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This paper is devoted to the construction of a stochastic nonlinear dynamical sys-

tem for signal generation such as the production of voiced sounds. The dynamical

system is highly nonlinear and the output signal generated is very sensitive to a

few parameters of the system. In the context of the production of voiced sounds the

measurements have a significant variability. We then propose a statistical treatment

of the experiments and we developed a probability model of the sensitive parame-

ters in order that the stochastic dynamical system has the capability to predict the

experiments in the probability distribution sense. The computational nonlinear dy-

namical system is presented. The Maximum Entropy Principle is used to construct

the probability model. An experimental validation is shown.

Key words: Nonlinear dynamical systems, Signal generation, Uncertainties, Voiced

sound production

1 Introduction

This paper is devoted to the signal generation by a nonlinear dynamical sys-

tem modelling the voice production through a mechanical model. Of course,

since the voice production system is a very complex system the mechanical

model is simplified. Consequently, uncertainties are introduced in the model

and must be taken into account. In addition, the introduction of such simpli-

fied mechanical model must be validated by experiments. We then propose a

stochastic nonlinear dynamical model to produce voiced sounds. Information

such as the fundamental frequency of the stochastic output signal is extracted

from the model and we present a statistical validation by experiments.
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In this paper we use the two-mass model of the vocal folds proposed by Ishizaka

& Flanagan (1972), referred henceforth as IF72, which has been widely used

and the capability of this well-known model to reproduce the vocal folds vi-

brations has been successfully demonstrated.

The IF72 model has been used for producing and studying voiced sounds in

a deterministic way. The voiced sounds produced by the IF72 model depend

on the parameters used in the simulation. However, the parameters are un-

certain. To improve the predictions we take into account the uncertainties of

the parameters using a parametric probabilistic approach, which consists in

modelling each uncertain parameter by a random variable. In principle all the

parameters could be taken as uncertain but in this paper we take only some

of them. These uncertain parameters are the neutral glottal area, the subglot-

tal pressure and the tension parameter , because the fundamental frequency

mainly depends on these parameters.

Since the fundamental frequency is a nonlinear mapping from the random

variables modelling the three uncertain parameters, the probability density

functions of these random variables are required in order to compute the

probability density function of the fundamental frequency. The probability

density functions of these three uncertain parameters are then derived using

the Maximum Entropy Principle. Such an approach is used because available

experimental data sets are not sufficiently large to construct a good estima-

tion of the probability density function using nonparametric mathematical

statistics.

Below we are interested in constructing the probability density function of

the fundamental frequency of a voice signal (see, for instance, Titze (1994)

and, in particular, Pinto & Titze (1990) who discuss distributional charac-

teristics of perturbations and say that different types of vocal perturbations

may have different distributions). Since the dynamical system producing the

3



output stochastic signal is nonlinear, the stochastic solver used is based on

the Monte Carlo simulation method. Independent realizations of the random

variables modelling the uncertain parameters are obtained with generators

adapted to their probability distributions which are constructed in the paper.

The paper is organized as follows. In Sec. 2 the equations that describe the

deterministic problem (defined as the mean problem) are formulated; the pro-

cedure for computing the output signal and, consequently, the fundamental

frequency is presented for the mean problem. In Sec. 3 the construction of the

probabilistic model of the uncertain parameters and the construction of the

approximation of the stochastic problem are presented. Section 4 is devoted to

the calculation of the statistics of the random fundamental frequency and of

its probability density function. A comparison of the results with experimental

data is in Sec. 5. Conclusions are outlined in Sec. 6. The Appendix describes

the functions and matrices used in the model.

2 Equations for the mean model

The mechanical model depends on two sets of parameters. The first one is

constituted of fixed parameters for which uncertainties are not taken into

account. The second is constituted of three uncertain parameters (introduced

in Sec. 1) that will be modeled by random variables in Sec. 3. In this section, all

the parameters are considered deterministic and the parameters of the second

set are fixed at their mean values.

