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Signal generation by an uncertain nonlinear dynamical system: application to the production of voiced sounds and experimental validation
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This paper is devoted to the construction of a stochastic nonlinear dynamical system for signal generation such as the production of voiced sounds. The dynamical system is highly nonlinear and the output signal generated is very sensitive to a few parameters of the system. In the context of the production of voiced sounds the measurements have a significant variability. We then propose a statistical treatment of the experiments and we developed a probability model of the sensitive parameters in order that the stochastic dynamical system has the capability to predict the experiments in the probability distribution sense. The computational nonlinear dynamical system is presented. The Maximum Entropy Principle is used to construct the probability model. An experimental validation is shown.

Introduction

This paper is devoted to the signal generation by a nonlinear dynamical system modelling the voice production through a mechanical model. Of course, since the voice production system is a very complex system the mechanical model is simplified. Consequently, uncertainties are introduced in the model and must be taken into account. In addition, the introduction of such simplified mechanical model must be validated by experiments. We then propose a stochastic nonlinear dynamical model to produce voiced sounds. Information such as the fundamental frequency of the stochastic output signal is extracted from the model and we present a statistical validation by experiments. and the capability of this well-known model to reproduce the vocal folds vibrations has been successfully demonstrated.

The IF72 model has been used for producing and studying voiced sounds in a deterministic way. The voiced sounds produced by the IF72 model depend on the parameters used in the simulation. However, the parameters are uncertain. To improve the predictions we take into account the uncertainties of the parameters using a parametric probabilistic approach, which consists in modelling each uncertain parameter by a random variable. In principle all the parameters could be taken as uncertain but in this paper we take only some of them. These uncertain parameters are the neutral glottal area, the subglottal pressure and the tension parameter , because the fundamental frequency mainly depends on these parameters.

Since the fundamental frequency is a nonlinear mapping from the random variables modelling the three uncertain parameters, the probability density functions of these random variables are required in order to compute the probability density function of the fundamental frequency. The probability density functions of these three uncertain parameters are then derived using the Maximum Entropy Principle. Such an approach is used because available experimental data sets are not sufficiently large to construct a good estimation of the probability density function using nonparametric mathematical statistics.

Below we are interested in constructing the probability density function of the fundamental frequency of a voice signal (see, for instance, Titze (1994) and, in particular, [START_REF] Pinto | Unification of pertubation measures in speech signals[END_REF] who discuss distributional characteristics of perturbations and say that different types of vocal perturbations may have different distributions). Since the dynamical system producing the output stochastic signal is nonlinear, the stochastic solver used is based on the Monte Carlo simulation method. Independent realizations of the random variables modelling the uncertain parameters are obtained with generators adapted to their probability distributions which are constructed in the paper.

The paper is organized as follows. In Sec. 2 the equations that describe the deterministic problem (defined as the mean problem) are formulated; the procedure for computing the output signal and, consequently, the fundamental frequency is presented for the mean problem. In Sec. 3 the construction of the probabilistic model of the uncertain parameters and the construction of the approximation of the stochastic problem are presented. Section 4 is devoted to the calculation of the statistics of the random fundamental frequency and of its probability density function. A comparison of the results with experimental data is in Sec. 5. Conclusions are outlined in Sec. 6. The Appendix describes the functions and matrices used in the model.

Equations for the mean model

The mechanical model depends on two sets of parameters. The first one is constituted of fixed parameters for which uncertainties are not taken into account. The second is constituted of three uncertain parameters (introduced in Sec. 1) that will be modeled by random variables in Sec. 3. In this section, all the parameters are considered deterministic and the parameters of the second set are fixed at their mean values.

Fig. 1 is a schematic diagram of the IF72 model, called a source-filter model [START_REF] Fant | The acoustic theory of speech production[END_REF][START_REF] Ishizaka | Synthesis of voiced sounds from a two-mass model of the vocal cords[END_REF]. It [START_REF] Ishizaka | Synthesis of voiced sounds from a two-mass model of the vocal cords[END_REF]Titze, 1994).

