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Abstract The paper is devoted to the identification of stochastic loads applied to a non-linear dy-
namical system for which experimental dynamical responses are available. The identification of the
stochastic load is performed using a simplified computational non-linear dynamical model containing
both model uncertainties and data uncertainties. Uncertainties are taken into account in the context
of the probability theory. The stochastic load which has to be identified is modelled by a stationary
non Gaussian stochastic process for which the matrix-valued spectral density function is uncertain
and is then modelled by a matrix-valued random function. The parameters to be identified are the
mean value of the random matrix-valued spectral density function and its dispersion parameter. The
identification problem is formulated as two optimisation problems using the computational stochastic
model and experimental responses. A validation of the theory proposed is presented in the context of
tubes bundles in Pressurized Water Reactors.

Keywords non-linear dynamics - random loads - inverse problem

1 Introduction

The present research has been developed in the context of the dynamical analysis of the tubes
bundles in Pressurized Water Reactors. The tubes are excited by a turbulent flow which induces a
non-linear dynamical response of the dynamical system made up of a structure coupled with the
fluid. The objective is to identify a mathematical model of the stochastic loads applied to the tubes
bundles and induced by the turbulent flow using both experimental responses of the real non-linear
dynamical system and a simplified computational non-linear dynamical model. In general, for such a
complex mechanical system, only a few experiments are available and in many cases, the measurements
are available only for one configuration of the dynamical system. Consequently, one will assume that
measurements are available for one configuration. In addition, the real system under consideration is
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made up of several hundreds of tubes and several grids. The dynamical behaviour of any tube in a
free-free configuration is linear. The non-linearities are induced by the shocks between the tubes and
the grids. In the frequency band of analysis for which the stochastic loads have to be identified, there
are between ten thousand and twenty thousand elastic modes for the linearized dynamical system.
In this condition a simplified computational non-linear dynamical model has to be introduced for
that the identification of the stochastic loads can effectively be done. For the identification of the
stochastic loads, the use of a simplified computational model induces model uncertainties. A non-
parametric probabilistic approach is then used to take into account both data uncertainties and model
uncertainties

Such a problem has already been studied in modelling the real non-linear dynamical system by a
simplified linear dynamical system ([7],[8],[9]). In this paper we take into account nonlinearities and
also uncertainties both in the computational model and in the stochastic process representing the
stochastic loads.

In the context above, a methodology is presented for identifying such stochastic loads. The real
dynamical system (real tubes bundles) is replaced by a reference non-linear dynamical system made up
of five tubes and three grids. This reference system is representative of the real system and a computa-
tional model, defined as the reference computational model, is developed. This reference computational
model allows the responses of the reference system to be simulated. Therefore, the experimental re-
sponses of the tubes related to one configuration of the real system are replaced by the numerical
responses of the reference system calculated with the reference computational model. The simplified
computational model is derived from the reference computational model .

In a first step, the probability model of uncertainties is identified in the simplified computational
model using the reference computational model and the maximum likelihood method. We then deduce
a stochastic simplified computational model which allows a robust identification of stochastic loads to
be carried out with respect to uncertainties in the dynamical system.

The second step is devoted to the stochastic inverse problem consisting in identifying the stochastic
loads. The stochastic loads used in the simplified computational model are represented by a vector-
valued centred stationary Gaussian stochastic process. Such a stochastic process is then completely
defined by a matrix-valued spectral density function. The use of a rough spatial discretization of the
random field in the simplified computational model introduces uncertainties in the stochastic process
which models the stochastic loads. These uncertainties are then taken into account in introducing a
probabilistic model for the matrix-valued spectral density function which becomes a random quantity
which has to be constructed and identified. The identification of the stochastic loads then corresponds
(1) to the identification of the mean value of the random matrix-valued spectral density function in
the frequency band of analysis and (2) to the identification of the dispersion parameter introduced in
the probability model of uncertainties and allowing the level of uncertainties to be controlled. We then
have to perform the identification of an uncertain model of the stochastic loads using an uncertain
simplified computational model of a non-linear dynamical system and using responses of the reference
computational model. This problem is formulated as a stochastic optimization problem. It should
be noted that this inverse stochastic problem is formulated and solved for a non-linear stochastic
dynamical system including a probability model of uncertainties for the stochastic loads and for the
system.

Sections 2 and 3 respectivly deals with the construction of the reference computational model and
the simplified computational model. In the section 3, the probabilistic model of the stochastic loads is
introduced. The section 4 is devoted to the identification of the stochastic load introduced in section 3
using numerical response simulations of the reference model and the stochastic model of the simplified
computational model. The last section presents the application of this reseach using a representative
real system.

2 Reference computational model

In this section, we introduce a reference computational model for which the responses will be considered
as the experimental responses and will be used to identify the stochastic simplified computational model
that will be introduced in the next session.



2.1 Transient dynamical response of the reference computational model

Let 2 be the domain of a three dimensional damped structure having a non-linear behaviour (the non-
linearities are not distributed but are localized). The structure is fixed on the part I of the boundary
I of 2. Let u™/(t) be the vector of the n degrees of freedom at time ¢. Let [M"¢/], [D"¢/] and [K"¢/]
be respectively the mass, damping and stiffness matrices of the linear part of the finite element model.

