus; ω) + ks(us, δus; ω)

+ c
Γ2

(δus, p) = −c
Γs

(δus; ω) + ls(δus; ω) , (A4)

for the acoustic cavity,

− ω2ma(p, δp) + iω da(p, δp; ω) + ka(p, δp)

+ ω2
{
c

Γ2
(us, δp) + c

Γ
(uh, δp)

}
= la(δp; ω) , (A5)

and for the sound-insulation layer,

− ω2mh(uh, δuh) + iω dh(uh, δuh; ω) + kh(uh, δuh; ω)

c
Γ
(δuh, p) = c

Γs
(δuh; ω) . (A6)

The bilinear forms ms, ds, ks, (respectively ma, da, ka and respectively mh, dh, kh) relative

to the mass, damping and stiffness of the structure (respectively of the acoustic cavity and

respectively of the sound-insulation layer) and the linear forms ls and la related to the
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structural and acoustical excitations are defined in Ref. [12]. For instance, we have

ms(us, δus)=

∫
Ωs

ρs(x)us(x).δus(x)dx , (A7)

ds(us, δus; ω)=

∫
Ωs

bijkh(x, ω)εkh(u
s)εij(δus)dx, (A8)

ks(us, δus; ω)=

∫
Ωs

aijkh(x, ω)εkh(u
s)εij(δus) dx, (A9)

ma(p, δp) =
1

ρ0c
2
0

∫
Ωa

p(x)δp(x) dx , (A10)

da(p, δp; ω) = τ(ω) ka(p, δp) , (A11)

ka(p, δp) =
1

ρ0

∫
Ωa

∇p.∇δp dx , (A12)

c
Γ2

(us, δp) =

∫
Γ2

us(x).ns(x) δp(x) ds(x) . (A13)

APPENDIX B: FUNCTIONS OF THE FUZZY COEFFICIENTS

INTRODUCED IN SECTION II.E

For all ω ∈ [ΩC , ωmax],

Θ
R
(ω) = (B1)

1

4
√

1−ξ(ω)2
ln

{
N

+
(̃b(ω), ξ(ω)) N

−
(ã(ω), ξ(ω))

N−(̃b(ω), ξ(ω)) N+(ã(ω), ξ(ω))

}
, (B2)

Θ
I
(ω) =

1

2
√

1 − ξ(ω)2

[
Λ(̃b(ω), ξ(ω)) − Λ(ã(ω), ξ(ω))

]
, (B3)

N±(u, ξ) = u2 ± 2 u
√

1 − ξ2 + 1 , (B4)

Λ(u, ξ) = arctan

{
u2 + 2ξ2 − 1

2ξ
√

1 − ξ2

}
, (B5)

ã(ω) =
1

ω
a(ω) , where a is defined in Eq. (14) , (B6)

b̃(ω) =
1

ω
b(ω) , where b is defined in Eq. (15) , (B7)

�̃(ω) =
1

b̃(ω) − ã(ω)
, λ(ω) =

�̃(ω)

ωn(ω)
. (B8)
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APPENDIX C: GRAPHS OF THE FUZZY COEFFICIENTS

Figs. 13 to 18 display the graphs of the fuzzy coefficients defined by Eqs. (29) to (34)

with Eqs. (B1) to (B8) for ξ = 0.01, n(ω) given by Fig. 4 and ν(ω) given by Fig. 5.

APPENDIX D: COMPLEMENTS RELATIVE TO THE NONPARAMETRIC

PROBABILISTIC APPROACH

This section deals with complements relative to the probabilistic nonparametric ap-

proach which allows both model and system parameters uncertainties to be taken into ac-

count in the computational model of the structure, in the simplified model of the sound-

insulation layer and in the computational model of the acoustic cavity. The random matrices

associated with [Ms], [Ds(ω)], [Ks(ω)], [C], [Ma], [Da(ω)], [Ka], [Bs], [Ba] and [Cs] are con-

structed as explained in Ref. [40]. In this construction, the complex coefficients as(ω), aa(ω)

and ac(ω) are deterministic. For example, the random matrix associated with as(ω)[Bs] is

as(ω)[Bs] in which [Bs] is the random matrix associated with [Bs]. For ω fixed in �, we

then introduce the matrices [Ms], [Ds(ω)], [Ks(ω)], [C], [Ma], [Da(ω)], [Ka], [Bs], [Cs] and

[Ba]. These matrices are independent second-order random variables. The random matrices

[Ms], [Ds(ω)] and [Ks(ω)] are with values in �
+
ns

(�); the random matrix [Bs] is with values

in �
+0
ns

(�); the random matrix [Ma] is with values in �
+
na

(�); the random matrices [Ka],

[Da(ω)] and [Ba] are with values in �
+0
na

(�) and the random matrices [C] and [Cs] are with

values in �ns,na(�). The mean values of these random matrices are such that

E{[Ms]} = [M s] , E{[Ds(ω)]} = [Ds(ω)] ,

E{[Ks(ω)]} = [Ks(ω)] , E{[Ma]} = [Ma] ,

E{[Da(ω)]} = [Da(ω)] , E{[Ka]} = [Ka] , (D1)

E{as(ω)[Bs]} = as(ω)[Bs] , E{[C]} = [C] ,

E{aa(ω)[Ba]} = aa(ω)[Ba] , E{ac(ω)[Cs]} = ac(ω)[Cs],
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where E is the mathematical expectation. Moreover, those matrices have the required math-

ematical properties (see Ref. [39, 40] in which the reader will be able to find all the details).

The generalized stiffness random matrices are then written as,

[As(ω)] = −ω2 [Ms] + iω [Ds(ω)] + [Ks(ω)] , (D2)

[Aa(ω)] = −ω2 [Ma] + iω [Da(ω)] + [Ka] , (D3)

where [As(ω)] is a random matrix with values in MS
ns

(�) and where [Aa(ω)] is a random

matrix with values in MS
na

(�). For example, we give below the detail of the construc-

tion for the random matrix [Ks(ω)]. The matrix [Ks(ω)] can be written as [Ks(ω)] =

[LKs(ω)]T [LKs(ω)] corresponding to the Choleski decomposition of the positive-definite ma-

trix [Ks(ω)]. We then introduce the random matrix [Ks(ω)] = [LKs(ω)]T [GKs][LKs(ω)]

where the random matrix [GKs] belongs to the SG+ ensemble defined in Ref. [40] and

is independent of the frequency. The dispersion parameter δKs of this random ma-

trix [Ks(ω)] is independent of the dimension and of the frequency and is defined as by

δKs = (E{||[G
Ks ] − [G

Ks ]||2F
}

/||[G
Ks ]||2F )1/2 in which ||K||

F
is the Frobenius norm defined by

||K||2
F

= tr(KT K).
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