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Abstract. Contemporary practical methods for protein NMR structure determination use molecular
dynamics coupled with a simulated annealing schedule. The objective of these methods is to minimize
the error of deviating from the NOE distance constraints. However, the corresponding objective function
is highly nonconvex and, consequently, difficult to optimize. Euclidean distance matrix (EDM) methods
based on semidefinite programming (SDP) provide a natural framework for these problems. However,
the high complexity of SDP solvers and the often noisy distance constraints provide major challenges
to this approach. The main contribution of this paper is a new SDP formulation for the EDM approach
that overcomes these two difficulties. We model the protein as a set of intersecting two- and three-
dimensional cliques. Then, we adapt and extend a technique called semidefinite facial reduction to
reduce the SDP problem size to approximately one quarter of the size of the original problem. The
reduced SDP problem can be solved approximately 100 times faster, and it is also more resistant to
numerical problems from erroneous and inexact distance bounds.

Key words: Molecular structural biology, nuclear magnetic resonance, semidefinite pro-
gramming, facial reduction

1 Introduction

Computing three-dimensional protein structures from their amino acid sequences is one of
the most widely studied problems in bioinformatics. Knowing the structure of the protein is
key to understanding its physical, chemical, and biological properties. The protein nuclear
magnetic resonance (NMR) method is fundamentally different from the X-ray method: It is
not a “microscope with atomic resolution”; rather, it provides a network of distance mea-
surements between spatially proximate hydrogen atoms (Güntert, 1998). As a result, the
NMR method relies heavily on complex computational algorithms. The existing methods for
protein NMR can be categorized into four major groups: (i) methods based on Euclidean
distance matrix completion (EDMC) (Braun et al., 1981; Havel and Wüthrich, 1984; Biswas
et al., 2008; Leung and Toh, 2009); (ii) methods based on molecular dynamics and simulated
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annealing (Nilges et al., 1988; Brünger, 1993; Schwieters et al., 2003; Güntert et al., 1997;
Güntert, 2004); (iii) methods based on local/global optimization (Braun and Go, 1985; Moré
and Wu, 1997; Williams et al., 2001); and (iv) methods originating from sequence-based pro-
tein structure prediction algorithms (Shen et al., 2008; Raman et al., 2010; Alipanahi et al.,
2011).

In the early years of protein NMR, many EDMC-based methods directly worked on the
corresponding Euclidean distance matrix (EDM). The first method to use EDMC for protein
NMR was developed by Braun et al. (Braun et al., 1981). Other notable methods include
EMBED (Havel et al., 1983) and DISGEO (Havel and Wüthrich, 1984). These methods
faced two major drawbacks: randomly guessing the unknown distances is ineffective and
after several iterations of distance correction, the error in the distances tended to become
large (Güntert, 1998); and, there was no way to control the embedding dimensionality, which
also tended to get large.

A major breakthrough came that combined simulated annealing with molecular dynamics
(MD) simulation. Nilges et al. made some improvements in the MD-based protein NMR
structure determination (Nilges et al., 1988). Instead of an empirical energy function, they
proposed a simple geometrical energy function based on the NOE restraints that penalized
large violations and they also combined simulated annealing (SA) with MD. These methods
were able to search the massive conformation space without being trapped in one of numerous
local minima. The XPLOR method (Brünger, 1993; Schwieters et al., 2003, 2006) was one
of the first successful and widely-adapted methods that was built on the molecular dynamics
simulation package CHARMM (Brooks et al., 1983). The number of degrees of freedom in
torsion angle space is nearly 10 times smaller than in Cartesian coordinates space, while being
equivalent under mild assumptions. The torsion angle dynamics algorithm implemented in
the program CYANA (Güntert, 2004), and previously in the program DYANA (Güntert
et al., 1997), is one of the fastest and most widely-used methods.

1.1 Gram Matrix Methods

The EDMC methods are based on using the Gram matrix, or the matrix of inner products.
This has many advantages. For example: (i) the Gram matrix and Euclidean distance matrix
(EDM) are linearly related; (ii) instead of enforcing all of the triangle inequality constraints,
it is sufficient to enforce that the Gram matrix is positive semidefinite; (iii) the embedding
dimension and the rank of the Gram matrix are directly related.

