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Abstract

We develop a stochastic functional representation that is adapted to problems in-
volving various forms of epistemic uncertainties including modeling error and data
paucity. The new representation builds on the polynomial chaos decomposition and
eventually yields a Karhunen-Loeve expansion with random multiplicative coeffi-
cients. In this expansion, one set of uncertainty is captured in the usual manner,
as uncorrelated scalar random variables. Another component of the uncertainty,
statistically independent from the first, is captured by constructing the, usually de-
terministic, functions in the KL expansion as random functions. We think of the first
set of uncertainties as associated with a coarse scale model, and of the second set as
associated with subscale fluctuations not captured in the coarse scale description.

Key words: Uncertainty quantification; Polynomial Chaos; Karhunen-Loeve;
Stochastic Model Reduction.

1 Introduction

A number of challenges remain on the path to achieving the impact of stochas-
tic analysis for the treatment of complex systems whose behavior is subject
to uncertainties. These challenges can be broadly classified into three groups:
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Modeling, characterization, and propagation. In the modeling area, two fur-
ther classifications can be identified. The first classification delineates between
parametric and non-parametric interpretations of uncertainty. In the first case,
uncertainty is attributed to stochastic fluctuations in the parameters of a phys-
ical model [11,21]. These fluctuations are typically interpreted as representing
subscale fluctuations not fully resolved on the scale at which the governing
physics is assumed to govern. In the second case, uncertainty is attributed
to fluctuations in the form of the governing equations, leading to stochas-
tic operator perturbations [19,20,5]. The second classification depends on the
representative properties of the solution. Specifically, computed solutions can
be representative of target solutions either in a distributional sense, a func-
tional (L2) sense, or an almost-sure sense, with distinct sets of mathematical
tools applicable depending on the case. More specifically, approximation ac-
curacy, model reduction, and the ingredients of a well-posed problem should
all be defined in the context of what is meant by equality (distributional,
in-the-norm, or almost-sure) [1]. We note that stochastic L2 representations
provide a characterization of the solution of a given problem as a determin-
istic functional form in terms of the stochastic parameters. This form for the
solution is significant if sensitivity information and L2-style error analysis are
subsequently required, but otherwise seems to provide too much information.
Likewise, a distributional equivalence between the computed solution and the
exact solution is suitable if the details of the stochastic degrees of freedom (i.e.
stochastic dimensions) are not relevant to the final analysis. The most signifi-
cant challenge associated with characterizing uncertainty consists in faithfully
capturing the weight of available evidence, with error analysis capabilities to
determine the value of additional evidence. Methods for characterizing un-
certainty are typically adapted to specific modeling approaches and rely on
methods of statistical analysis including statistical estimation and statistical
inference. Procedures based on Maximum Likelihood [12,6,9], Bayesian infer-
ence [10], and Maximum Entropy [4,19] have been put in place to characterize
mathematical models based on polynomial chaos decompositions and random
matrix theory. The last challenge identified above relates to propagating uncer-
tainty from data to predictions. This challenge has specific attributes depend-
ing on the interpretation of stochastic equality and on the specific stochastic
model used. In all cases, however, it can be expected that the computational
cost associated with this propagation step will grow with the complexity of the
underlying stochastic data (requiring more stochastic degrees of freedom for a
suitable characterization) and with the level of stochastic scatter in this data,
typically resulting in a greater scatter in the predicted quantities of interest
and a stronger nonlinear dependence of the predictions on the data.
Significant progress has been achieved in recent years in the analysis of stochas-
tic partial differential equations with random coefficients. In particular, theory
and algorithms underlying polynomial chaos and other functional approxima-
tion and projection methods have been set on firmer ground, providing a path
forward towards a general purpose formulation of stochastic computational
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analysis [8,23,14,13,3,15,7,2,22,16]. Also, procedures for characterization and
calibration of stochastic representations have been developed [12,6,10,9,4] that
are well-adapted to functional approximation methods and their significance to
model validation has been demonstrated [9]. Most of these developments have
been with a view to either calibrating probabilistic models or accelerating the
convergence of uncertainty propagation procedures, including methodologies
for a-priori and a-posteriori error estimation. Modeling efforts that address the
curse of dimensionality for complex uncertainties and that provide a frame-
work for integrating epistemic uncertainty into the same unified framework
as other sources of uncertainty have only recently begun to emerge While a
number of efforts have introduced polynomial chaos expansions where both
the basis functions and their associated coordinates are random [17,10,9]. In
these approaches, the mathematical analysis of these representations is still
at a very fundamental level [18] that lags behind the nuances and sophis-
tication of current practical needs. The present paper addresses this issue
from a perspective that highlights its significance to problems of conceptual
and mathematical modeling, calibration of probabilistic models, and compu-
tational efficiency. Specifically, we demonstrate how subset of the stochastic
degrees of freedom can be rolled into the coefficients of a polynomial chaos
expansion, thus permitting the segregation of the uncertainties for subsequent
processing. For example, the uncertainties that are retained for functional ap-
proximation can be treated using stochastic Galerkin projections, while the
uncertainties that have been rolled into the coefficients can be treated us-
ing distributional representation. This hybrid treatment of uncertainties will
adapt the computational effort and algorithms to the specific needs of the
problem at hand. The final byproduct of our analysis is a Karhunen-Loeve
decomposition where the, usually deterministic, coordinate functions are now
themselves stochastic, endowed with a probabilistic measure that is indepen-
dent of the measure associated with the standard orthogonal Karhunen-Loeve
random variables.
In a first part of the paper, we show how the reduced chaos decomposition
with random coefficients of a R