The principal assumptions are that the motion of each vocal fold is perpendicular to the direction of airflow that is assumed to be quasi-steady and is described by Bernoulli's energy equation. The complete model is a well known representation of speech production acoustics. In this paper, the vocal tract is constituted of two coupled tubes with linear acoustics behavior. The subglottal pressure, y, is the input of the source subsystem whose output is the air volume velocity, u g . The air volume velocity is the input of the filter subsystem whose output is the radiated pressure, p r . If we consider the complete system, the subglottal pressure y is the input and the output is the radiated pressure p r . The main interest of this paper is to analyze the changings of the fundamental frequency of the produced voice signal. The three main parameters of the IF72 model that are responsible for these changings are: a g0 : the area at rest between the vocal folds, called the neutral glottal area. y: the subglottal pressure. q: the tension parameter which controls the fundamental frequency of the vocal-fold vibrations .

In order to control the fundamental frequency of the vocal folds, parameters

m 1 , k 1 , m 2 , k 2 , k c (see Fig. 1) are written as m 1 = m 1 /q, k 1 = q k 1 , m 2 = m 2 /q, k 2 = q k 2 , k c = q k c , in which m 1 , , k 1 , m 2 , k 2 , k c are fixed values.
The mean model, proposed by [START_REF] Ishizaka | Synthesis of voiced sounds from a two-mass model of the vocal cords[END_REF], depends on eight parameters m 1 , k 1 , m 2 , k 2 , k c , a g0 , y, q, and is rewritten as:

ϕ 1 (w)|u g |u g + ϕ 2 (w)u g + ϕ 3 (w) ug + 1 c1 ∫ t 0 (u g (τ ) -w 3 (τ ))dτ -y = 0 (1) [M ] ẅ + [C] ẇ + [K]w + h(w, ẇ, u g , ug ) = 0 (2) in which w(t) = (w 1 (t), w 2 (t), w 3 (t), w 4 (t), w 5 (t)), with w 1 (t) = x 1 (t), w 2 (t) = x 2 (t), w 3 (t) = u 1 (t), w 4 (t) = u 2 (t), w 5 (t) = u r (t).
The functions x 1 and x 2 are the displacements of the masses m 1 and m 2 , the functions u 1 and u 2 describe the air volume velocity through the two tubes modelling the vocal tract, and u r is the air volume velocity through the mouth. The function p r (output signal) is evaluated by p r (t) = u r (t)r r , with rr = 128ρv s /9π 3 r 2 2 , where ρ is the air mass density, v s is the sound velocity, and r 2 is the radius of tube 2. Constant c1 , functions ϕ 1 , ϕ 2 , ϕ 3 , (w, ẇ, u g , ug ) → h(w, ẇ, u g , ug ), and matrices [M ],

[C], [K] are described in the Appendix.

We can note that Eq.2 describes the vibration problem in each of the two subsystems (vocal folds and vocal tract) and Eq.1 is the equation that couples the two subsystems.

Solver

In order to solve Eq. ( 1) and (2), i.e. to find u g and w for a given y, an implicit-time numerical method is proposed. This algorithm uses (1) an implicit forward finite difference method for Eq.

(1) in which the integral is discretized with the method of left Riemann sum and (2) an unconditionally stable Newmark method for Eq. (2). Let ∆t be the sampling time and w i = w(i∆t), ẇi = ẇ(i∆t), ẅi = ẅ(i∆t), u g i = u g (i∆t)

and ug i = ug (i∆t). Then, for all i ≥ 1, Eqs. (1) and (2) yield

ϕ 1 (w i )|u g i |u gi +ϕ 2 (w i )u g i +ϕ 3 (w i ) 1 ∆t (u g i -u g i-1 )+ 1 c1 ∆t i-1 ∑ k=0 (u g k -w 3 k )-y = 0
(3) and

[A]w i + h ( w i , ẇi , u g i , u g i -u g i-1 ∆t ) = z i (4) in which                                                        [A] = [K] + ã0 [M ] + ã1 [C] z i = [M ](ã 0 w i-1 + ã2 ẇi-1 + ã3 ẅi-1 ) + [C](ã 1 w i-1 + ã4 ẇi-1 + ã5 ẅi-1 ) ẅi = ã0 (w i -w i-1 ) -ã2 ẇi-1 -ã3 ẅi-1 ẇi = ẇi-1 + ã6 ẅi-1 + ã7 ẅi ã0 = 1 α∆t 2 , ã1 = δ α∆t , ã2 = 1 α∆t , ã3 = α -1 2 ã4 = δ α -1 , ã5 = δ 2 ( δ α -2 ) , ã6 = ∆t(1 -δ) , ã7 = δ∆t (5) 
with u g 0 = 0, w 0 = 0, ẇ0 = 0, δ = 0.5 and α = 0.25.