Since there are no rigid body displacements, these three matrices are positive definite. Let f'ref (t) be the

vector of the external loads applied to the structure and let ?NL(uTef (t),0"%/ (1)) be the vector of the
non-linear forces induced by the localized non-linearities. Let [@] be (n x m) matrix whose columns are
the m structural modes 1, ..., ¢, of the linear structure without the non-linearities corresponding to
the m eigenfrequencies 0 < w1 < ... < wyy,. The non-linear dynamical equation is projected on the the
basis represented by [@]. Therefore, the displacement vector at time ¢ is written as u™f (t) = [®]q"*/ (t)
in which q"¢/(t) is the vector of the m generalized coordinates. Such a projection introduces the
positive definite matrices [M"¢/] = [@]T[M"¢/][®], [D"¢/] = [@|T[D"¢f][@] and [K"¢/] = [@]T [K"][P)].
The function ¢ — q"¢/(t) is the solution of the following non-linear dynamical equation,

(M) el (8) + [DTT) g e () + [K7F)q7eF (t) + FNHured (1), 0"l (1)) = Fref () , t € [0,T], (1)
with the initial conditions

g 0) =g 0)=0 |, (2)

where FNHwre! (1), 67 (1) = [@]TF (' (1), 0 () and F7 (1) = [@)7F 7 (1),

2.2 Decomposition in one linear subsystem and one non-linear subsystem

The domain {2 is decomposed in two subdomains, the subdomain .Q;‘Lf which corresponds to a non-
linear subsystem made up of one part of the structure containing the localized non-linearities and the
subdomain 22 . which corresponds to a linear subsystem made up of the second part of the structure
and which has a linear behaviour. Each uncoupled subsystem is considered as fixed and therefore does
not have rigid body displacement. These two subsytems are coupled on the coupling interface I .
The finite element model of the linear subsytem 22 ¢ Is analyzed in the frequency band of analysis

B = [~Wmaz, Wmaz)- Let [AB7¢f (w)] be the dynamic stiffness matrix of this linear subsystem with free
coupling interface such that

[AB,ref(w)] _ —(,{)Q[MB’Tef] —I—’iw[DB’Tef] + [KB’Tef] (3)

where [MP:7¢f], [DB7¢f] and [KB-7¢f] are the mass, damping and stiffness matrices which are positive
definite. Introducing the vector uf "¢/ (w) of the n, internal DOF and the vector uZ:"*f(w) of the n.
coupling DOF on the interface, the equation of the reference computational model for the subsystem

2p., 1s written as

AL (w) AL ()] [ulred (w) £ w)
arer () aBres (w)] [ } N l?B”f (W) + £2ref (w)] ’ )

P c

ref

coupl

~B,re ~B,re .
in which f, Tgf(w) and f, Tgf(w) are due to the external loads applied to the subsystem and where
ff;’;;lf (w) is the internal force applied to the coupling interface I'c.

A reduction of the linear subsystem is performed using the Craig Bampton method [5],introducing
the change of coordinates,

] ] =[] ”

where [#] is a (n, x N,.) matrix whose columns are N,. structural modes of the reference computational
model with a fixed coupling interface, [SP] = [KE:re/]=1[KD:ref] is a (n), X n.) matrix related to the



static boudary functions and [I] is a (n. X n.) unnity matrix. y?7¢f(w) is the vector of the N,
generalized coordinates. Then, the reduced stiffness matrix is written as

[AB’Tef(w)} _ —w2[MB’Tef] +’iw[DB’Tef] + [KB’Tef} , (6)

where [MP e/} = [H]T[MP /] [H], [DPr] = [H|"[DP"/][H] and [KP7e/] = [H]T[KP"e/][H] are
positive definite matrices. The block decomposition of the reduced dynamical stiffness matrix related
to the generalized coordinates y”(w) and the coupling DOF uZ(w) is written as

B,re _ AB,ref (w) ABéTEf(w)

[A f(w)] - A%Zref(w) A%:,Tef(w) . (7)

In order to perform the identification of stochastic simplified computational model, for the reference
computational model, below we introduce an observation related to [ZB7¢f(w)] = [[AB7ef(w)] —
[AB (w)][AB:rel (w)]7HAR:ef (w)]] which corresponds to the condensed dynamical stiffness matrix of
the linear subsystem on the coupling interface of the reference computational model. For all w fixed in
the frequency band B, the matrix [Z57¢f(w)] is invertible. The observation is then the finite positive
real number J"¢f defined by

Jrel = /B 11257 @) o (8)

3 Stochastic non-linear simplified computational model, including system uncertainties,
and identification

In this part, the mean model of the non-linear simplified computational model system is introduced.
Then, the probabilistic nonparametric approach will be used to take into account data uncertainties
and model uncertainties in the linear subsystem of the simplified computational model. Then, the
dispersion parameters controlling the dispersion on the mass, damping and stiffness matrices will
be identified using the maximum likelihood method. Finally we proceed to the coupling of the two
subsystems of the simplified model (the stochastic linear subsystem and the deterministic nonlinear
subsystem) in order to compute its stochastic response. It should be noted that the probabilistic model
of uncertainties is only introduced in the linear subsystem. It is assumed that the mean model of the
non-linear subsystem is representative and that both data uncertainties and model uncertainties are
negligible. Therefore, if such a hypothesis was not verified, a non-parametric probabilistic model of
uncertainties could always be implemented without any difficulty in this non-linear subsystem [12].

3.1 Stochastic linear subsystem of the simplified computational model

The simplified computational model is constructed from the reference computational model. The dif-
ference between the two models is in the linear subsytem. Indeed, the linear subsytem of the simplified
model is derived from the linear part of the reference model. The non-linear subsystems of the two
models are the same (see Fig. 1). And consequently, the degrees of freedom on the coupling interface
are the same.

Fig. 1 Reference model (left) and simplified model (right).