Semidefinite programming (SDP) is a natural choice for formulating the EDMC problem
using the Gram matrix. SDP-based EDMC methods have demonstrated great success in
solving the sensor network localization (SNL) problem (Doherty et al., 2001; Biswas and Ye,
2004; Biswas et al., 2006; Wang et al., 2008; Kim et al., 2009; Krislock and Wolkowicz, 2010).
In the SNL problem, the location of a set of sensors is determined based on given short-range
distances between spatially proximate sensors. As a result, the SNL problem is inherently
similar to the protein NMR problem. The major obstacle in extending SNL methods to
protein NMR is the complexity of SDP solvers. To overcome this limitation Biswas et al.
proposed DAFGAL, which is built on the idea of divide-and-stitch (Biswas et al., 2008).
Leung and Toh proposed the DISCO method (Leung and Toh, 2009). It is an extension
of DAFGAL that can determine protein molecules with more than 10,000 atoms using a
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divide-and-conquer technique. The improved methods for partitioning the partial distance
matrix and iteratively aligning the solutions of the subproblems, boosted the performance
of DISCO in comparison to DAFGAL.

1.2 Contributions of the Proposed SPROS Method

Most of the existing methods make some of the following assumptions: (i) (nearly) exact
distances between atoms are known; (ii) distances between any type of nuclei (not just
hydrogens) are known; (iii) ignoring the fact that not all hydrogen atoms can be uniquely
assigned; and (iv) overlooking the ambiguity in the NOE cross-peak assignments. In order
to automate the NMR protein structure determination process, we need a robust structure
calculation method that tolerates more errors. In this paper, we give a new SDP formulation
that does not assume (i–iv) above. Moreover, the new method, called “SPROS” (Semidefinite
Programming-based Protein structure determination), models the protein molecule as a set
of intersecting two- and three-dimension cliques. We adapt and extend a technique called
semidefinite facial reduction which makes the SDP problem strictly feasible and reduces its
size to approximately one quarter the size of the original problem. The reduced problem is
more numerically stable and can be solved nearly 100 times faster.

Outline We have divided the presentation of the SPROS method into providing the nec-
essary background, followed by giving a description of techniques used for problem size
reduction, and finally, showing the performance of the method on experimentally derived
data.

Preliminaries Scalars, vectors, sets, and matrices are shown in lower case, lower case
bold italic, script, and upper case italic letters, respectively. We work only on real finite-
dimensional Euclidean Spaces E and define an inner product operator 〈·, ·〉 : E× E→ R for
these spaces: (i) for the space of real p-dimensional vectors, Rp, 〈x,y〉 := x>y =

∑p
i=1 xiyi,

and (ii) for the space of real p×q matrices, Rp×q, 〈A,B〉 := trace(A>B) =
∑p

i=1

∑q
j=1AijBij.

The Euclidean distance norm of x ∈ Rp is defined as ‖x‖ :=
√
〈x,x〉. We use the Matlab

notation that 1:n := {1, 2, . . . , n}. For a matrix A ∈ Rn×n and an index set I ⊆ 1:n,
B = A[I] is the |I|× |I| matrix formed by rows and columns of A indexed by I. Finally, we
let Sp the space of symmetric p× p matrices.

2 The SPROS Method

2.1 Euclidean Distance Geometry

Euclidean Distance Matrix A symmetric matrix D is called a Euclidean Distance Matrix
(EDM) if there exists a set of points {x1, . . . ,xn}, xi ∈ Rr such that:

Dij = ‖xi − xj‖2, ∀i, j. (1)

The smallest value of r is called the embedding dimension of D, and is denoted embdim(D).
The space of all n× n EDMs is denoted En.
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The Gram Matrix If we define X := [x1, . . . ,xn] ∈ Rr×n, then the matrix of inner-
products, or Gram Matrix, is given by G := X>X. It immediately follows that G ∈ Sn

+,
where Sn

+ is the set of symmetric positive semidefinite n×n matrices. The Gram matrix and
the Euclidean distance matrix are linearly related:

D = K(G) := diag(G) · 1> + 1 · diag(G)> − 2G, (2)

where 1 is the all-ones vector of the appropriate size, and diag(G) is the vector formed from
the diagonal of G. To go from the EDM to the Gram matrix, we use the Moore-Penrose
generalized inverse K† : Sn → Sn:

G = K†(D) := −1
2
HDH, D ∈ Sn

H , (3)

where H = I − 1
n
11> is the centering matrix, and Sn

H := {A ∈ Sn : diag(A) = 0}, is the set
of symmetric matrices with zero diagonal.

Schoenberg’s Theorem Given a matrix D, we can determine if it is an EDM with the
following well-known theorem (Schoenberg, 1935):

Theorem 1. A matrix D ∈ Sn
H is a Euclidean distance matrix if and only if K†(D) is

positive semidefinite. Moreover, embdim(D) = rank(K†(D)), for all D ∈ En.