The method used to construct the approximation of Eqs. ( 3) and ( 4) consists in finding u g i as the limit of the sequence {u α g i }, α ≥ 1, when α goes to infinity such that, for all α ≥ 1 and i ≥ 1, we have

ϕ 1 (w α-1 i )|u α g i |u α g i +ϕ 2 (w α-1 i )u α g i +ϕ 3 (w α-1 i ) 1 ∆t (u α g i -u g i-1 )+ 1 c1 ∆t i-1 ∑ k=0 (u g k -w 3 k )-y = 0 , (6) 
with w 0 i = w i-1 and u 1 g i = u g i-1 . In Eq. ( 6), w α-1 i is the limit of the sequence {w α-1,β i }, β ≥ 0, when β goes to infinity and is such that, for all β ≥ 1, α ≥ 2

and i ≥ 1, [A]w α-1,β i = z i -h ( w α-1,β-1 i , ẇα-1,β-1 i , u α-1 g i -u g i-1 ∆t ) , ( 7 
) with w α,0 i = w α-1 i and ẇα,0 i = ẇα-1 i .
For each time step i, index α of the iteration loop being fixed, first Eq. ( 6) is solved to calculate u α gi and, second, Eq. ( 7) is solved to calculate w α-1 i using an iteration loop in β. Loop in α is performed until convergence is reached.

Then, the next time step is computed.

As will be seen from the results, the methodology of approximation was well adapted to the problem.

Validation of the solver

Numerical tests of the algorithm have been performed and it was verified that it is unconditionally stable. Below we present an example related to the output signal for a vowel /a/ using data from [START_REF] Ishizaka | Synthesis of voiced sounds from a two-mass model of the vocal cords[END_REF]:

d 1 = 2.5 × 10 -3 m, d 2 = 5 × 10 -4 m, y = 8000 Pa, a g0 = 5 × 10 -6 m 2 , q = 1, m 1 = 1.25 × 10 -4 kg, m 2 = 2.5 × 10 -5 kg, k 1 = 80 N/m, k 2 = 8 N/m, k c = 25 N/m, ξ 1 = 0.1 , ξ 2 = 0.6 , η k 1 = η k 2 = 100, η h 1 = η h 2 = 500.
The lengths considered for the two tubes are ℓ 1 = 8.9 × 10 -2 m and ℓ 1 = 8.1 × 10 -2 m, and their corresponding radius are r 1 = 0.56 × 10 -2 m and r 2 = 1.49 × 10 -2 m.

The sampling time step used to set a good accuracy is ∆t = 1/45000 s. Figure 2 displays the time response of the system for u g , x 1 , x 2 , and p r normalized to p max = max t p r (t). The graphs agree with those published by [START_REF] Ishizaka | Synthesis of voiced sounds from a two-mass model of the vocal cords[END_REF].

Calculation of the output signal fundamental frequency

As we have explained in Sec. 1, the objectives of this paper are: (1) to make a probabilistic analysis of the fundamental frequency f 0 of the output signal p r and (2) to construct the probability density function of f 0 . Let t max be such that p r (t) = 0 , for t ≥ t max . The Fourier transform of t → p r (t), denoted by

ω → p r (ω), is given by p r (ω) = ∫ T p r (t)e -iωt dt , ( 8 
) in which T = [0, t max ].
The fundamental frequency is then defined as the frequency of the first peak in the graph of ω →| p r (ω) |. Clearly, there are two mappings L and M such that the output signal p r at time t and the fundamental frequency f 0 can be written as p r (t) = L(t; a g0 , y, q) , (9)

f 0 = M(a g0 , y, q) . ( 10 
)
For instance, Fig. 3 shows the modulus of the Fourier transform | p r (ω)| normalized with respect to p max = max ω | p r (ω) | associated with the time signal shown in Fig. 2, in which the first peak is marked. If an output signal is not produced, then f 0 is taken as zero.

Stochastic modelling

The three main parameters responsible for the changing of the fundamental frequency will be considered as uncertain and random variables will be as-sociated with them. It means that for each realization of the three random variables a different output signal is produced, that is the output signal is a stochastic process. It is assumed that the stochastic process can locally be modelled as being stationary and ergodic stochastic process (see, for instance, [START_REF] Schoengten | Stochastic models of jitter[END_REF]).