Fig. 1 is a schematic diagram of the IF72 model, called a source-filter model

(Fant, 1960; Ishizaka & Flanagan, 1972). It is made up of two parts: the

subsystem of the vocal folds (source) and the subsystem of the vocal tract

(filter). They are coupled by the glottal volume velocity. During phonation,

the filter is excited by a sequence of airflow pulses which are periodic signals
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with fundamental frequencies equal to the fundamental frequency of the voice

signal. Each vocal fold is represented by two (nonlinear) mass-spring-damper

systems, coupled through a spring of stiffness kc. The two vocal folds constitute

a symmetric system. The vocal tract is represented by a standard two-tube

configuration for vowel /a/ (Ishizaka & Flanagan, 1972; Titze, 1994).

The principal assumptions are that the motion of each vocal fold is perpen-

dicular to the direction of airflow that is assumed to be quasi-steady and is

described by Bernoulli’s energy equation. The complete model is a well known

representation of speech production acoustics. In this paper, the vocal tract is

constituted of two coupled tubes with linear acoustics behavior. The subglot-

tal pressure, y, is the input of the source subsystem whose output is the air

volume velocity, ug. The air volume velocity is the input of the filter subsystem

whose output is the radiated pressure, pr. If we consider the complete system,

the subglottal pressure y is the input and the output is the radiated pressure

pr. The main interest of this paper is to analyze the changings of the funda-

mental frequency of the produced voice signal. The three main parameters of

the IF72 model that are responsible for these changings are:

ag0: the area at rest between the vocal folds, called the neutral glottal area.

y: the subglottal pressure.

q: the tension parameter which controls the fundamental frequency of the

vocal-fold vibrations .

In order to control the fundamental frequency of the vocal folds, parameters

m1, k1, m2, k2, kc (see Fig. 1) are written as m1 = m̂1/q, k1 = q k̂1, m2 = m̂2/q,

k2 = q k̂2, kc = q k̂c, in which m̂1, , k̂1, m̂2, k̂2, k̂c are fixed values.

The mean model, proposed by Ishizaka & Flanagan (1972), depends on eight

parameters m1, k1, m2, k2, kc, ag0, y, q, and is rewritten as:

5



ϕ1(w)|ug|ug + ϕ2(w)ug + ϕ3(w)u̇g +
1

c̃1

∫ t

0
(ug(τ)− w3(τ))dτ − y = 0 (1)

[M ]ẅ + [C]ẇ + [K]w + h(w, ẇ, ug, u̇g) = 0 (2)

in which w(t) = (w1(t), w2(t), w3(t), w4(t), w5(t)), with w1(t) = x1(t), w2(t) =

x2(t), w3(t) = u1(t), w4(t) = u2(t), w5(t) = ur(t). The functions x1 and x2 are

the displacements of the masses m1 and m2, the functions u1 and u2 describe

the air volume velocity through the two tubes modelling the vocal tract, and ur

is the air volume velocity through the mouth. The function pr (output signal)

is evaluated by pr(t) = ur(t)r̃r, with r̃r = 128ρvs/9π
3r22, where ρ is the air

mass density, vs is the sound velocity, and r2 is the radius of tube 2. Constant

c̃1, functions ϕ1, ϕ2, ϕ3, (w, ẇ, ug, u̇g) 7→ h(w, ẇ, ug, u̇g), and matrices [M ],

[C], [K] are described in the Appendix.

We can note that Eq.2 describes the vibration problem in each of the two

subsystems (vocal folds and vocal tract) and Eq.1 is the equation that couples

the two subsystems.

2.1 Solver

In order to solve Eq. (1) and (2), i.e. to find ug and w for a given y, an

implicit-time numerical method is proposed.

This algorithm uses (1) an implicit forward finite difference method for Eq.

(1) in which the integral is discretized with the method of left Riemann sum

and (2) an unconditionally stable Newmark method for Eq. (2). Let ∆t be the

sampling time and wi = w(i∆t), ẇi = ẇ(i∆t), ẅi = ẅ(i∆t), ugi = ug(i∆t)

and u̇gi = u̇g(i∆t). Then, for all i ≥ 1, Eqs. (1) and (2) yield
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ϕ1(wi)|ugi|ugi+ϕ2(wi)ugi+ϕ3(wi)
1