n-valued second-order random variable can be
constructed and explore the mathematical properties of such a representa-
tion. A second part deals with the case of random fields. In the third part,
we demonstrate our construction on an example that highlights some of its
salient features.
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2 Reduced chaos decomposition with random coefficients of a vector-

valued second-order random variable

2.1 Chaos decomposition of a vector-valued second-order random variable on
a tensor product of two Hilbert spaces

In this subsection, we introduce the Chaos decomposition of a R
n-valued

second-order random variable with respect to the tensor product of two Hilbert
spaces. This is a particular case of the more general setting analyzed in [21].

Let X = (X1, . . . , Xn), Y = (Y1, . . . , Ym) and Z = (Z1, . . . , Zp) be three
second-order random variables, defined on a probability space (Θ, T , P ), with
values in R

n, R
m and R

p respectively. The probability distributions on R
n and

R
m of random variables X and Y are assumed to be given and are denoted

by PX(dx) and PY (dy), in which dx = dx1 . . . dxn and dy = dy1 . . . dym are
the Lebesgue measures on R

n and R
m. It is assumed that random variables

X and Y are independent. Consequently, the joint probability distribution
on R

n × R
m of random variables X and Y is written as PX,Y (dx, dy) =

PX(dx) ⊗ PY (dy).

The random variable Z is assumed to be the transformation of X and Y by
a measurable nonlinear mapping (x,y) 7→ f (x,y) = (f1(x,y), . . . , fp(x,y))
from R

n × R
m into R

p, in which x = (x1, . . . , xn) and y = (y1, . . . , ym). We
then have Z = f (X,Y ).

Since f is such that Z is a second-order random variable, we have

E
{

‖f (X,Y )‖2

Rp

}

=
∫

Rn

∫

Rm
‖f (x,y)‖2

Rp PX,Y (dx, dy) < +∞, (1)

in which E{.} denotes the mathematical expectation, and where ‖.‖Rp denotes
the Euclidean norm in R

p associated with the inner product 〈z, z′〉Rp = z1z
′
1
+

. . . + zpz
′
p. From Eq. (1), it can be deduced that mapping f belongs to the

space L2

PX ,Y
(Rn × R

m,Rp) of PX,Y -square-integrable functions from vector
space R

n × R
m into vector space R

p.