The probability density functions associated with the random variables corresponding to the chosen uncertain parameters will be constructed using the Maximum Entropy Principle (see Jaynes's (1957aJaynes's ( ,1857b))) in the context of the Information theory introduced by [START_REF] Shannon | A mathematical theory of communication[END_REF].

This principle states: Out of all probability distributions consistent with a given set of available information, choose the one that has maximum uncertainty (entropy).

The measure of uncertainty (entropy) used is given by Eq.11:

S(p X ) = - ∫ +∞ -∞ p X (x)ln ( p X (x) ) dx . ( 11 
)
The goal is to maximize the entropy S, under the constraints defined by the following available information

∫ +∞ -∞ p X (x)dx = 1 and ∫ +∞ -∞ p X (x)g i (x)dx = a i , i = 1, . . . , m (12) 
where the real numbers a i and the functions g i are given.

Probabilistic model of the uncertain parameters

As explained in Sec. 1, the three parameters a g0 , y, and q are modeled by random variables A g0 , Y , and

Q. Consequently, parameters m 1 , k 1 , m 2 , k 2 ,
and k c become random variables denoted by

M 1 , K 1 , M 2 , K 2 , and K c defined by M 1 = m 1 /Q, K 1 = Q k 1 , M 2 = m 2 /Q, K 2 = Q k 2 , and K c = Q k c .
The probability models derived here are particular cases of those ones described in [START_REF] Soize | Maximum entropy approach for modelling random uncertainties in transient elastodynamics[END_REF]. Since no information is available concerning cross statistical informations between random variables A g0 , Y , Q, the use of the Maximum

Entropy Principle shows that these random variables are independent. The level of uncertainties will be controlled by the coefficients of variation δ A g0 , δ Y and δ Q of the random variables A g0 , Y and Q and will de defined as dispersion parameters of the probability model.

Random variable A g0

The parameter a g0 is modelled by a random variable A g0 with values in R + (due to physical restriction) and the mean value A g0 is known. Then the available information can be defined as (1) the support of the probability density function which is ]0, +∞[, (2) the mean value which is such that E{A g0 } = A g0 ,

(3) the second-order moment which must be finite, E{A 2 g0 } < +∞. The probability density function p A g0 of A g0 has then to verify the following constraint equations,

∫ +∞ -∞ p A g0 (a g0 ) da g0 = 1 , ∫ +∞ -∞ a g0 p A g0 (a g0 ) da g0 = A g0 , ∫ +∞ -∞ a 2 g0 p A g0 (a g0 ) da g0 = c, ( 13 
)
in which c is a positive finite constant which is unknown. The use of the Maximum Entropy Principle yields:

p A g0 (a g0 ) = 1 ]0,+∞[ e -λ 0 -λ 1 ag 0 -λ 2 (ag 0 ) 2 , ( 14 
)
where λ 0 , λ 1 and λ 2 are the solution of the three equations defined by Eq. 13.

Since the constant c is unknown, we introduce a new parametrization expressing c as a function of the coefficient of variation δ A g0 of the random variable A g0 which is such that δ

A 2 g0 = E{A 2 g0 }/A 2 g0 -1 which implies that c = A g0 2 ( 1 + δ 2 A g0 ) .

Random variable Y

The parameter y is modelled by a random variable Y with values in R + (due to physical restriction) and the mean value Y is known. Then the available information is constituted of (1) the support of the probability density function which is ]0, +∞[, (2) the mean value which is such that E{Y } = Y , (3) the condition E{ln(Y )} = c 1 with |c 1 | < +∞ which implies that zero is a repulsive value for the positive-valued random variable Y . The introduction of the last available information is related to the need to have a minimum value of Y to produce an output signal [START_REF] Baer | Investigation of phonation using excised larynges[END_REF]. The probability density function p Y of Y has then to verify the following constraint equations:

∫ +∞ -∞ p Y (y) dy = 1 , ∫ +∞ -∞ y p Y (y) dy = Y , ∫ +∞ -∞ ln(y) p Y (y) dy = c 1 . (15)
Applying the Maximum Entropy Principle yields the following probability density function for Y , From Eq. ( 16), it can be verified that Y is a second-order random variable.