∆t
(ugi−ugi−1

)+
1

c̃1
∆t

i−1∑
k=0

(ugk−w3k)−y = 0

(3)

and

[A]wi + h
(
wi, ẇi, ugi ,

ugi − ugi−1

∆t

)
= zi (4)

in which



[A] = [K] + ã0[M ] + ã1[C]

zi = [M ](ã0wi−1 + ã2ẇi−1 + ã3ẅi−1) + [C](ã1wi−1 + ã4ẇi−1 + ã5ẅi−1)

ẅi = ã0(wi −wi−1)− ã2ẇi−1 − ã3ẅi−1

ẇi = ẇi−1 + ã6ẅi−1 + ã7ẅi

ã0 =
1

α̃∆t2
, ã1 =

δ̃
α̃∆t

, ã2 =
1

α̃∆t
, ã3 = α̃− 1

2

ã4 =
δ̃
α̃
− 1 , ã5 =

δ̃
2

(
δ̃
α̃
− 2

)
, ã6 = ∆t(1− δ̃) , ã7 = δ̃∆t

(5)

with ug0 = 0, w0 = 0, ẇ0 = 0, δ̃ = 0.5 and α̃ = 0.25.

The method used to construct the approximation of Eqs. (3) and ( 4) consists

in finding ugi as the limit of the sequence {uα
gi
}, α ≥ 1, when α goes to infinity

such that, for all α ≥ 1 and i ≥ 1, we have

ϕ1(w
α−1
i )|uα

gi
|uα

gi
+ϕ2(w

α−1
i )uα

gi
+ϕ3(w

α−1
i )

1

∆t
(uα

gi
−ugi−1

)+
1

c̃1
∆t

i−1∑
k=0

(ugk−w3k)−y = 0 ,

(6)
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with w0
i = wi−1 and u1

gi
= ugi−1

. In Eq. (6), wα−1
i is the limit of the sequence

{wα−1,β
i }, β ≥ 0, when β goes to infinity and is such that, for all β ≥ 1, α ≥ 2

and i ≥ 1,

[A]wα−1,β
i = zi − h

(
wα−1,β−1

i , ẇα−1,β−1
i ,

uα−1
gi

− ugi−1

∆t

)
, (7)

with wα,0
i = wα−1

i and ẇα,0
i = ẇα−1

i .

For each time step i, index α of the iteration loop being fixed, first Eq. (6) is

solved to calculate uα
gi and, second, Eq. (7) is solved to calculate wα−1

i using

an iteration loop in β. Loop in α is performed until convergence is reached.

Then, the next time step is computed.

As will be seen from the results, the methodology of approximation was well

adapted to the problem.

2.2 Validation of the solver

Numerical tests of the algorithm have been performed and it was verified

that it is unconditionally stable. Below we present an example related to the

output signal for a vowel /a/ using data from Ishizaka & Flanagan (1972):

d1 = 2.5 × 10−3 m, d2 = 5 × 10−4 m, y = 8000Pa, ag0 = 5 × 10−6 m2, q = 1,

m1 = 1.25 × 10−4 kg, m2 = 2.5 × 10−5 kg, k1 = 80N/m, k2 = 8N/m, kc =

25N/m, ξ1 = 0.1 , ξ2 = 0.6 , ηk1 = ηk2 = 100, ηh1 = ηh2 = 500. The lengths

considered for the two tubes are ℓ1 = 8.9× 10−2 m and ℓ1 = 8.1× 10−2 m, and

their corresponding radius are r1 = 0.56 × 10−2 m and r2 = 1.49 × 10−2 m.

The sampling time step used to set a good accuracy is ∆t = 1/45000 s. Figure

2 displays the time response of the system for ug, x1, x2, and pr normalized

to pmax = maxt pr(t). The graphs agree with those published by Ishizaka &

Flanagan (1972).
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2.3 Calculation of the output signal fundamental frequency

As we have explained in Sec. 1, the objectives of this paper are: (1) to make a

probabilistic analysis of the fundamental frequency f0 of the output signal pr

and (2) to construct the probability density function of f0. Let tmax be such

that pr(t) = 0 , for t ≥ tmax. The Fourier transform of t 7→ pr(t), denoted by

ω 7→ p̂r(ω), is given by

p̂r(ω) =
∫
T
pr(t)e

−iωt dt , (8)

in which T = [0, tmax]. The fundamental frequency is then defined as the

frequency of the first peak in the graph of ω 7→| p̂r(ω) |. Clearly, there are

two mappings L and M such that the output signal pr at time t and the

fundamental frequency f0 can be written as

pr(t) = L(t; ag0, y, q) , (9)

f0 = M(ag0, y, q) . (10)

For instance, Fig. 3 shows the modulus of the Fourier transform |p̂r(ω)| nor-

malized with respect to p̂max = maxω | p̂r(ω) | associated with the time signal

shown in Fig. 2, in which the first peak is marked. If an output signal is not

produced, then f0 is taken as zero.