3.1.1 Mean reduced linear subsystem of the simplified computational model

Using the same reduction method as the one used for the linear subsystem of the reference model, we
obtain the following mean reduced dynamical stiffness matrix for the linear subsystem of the simplified
model

A7 ()] = ~?*[M"] +iw[D"] + K], 9)

where [M?], [D?] and [KP] are respectively the mean reduced positive definite mass, damping and
stiffness matrices of the linear subsystem of the mean reduced computational simplified model. y (w)
is the vector of the N mean generalized coordinates and u”(w) is the vector of the n. mean cou-
pling DOF's. Then, the block decomposition of the reduced stiffness matrix related to the generealized
coordinates y?(w) and the coupling DOFs u?(w) is written as

B B
are) = 42 4| (10)

Agy(w) Age(w)
3.1.2 System uncertainties modeling using the non-parametric probabilistic approach

The non-parametric probabilistic approach is used to take into account both model uncertainties and
data uncertainties in the dynamical system. This approach has recently been introduced (see [1], [2])
and consists in replacing the matrices of reduced mean model by random matrices for which the prob-
ability distributions are constructed by using the maximum entropy principle with constraints defined
by the available information. Such an approach has been validated for different cases. In particular,
non-parametric probabilistic approach has simultaneously been used ([3])with substructuring technics.
Let n = N + n.. Therefore, the mean reduced dynamical stiffness matrix [A®(w)] is replaced by the
n x n complex random matrix [A” (w)] written as

(A" (w)] = —w’M”] +iwD”] + [K"] . (11)
in which the matrices [M*], [DP] and [K®] of the reduced mean system are replaced by the random

matrices [M?], [DP] and [K”] defined on a probability space (6,7 ,P) and belonging to an ensemble
of matrices (See [2]) such that

IMP], [D”],[K”] € M} (R) | (12)
E{[MP]} = [M"], E{D")} = [D"] E{K"]} = [K"] | (13)
E{|MP] Y3} < +o0c, E{|[DP] Y3} < o0, E{|[K®] ![p} < +oc (14)

in which E{.} is the mathematical expectation and where |.||r is the Frobenius norm defined as
1A] = {r{[AFTAIY? = {20, S, 1AL} with [A]* = [4]". The probability distribution

of each random matrix [M?], [D”] and [K”] depend respectively on the dispersion parameters 6%,
65 and 68 such that

B B2\
6p = EAIIP ]B[B Il ,for Pin {M,D,K} . (15)
P71

The dispersion parameters allow the level of uncertainites to be controlled. In addition, it can be found
in (see [1], [2]) an algebraic representation of each random matrix which allows independent realisations
to be explicitly constructed useful to solve the random equations by the Monte Carlo method. For each
random matrix, this random generator only depends on the mean value, on the dimension of the matrix
and on the dispersion parameter §. Such an approach is used in this paper.



3.1.8 Identification of the dispersion parameters

As explained in 3.1.2, the probability distributions of the random matrices (and then their random
generators) depend on the vector § = (65, 65, 68) of the dispersion parameters which is identified using
the reference computational model. The observation of the stochastic simplified computational model is
defined similarly to the observation defined by Eq. (8) for the reference computational model. We then
introduce the condensed dynamical stiffness matrix [Z” (w)] = [AZ (w)] — [Ai(w)][Afy (w)]*l[AyBc(w)]
of the linear subsystem on the coupling interface. Taking into account the properties of the probabilistic
model , it can be shown that for all w fixed in the frequency band B, the random matrix [Z”(w)] is
invertible almost surely and that the random variable J(J) defined by

J(6) = /B 127 (@) oo (16)

exists and has a finite mean value. It should be noted that the random variable J depends on &
because the probability distributions of the random matrices [M?], [D¥] and [K”] depend on 8. Let
z +— py(z,d) be the probabilty distribution of the random variable J(d) with respect to dz. For any
z fixed in [0,4+o00[ and for any value of the vector § in the admissible space C,q of the dispersion
parameters, the value pj(z,d) of the probability density function is estimated by using the above
proabilistic model and the Monte Carlo simulation. Note that the corresponding deterministic value of
J(68) for the reference computational model is denoted by J"¢/ given by Eq. (8). The method used to
identify vector § is the maximum likelihood method (see for instance [4]) for the random observation
J(8). We then have to solve the following optimisation problem

o = arg max (ps(J758)) (17)

ad

in which 8°P? is the identified value of vector 8.

3.2 Random dynamical transient response of the stochastic non-linear simplified computational model

For the stochastic system, the displacement vector of the stochastic linear subsystem (2p is denoted by
(Uf(t), UZ)(t) in which Uf(t) is with values in R and U? (¢) is with values in R™. The displacement
vector of the stochastic non-linear subsystem {24 is denoted by (Uﬁ(t), U4 (t)) in which Uﬁ(t) is with

values in R™ and U”(t) is with values in R". Taking into account Eq. (2.2), these random vectors
are written as

U, (1) a1 [YA®) U, (t) Y7 (t)
b =|H =[HP 18
i ] = 1[G ] Lot =11 [Sels] 1
in which YA(t) is the RN -vector random generalized coordinates of the stochastic non-linear sub-
system (24 with fixed interface and where YZ(¢) is the RN -vector random generalized coordinates of
the stochastic linear subsystem (2p with fixed interface . The coupling of the stochastic linear sub-
system {2 with the non-linear subsystem (24 is carried out in writting the continuity of the random
displacement U¢(t) = U%(t) = UB(t) on the coupling interface I" and in writting the equilibrium of
the coupling interface in terms of forces applied to the two subsystems (external forces f.(¢) applied
to the coupling interface, forces [SA]T?;‘(t) and [SB ]T?E (t) applied to the coupling interface and due

to the external forces ?;l(t) and %f(t)).Let ng = N’ 4+ N + n.. Then, the R"?-valued random variable
Q(t) = (YA(t), YP(t), U%(t)) which is composed of the random generalized coordinates Y (¢) of the

random non-linear subsystem, of the random generalized coordinates Y? (t) of the linear subsystem
and of the random coupling DOF U,(t), is solution of the random non-linear dynamical system