p Y (y) = 1 ]0,+∞[ (y) 1 Y ( 1 δ 2 Y ) 1 δ 2 Y 1 Γ (1/δ 2 Y ) ( y Y ) 1 δ 2 Y -1 exp ( - y δ 2 Y Y ) , ( 16 
) in which δ Y = σ Y /Y is the coefficient of variation of the random variable Y such that 0 ≤ δ Y < 1/ √ 2

Random variable Q

The parameter q is modelled by a random variable Q with values in R + (due to physical restriction) and the mean value Q is known. Since M 1 = m 1 /Q has to be a second-order random variable, it is necessary that E{M 2 1 } < +∞ yielding E{1/Q 2 } < +∞. Then the available information is defined by (1) the support of the probability density function is ]0, +∞[, (2) the mean value is such that

E{Q} = Q and (3) E{1/Q 2 } = c ′ 2 with c ′ 2 < +∞.
The third constraint is taken into account by requiring that E{ln(Q)} = c 2 with |c 2 | < +∞. So, the probability density function p Q of Q, whose support is ]0, +∞[, has to verify the following constraint equations,

∫ +∞ -∞ p Q (q) dq = 1 , ∫ +∞ -∞ q p Q (q) dq = Q , ∫ +∞ -∞ ln(q) p Q (q) dq = c 2 . ( 17 
)
Applying the Maximum Entropy Principle yields again

p Q (q) = 1 ]0,+∞[ (q) 1 Q ( 1 δ 2 Q ) 1 δ 2 Q 1 Γ ( 1/δ 2 Q ) ( q Q ) 1 δ 2 Q -1 exp ( - q δ 2 Q Q ) , ( 18 
)
where the positive parameter

δ Q = σ Q /Q is the coefficient of variation of the random variable Q such that δ Q < 1/ √ 2
and where σ Q is the standard deviation of Q. From Eq. ( 18), it can be verified that Q is a second-order random variable and that E{1/Q 2 } < +∞.

Uncertain mechanical system

The stochastic system is deduced from the deterministic one substituting a g0 , y and q by the random variables A g0 , Y and Q. Consequently, according to Eq. ( 10), the random fundamental frequency F 0 is given by

F 0 = M(A g0 , Y, Q).
However, the nonlinear mapping M is not explicitly known and it is implicitly defined by Eqs. ( 1), ( 2), (8), and (10) substituting a g0 , y and q by random variables A g0 , Y and Q.

Stochastic solver for the uncertain mechanical system

Equations ( 1), ( 2), ( 8), ( 10) defining the nonlinear mapping M have to be solved using their approximations defined by Eqs. ( 3) to ( 7) and ( 8) substituting a g0 , y and q by the random variables A g0 , Y and Q. The stochastic solver used is based on the Monte Carlo method. First, independent realizations X(θ) of the random variable X = (A g0 , Y, Q) are constructed using the probability density functions defined by Eqs. ( 14), ( 16) and (18). For each realization X(θ), the realization F 0 (θ) of the random fundamental frequency F 0 is given by

F 0 (θ) = M(A g0 (θ), Y (θ), Q(θ)) , (19) 
and is calculated solving deterministic Eqs.

(3) to ( 7) and ( 8) substituting x = (a g0 , y, q) by X(θ) = (A g0 (θ), Y (θ), Q(θ)). The mean-square convergence of the random variable F 0 is analyzed with respect to the number n of independent realizations for the Monte Carlo method. The mathematical statistics are used to construct the estimation of (1) the mean value m F 0 = E{F 0 }, (2) the variance σ 2 F 0 of the random variable F 0 , (3) the confidence region of the random variable F 0 and, finally, (4) the probability density function p F 0 .

Mean-square convergence analysis

The mean-square convergence analysis with respect to independent realizations F 0 (θ 1 ), . . . , F 0 (θ n ) of the random variable F 0 is carried out studying the

function n → Conv(n) defined by Conv(n) = 1 n n ∑ j=1 F 0 (θ j ) 2 . ( 20 
)
This convergence analysis is performed for different values of δ A g0 , δ Y , and δ Q .

For n ≥ 2000, the convergence is always reached. Then, n = 2000 was used for all further estimations. For instance, Fig. 4 shows the graph of the function

n → log 10 (Conv(n)) for δ A g0 = δ Y = δ Q = 0.10.