Let HX = L2

PX
(Rn) (resp. HY = L2

PY
(Rm)) be the real Hilbert space of PX-

square-integrable functions (resp. PY -square-integrable functions) from vector
space R

n (resp. R
m) into R. The real Hilbert spaces HX and HY are equipped

with the following inner products:

〈u, u′〉HX
=

∫

Rn
u(x)u′(x)PX(dx)

=E {u(X)u′(X)} (2)
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〈v, v′〉HY
=

∫

Rm
v(y)v′(y)PY (dy)

=E {v(Y )v′(Y )} (3)

We introduce the multi-index α = (α1, . . . , αn) ∈ N
n and the multi-index

β = (β1, . . . , βm) ∈ N
m. Let us consider a Hilbertian basis of real Hilbert

space HX (resp. HY ) given by {ϕα,α ∈ N
n} (resp. {ψβ,β ∈ N

m}). We thus
have

〈ϕα, ϕα′〉HX
= E{ϕα(X)ϕα′(X)} = δαα′ , (4)

〈ψβ, ψβ′〉HY
= E{ψβ(Y )ψβ′(Y )} = δββ′ . (5)

Therefore any function g ∈ HX (resp. h ∈ HY ) can be expanded as

g(x) =
∑

α∈Nn

gαϕα(x) , h(y) =
∑

β∈Nm

hβ ψβ(y) (6)

in which

gα = 〈g, ϕα〉HX
= E{g(X) ϕα(X)} , hβ = 〈h, ψβ〉HY

= E{h(Y ) ψβ(Y )}.
(7)

Below, it is assumed that the Hilbertian bases ϕα and ψβ are polynomial bases
such that

ϕ0(X) = 1 , ψ0(Y ) = 1 (8)

Consequently, we deduce that

E{ϕα(X)} = 0 , ∀α 6= 0 and E{ψβ(Y )} = 0 , ∀β 6= 0. (9)

It can then be proven [21] that the R
p-valued random variable Z = f (X,Y )

has the following Chaos representation related to the tensor product of HX

with HY ,

Z =
∑

α∈Nn

∑

β∈Nm

zαβ ϕα(X)ψβ(Y ) , (10)

in which the coefficients zαβ ∈ R
p are given by

zαβ = E{Z ϕα(X)ψβ(Y )} . (11)

We then have the following properties concerning the second-order moments
of random variable Z,

E{Z} = z00 , E{Z ZT} =
∑

α∈Nn

∑

β∈Nm

zαβ(zαβ)T , (12)

which yields

E{‖Z‖2

Rp} =
∑

α∈Nn

∑

β∈Nm

‖zαβ‖2

Rp < +∞ . (13)
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2.2 Existence and properties of the Chaos decomposition with random coef-
ficients of a vector-valued second-order random variable

We have the following proposition related to the existence and the properties of
the Chaos decomposition with random coefficients of a vector-valued second-
order random variable.

Proposition 1 Let Z = (Z1, . . . , Zp) be the R
p-valued second-order random

variable defined in Subsection 2.1. Then there exists a chaos decomposition
with random coefficients of random variable Z which is written as

Z =
∑

α∈Nn

Aαϕα(X) , (14)

in which {Aα,α ∈ N
n} (1) is a sequence of dependent R

p-valued random
variables, (2) is independent of the R

n-valued random variable X and (3) is
such that

E{A0} = E{Z} , E{
∑

α∈Nn

‖Aα‖2

Rp} = E{‖Z‖2

Rp} . (15)

Proof. Introducing the sequence {Aα,α ∈ N
n} of the R

p-valued random
variables such that

Aα =
∑

β∈Nm

zαβ ψβ(Y ) (16)

and taking into account Eq. (10) yield Eq. (14). Clearly, all the random vari-
ables {Aα,α ∈ N

n} are independent of random variable X because the ran-
dom variables X and Y are independent. Since random variables {Aα,α ∈
N

n} are independent of X, we have E{Z} =
∑

α∈Nn E{Aα}E{ϕα(X)} and
then using Eqs. (8) and (9) yield the first part of Eq. (15). From Eq. (14) we
have E{‖Z‖2

Rp} =
∑

α∈Nn

∑

α′∈Nn E{〈Aα,Aα′〉Rp}E{ϕα(X)ϕα′(X)}. Using
Eq. (4) yields the second part of Eq. (15).