2.2 The SDP Formulation

Semidefinite optimization or, more commonly, semidefinite programming, is a class of convex
optimization problems that has attracted much attention in the optimization community and
has found numerous applications in different science and engineering fields. Notably, several
diverse convex optimization problems can be formulated as SDP problems (Vandenberghe
and Boyd, 1996). Current state-of-the-art SDP solvers are based on primal-dual interior-point
methods.

Preliminary Problem Formulation There are three types of constraints in our for-
mulation: (i) equality constraints, which are the union of equality constraints preserving
bond lengths (B), bond angles (A), and planarity of the coplanar atoms (P), giving E =
EB ∪ EA ∪ EP ; (ii) upper bounds, which are the union of NOE-derived (N ), hydrogen
bonds (H), disulfide and salt bridges (D), and torsion angle (T ) upper bounds, giving
U = UN ∪ UH ∪ UD ∪ UT ; (iii) lower bounds, which are the union of steric or van der
Waals (W) and torsion angle (T ) lower bounds, giving L = LW ∪LT . We assume the target
protein has n atoms, a1, . . . , an. The preliminary problem formulation is given by:

minimize γ〈I,K〉+
∑

ij wijξij +
∑

ij w
′
ijζij (4)

subject to 〈Aij, K〉 = eij, (i, j) ∈ E
〈Aij, K〉 ≤ uij + ξij, (i, j) ∈ U
〈Aij, K〉 ≥ lij − ζij, (i, j) ∈ L
ξij ∈ R+, (i, j) ∈ U , ζij ∈ R+, (i, j) ∈ L
K1 = 0, K ∈ Sn

+,
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where Aij = (ei−ej)(ei−ej)> and ei is the ith column of the identity matrix. The centering
constraint K1 = 0, ensures that the embedding of K is centered at the origin. Since both
upper bounds and lower bounds may be inaccurate and noisy, non-negative penalized slacks,
ζij’s and ξij’s, are included to prevent infeasibility and manage ambiguous upper bounds.
The heuristic rank reduction term, γ〈I,K〉, with γ < 0, in the objective function, produces
lower-rank solutions (Weinberger and Saul, 2004).

Bond lengths and angles Covalent bonds are very stable, and since their fluctuations cannot
be detected in NMR experiments, all bond lengths and angles must be set to ideal values
computed from accurate X-ray structures; see (Engh and Huber, 1991). Bonds length and
angle constraints are written in terms of the distance between an atom and its immediate
neighbor and an atom and its second nearest neighbor, respectively.

Planarity constraints Proteins contain several coplanar atoms, from HCON in the peptide
planes, and from side chain in moieties found in nine amino acids (Hooft et al., 1996). We
have enforced planarity by preserving the distances between all coplanar atoms.

Torsion angle constraints Another source of structural information in protein NMR is the set
of torsion angle restraints, defined as θmin

i ≤ θi ≤ θmax
i , i ∈ T . We extend the idea proposed

in (Sussman, 1985) and define upper and lower bounds on the torsion angles based on the
distance between the first and the fourth atom in the torsion angle. Thus, for example, we
can constrain the Φi angle by constraining the distance between the Ci and Ci−1 atoms.

Penalizing incorrect bounds Let ξ ∈ R|U| be a vector containing all of the slacks for upper
bounds. Since ξij ∈ R+, assuming that all the weights are the same, i.e., wij = w, we have
w
∑

ij ξij = w ‖ξ‖1, where ‖x‖1 is the `-1 norm of vector x. The fact that minimizing the `1-
norm finds sparse solutions is a widely known and used heuristic (Boyd and Vandenberghe,
2004). In our problem, ξij = 0 implies no violation; consequently, SPROS tends to find a
solution that violates a minimum number of upper bounds.

Pseudo-atoms Not all hydrogens can be uniquely assigned, such as the hydrogens in the
methyl groups; therefore, upper bounds involving these hydrogens are ambiguous. To over-
come this problem, pseudo-atoms are introduced (Güntert, 1998). Given an ambiguous con-
straint between one of the hydrogens and atom A, by using the triangle inequality, we modify
the constraint as follows:

‖HBi − A‖ ≤ b, i ∈ {1, 2, 3} ⇒ ‖QB− A‖ ≤ b+ ‖HBi −QB‖, (5)

where ‖HBi−QB‖ is the same for i = 1, 2, 3. Pseudo-atoms are named corresponding to the
hydrogens they represent; only H is changed to Q and the rightmost number is dropped. For
example, in leucine, QD1 represents HD11, HD12, and HD13. We adapt the pseudo-atoms
used in CYANA (Güntert, 2004).