3 Stochastic modelling

The three main parameters responsible for the changing of the fundamental

frequency will be considered as uncertain and random variables will be as-
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sociated with them. It means that for each realization of the three random

variables a different output signal is produced, that is the output signal is a

stochastic process. It is assumed that the stochastic process can locally be

modelled as being stationary and ergodic stochastic process (see, for instance,

Schoengten (2001)).

The probability density functions associated with the random variables cor-

responding to the chosen uncertain parameters will be constructed using the

Maximum Entropy Principle (see Jaynes’s (1957a,1857b)) in the context of

the Information theory introduced by Shannon (1948).

This principle states: Out of all probability distributions consistent with a given

set of available information, choose the one that has maximum uncertainty

(entropy).

The measure of uncertainty (entropy) used is given by Eq.11:

S(pX) = −
∫ +∞

−∞
pX(x)ln ( pX(x) ) dx . (11)

The goal is to maximize the entropy S, under the constraints defined by the

following available information

∫ +∞

−∞
pX(x)dx = 1 and

∫ +∞

−∞
pX(x)gi(x)dx = ai , i = 1, . . . ,m (12)

where the real numbers ai and the functions gi are given.

3.1 Probabilistic model of the uncertain parameters

As explained in Sec. 1, the three parameters ag0, y, and q are modeled by

random variables Ag0, Y , and Q. Consequently, parameters m1, k1, m2, k2,
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and kc become random variables denoted by M1, K1, M2, K2, and Kc defined

by M1 = m̂1/Q, K1 = Qk̂1, M2 = m̂2/Q, K2 = Qk̂2, and Kc = Qk̂c. The

probability models derived here are particular cases of those ones described

in Soize (2001). Since no information is available concerning cross statistical

informations between random variables Ag0, Y , Q, the use of the Maximum

Entropy Principle shows that these random variables are independent. The

level of uncertainties will be controlled by the coefficients of variation δAg0 , δY

and δQ of the random variables Ag0, Y and Q and will de defined as dispersion

parameters of the probability model.

3.1.1 Random variable Ag0

The parameter ag0 is modelled by a random variable Ag0 with values in R+ (due

to physical restriction) and the mean value Ag0 is known. Then the available

information can be defined as (1) the support of the probability density func-

tion which is ]0,+∞[, (2) the mean value which is such that E{Ag0} = Ag0,

(3) the second-order moment which must be finite, E{A2
g0} < +∞. The prob-

ability density function pAg0 of Ag0 has then to verify the following constraint

equations,

∫ +∞

−∞
pAg0(ag0) dag0 = 1 ,

∫ +∞

−∞
ag0 pAg0(ag0) dag0 = Ag0 ,

∫ +∞

−∞
a2g0 pAg0(ag0) dag0 = c,

(13)

in which c is a positive finite constant which is unknown. The use of the

Maximum Entropy Principle yields:

pAg0(ag0) = 1]0,+∞[e
−λ0−λ1ag0−λ2(ag0 )

2

, (14)

where λ0, λ1 and λ2 are the solution of the three equations defined by Eq. 13.
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Since the constant c is unknown, we introduce a new parametrization ex-

pressing c as a function of the coefficient of variation δAg0 of the random

variable Ag0 which is such that δA2
g0

= E{A2
g0}/A2

g0 − 1 which implies that

c = Ag0
2
(
1 + δ2Ag0

)
.