2.3 Reduced chaos decomposition with random coefficients of a vector-valued
second-order random variable

We introduce the finite-dimensional approximation Zν of order ν of random
variable Z whose chaos decomposition with random coefficients is given by
Eq. (14). This approximation is then defined by

Zν =
∑

α∈Nn,|α|≤ν

Aαϕα(X) , (17)
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in which |α| ≤ ν means 0 ≤ α1 + . . .+αn ≤ ν. Below, the set of multi-indexes
|α| ≤ ν will mean the finite subset of N

n such that |α| ≤ ν.

Let B be the random vector made up of the random vectors (Aα, |α| ≤ ν). Let
mB = E{B} be the mean value and let [CB] = E{(B − mB) (B − mB)T}
be the covariance matrix of random vector B. Assuming that none of the
vectors Aα are deterministic, the symmetric covariance matrix [CB] is positive
definite. Under this assumption, we introduce the eigenvalue problem related
to the positive definite symmetric covariance matrix,

[CB] bj = λj bj , λ1 ≥ λ2 ≥ . . . ≥ λN ≥ . . . , (18)

in which the associated eigenvectors b1, b2, . . . , bN , . . . form an orthonormal
basis. Introducing the bloc decomposition bj = (aα,j, |α| ≤ ν), we then have

〈bj, bj′〉 =
∑

α,|α|≤ν

〈aα,j,aα,j′〉Rp = δjj′ , (19)

Finally, the following approximation BN of order N ≪ ν for random vector
B is introduced,

BN = mB +
N

∑

j=1

√

λj ξj bj , (20)

in which the random variables ξ1, . . . , ξN satisfy the following usual properties,

E{ξj} = 0 , E{ξj ξj′} = δjj′ . (21)

Using the bloc decomposition, Eq. (20) yields for all α in N
n such that |α| ≤ ν,

Aα,N = E{Aα} +
N

∑

j=1

√

λj ξj aα,j . (22)

The corresponding approximation Zν,N of random vector Zν defined by Eq. (17)
is then written as

Zν,N =
∑

α,|α|≤ν

Aα,N ϕα(X) , (23)

Proposition 2 The reduced chaos decomposition with random coefficients of
order {ν,N} for the R

p-valued second-order random variable Z defined in
Subsection 2.1 is written as

Zν,N = Φ0(X) +
N

∑

j=1

√

λj ξj Φj(X) , (24)

in which ξ1, . . . , ξN are second-order, centered and uncorrelated real-valued ran-
dom variables satisfying Eq. (21) and where Φ0(X),Φ1(X), . . . ,ΦN(X) are
N+1 random vectors with values in R

p such that for all j and j′ in {1, . . . , N},

E{〈Φj(X),Φj′(X)〉Rp} = δjj′ . (25)
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Random vectors Φ0(X),Φ1(X), . . . ,ΦN(X) are such that

Φ0(X) =
∑

α,|α|≤ν

E{Aα}ϕα(X) , Φj(X) =
∑

α,|α|≤ν

aα,j ϕα(X) , 1 ≤ j ≤ N .

(26)

Proof. Substituting Eq. (22) into Eq. (23) yields Eq. (24) with Eq. (26). From
Eqs. (4), (19) and (26), it can be deduced Eq. (25).

3 Reduced chaos decomposition with random coefficients of ran-

dom fields

Consider next the stochastic process u(x(t), y(t)), t ∈ T ⊂ R. We will assume
that u, x(t) and y(t) are all second-order processes indexed by T , signifying
that each of their covariance operators is Hilbert-Schmidt (or of trace type).
We will also assume that stochastic processes x(t) and y(t) are statistically
independent. Under this assumption, for all t in T , x(t) and y(t) can be
approximated by their respective truncated Karhunen-Loeve expansions as
follows,

x(t) = mx(t) +
n

∑

i=1

Xi

√
ρ

i
ei(t) (27)

and

y(t) = my(t) +
m

∑

i=1

Yi

√
γ

i
fi(t) (28)

where (ρi, ei) and (γi, fi) are, respectively, the eigenvalue-eigenvector pairs of
the covariance operators of x(t) and y(t) and where mx(t) and my(t) are their
respective mean functions. We will rewrite u(x(t), y(t)) as un,m(X,Y , t) in
order to highlight this decomposition, where X = (X1, · · · , Xn) and Y =
(Y1, · · · , Ym) are, respectively, random variables with values in R

n- and R
m.