Side chain simplification In CYANA, hydrogens that do not participate directly in the struc-
tural solution are discarded initially and then added at later stages (Güntert, 2004). We have
adapted this approach by discarding hydrogens only if they make our problem smaller. In the
side chain simplification process, we temporarily discard (i) all of the methyl hydrogens, (ii)
all of the methylene hydrogens, (iii) hydroxyl hydrogens of tyrosine and serine, (iv) amino
hydrogens of arginine and threonine, and (v) sulfhydryl hydrogen of cysteine. After the SDP
problem is solved, the omitted hydrogen atoms are replaced and remain in all post-processing
stages.
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Challenges in Solving the SDP Problem Solving the optimization problem in (4) can
be challenging: For small to medium sized proteins, the number of atoms, n, is 1,000-3,500,
and current primal-dual interior-point SDP solvers cannot solve problems with n > 2, 000
efficiently. Moreover, the optimization problem in (4) does not satisfy strict feasibility, causing
numerical problems; see (Wei and Wolkowicz, 2010).

It can be observed that the protein contains many small intersecting cliques. For example,
peptide planes or aromatic rings, are 2D cliques, and tetrahedral carbons form 3D cliques.
As we show later, whenever there is a clique in the protein, the corresponding Gram matrix,
K, can never be full-rank, which violates strict feasibility. By adapting and extending a
technique called semidefinite facial reduction, not only do we obtain an equivalent problem
that satisfies strict feasibility, but we also significantly reduce the SDP problem size.

2.3 Cliques in a Protein Molecule

A protein molecule with ` amino acid residues has ` + 1 planes in its backbone. Moreover,
each amino acid has a different side chain with a different structure; therefore, the number of
cliques in each side chain varies (see Table 4 in Appendix B for the number of cliques in each
amino acid side chain). We assume that the ith residue, ri, has si cliques in its side chain,

denoted by S(1)
i , . . . ,S(si)

i . For all amino acids (except glycine and proline), the first side

chain clique is formed around the tetrahedral carbon CA, S(1)
i = {Ni,CAi,HAi,CBi,Ci},

which intersects with two peptide planes Pi−1 and Pi in two atoms: S(1)
i ∩Pi−1 = {Ni,CAi}

and S(1)
i ∩Pi = {CAi,Ci}. Side chain cliques for all twenty amino acids are listed in Table 4

(see Appendix B). There is a total of q = ` + 1 +
∑`

i=1 si cliques in the distance matrix of

any protein. To simplify, let Ci = Pi−1, 1 ≤ i ≤ ` + 1, and C`+2 = S(1)
1 , C`+2 = S(2)

1 , . . . ,

Cq = S(s`)
` . For properties of the cliques in the protein molecule, see Appendix A.

2.4 Algorithm for Finding the Face of the Structure

For t < n and U ∈ Rn×t, the set of matrices USt
+U
> is a face of Sn

+ (in fact every face of
Sn
+ can be described in this way); see, e.g., (Ramana et al., 1997). We let face(F) represent

the smallest face containing a subset F of Sn
+; then we have the important property that

face(F) = USt
+U
> if and only if there exists Z ∈ St

++ such that UZU> ∈ F . Furthermore,
in this case, we have that every Y ∈ F can be decomposed as Y = UZU>, for some Z ∈ St

+,
and the reduced feasible set {Z ∈ St

+ : UZU> ∈ F} has a strictly feasible point, giving us
a problem that is more numerically stable to solve (problems that are not strictly feasible
have a dual optimal set that is unbounded and therefore can be difficult to solve numerically;
for more information, see (Wei and Wolkowicz, 2010)). Moreover, if t� n, this results in a
significant reduction in the matrix size.

The Face of a Single Clique Here, we solve the Single Clique problem, which is defined
as follows: Let D be a partial EDM of a protein. Suppose the first n1 points form a clique
in the protein, such that for C1 = {1, . . . , n1}, all distances are known. That is, the matrix
D1 = D[C1] is completely specified. Moreover, let r1 = embdim(D1). We now show how to
compute the smallest face containing the feasible set {K ∈ Sn

+ : K(K[C1]) = D1}.