Estimation of the mean value, variance, confidence region, and probability density function of F 0

An estimation m F 0 of the mean value m F 0 = E{F 0 } and an estimation σ F 0 2 of the variance σ 2 F 0 of the random variable F 0 are given by

m F 0 = 1 n n ∑ j=1 F 0 (θ j ) , ( 21 
)
σ 2 F 0 = 1 n -1 n ∑ j=1 (F 0 (θ j ) -m F 0 ) 2 . ( 22 
)
The confidence region associated with a probability level P c is constructed using quantiles [START_REF] Serfling | Approximation theorems of mathematical statistics[END_REF]. Let F F 0 (f 0 ) = P {F 0 ≤ f 0 } be the cumulative distribution function of the random variable F 0 . For 0 < p < 1, the p-th

quantile of F F 0 is defined as ζ(p) = Inf{f : F F 0 (f ) ≥ p}.
Then, the upper envelope f + and the lower envelope f -of the confidence interval are defined by

f + = ζ((1 + P c )/2) and f -= ζ((1 -P c )/2) . Let f 1 = F 0 (θ 1 ), . . . , f n = F 0 (θ n )
be n independent realizations of the random variable F 0 . Let f 1 < . . . < fn be the order statistics associated with f 1 , . . . , f n . Therefore, we have the following estimation: f + = f j + with j + = fix(n(1 + P c )/2) and f -= f j -with j -= fix(n(1 -P c )/2) in which fix(z) is the integer part of the real number z.

The estimation of the probability density function p F 0 of the random variable F 0 is constructed as follows. Let M be the number of intervals. Let

I j = [ν j , ν j + ∆ν[ for j = 1, . . . , M with ν 1 = f 1 and ∆ν = ( f M -f 1 )/M . An
estimation p F 0 of the probability density function of F 0 is given by

p F 0 (f 0 ) = M ∑ j=1 1 I j (f 0 ) n j n∆ν . ( 23 
)
in which n j is the number of realizations in the interval I j .

Application to the production of voiced sounds

The application to the production of voiced sounds is done with the data defined in Sec. 2.2. The mean values of the uncertain parameters used are A g0 = 5 × 10 -2 m 2 , Y = 800 Pa, and Q = 1. It should be noted that the fundamental frequency f 0 calculated with the deterministic model (a g0 = A g0 , y = Y , and q = Q) is f 0 = 168.5 Hz.

Figure 5 shows the confidence regions for the fundamental frequency F 0 with

(1) δ Y = 0.01, δ Q varying from 0.01 up to 0.60 (top figure ); (2) δ Q = 0.01, δ Y varying from 0.01 up to 0.60 (bottom figure). For both cases, a g0 was considered fixed at 0.05 cm 2 . In each figure, the middle line is the estimation m F 0 of the mean value defined by Eq. ( 21). Figure 6 displays the probability density function of F 0 for five different cases with respect to different values of δ A g0 , δ Y , δ Q defined in the figures. For a realization θ, when no voiced sound is produced, the realization F 0 (θ) of the random fundamental frequency F 0 is taken as zero.

Figure 5 shows that the dispersion of the random fundamental frequency and also the values of m F 0 increase with the level of uncertainties. However, it should be noted that this dispersion is much more important with respect to δ Q than with respect to δ Y . In addition, the probabilistic approach which is proposed allows a quantification of uncertainties propagation through the model to be performed. Such a quantification can be analyzed constructing the probability density function of F 0 shown in Fig. 6.

It should be noted that the probabilistic approach of uncertainties is particularly well adapted to characterize (or to identify) the probabilistic model of voice signals produced by a given person taking into account the dispersion. Step 1: The values of a g 0 , y and q are identified to obtain the experimental value f 0 = 120.77 Hz of the fundamental frequency with the deterministic model.

Step 2: The values of a g 0 , y and q found in Step 1 are used as the mean values A g 0 , Y and Q of the random variables A g 0 , Y and Q .

Step 3: With the mean values defined in Step 2, the values of δ A g0 , δ Y and δ Q are identified to obtain the experimental value δ F 0 = 0.0173 of the coefficient of variation of the fundamental frequency with the stochastic mechanical model.

The numerical results obtained using this methodology are the followings:

Step 1: a g0 = 5 × 10 -2 m 2 , y = 750 Pa and q = 0.66.