The polynomial chaos decomposition of the second-order process un,m can be
written as

un,m(X,Y , t) =
∑

α∈Nn

∑

β∈Nm

uαβ
n,m(t)ϕα(X)ψβ(Y ) . (29)

With the obvious notation, this equation can be rewritten as,

un,m(X,Y , t) =
∑

α∈Nn

Aα
n,m(t)ϕα(X) , (30)
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where random processes Aα
n,m(t) depend on random variables Y and are inde-

pendent of X. It is clear how the development from the previous section can
then be extended to the analysis of the stochastic processes considered in this
section. We note that in the present case, Aα

n,m(t) are second-order random
processes, and not random variables, as was the case previously. Truncating
the summation in equation (30) to polynomials of at most order ν yields the
νth-order approximation,

uν
n,m(X,Y , t) =

∑

α∈Nn,|α|≤ν

Aα
n,m(t)ϕα(X) . (31)

We note again that the random processes Aα
n,m(t) are correlated, and we

seek to reduce them through a Karhunen-Loeve decomposition. We intro-
duce the multivariate random process B(t) composed of the random pro-
cesses (Aα

n,m(t), |α| ≤ ν), and consider its covariance [CB(t, s)] = E{(B(t) −
mB(t))(B(s)−mB(s))T}, where mB(t) denotes the mean of random process
B(t). Denoting by integers p and q the respective indices of the multi-indices
p and q, the (p, q) entry of CB(t, s) is given by

[CB(t, s)]p,q =E{Ap
n,m(t)Aq

n,m(s)}
=

∑

α∈Nn,|α|≤ν

uαp
n,m(t)uαq

n,m(s) . (32)

The eigenproblem of the covariance operator of B(t) can then be written as,

∫

T
[CB(t, s)]bj(s) ds = λjb

j(t) . (33)

Random process B(t) can then be written as

B(t) = mB(t) +
N

∑

j=1

√

λjξjb
j(t) . (34)

Denoting the α-block of bj(t) by aα,j(t), a corresponding approximation of
Aα

n,m(t) is obtained in the form,

Aα,N
n,m (t) = E{Aα(t)} +

N
∑

j=1

√

λjξja
α,j(t) . (35)

Clearly, in this last equation, the random variables {ξi} are functions of the
random variables Y . Substituting into equation (31), yields the following
proposition.

Proposition 3 The reduced chaos decomposition with random coefficients of
order {ν,N} for the second-order stochastic process u(t) defined in Section 3
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is written as

uν,N
n,m(X,Y , t) = Φ0(X, t) +

N
∑

j=1

√

λj ξj Φj(X, t) , (36)

in which ξ1, . . . , ξN are second-order, centered and uncorrelated real-valued ran-
dom variables satisfying Eq. (21) and where Φ0(X, t),Φ1(X, t), . . . ,ΦN (X, t)
are N+1 second-order random processes such that for all j and j′ in {1, . . . , N},

E
{∫

T
Φj(X, t)Φj′(X, t)dt

}

= δjj′ . (37)

Random processes Φ0(X, t),Φ1(X, t), . . . ,ΦN(X, t) are such that

Φ0(X, t) =
∑

α,|α|≤ν

E{Aα(t)}ϕα(X) , Φj(X, t) =
∑

α,|α|≤ν

aα,j(t)ϕα(X) , 1 ≤ j ≤ N .