Theorem 2 (Single Clique, (Krislock and Wolkowicz, 2010)). Let the matrix U1 ∈
Rn×(n−n1+r1+1) be defined as follows:
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– let V1 ∈ Rn1×r1 be a full column rank matrix such that range(V1) = range(K†(D1));

– let Ū1 :=
[
V1 1

]
and U1 :=

[ r1+1 n−n1

n1 Ū1 0
n−n1 0 I

]
∈ Rn×(n−n1+r1+1).

Then U1 has full column rank, 1 ∈ range(U), and

face{K ∈ Sn
+ : K(K[C1]) = D[C1]} = U1Sn−n1+r1+1

+ U>1 .

Computing the V1 Matrix In Theorem 2, we can find V1 by computing the eigendecom-
position of K†(D[C1]) as follows:

K†(D[C1]) = V1Λ1V
>
1 , V1 ∈ Rn1×r1 , Λ1 ∈ Sr1

++. (6)

It can be seen that V1 has full column rank (columns are orthonormal) and also that
range(V1) = range(K†(D1)).

2.5 The Face of a Protein Molecule

The protein molecule is made of q cliques, {C1, . . . , Cq}, such that D[Cl] is known, and we
have rl = embdim(D[Cl]), and nl = |Cl|. Let F be the feasible set of the SDP problem. If
for each clique Cl, we define Fl := {K ∈ Sn

+ : K(K[Cl]) = D[Cl]}, then

F ⊆

(
q⋂

l=1

Fl

)
∩ Sn

C , (7)

where Sn
C := {K ∈ Sn : K1 = 0} are the centered symmetric matrices. For l = 1, . . . , q, let

Fl := face(Fl) = UlSn−nl+rl+1
+ U>l , where Ul is computed as in Theorem 2. We have (Krislock

and Wolkowicz, 2010):(
q⋂

l=1

Fl

)
∩ Sn

C ⊆

(
q⋂

l=1

UlSn−nl+rl+1
+ U>l

)
∩ Sn

C = (USk
+U
>) ∩ Sn

C , (8)

where U ∈ Rn×k is a full column rank matrix that satisfies range(U) =
⋂q

l=1 range(Ul).
We now have an efficient method for computing the face of the feasible set F . To have

better numerical accuracy, we developed a bottom-up algorithm for intersecting subspaces
(see Algorithm 1 in Appendix C).

After computing U , we can decompose the Gram matrix as K = UZU>, for Z ∈ Sk
+.

However, by exploiting the centering constraint, K1 = 0, we can reduce the matrix size one
more. If V ∈ Rk×(k−1) has full column rank and satisfies range(V ) = null(1>U), then we
have (Krislock and Wolkowicz, 2010):

F ⊆ (UV )Sk−1
+ (UV )>. (9)

For more details on facial reduction for Euclidean distance matrix completion problems,
see (Krislock, 2010).
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Constraints for Preserving the Structure of Cliques If we find a base set of points
Bl in each clique Cl such that embdim(D[Bl]) = rl, then by fixing the distances between
points in the base set and fixing the distances between points in Cl \Bl and points in Bl, the
entire clique is kept rigid. Therefore, we need to fix only the distances between base points
(Alipanahi et al., 2012), resulting in a three- to four-fold reduction in the number of equality
constraints. We call the reduced set of equality constraints EFR.

2.6 Solving and Refining the Reduced SDP Problem

The SPROS method flowchart is depicted in Appendix D (see Fig. 2). In it, we describe the
blocks for solving the SDP problem and for refining the solution. From equation (9), we can
formulate the reduced SDP problem as follows:

minimize γ〈I, Z〉+
∑

ij wijξij +
∑

ij w
′
ijζij (10)

subject to 〈A′ij, Z〉 = eij, (i, j) ∈ EFR
〈A′ij, Z〉 ≤ uij + ξij, (i, j) ∈ U
〈A′ij, Z〉 ≥ lij − ζij, (i, j) ∈ L
ξij ∈ R+, (i, j) ∈ U , ζij ∈ R+, (i, j) ∈ L
Z ∈ Sk−1

+ ,

where A′ij = (UV )>Aij(UV ).

Weights and the regularization parameter For each type of upper and lower bound,
we define a fixed penalizing weight for violations. For example, for upper bounds (similarly
for lower bounds) we have ∀(i, j) ∈ UX , wij = wX . We set wN = 1 and wH = wD = wT = 10
because upper bounds from hydrogen bonds and disulfide/salt bridges are assumed to be
more accurate than are NOE-derived upper bounds. Moreover, the range of torsion angle
violations is ten times smaller than NOE violations.