Step 2: The mean values are A g0 = 5 × 10 -2 m 2 , Y = 750 Pa and Q = 0.66.

Step 

Conclusions

We have proposed a parametric probabilistic approach to take into account uncertainties in a nonlinear dynamical model used to produce voiced sounds.

The three parameters controling the values of fundamental frequency of the produced voice signal are modelled by random variables whose probability distributions are constructed using the Maximum Entropy Principle. A complete stochastic computational model has been developed. An experimental validation is presented in the statistical sense.

In the context of such a problem, the experimental output signal of the nonlinear dynamical system has a significant variability which has to be analyzed in the context of the probability theory. We have shown that it is possible to identify a reasonable computational stochastic nonlinear dynamical model which allows experiments to be predicted in the probability distribution sense. This kind of problem is not trivial due to the high nonlinearities in the dynamical system for which a pertinent probability model must be constructed.

Appendix

This appendix defines functions and matrices introduced in Sec. 2.

[M ] =

                       m 1 0 0 0 0 0 m 2 0 0 0 0 0 l1 + l2 0 0 0 0 0 l2 + lr -lr 0 0 0 -lr lr                        , [C] =                        c 1 0 0 0 0 0 c 2 0 0 0 0 0 r1 + r2 0 0 0 0 0 r2 0 0 0 0 0 rr                        [K] =                        k 1 + k c -k c 0 0 0 -k c k 2 + k c 0 0 0 0 0 1 c1 + 1 c2 -1 c2 0 0 0 -1 c2 1 c2 0 0 0 0 0 0                        , h(w, ẇ, u g , ug ) =                        s 1 (w 1 ) + t 1 (w 1 ) ẇ1 -f 1 (w 1 , u g , ug s 2 (w 2 ) + t 2 (w 2 ) ẇ2 -f 2 (w 1 , w 2 , u g , ug ) -1 c1 u g 0 0                        , with ln = ρℓn 2πr 2 n , lr = 8ρ 3π 2 rn , rn = 2 rn √ ρµ ω 2 , ω = √ k 1 m 1 , a n = πr 2 n , cn = ℓnπr 2 n ρv 2 c , and 
where ℓ n is the length of the n-th tube, r n is the radius of the n-th tube, and µ is the shear viscosity coefficient.

ϕ 1 (w) = ( 0.19ρ a g0 +2ℓgw 1 + 2ℓ g w 1 ) + ρ (a g0 +2ℓgw 2 ) 2 [ 0.5 -a g0 +2ℓgw 2 a 1 ( 1 -a g0 +2ℓgw 2 a 1 )] ϕ 2 (w) = (12µℓ g d 1 (a g0 +2ℓgw 1 ) 3 + 12ℓ 2 g d 2 (a g0 +2ℓgw 2 ) 3 + r1 ) , ϕ 3 (w) = ( ρd 1 a g0 +2ℓgw 1 + ρd 2 a g0 +2ℓgw 2 + l1 ) s 1 (w 1 ) =              k 1 η k 1 w 3 1 , w 1 > -a g0 2ℓg k 1 η k 1 w 3 1 + 3k 1 { ( w 1 + a g0 2ℓg ) + η h 1 ( w 1 + a g0 2ℓg ) 3 } , w 1 ≤ -a g0 2ℓg s 2 (w 2 ) =              k 2 η k 2 w 3 2 , w 2 > -a g0 2ℓg k 2 η k 2 w 3 2 + 3k 2 { ( w 2 + a g0 2ℓg ) + η h 2 ( w 2 + a g0 2ℓg ) 3 } , w 2 ≤ -a g0 2ℓg t 1 (w 1 ) =              0 , w 1 > -a g0 2ℓg 2ξ √ m 1 k 1 , w 1 ≤ -a g0 2ℓg , t 2 (w 2 ) =              0 , w 2 > -a g0 2ℓg 2ξ √ m 2 k 2 , w 2 ≤ -a g0 2ℓg f 1 (w 1 , u g , ug ) =              ℓ g d 1 p m 1 (w 1 , u g , ug ) , w 1 > -a g0 2ℓg 0 , otherwise p m 1 (w 1 , u g , ug ) = y -1.37 ρ 2 ( ug a g0 +2ℓgw 1 ) 2 -1 2 ( 12µℓ g d 1 (a g0 +2ℓgw 1 ) 3 + ρd 1 a g0 +2ℓgw 1 ) ug f 2 (w 1 , w 2 , u g , ug ) =                        ℓ g d 2 p m 2 (w 1 , w 2 , u g , ug ) , w 1 > - A g0 2ℓg and w 2 > -a g0 2ℓg ℓ g d 2 y , w 1 > -a g0 2ℓg and w 2 ≤ -a g0 2ℓg 0 , otherwise p m 2 (w 1 , w 2 , u g , ug ) = p m 1 -= 1 2 { (12µℓ g d 1 (a g0 +2ℓgw 1 ) 3 + 12ℓ 2 g d 2 (a g0 +2ℓgw 2 ) 3 )u g + ( ρd 1 a g0 +2ℓgw 1 + ρd 2 a g0 +2ℓgw 2 ) ug } -ρ 2 u 2 g ( 1 (a g0 +2ℓgw 2 ) 2 - 1 (a g0 +2ℓgw 1 ) 2 )
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  is made up of two parts: the subsystem of the vocal folds (source) and the subsystem of the vocal tract (filter ). They are coupled by the glottal volume velocity. During phonation, the filter is excited by a sequence of airflow pulses which are periodic signals with fundamental frequencies equal to the fundamental frequency of the voice signal. Each vocal fold is represented by two (nonlinear) mass-spring-damper systems, coupled through a spring of stiffness k c . The two vocal folds constitute a symmetric system. The vocal tract is represented by a standard two-tube configuration for vowel /a/