3.1.2 Random variable Y

The parameter y is modelled by a random variable Y with values in R+ (due

to physical restriction) and the mean value Y is known. Then the available

information is constituted of (1) the support of the probability density function

which is ]0,+∞[, (2) the mean value which is such that E{Y } = Y , (3) the

condition E{ln(Y )} = c1 with |c1| < +∞ which implies that zero is a repulsive

value for the positive-valued random variable Y . The introduction of the last

available information is related to the need to have a minimum value of Y to

produce an output signal (Baer, 1975). The probability density function pY of

Y has then to verify the following constraint equations:

∫ +∞

−∞
pY (y) dy = 1 ,

∫ +∞

−∞
y pY (y) dy = Y ,

∫ +∞

−∞
ln(y) pY (y) dy = c1 .

(15)

Applying the Maximum Entropy Principle yields the following probability

density function for Y ,

pY (y) = 1]0,+∞[(y)
1

Y

(
1

δ2Y

) 1

δ2
Y 1

Γ (1/δ2Y )

(
y

Y

) 1

δ2
Y

−1

exp

(
− y

δ2Y Y

)
, (16)

in which δY = σY /Y is the coefficient of variation of the random variable Y

such that 0 ≤ δY < 1/
√
2 and where σY is the standard deviation of Y . In this

equation α 7→ Γ(α) is the Gamma function defined by Γ(α) =
∫ +∞

0
tα−1e−tdt.
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From Eq. (16), it can be verified that Y is a second-order random variable.

3.1.3 Random variable Q

The parameter q is modelled by a random variable Q with values in R+ (due to

physical restriction) and the mean value Q is known. Since M1 = m̂1/Q has to

be a second-order random variable, it is necessary that E{M2
1} < +∞ yielding

E{1/Q2} < +∞. Then the available information is defined by (1) the support

of the probability density function is ]0,+∞[, (2) the mean value is such that

E{Q} = Q and (3) E{1/Q2} = c′2 with c′2 < +∞. The third constraint is

taken into account by requiring that E{ln(Q)} = c2 with |c2| < +∞. So, the

probability density function pQ of Q, whose support is ]0,+∞[, has to verify

the following constraint equations,

∫ +∞

−∞
pQ(q) dq = 1 ,

∫ +∞

−∞
q pQ(q) dq = Q ,

∫ +∞

−∞
ln(q) pQ(q) dq = c2 .

(17)

Applying the Maximum Entropy Principle yields again

pQ(q) = 1]0,+∞[(q)
1

Q

(
1

δ2Q

) 1

δ2
Q 1

Γ
(
1/δ2Q

) ( q

Q

) 1

δ2
Q

−1

exp

(
− q

δ2QQ

)
, (18)

where the positive parameter δQ = σQ/Q is the coefficient of variation of

the random variable Q such that δQ < 1/
√
2 and where σQ is the standard

deviation of Q. From Eq. (18), it can be verified that Q is a second-order

random variable and that E{1/Q2} < +∞.

13



3.2 Uncertain mechanical system

The stochastic system is deduced from the deterministic one substituting ag0,

y and q by the random variables Ag0, Y and Q. Consequently, according to Eq.

(10), the random fundamental frequency F0 is given by F0 = M(Ag0, Y,Q).

However, the nonlinear mapping M is not explicitly known and it is implicitly

defined by Eqs. (1), (2), (8), and (10) substituting ag0, y and q by random

variables Ag0, Y and Q.

3.3 Stochastic solver for the uncertain mechanical system

Equations (1), (2), (8), (10) defining the nonlinear mapping M have to be

solved using their approximations defined by Eqs. (3) to (7) and (8) substi-

tuting ag0, y and q by the random variables Ag0, Y and Q. The stochastic

solver used is based on the Monte Carlo method. First, independent realiza-

tions X(θ) of the random variable X = (Ag0, Y,Q) are constructed using the

probability density functions defined by Eqs. (14), (16) and (18). For each

realization X(θ), the realization F0(θ) of the random fundamental frequency

F0 is given by

F0(θ) = M(Ag0(θ), Y (θ), Q(θ)) , (19)

and is calculated solving deterministic Eqs. (3) to (7) and (8) substituting x =

(ag0, y, q) by X(θ) = (Ag0(θ), Y (θ), Q(θ)). The mean-square convergence of the

random variable F0 is analyzed with respect to the number n of independent

realizations for the Monte Carlo method. The mathematical statistics are used

to construct the estimation of (1) the mean value mF0 = E{F0}, (2) the

variance σ2
F0

of the random variable F0, (3) the confidence region of the random

variable F0 and, finally, (4) the probability density function pF0 .
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3.3.1 Mean-square convergence analysis