Let mU = |U| and R be the radius of the protein. Then, the maximum upper bound
violation is 2R. Moreover, 〈I, Z〉 ≤ nR. Discarding the role of lower bound violations, with
the goal of approximately balancing the two terms, a suitable γ is:

γnR ≈ 2εwmUR ⇒ γ =
2εwmU
n

, (11)

where 0 ≤ ε ≤ 1 is the fraction of violated upper bounds. In practice ε ≈ 0.01 − 0.30, and
γ̄ ≈ wmU/50n works well.

Post-Processing We perform a refinement on the raw structure determined by the SDP
solver. For this refinement we use a BFGS-based quasi-Newton method (Lewis and Overton,
2009) that only requires the value of the objective function and its gradient at each point.
Letting X(0) = XSDP, we iteratively minimize the following objective function:

φ(X) = wE
∑

(i,j)∈E

(‖xi − xj‖ − eij)2 + wU
∑

(i,j)∈U

f (‖xi − xj‖ − uij)2

+ wL
∑

(i,j)∈L

g (‖xi − xj‖ − lij)2 + wR

n∑
i=1

‖xi‖2, (12)
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where f(α) = max(0, α) and g(α) = min(0,−α). We set wE = 2, wU = 1, and wL = 1. In

addition, to balance the regularization term, we set wR = αφ(X(0))|wR=0/25
∑n

i=1 ‖x
(0)
i ‖2,

where −1 ≤ α ≤ 1 is a parameter controlling the regularization. If α < 0, the distances
between atoms are maximized, because, after projection, some of the distances have been
shortened, this term helps to compensate for that error. However, if α > 0, the distances
between atoms are minimized, resulting in better packing of atoms in the protein molecule.
In practice, different values for α can be used to generate slightly different structures, thus
creating a bundle of structures.

Fixing incorrect chiralities Chirality constraints cannot be enforced using only distances.
Consequently, some chiral centers may have the incorrect enantiomer. In this step, SPROS
checks the chiral centers and resolves any problems.

Improving the stereochemical quality Williamson and Craven have described the effectiveness
of explicit solvent refinement of NMR structures and suggest that it should be a standard
procedure (Williamson and Craven, 2009). For protein structures that have regions of high
mobility/uncertainty due to few or no NOE observations, we have successfully employed
a hybrid protocol from XPLOR-NIH that incorporates thin-layer water refinement (Linge
et al., 2003) and a multidimensional torsion angle database (Kuszewski et al., 1996, 1997).

3 Results

We tested the performance of SPROS on 18 proteins: 15 protein data sets from the DOCR
database in the NMR Restraints Grid (Doreleijers et al., 2003, 2005) and three protein data
sets from Donaldson’s laboratory at York University. We chose proteins with different sizes
and topologies, as listed in Table 1. Finally, the input to the SPROS method is exactly the
same as the input to the widely-used CYANA method.

3.1 Implementation

The SPROS method has been implemented and tested in Matlab 7.13 (apart from the
water refinement, which is done by XPLOR-NIH). For solving the SDP problem, we used
the SDPT3 method (Tütüncü et al., 2003). For minimizing the post-processing objective
function (12), we used the BFGS-based quasi-Newton method implementation by Lewis and
Overton (Lewis and Overton, 2009). All the experiments were carried out on an Ubuntu
11.04 Linux PC with a 2.8 GHz Intel Core i7 Quad-Core processor and 8 GB of memory.

3.2 Determined Structures

From the 18 test proteins, 9 of them were calculated with backbone RMSDs less than or
equal to 1.0 Å, and 16 have backbone RMSDs less than 1.5 Å. Detailed analysis of calculated
structures is listed in Table 2. The superimposition of the SPROS and reference structures for
three of the proteins are depicted in Fig. 1. More detailed information about the determined
structures can be found in (Alipanahi, 2011).

To further assess the performance of SPROS, we compared the SPROS and reference
structures for 1G6J, Ubiquitin, and 2GJY, PTB domain of Tensin, with their corresponding
X-ray structures, 1UBQ and 1WVH, respectively. For 1G6J, the backbone (heavy atoms) RMSDs
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2L3O 2K49 2YTO  

Fig. 1. Superimposition of structures determined by SPROS in blue and the reference structures in red.

for SPROS and the reference structures are 0.42 Å (0.57 Å) and 0.73±0.04 Å (0.98±0.04 Å),
respectively. For 2GJY, the backbone (heavy atoms) RMSDs for SPROS and the reference
structures are 0.88 Å (1.15 Å) and 0.89 ± 0.08 Å (1.21 ± 0.06 Å), respectively.