M]Q(t) + D]Q() + KIQ(1) + FYHQ(®), Q1) = F(t) , te[0,T], (19)



with the initial conditions

Q(0) =Q(0) =0, (20)
with
M;; 0 MA, D;‘y 0 D4
= | o M% ME | Bj=| o0 Dpf DE | (1)
M4 Mg MA + M2 D24 D?y DA + D
K;j; 0 KA
K- | 0 k2 kb |, (22)
K4 K% KA+ KB
@ E (YA ), Y 1) 17, 0
FYHQ(1). Q1) = 0 F(t) = BT (1) (23)

4 Probabilistic model of the stochastic load with model uncertainties

The transient load f(t) = (’f';1 (t),ff (t),£.(t)) related to the displacement u(t) = (u(t), ul (1), uc(t)) is,
for instance, due to the turbulent flow which then induces a stochastic load. Consequently, such a load
is modelled by a stochastic process {F(t),t € R}. Since all the degrees of freedom of the computational
model are not excited by this stochastic load, we then introduce the usual projection operator Proj
in order to extract the vector F(t) = Proj(F(t)) of the non zero random components of the random
vector f‘(t) Since the probabilistic model developed below will only be a simple representation of
the real stochastic load applied to the structure, model uncertainties must be introduced in order to
improve the efficiency of the representation which will be used for the identification of this stochastic
load. We then take into account these uncertainties in introducing an additional probabilistic model

of uncertainties for this stochastic process {F(¢),¢ € R} which is then rewritten as {F""°(¢),¢ € R}.

4.1 Construction of the stochastic load F(t)

The stochastic load is modelled by a R™-valued second order stationary Gaussian stochastic pro-
cess {F(t),t € R} defined on a probability space (©',7’,P’) different from the probability space
(6,7,P), indexed by R, centred, mean square continous on R, physically realizable (causal) and
whose matrix-valued autocorrelation function 7 +— [Rp(7)] = E{F(t + 7)F(¢t)T} is integrable on
R. This stochastic process is then completely defined by its matrix-valued spectral density function
[Sp(w)] = (2m)~! [ e ™7 [Rp(7)] dr which is a continuous and integrable function on R and which is
in values in the set of all the positive (m x m) hermitian matrices. In addition, we will assume that
for all w in R, the matrix [Sg(w)] is with values in the set M} (C) of all the positive definite (m x m)
hermitian matrices. Since the stochastic process is assumed to be physically realizable, the matrix
valued spectral density function must satisfy the following usual inequality

log(det[Sg(w)])

In addition, for all w in B C R, the matrix valued spectral density function being positive definite, the
Hermitian matrix [Sg(w)] is invertible and its Cholesky decomposition yields

[Sp(@)] = [Le@)] [LpW)] (25)
in which [Lg(w)] is an upper triangular matrix in M, (C). The numerical simulation of independent
realizations {F(¢,0'),t € R} for ' € @' ( trajectories) can easily be generated by using adapted and
wellknown algorithms (see for instance [13]).



4.2 Construction of the stochastic load F""“(¢) including a probabilistic model of uncertainties

As explained above, a probabilistic model of uncertainties must be implemented on the stochastic
process {F(t), ¢t € R} which is rewritten as {F""°(¢), ¢ € R}. The objective of this section is to construct
the stochastic process {F""(t),t € R} derived from the stochastic process {F(¢),t € R}.

4.2.1 Defining stochastic load F*™°(t)

Since the stochastic process {F(t),¢ € R} is defined by only one parameter (one data) which is its
matrix-valued spectral density function [Sg] = {[Sg(w)],w € R}, the stochastic process {F(t),t € R}
is rewritten as {F(¢;[Sg]),t € R}. Therefore, model uncertainties is introduced using the prob-
abilistic parametric approach of data uncertainties consisting in modelling the deterministic func-
tion [Sg] = {[Sp(w)],w € R} by a random function with values in M} (C) and denoted by [Sg| =
{[Sr(w)],w € R}, defined on a probability space (6”,7”,P”). Any realization [Sg|(6”) for §” € ©” of
the random function [Sg] is such that [Sg](6”) = {[S¥(w,0”)],w € R}. Consequently, the stochas-
tic process {F""°(t),t € R} indexed by R with values in R™, defined on the probability space
(0, T, P) x (0", T",P"), is such that, for all ¢ € © and §” € O,

Fue(t,0',0") = F(t,0'; [Sr](0")) . (26)
4.2.2 Construction of the random function [Sg]

The objective of this section is to construct the random function [Sg] in using the information theory
that is to is using the maximum entropy principle (Shannon 48). In a first step, we then have to define
the available information and then we have to apply the maximum entropy principle. The available
information concerning the random function [Sg(w)],w € R is the following. For all w in R, [Sg(w)] is
a random matrix with values in M} (C) and by construction, it is written that

E{[Sr(W)]} = [Sp(w)] , weR . (27)

Consequently, for all w in R, the random matrix [Sg(w)] is invertible almost surely, which means that
for P”-almost 6” in ©”, the matrix [Sp(w,0”)]~! exists. By construction we will impose that the
random matrix [Sg(w)]~! is a second order random variable which means that

E{[[[Sr ()]} < 400 . (28)
Taking into account Eq. (25), for all w in B, the random matrix [Sg(w)] is normalized as follows,
[Se(w)] = [Lp(W)]"[Gm][Lr(@)] (29)

in which the random matrix [G,] is defined on the probability space (©”,7" P") and belongs to
the normalized positive-definite ensemble denoted by SG™ (see [2]). This random matrix which is
independent of w is such that