The mean-square convergence analysis with respect to independent realiza-

tions F0(θ1), . . . , F0(θn) of the random variable F0 is carried out studying the

function n 7→ Conv(n) defined by

Conv(n) =
1

n

n∑
j=1

F0(θj)
2. (20)

This convergence analysis is performed for different values of δAg0 , δY , and δQ.

For n ≥ 2000, the convergence is always reached. Then, n = 2000 was used for

all further estimations. For instance, Fig. 4 shows the graph of the function

n → log10(Conv(n)) for δAg0 = δY = δQ = 0.10.

3.3.2 Estimation of the mean value, variance, confidence region, and prob-

ability density function of F0

An estimation m̂F0 of the mean value mF0 = E{F0} and an estimation σ̂F0

2

of the variance σ2
F0

of the random variable F0 are given by

m̂F0 =
1

n

n∑
j=1

F0(θj) , (21)

σ̂2
F0

=
1

n− 1

n∑
j=1

(F0(θj)− m̂F0)
2 . (22)

The confidence region associated with a probability level Pc is constructed

using quantiles (Serfling, 1980). Let FF0(f0) = P{F0 ≤ f0} be the cumulative

distribution function of the random variable F0. For 0 < p < 1, the p−th

quantile of FF0 is defined as ζ(p) = Inf{f : FF0(f) ≥ p}. Then, the upper

envelope f+ and the lower envelope f− of the confidence interval are defined by

f+ = ζ((1 + Pc)/2) and f− = ζ((1− Pc)/2) . Let f1 = F0(θ1), . . . , fn = F0(θn)
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be n independent realizations of the random variable F0. Let f̃1 < . . . < f̃n be

the order statistics associated with f1, . . . , fn. Therefore, we have the following

estimation: f+ = f̃j+ with j+ = fix(n(1 + Pc)/2) and f− = f̃j− with j− =

fix(n(1− Pc)/2) in which fix(z) is the integer part of the real number z.

The estimation of the probability density function pF0 of the random variable

F0 is constructed as follows. Let M be the number of intervals. Let Ij =

[νj, νj + ∆ν[ for j = 1, . . . ,M with ν1 = f̃1 and ∆ν = (f̃M − f̃1)/M . An

estimation p̂F0 of the probability density function of F0 is given by

p̂F0(f0) =
M∑
j=1

1Ij(f0)
nj

n∆ν
. (23)

in which nj is the number of realizations in the interval Ij.

4 Application to the production of voiced sounds

The application to the production of voiced sounds is done with the data

defined in Sec. 2.2. The mean values of the uncertain parameters used are

Ag0 = 5 × 10−2 m2, Y = 800 Pa, and Q = 1. It should be noted that the

fundamental frequency f0 calculated with the deterministic model (ag0 = Ag0,

y = Y , and q = Q) is f0 = 168.5 Hz.

Figure 5 shows the confidence regions for the fundamental frequency F0 with

(1) δY = 0.01, δQ varying from 0.01 up to 0.60 (top figure); (2) δQ = 0.01,

δY varying from 0.01 up to 0.60 (bottom figure). For both cases, ag0 was

considered fixed at 0.05 cm2. In each figure, the middle line is the estimation

m̂F0 of the mean value defined by Eq. (21). Figure 6 displays the probability

density function of F0 for five different cases with respect to different values of

δAg0 , δY , δQ defined in the figures. For a realization θ, when no voiced sound

is produced, the realization F0(θ) of the random fundamental frequency F0 is

16



taken as zero.

Figure 5 shows that the dispersion of the random fundamental frequency and

also the values of m̂F0 increase with the level of uncertainties. However, it

should be noted that this dispersion is much more important with respect

to δQ than with respect to δY . In addition, the probabilistic approach which

is proposed allows a quantification of uncertainties propagation through the

model to be performed. Such a quantification can be analyzed constructing

the probability density function of F0 shown in Fig.6.