3.3 Discussion

The SPROS method was tested on 18 experimentally derived protein NMR data sets of
sequence lengths ranging from 76 to 307 (weights ranging from 8 to 35 KDa). Calculation
times were in the order of a few minutes per structure. Accurate results were obtained for
all of the data sets, although with some variability in precision. The best attribute of the
SPROS method is its tolerance for, and efficiency at, managing many incorrect distance
constraints (that are typically defined as upper bounds).

The reduction methodology developed for SPROS is an ideal choice for protein-ligand
docking. If the side chains participating at the interaction surface are only declared to be
flexible, it has the effect of reducing the SDP matrix size to less than 100. Calculations
under these specific parameters can be achieved in a few seconds thereby making SPROS a
worthwhile choice for automated, high-throughput screening.

Our final goal is a fully automated system for NMR protein structure determination,
from peak picking (Alipanahi et al., 2009) to resonance assignment (Alipanahi et al., 2011),
to protein structure determination. An automated system, without the laborious human
intervention will have to tolerate more errors than usual. This was the initial motivation
of designing SPROS. The key is to tolerate more errors. Thus, we are working towards
incorporating an adaptive violation weight mechanism to identify the most significant outliers
in the set of distance restraints automatically.
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Appendix A: Properties of Cliques

Let Ci = Pi−1, 1 ≤ i ≤ ` + 1, and C`+2 = S(1)
1 , C`+2 = S(2)

1 , . . . , Cq = S(s`)
` . Let ri =

embdim(D[Ci]). The following properties hold for cliques in a protein molecule:

1. Pi ∩ Pi′ = ∅, given |i− i′| > 1.

2. Pi ∩ S(j)
i′ = ∅, given i′ 6= i, i+ 1.

3. S(j)
i ∩ S

(j′)
i′ = ∅, given i′ 6= i.

4. |Ci| ≥ ri + 1.
5. 3 ≤ |Ci| ≤ 16.
6. ∀i, i′, |Ci ∩ Ci′ | ≤ 2.
7. 6 ∃i such that ∀i′ 6= i, Ci ∩ Ci′ = ∅.
8. If Ii = {i′ : Ci ∩ Ci′ 6= ∅}, then ∀i, |Ii| ≤ 4.
9.
⋃q

i=1 Ci = 1:n.
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Appendix B: Additional Tables

Table 3. Table summarizing properties of different amino acids: p denotes abundance of amino acids in percentile, t
denotes the number of torsion angles (excluding ω), a denotes the total number of atoms and pseudo-atoms, s denotes
the total number of atoms and pseudo-atoms in the side chains, q denotes the number of cliques in each side chain
(the number in the parenthesis is the number of 3D cliques), and k denotes the increase in the SDP matrix size. The
values in the Reduced column denote the same values in the side chain simplified case. The weighted average (w.a.)
of quantity x is computed as

∑
i∈A pixi, where A is the set of twenty amino acids.

Complete side chains Simplified side chains

A.A. p t a s q k a s q k

Ala 7.3 3 11 5 2 (2) 5 8 2 1 (1) 3
Arg 5.2 6 29 23 5 (4) 10 20 14 5 (1) 7
Asn 4.6 4 16 10 3 (2) 6 13 7 3 (1) 5
Asp 5.1 4 13 7 3 (2) 6 10 4 3 (1) 5
Cys 1.8 4 12 6 3 (2) 5 8 2 2 (1) 4
Glu 4.0 5 20 14 4 (3) 8 14 8 4 (1) 6
Gln 6.2 5 17 11 4 (3) 8 11 5 4 (1) 6
Gly 6.9 2 8 2 1 (1) 3 8 2 1 (1) 3
His 2.3 4 18 12 3 (2) 6 15 9 3 (1) 5
Ile 5.8 6 22 16 5 (5) 11 13 7 3 (2) 6
Leu 9.3 6 23 17 5 (5) 11 14 8 3 (2) 6
Lys 5.8 7 27 21 6 (6) 13 12 6 5 (1) 7
Met 2.3 6 20 14 5 (4) 10 11 5 4 (1) 6
Phe 4.1 4 24 18 3 (2) 6 21 15 3 (1) 5
Pro 5.0 1 17 12 1 (1) 3 17 12 1 (1) 3
Ser 7.4 4 12 6 3 (2) 6 8 2 2 (1) 4
Thr 5.8 5 15 9 4 (3) 8 11 5 2 (2) 5
Trp 1.3 4 25 19 3 (2) 6 22 16 3 (1) 5
Tyr 3.3 5 25 19 4 (2) 7 21 15 3 (1) 5
Val 6.5 5 19 13 4 (4) 9 13 7 2 (1) 5

w.a. - 4.5 18.2 12.2 3.6 (3.0) 7.6 12.8 6.8 2.7 (1.3) 5.0
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Table 4. Cliques in the simplified side chains of amino acids. If S(i), 2 ≤ i < s′ (s′ is the number of cliques in the
simplified side chain) is not listed, it is the same as Lys. 2D cliques are marked by an ’∗’.