Gl €MA(R) , E{(Gul} =In] , E{lGnm] 'Ilp} <+o0 . (30)

The dispersion of [Sg] is independant of w and is controlled by dispersion parameter §r which is such
that

B 1 ) 1/2
or = { S B{l(Gn] - LI}e} (31)
and which has to be chosen such that
0<dp </ (m+1)(m+5-1 . (32)

From Egs. (25), (29) and (30), it can be deduced that Eq. (27) holds. In addition, from Eq. (29),
we deduce that for all w in B, ||[Sg(@)]"!|| < c(w)|[Gm] || and consequently, E{|[Sr(w)] "I’} <
c(w)2E{H[Gm]71||2} < c(w)QE{H[Gm]*lHiﬂ}. Since E{H[Gm]flﬂiﬂ} < 400, we then deduce that
E{[[Sp(@)] 3} < +oo.



4.2.3 Properties of stochastic process F*"(t)

For P”-almost all §” in ©”, the mean function of the centred stochastic process {F(¢, [Sr](0")),t € R)}
is such that

E{F(t,[S¥](0"))} = . F(t,0',[S¥](0"))dP'(6') =0 (33)

and its autocorrelation function is defined by

’

[Re (7, [S¥](6"))] =/ F(t+ 7,0, [SF](0") F(t, 0, [Sp](0"))" dP'(¢') . (34)

From Egs. (25) and (29) and since the function [Sg| is continuous and integrable on R, we deduce that
the matrix valued spectal density function [Sg|(6”) = {w — [SF(w, 8”)]} which is such that

[Re(7, [S¥](0"))] = / ¢ [Sp(w, 0")] dw (35)

R

is a continuous and integrable function on R. Using the inverse Fourier Transform for integrable
functions, we deduce that

Sr(0.0")) = 5= [ 7 (Rr(n (S0 dr (36)

s

(i) Mean function. The mean function of the stochastic process {F""(¢),t € R} is such that, for
all ¢ fixed in R,

B (1)) = / | / CF(1,0',[Se)(0") dP'(6)dP" (") . (37)

Taking into account Eq. (33), it can then be deduced that E{F""°(¢)} = 0 and consequently, the
stochastic process is centred.

(it) Autocorrelation function. The autocorrelation function of the stochastic process {F""“(¢),t € R}
is such that, for all ¢t and 7 fixed in R,

RFunc (t +T, t) — E{Fun(:(t + T)Func(t)T}
= Jor Jor E(t + 7.0, [Se](6") F (¢, 6", [S¥](6"))" dP'(¢')dP" (6")

Taking into account Eq. (34), we deduce that Rpunc(t + 7,t) = [, [Rp(7, [Sp](0”))]dP" (") . Conse-
quently, for all 7 in R, one have

(38)

Rpune () = E{[Rr(7, [SF])} . (39)

(i11) Matriz-valued spectral density function. The matrix-valued spectral density function [Sgunc] of the
stochastic process {F""“(¢),t € R} is such that, for all 7 in R,

Rewe(r) = [ ¢ [Spe @] do (40)
Equation (39) can be rewritten as
Rewe(r) = [ [Ru(r, [Sel(@")]dP"(@") (4
and using Eq. (35) yields
Rpune (T / ) / wTSp(w,0")] dw dP"(0") = / T E{[Sr(w)]}dw . (42)

Equation (27), Eq. (42) yields Rpunc(7) = [; €7 [Sp(w)]}dw which proves that
[SF“"C(W)] = E{[SF(M)}} = [Sp(W)] (43)
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The last equation proves that for all w € R, the matrix [Sgune (w)] belongs to M (C).
(iv) Second-order stochastic process. Since [Sg] is an integrable function on R and from Egs. (40)
and (43), it can be deduced that

E{|[F"™(t)|1*} = tT/R[ﬁF(w)} dw < Fo0 . (44)

which proves that {F""°(¢),t € R)} is a second-order stochastic process.

(v) Realizability, probability distribution and stationarity. From Eqgs. (24) and (43), it can be de-
duced that the stochastic process {F""°(¢),¢ € R)} is physically realizable. For P”-almost all §” in
0", the stochastic process {F(t, [Sr](8"”)),t € R)} is Gaussian but it can easily be verified that the
stochastic process {F""°(t),t € R)} is not a Gaussian stochastic process. Since the mean function
of the second-order stochastic process {F""°(¢),t € R)} is independent of ¢ (centred process) and
since its autocorrelation function depends only on 7, it can be concluded that the stochastic process
{F"°(t),t € R)} is mean-square stationary. However, since the stochastic process is not Gaussian, it
cannot directly be deduced from the mean-square stationarity that the stochastic process is stationary.
Nevertheless, it can be proved that the stochastic process {F""°(¢),¢ € R)} is in fact stationary.

4.2.4 Generator of independent trajectories of the stochatic process {F'"°(t),t € R)}

The stochastic problem defined in Section 3.2 will be solved by the Monte Carlo simulation method.
Consequently, we need to construct a generator of independent trajectories of the stochatic process
{F"°(t),t € R)}, that is to say to construct for all (§’,0") € @' x ©", the trajectory {F""°(¢,0',0"),t €
R)} which can be rewritten, taking into account Eq. (26), as F'°(¢,60',0") = F(¢t,0'; [Sr|(¢")). This
last equation shows that firstly we have to construct independent realizations w +— [Sg(w, 8”)] of the
random function [Sg] and secondly, for a given matrix-valued spectral density function w +— [S(w)] =
[Sr(w,0”)], we have to construct independent trajectories {F(t,¢’;[S]),t € R} of the second-order
centred stationary Gaussian stochastic process {F(t),t € R} for which the matrix-valued spectral
density function is {[S(w)],w € R}.