  and where σ Y is the standard deviation of Y . In this equation α → Γ(α) is the Gamma function defined by Γ(α) = ∫ +∞ 0 t α-1 e -t dt.

  In order to validate the development presented here experimental voice signals produced by one person have been analyzed and their statistics have been compared with simulations with the mechanical model with uncertainties developed here. The measurements are made up of 675 recorded voice signals corresponding to a sustained vowel /a/ from one person. The duration of each signal is 0.01 s. For each experimental signal the corresponding experimental fundamental frequency is calculated. The mean value of the experimental fundamental frequency is m F 0 = 120.77 Hz and its coefficient of variation is δ F 0 = 0.0173. In addition, the experimental probability density function is calculated. The objective is to compare the probability density function of the experimental fundamental frequency with the probability density function constructed with the stochastic mechanical model. The methodology used is the following:

3 :

 3 With the mean values described in Step 2, the mean value of the fundamental frequency obtained, considering 700 realizations in the Monte Carlo method is m F 0 = 120.95 Hz. With the values of the dispersion parameters δ A g0 = 0.03, δ Y = 0.01 and δ Q = 0.01, the value obtained for the coefficient of variation of the fundamental frequency is δ F 0 = 0.0171 which has to be compared with the experimental value 0.0173.

Figure 7

 7 Figure 7 shows the comparison of the probability density function constructed from experimental signals (top) with the probability density function constructed from simulations (bottom). The figures show a reasonably good agreement.

Fig. 1 .

 1 Fig. 1. IF72 model scheme.

Fig. 2 .

 2 Fig. 2. (Color online) Simulation of a vowel /a/: Glottal volume velocity (u g ) (top), displacements of the two masses (x 1 and x 2 ) (middle), and output signal normalized (p r ) (bottom).

Fig. 3 .

 3 Fig. 3. (Color online) Normalized modulus of the Fourier transform of the output signal. The marker indicates the first peak that corresponds to the fundamental frequency (in this case 160 Hz).

Fig. 4 .

 4 Fig. 4. (Color online) Mean-square convergence of the Monte Carlo method with respect to the number n of realizations.

Fig. 5 .

 5 Fig. 5. (Color online) Confidence regions and mean values of the random fundamental frequency F 0 versus the dispersion coefficient: δ Y = 0.01 and δ Q varies (top figure); δ Q = 0.01 and δ Y varies (bottom figure). The value of A g0 is maintained fixed.

Fig. 6 .

 6 Fig. 6. (Color online) Probability density functions of the random fundamental frequency F 0 for five different cases of dispersion parameters.

Fig. 7 .

 7 Fig. 7.(Color online) First case: Experimental probability density function of the fundamental frequency (top) compared with the probability density function estimated with the stochastic model (bottom).
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