A.A. s′ Side Chain Cliques

Ala 1 S(1) = {N,CA,HA,CB,QB,C}
Arg 5 S(4) = {CG,CD,NE}∗

S(5) = {CD,CE,HE,CZ,NH1,HH11,HH12}∗
Asn 3 S(3) = {CB,CG,OD1,ND2,HD21,HD22,QD2}∗
Asp 3 S(3) = {CB,CG,OD1,OD2}∗
Cys 2 S(2) = {CA,CB, SG}∗
Glu 4 S(4) = {CG,CD,OE1,OE2}∗
Gln 4 S(4) = {CG,CD,OE1,NE2,HE21,HE22,QE2}∗
Gly 1 S(1) = {N,CA,HA2,HA3,QA,C}
His 3 S(3) = {CB,CG,ND1,HD1,CD2,HD2,CE1,HE1,NE2}∗
Ile 3 S(2) = {CA,CB,HB,CG1,CG2,QG2}

S(3) = {CB,CG1,CD1,QD1}∗
Leu 3 S(3) = {CB,CG,HG,CD1,CD2,QD1,QD2,QQD}
Lys 5 S(1) = {N,CA,HA,CB,C}

S(2) = {CA,CB,CG}∗
S(3) = {CB,CG,CD}∗
S(4) = {CG,CD,CE}∗
S(5) = {CD,CE,NZ,QZ}∗

Met 4 S(3) = {CB,CG, SD}∗
S(4) = {CG, SD,CE QE}*

Phe 3 S(3) = {CB,CG,CD1,HD1,CE1,HE1,CZ,HZ,CE2,HE2,CD2,HD2,QD,
QE,QR}∗

Pro 1 S(1) = {N,CD,CA,HA,CB,HB2,HB3,QB,CG,HG2,HG3,QG,HD2,HD3,
QD,C}

Ser 2 S(2) = {CA,CB,OG}∗
Thr 2 S(2) = {CA,CB,HB,OG1,CG2,QG2}
Trp 3 S(3) = {CB,CG,CD1,HD1,CD2,CE2,CE3,HE3,NE1,HE1,CZ2,HZ2,CZ3,

HZ3,CH2,HH2}∗
Tyr 3 S(3) = {CB,CG,CD1,HD1,CE1,HE1,CE2,HE2,CD2,HD2,CZ,OH,QD,

QE,QR}∗
Val 2 S(2) = {CA,CB,HB,CG1,CG2,QG1,QG2,QQG}
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Appendix C: Efficient Subspace Intersection Algorithm

Algorithm 1: Hierarchical bottom-up intersection

input : Set of cliques {Cl} and their matrices {Ul}, l = 1, . . . , q
output: Matrix U such that range(U) =

⋂q
l=1 range(Ul)

// Initialization

for i← 1 to q do

Q
(1)
l = Ul // Q

(i)
j : U of the subtree rooted at the node j, level i

A(1)
l = Cl // A(i)

j : points in the subtree rooted at the node j, level i

end
v ← blog(q)c+ 1 // number of levels in the tree

p← q // number of cliques in the current level

p′ ← p // number of cliques in the lower level

for i← 2 to v do
p← dp′/2e
for j ← 1 to p do

`1 ← 2(j − 1) + 1

A(i)
j ← A

(i−1)
`1

Q
(i)
j ← Q

(i−1)
`1

if `1 < p′ then
`2 ← `1 + 1

A(i)
j ← A

(i)
j ∪ A

(i−1)
`2

Q
(i)
j ← Intersect(Q

(i)
j , Q

(i−1)
`2

)

end

end
p′ ← p

end

U ← Q
(v)
1 // For the root A(v)

1 = 1:n
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Appendix D: SPROS Flow Chart

Upper bounds &
TA restraints

Sample a
random structure

Simplify side chains

Form the cliques,
and the U matrix

Solve the SDP problem

Project onto R3

& run BFGS

Fix chiralities
& run BFGS

Reconstruct side chains
& run BFGS

Dihedral improvement
& water refinement

Final structure

Fig. 2. SPROS method flowchart.