(i) Construction of independent realizations of the random function [Sr|] The independent realiza-
tions of the random function [Sg] are constructed using Eq. (29) and the algebraic representation of
the random matrix [Gy,] (see [2]) belonging to the ensemble SGT and which is independent of w. For
readability of the paper, we briefly recall this algebraic representation. The random matrix [G,] is
written as [G,,] = [Ly]? L], in which [L,,] is an upper triangular random matrix with values in
M., (R) such that:

(1) random variables {[Ly,];;,j < j'} are independent;

(2) for j < j’, real-valued random variables [L,,];;; can be written as [L,,];;7 = 0,,U;;s in which
0m = 0p(m +1)"Y/2 and where Uj; is a real-valued Gaussian random variable with zero mean and
variance equal to 1;

(3)for j = j', positive-valued random variables [L,,];; can be written as [Ly,]j; = 0m+/2V; in which
Om =0p (m—i—l)’l/ 2 and where V; is a positive-valued gamma random variable whose probabilty density
function py, (v) with respect to dv is written as

(v) (v) : W e (45)
pv,(v) = lg+ (V) ——F=———=7v *°F e’ 5
’ F(gt+ 5

in which §7 is the dispersion parameter defined by Eq. (31).

(it) Construction of independent realizations of the trajectories of the stochastic process { F(t; [S]),t €
R}. The numerical simulation of independent realizations {F(¢,60'; [S]),t € R} for § € ©' can easily be
generated by using the same algorithms that the one referenced in Section 4.1 (see [13] and [14]).

5 Identification of the stochastic load

This section is devoted to the identification of the stochastic load {F""“(¢),t € R)} defined and studied
in Section 4 using the random responses of the stochastic simplified model of the structure excited by
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this stochastic loads and defined is Section 3 . This identification consists in identifying the mean value
[Sg(w)] of the matrix-valued spectral density function and the parameter dr that controls the level of
uncertainties. This stochastic inverse problem is formulated as a stochastic optimization problem.

5.1 Stochastic equation for simulation of responses

We have to identify the stochastic load F"° in presence of uncertainties in the linear subsystem
‘QsBimpl and in presence of the model uncertainties in the stochastic load. Such an identification is

performed using the stochastic equation deduced from Egs. (18) and (19) in which the deterministic
load f(t) is replaced by the stochastic load Func(t) (including uncertainties). In fact, the vector F (t)
which is written as () = Proj(F  (t)) is made up of zero and of non-zero elements which are the
components of the vector F*"°(¢). Consequently, this relation can easily be inversed and yields Func(t) =
Lift(F"*(t)). Let ny = nj, +n, +n. be the total number of DOF for the complete simplified stochastic
model. We then have to construct the R"-valued stationary solution U,(t) = (U2(t), UZ(t), US(t))
(corresponding to U(t) = (UI‘;1 (1), Uf (t),U°(t))) verifying the following stochastic equation

[U.)] =[H][Q.®)] . (46)

in which subindex s is relative to the stationary solution, where the matrix [H] is the assemblage of
[HA] and [H®], and where the stationary stochastic process {Q,(t),t € R} satisfies, for all ¢ € R, the
stochastic equation

~unc

(M]Q, (1) +[D]Q, (1) + [K]Q,(t) + £¥H(Q, (), Q,(1)) = [H]TF (1) , (47)

in which Q,(t) and Q,(t) are the mean-square first and second derivative of Q, (t). For the identification
of the parameters [Sg] and dp of the stationary stochastic process {F  (t),t € R}, we introduce the
R#-valued random variable Z4(t) = (Z,,1(t), ..., Zs,u(t)) which represents the observations of the simpli-
fied stochastic model made up of components of the vector-valued random response U (t). Thus there
exists a projection Proj’ from R™v into R¥ such that Z(t) = Proj’(Us(¢)). Then, for all (6,6"”) € ©x60",
the stationary stochastic process {Zs(t,6,0"”),t € R} is such that Z(,0,0"”) = Proj ([H]Q,(t,6,0")),
where the stationary stochastic process {Q,(¢,6,60"),t € R} is such that, for all ¢ fixed in R, one has

[M(0)]Q,(t,6,6") +[D(0)]Q.(t,6.6") + [K(0)]Q,(t.6,6")

LEVHQ,(1.6.67), Q, (1,0.0")) = [H]TLifk (B (5 [S] (07)) . (48)

where {F(¢; [Sr](0")),t € R} is a second-order centred stationary Gaussian stochastic process defined
in Section 4.2.1.

The next section is devoted to the identification of [Sg] and dr. In order to perform this identifi-
cation, we need to introduce two observations relative to the stochastic equation and which are useful
to construct the cost functions.

(i) For all (6,0") € © x ©”, the matrix-valued spectral density function {[Sz,(w,0,60")],w € R}
of the stationary stochastic process {Z(t,6,0"”),t € R} is estimated using the periodogram method
(ref). One then define the first observation as the random variable J; such that

J,(0,0") = /B 1Sz, (. 0.0")]|2dw . (49)

Generating vy independent realizations of the random matrices [M], [D] and [K] and vy~ independent
realizations of the random function {[Sg(w)],w € R}, the probabilty distribution x +— p, (z;dF) of the
random variable Jg with respect to dz is estimated by the Monte Carlo simulation method.