It should be noted that the probabilistic approach of uncertainties is partic-

ularly well adapted to characterize (or to identify) the probabilistic model of

voice signals produced by a given person taking into account the dispersion.

5 Experimental validation

In order to validate the development presented here experimental voice sig-

nals produced by one person have been analyzed and their statistics have been

compared with simulations with the mechanical model with uncertainties de-

veloped here. The measurements are made up of 675 recorded voice signals

corresponding to a sustained vowel /a/ from one person. The duration of each

signal is 0.01 s. For each experimental signal the corresponding experimen-

tal fundamental frequency is calculated. The mean value of the experimental

fundamental frequency is mF0 = 120.77 Hz and its coefficient of variation is

δF0 = 0.0173. In addition, the experimental probability density function is

calculated. The objective is to compare the probability density function of

the experimental fundamental frequency with the probability density function

constructed with the stochastic mechanical model. The methodology used is

the following:

17



Step 1: The values of ag0 , y and q are identified to obtain the experimental

value f0 = 120.77 Hz of the fundamental frequency with the deterministic

model.

Step 2: The values of ag0 , y and q found in Step 1 are used as the mean

values Ag0 , Y and Q of the random variables Ag0 , Y and Q .

Step 3: With the mean values defined in Step 2, the values of δAg0 , δY

and δQ are identified to obtain the experimental value δF0 = 0.0173 of the

coefficient of variation of the fundamental frequency with the stochastic

mechanical model.

The numerical results obtained using this methodology are the followings:

Step 1: ag0 = 5× 10−2 m2, y = 750Pa and q = 0.66.

Step 2: The mean values are Ag0 = 5× 10−2 m2, Y = 750Pa and Q = 0.66.

Step 3: With the mean values described in Step 2, the mean value of the

fundamental frequency obtained, considering 700 realizations in the Monte

Carlo method is mF0 = 120.95Hz. With the values of the dispersion pa-

rameters δAg0 = 0.03, δY = 0.01 and δQ = 0.01, the value obtained for the

coefficient of variation of the fundamental frequency is δF0 = 0.0171 which

has to be compared with the experimental value 0.0173.

Figure 7 shows the comparison of the probability density function constructed

from experimental signals (top) with the probability density function con-

structed from simulations (bottom). The figures show a reasonably good agree-

ment.

6 Conclusions

We have proposed a parametric probabilistic approach to take into account

uncertainties in a nonlinear dynamical model used to produce voiced sounds.

18



The three parameters controling the values of fundamental frequency of the

produced voice signal are modelled by random variables whose probability

distributions are constructed using the Maximum Entropy Principle. A com-

plete stochastic computational model has been developed. An experimental

validation is presented in the statistical sense.

In the context of such a problem, the experimental output signal of the nonlin-

ear dynamical system has a significant variability which has to be analyzed in

the context of the probability theory. We have shown that it is possible to iden-

tify a reasonable computational stochastic nonlinear dynamical model which

allows experiments to be predicted in the probability distribution sense. This

kind of problem is not trivial due to the high nonlinearities in the dynamical

system for which a pertinent probability model must be constructed.

Appendix

This appendix defines functions and matrices introduced in Sec. 2.

[M ] =



m1 0 0 0 0

0 m2 0 0 0

0 0 ℓ̃1 + ℓ̃2 0 0

0 0 0 ℓ̃2 + ℓ̃r −ℓ̃r

0 0 0 −ℓ̃r ℓ̃r



, [C] =



c1 0 0 0 0

0 c2 0 0 0

0 0 r̃1 + r̃2 0 0

0 0 0 r̃2 0

0 0 0 0 r̃r


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[K] =



k1 + kc −kc 0 0 0

−kc k2 + kc 0 0 0

0 0 1
c̃1
+ 1

c̃2
− 1

c̃2
0

0 0 − 1
c̃2

1
c̃2

0

0 0 0 0 0



,

h(w, ẇ, ug, u̇g) =



s1(w1) + t1(w1)ẇ1 − f1(w1, ug, u̇g)

s2(w2) + t2(w2)ẇ2 − f2(w1, w2, ug, u̇g)

− 1
c̃1
ug

0

0



,

with

ℓ̃n = ρℓn
2πr2n

, ℓ̃r = 8ρ
3π2rn

, r̃n = 2
rn

√
ρµω

2
, ω =

√
k1
m1

, an = πr2n, c̃n = ℓnπr2n
ρv2c

, and

where ℓn is the length of the n−th tube, rn is the radius of the n−th tube,

and µ is the shear viscosity coefficient.