(38)

4 Numerical Example

Consider the random process,

u(ξ,η, t) =
∫ t

0

∑

i∈C1
ξiei(s)

∑

j∈C2
ηjfj(s)

ds (39)

where C1 and C2 are two subsets of N of cardinality n and m, respectively, and
{ei(t)} and {fj(t)} are deterministic functions. Furthermore, ξ = (ξi)i∈C1

and
η = (ηj)j∈C2

are, respectively, second-order R
n and R

m-valued random vari-
ables, with ξ and η statistically independent. With this expression, u(ξ,η, t)
could represent, for example, the deflection of a one-dimensional bar subjected
to a random body force given by

∑

i∈C1
ξiei(t) and with a random section mod-

ulus given by
∑

j∈C2
ηjfj(t). The deterministic functions {ei(t)} and {fj(t)} can

be thought of as characterizing length scales associated with the corresponding
random variables. These can be due, for instance, to variabilities in specific
dominant subscale features. We specifically assume that the random variables
{ξi} and {ηj} are each distributed with an independent uniform distribution
over [0, 1]. Next, we consider the polynomial chaos decomposition of u(ξ,η, t)
in the form,

u(ξ,η, t) =
∑

α∈Nn

∑

β∈Nm

uαβ(t)ϕα(ξ)ψβ(η) (40)

where ϕα and ψβ are the modified Legendre polynomials, orthonormal with
respect to the multi-dimensional Lebesgue measure over the hypercube [0, 1].
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i ei(t) fi(t)

0 1 1

1 0.1 cos(πt) 0.2 cos(πt)

2 0.002 cos(10πt) 0.1 cos(10πt)

3 0.001 cos(50πt) 0.01 cos(20πt)

4 0.0001 cos(100πt) 0.002 cos(30πt)

5 0.001 cos(40πt)

6 0.0002 cos(50πt)

7 0.0002 cos(60πt)

8 0.0002 cos(70πt)

9 0.0002 cos(80πt)

10 0.0002 cos(90πt)

11 0.0002 cos(100πt)

12 0.0002 cos(110πt)

13 0.0002 cos(120πt)

14 0.0002 cos(130πt)

15 0.0002 cos(140πt)

16 0.0002 cos(150πt)

Table 1
Data used in constructing the numerical example.

These can be obtained as tensor products from their one-dimensional coun-
terparts. In view of this orthonormality, the coefficients uαβ can be evaluated
as

uαβ(t) = E{u(ξ,η, t)ϕα(ξ)ψβ(η)}. (41)

The right hand side in this last expression cannot, in general, be evaluated
analytically. In the present example, we evaluate the expectation operator
through statistical sampling, taking an average over 106 samples. Further-
more, in the present case, we consider the case where n = 4, m = 16, and
a complete 20-dimensional second order polynomial in ξ and η is considered
for the representation of u(ξ,η, t). The data used in the present example are
shown in Table 1. Given the orthogonality of both the deterministic functions
and the random variables appearing in the integrand in equation (39), the
numerator and the denominator inside the integral sign in that expression can
be viewed as providing a Karhunen-Loeve representation of some underlying
stochastic process.
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Next we consider the construction of a reduced-order model of the stochastic
process u that is explicitly dependent on a subset of the ξ and η variables,
with the other variables being implicitly represented through the statistical
dependence of the coefficients. Let X = (ξ1, η1, η2, η3) and let Y be a vector of
random variables consisting of all the other elements of the ξ and η vectors.
We have thus placed in X those random variables whose contribution is ex-
pected to be significant on u(ξ,η, t) and we retained the other variables into
vector Y . With some abuse of notation, and for consistency with the notation
of the previous sections, we refer to the process u as u(X,Y , t). In addition
to this layout, we also consider a case where X = (ξ2, η2, η3, η4) and another
case where X = (ξ4, η8, η9, η10). We will refer to these three cases as cases 1, 2
and 3, respectively. Case 1 corresponds to the situation where the coarse scale
variables are the dominant variables representing the physical problem. Cases
2 and 3 refer, respectively, to situations where increasingly less important vari-
ables are identified as coarse scale observables. For each of these three cases,
a four-dimensional second-order polynomial representation is constructed, as
indicated above, whose coefficients are random variables, dependent on the
remaining 16 variables. For each of these cases. Such a representation takes
the following explicit form,

u(X,Y , t) =



u00(t) +
16
∑

α=1

u1α(t)P1(Yα) +
16
∑

α=1

16
∑

β=α

uαβ(t)P2(Yα, Yβ)