(i) Let Z,(t) = (Z. (t),..., Z. ,(t)) be the R#-valued random variable which is such that for all
6 € O, the stationary stochastic process {Z.(t,0),t € R} is such that Z(t,0) = Proj ([H]QL(t,0)),
where the stationary stochastic process {Q.(t,0),t € R} is such that, for all ¢ fixed in R, one has

M(0)]Q,(1,0) +D©O)]Q;(1,0) + [K(O)]QA(1,0) (50)
+VHQ(t,0), Q, (¢, 0)) = [H]Lift(F (1 [Sg])) .
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in which {F(¢; [Sg]),t € R} is the process defined in Section 4.1. Therefore, for all § € ©, the matrix-
valued spectral density function {[Sz’(w,f)],w € R} can be estimated. Generating vy independent

realizations of the random matrices [M], [D] and [K], the second observation is the matrix-valued
spectral density function [Sz/] which is estimated by the Monte Carlo simulation method. For all
w € R, one has

Sz (@) = — [Sz; (w,6:)] - (51)

14
0 5=1

5.2 Identification of the stochastic loads

In practice, the parameter [Sg] which has to be identified is in fact a function w — [Sg(w)]. This
identification will be performed in introducing a parametric representation of this function which is
written as

[Spw)]=[S(w,r)] , weR , redC |, (52)

in which C,, C R”r is the admissible set of the parameter r with values in R”” where v, is the number of
unknown scalar parameters which have to be identified and where (w,r) — [S(w,r)] is a given function
from R x R”" into M} (C). Therefore, the identification of the stochastic load {F"°(t),t € R)} consists
in identifying the R*"*'-valued vector r’ = (r,dr). Let {Z"P(t) = (Z{7F (1), ..., ZE5P (1)), t € R} be
the R¥-valued stationary stochastic process which is measured for the manufactured real system and
corresponding to the observation stochastic process {Z(t),t € R}. The matrix-valued spectral density
function {[Szewr(w)],w € R} of this stochastic process is estimated using the periodogram method
(ref). Therefore, we introduce the variable JP which is such that

T — /B [Sgeer (@)] s (53)

Then, the stochastic loads is estimated in 2 steps:

(i) Estimation of the parameter r.

The parameter r is estimated minimizing the distance D(r) = [, /[Sz: (w,r)] — [Szeer (w)][|Fdw
between the matrix-valued spectral density function calculated with the stochastic simplified model
and the experimental matrix-valued spectral density function. We then have to solve the following
optimization problem

ropt = argmin D(r) (54)

Cr
in which r,p; is the identified value of the vector r.
(ii) Estimation of the dispersion parameter dp.
The dispersion parameter dp is estimated using the maximum likelihood method relative to the
random variable J, for which only one experimental value JJ*P is available, i.e,
57" = arg max (py, (JSP;0r)) (55)
SreCs,

in which (5? * is the identified value of the variable § r and Cs, is the admissible set for the dispersion
parameter 0p.

6 Application

In this section a numerical simulation of a simple example which is representative of industrial systems
is presented in order to validate the methodology developed in this paper.
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6.1 Data for the reference computational model

The reference computational model is made up of one linear subsystem and one non-linear subsystem.
The linear subsystem is made up of four parallel Euler beams fixed at their ends. The non-linear
subsytem is made up of a beam fixed at its ends, parallel to the other beams and with one transverse
symmetric elastic stop (two identical tranverse stops). The five beams are linked by three transversal
grids, each grid being modelled by four transverval springs (see Fig. 2). Therefore, the coupling interface
between the two subsytems is composed of three points located in the neutral fiber of the beam of the
non-linear subsystem. Each beam has a constant circular section with radius 0.5 m, thickness 0.2 m,
length 16 m, mass density 250 kg/m?, Young’s modulus 450 N/mm? and dampding rate 0.02. The
Young’s modulus of the beam of the non-linear subsystem is 750 N/mm?.The elastic stops are localized
at 6 m from the left fixed end, the gap of each stop is 1.5.107¢ m and the choc stiffness is 108 N/m.
The stiffness of each spring of the tranversal grid is 4.107 N/m. Each beam is modelled by eight beam
Euler finite elements of equal lengths and nine nodes. The DOF of the 2 nodes at the ends of the
beam are locked. The twelve springs in the three tranversal grids are modelled by 12 spring elements.
We are only interested in the transversal displacements in direction y for the plane zy of the beam
of the non-linear subsystem(see Fig. 2). Consequently, each beam has 14 DOF of y translation and
z rotation. The beam of the nonlinear subsystem is exited by 7 transversal forces applied following

) N1) /

() S S S ] at

T

ey

Fig. 2 (a) Reference model:3D view.(b) Transversal view .(c) Tranversale view in the plane of one grid:the 6
diagonal lines represent the 12 springs.

the y direction. The vector of these 7 forces are denoted by f°'. Then {f**!(¢),¢ € R} is modeled by
a second-order centred stationary Gaussian stochastic process for which its matrix-valued spectral
density function [Sgret(w)] is such that (1) for all ¢ in {1,...,7}, [Sgret(w)]i; is a constant equal to
1.3N2/Hz on the frequency band of analysis B = [-100,100] Hz and (2) for all i and j in {1,...,7},
|[Sgret (w)]ij 12 = 7ij (W)[Sgret (W)]is[Sgret (w)];; Where 7;5(w) = exp(—|z; — x;|/A) in which |x; — z;| is the
distance between the two excited points and A\ = 4m is a reference lenght related to the correlation
lengh. In the frequency band of analysis B, there are 21 eigenfrequencies for the linear system made
up of the two coupled subsystems without the stops. The first three eigenfrequencies are 5.78 Hz , 15.9
Hz and 31.1 Hz and correspond to the eigenmodes for which all the transversal displacements of the
five beams are in phase.