ϕ1(w) = ( 0.19ρ
ag0+2ℓgw1

+ 2ℓgw1) +
ρ

(ag0+2ℓgw2)2

[
0.5− ag0+2ℓgw2

a1

(
1− ag0+2ℓgw2

a1

)]
ϕ2(w) = (12µℓg

d1
(ag0+2ℓgw1)3

+ 12ℓ2g
d2

(ag0+2ℓgw2)3
+ r̃1) , ϕ3(w) = ( ρd1

ag0+2ℓgw1
+

ρd2
ag0+2ℓgw2

+ ℓ̃1)

s1(w1) =


k1ηk1w

3
1 , w1 > −ag0

2ℓg

k1ηk1w
3
1 + 3k1

{(
w1 +

ag0
2ℓg

)
+ ηh1

(
w1 +

ag0
2ℓg

)3}
, w1 ≤ −ag0

2ℓg
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s2(w2) =


k2ηk2w

3
2 , w2 > −ag0

2ℓg

k2ηk2w
3
2 + 3k2

{(
w2 +

ag0
2ℓg

)
+ ηh2

(
w2 +

ag0
2ℓg

)3}
, w2 ≤ −ag0

2ℓg

t1(w1) =


0 , w1 > −ag0

2ℓg

2ξ
√
m1k1 , w1 ≤ −ag0

2ℓg

, t2(w2) =


0 , w2 > −ag0

2ℓg

2ξ
√
m2k2 , w2 ≤ −ag0

2ℓg

f1(w1, ug, u̇g) =


ℓgd1pm1(w1, ug, u̇g) , w1 > −ag0

2ℓg

0 , otherwise

pm1(w1, ug, u̇g) = y − 1.37ρ
2

(
ug

ag0+2ℓgw1

)2
− 1

2

(
12µℓg

d1
(ag0+2ℓgw1)3

+ ρd1
ag0+2ℓgw1

)
u̇g

f2(w1, w2, ug, u̇g) =



ℓgd2pm2(w1, w2, ug, u̇g) , w1 > −Ag0

2ℓg
and w2 > −ag0

2ℓg

ℓgd2y , w1 > −ag0
2ℓg

and w2 ≤ −ag0
2ℓg

0 , otherwise

pm2(w1, w2, ug, u̇g) = pm1

− = 1
2

{
(12µℓg

d1
(ag0+2ℓgw1)3

+ 12ℓ2g
d2

(ag0+2ℓgw2)3
)ug + ( ρd1

ag0+2ℓgw1
+ ρd2

ag0+2ℓgw2
)u̇g

}
−ρ

2
u2
g

(
1

(ag0+2ℓgw2)2
− 1

(ag0+2ℓgw1)2

)
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Captions Accompanying Each Figure

Fig. 1. IF72 model scheme.

Fig. 2. (Color online) Simulation of a vowel /a/: Glottal volume velocity (ug)

(top), displacements of the two masses (x1 and x2) (middle), and output signal

normalized (pr) (bottom).

Fig. 3. (Color online) Normalized modulus of the Fourier transform of the

output signal. The marker indicates the first peak that corresponds to the

fundamental frequency (in this case 160 Hz).

Fig. 4. (Color online) Mean-square convergence of the Monte Carlo method

with respect to the number n of realizations.

Fig. 5. (Color online) Confidence regions and mean values of the random fun-

damental frequency F0 versus the dispersion coefficient: δY = 0.01 and δQ

varies (top figure); δQ = 0.01 and δY varies (bottom figure). The value of Ag0

is maintained fixed.

Fig. 6. (Color online) Probability density functions of the random fundamen-

tal frequency F0 for five different cases of dispersion parameters.

Fig. 7.(Color online) First case: Experimental probability density function of

the fundamental frequency (top) compared with the probability density func-

tion estimated with the stochastic model (bottom).
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