+
4

∑

α=1



u0α(t) +
16
∑

β=α

uαβ(t)P1(Yβ)



P1(Xα)

+
4

∑

α=1

4
∑

α=i

uαβP2(Xα, Xβ) , (42)

where P1(x) = (2x− 1)/
√

3 is the one-dimensional first order Legendre poly-
nomial, while the second order two-dimensional modified Legendre polynomial
is given by P2(x, y) = P1(x)P1(y) if x 6= y and P2(x, x) = (6x2 − 6x+ 1)/

√
5.

We rewrite the above expression as

u(X,Y , t) = A0(Y , t)+
4

∑

α=1

Aα(Y , t)P1(Xα)+
4

∑

α=1

4
∑

β=1

Aαβ(t)P2(Xα, Xβ) (43)

In the present example, we started by assuming that a full polynomial chaos
decomposition is available, which we subsequently transformed into a chaos de-
composition with random coefficients. In a context where experimental data is
available, the random coefficients are directly estimated from measurements
once the coarse variables X have been identified, without the need to go
through the full polynomial chaos expansion (which would typically not be
available). A variety of methods, such as Maximum Likelihood, Maximum

12
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Fig. 1. Probability density function of the coefficient A0 evaluated at two val-
ues of the index t; Three different sets of coarse scale variables; Top left:
X = (ξ1, η1, η2, η3); Top right: X = (ξ2, η2, η3, η4); Bottom left: X = (ξ4, η8, η9, η10).13



Entropy, or Bayesian inference [6,10,4] can be used to estimate the sampling
distributions of these reduced polynomial chaos coefficients. Figures (1)-(4)
show probability distribution functions (PDF) for the coefficients Aα in equa-
tion (43), evaluated for at two end-points of the interval T . Specifically, Figure
(1) shows the term A0 for each of the three cases described above. We observe
that,as expected, the probabilistic scatter, as measured by the width of the
PDF, increases as the quality of the coarse scale observables degrades. We also
note that by showing the PDF of the quantity Aα/t (instead of just Aα), the
curves coalesce onto a single curve. The reason for this scaling has not been in-
vestigated and certainly merits further consideration. Figure (2) depicts PDF
plots for (Aα, α = 1, 2, 3, 4). Figures (3) and (4) show similar results for Cases
2 and 3, respectively. Except for α = 1 in Case 1, the same scaling behavior
as described in previously is again observed. The observation made for Figure
(1) in connection with uncertainty being inversely proportional to the quality
of coarse observables (elements of vector X) is reiterated for Figures (2)-(4).

5 Conclusion

We have developed a model reduction procedure for stochastic variables and
processes. The procedure implements a model reduction by rolling insignificant
dimensions into a distributional representation that does not allow their dis-
entanglement, while permitting their separation from the other variables. Two
procedures were theoretically described involving Karhunen-Loeve decomposi-
tions and Polynomial Chaos decompositions with stochastic coordinates. The
proposed procedure has significant potential for representing and character-
izing model error whereby the strength of the uncertainty in the estimated
coefficients can be used as an indicator for the strength of the modeling er-
ror. We finally note that the foregoing development hinged on the linear form
afforded for the solution when using polynomial chaos representations.
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Fig. 2. Probability density function of the coefficient Aα evaluated at two values of
the index t; X = (ξ1, η1, η2, η3); Coefficients are shown for each of the four coarse
scale variables. 15
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Fig. 3. Probability density function of the coefficient Aα evaluated at two values of
the index t; X = (ξ2, η2, η3, η4); Coefficients are shown for each of the four coarse
scale variables. 16
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Fig. 4. Probability density function of the coefficient Aα evaluated at two values of
the index t; X = (ξ4, η8, η9, η10); Coefficients are shown for each of the four coarse
scale variables. 17
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