6.2 Data for the simplified computational model

This part is devoted to the construction of a simplified computational model that will be used to identify
the stochastic loads. The simplified computational model consists in replacing the linear substem
composed of 4 beams by a linear subsystem composed of an equivalent Euler beam (see Fig. 3). The
non-linear subsystem is the same for the 2 models. The section of the equivalent beam is arbitrarily
defined and is chosen as a constant circular section with radius 0.5 m, thickness 0.2 m, length 16 m.
Its Young’s modulus and its the mass density are identified so that the first eigenfrequency of the
simplified computational model is the same as the first eigenfrequency of the reference computational
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Fig. 3 Simplified model.

model. It should be noted that this choice of simplified model as an equivalent beam does not allow
several eigenfrequencies to be correctly fitted. Only the three first eigenfrequencies can correctly be
fitted and such a choice induces model uncertainties which are taken into account as explained in
Section 3.1.2. Note that this choice of an Euler beam as the equivalent model is representative of the
approach chosen in this field of mechanical engineering. It is well understood that a more sophisticated
equivalent model could be constructed. The best model would then be a dynamical condensation of
the linear subsystem on the coupling interface with the non-linear subsystem. Clearly the objective of
this paper is not to proceed with such a dynamical condensation but to test the validity of the use of a
rough approximation such as an equivalent Euler beam. After identification, the equivalent beam has
a mass density 4 * 250 = 1000 kg/m? and a Young’s modulus 4 * 450 = 1800 N/mm?. In the frequency
band of analysis B, there are 10 eigenfrequencies for the linear system made up of the two coupled
subsystems without the stops. The first three eigenfrequencies of the mean simplified computational
model are 5.74 Hz , 15.3 Hz and 30.8 Hz which are to compare to 5.78 Hz , 15.9 Hz and 31.1 Hz of the
reference computational model.

6.3 Comparison between the dynamical response of the reference computational model and the
dynamical response of the mean simplified computational model.

For the two models, the stationary stochastic response is calculated in the time interval [0, 220] s using
an explicit Euler integration scheme for which the time step is... . Let P, be the impact point of the
non-linear subsystem. The power spectral density function of the stochastic transversal displacement
and the stochastic rotation responses in point P,,s (see Fig. 4) is estimated using the periodogram
method. It can be seen that the prevision given by the mean simplified computational model is good
in the frequency band [0, 30] Hz. Nevertheless, there are significant differences in the frequency band
[30,100] Hz induced by model uncertainties. This is the reason why the model uncertainties are taken
into account in order to extend the domain of validity of the mean simplified computational model in
the frequency band [30, 100] Hz.

6.4 System uncertainties modelling and dispersion parameter identification.

The non-parametric probabilistic model of model uncertainites introduced in Section 3.1.2 is used for
stiffness part of the linear subsystem of the mean simplified computational model. We then have to
identify the dispersion parameter § = (§%). The estimation of each probability density function in
Eq. (17) is carried out with 200 realizations for the Monte Carlo simulation in order to solve stochastic
simplified computational model. Fig. 5 shows the likelihood function calculated using Eq. (17) with
Cad = [0,+/22/34]. The maximum is reached for §°** = 0.45. The confidence region associated with a
probability level P, = 0.95 of the reponse of the stochastic simplified computational model can then
be estimated. The calculations are carried out with 100 simulations. The comparison between the
reference solution with the response constructed with the stochastic simplified computational model
is given in Fig. 6. This figure displays the confidence region of the power spectral density function of
the stochastic transversal displacement and the stochastic rotation in point P,ps.
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Fig. 4 Power spectral density function (PSD) for (a) the transversal displacement and (b) the rotation re-
sponses. Comparison between the reference computational model in point Pobs (thin line) and the response
given by the mean simplified computational model (thick line)..
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Fig. 5 Graph of function § — ps(J"¢;d).

6.5 Probabilistic model of the stochastic load F(t).

We recall that the real model of the stochastic load used to construct the experimental responses
in Section 6.4 is now assumed unknown and has to be identified (objective of this paper) using the
stochastic simplified computational model. Consequently, we then have to define a model as simple
as possible for the stochastic load F(¢) introduced in Section 4.1. We have then chosen to model F()
as {F(t) = (T'(t),M(t)),t € R} in which T'(¢) is a tranversal force and M (¢) a moment applied to
the middle of the nonlinear beam (see Fig. 7). This force and this moment are second order centred
stationary Gaussian independent stochastic processes. So, they are both completely defined by their
power spectral density functions [S(w)] and [Sp;(w)]. The matrix-valued spectral density function of
the stochastic process {F(t),t € R} is then defined by

el = |55 g S| wer (56)

It is assumed that the function w +— [Sg(w)] is constant in the frequency band of analysis B and
is such that Eq. (24) is verified. As explained in Section 4.2, the stochastic process {F""°(¢),t € R}
including the probabilistic model of uncertainties is contructed from the stochastic process {F(t),t €
R}. The ”experimental” stochastic process {Z:P(t),t € R} defined in Section 5.2 is composed of = 7
stochastic transversal displacements.
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Fig. 6 Power spectral density function (PSD) for (a) the stochastic transversal displacement and (b) the
stochastic rotation in point Pobs: upper and lower envelopes (mid line) and mean response (thin line); reference
model (thick line).

Fig. 7 Definition of the stochastic load.

6.6 Identification of the stochastic load F""(¢).

Taking into account Eq. (52), the function w — [Sg(w)] which is a constant diagonal hermitian matrix
over the frequency band of analysis B can then be rewritten as

el =I5l =[50 ] o wes | rec . 57)

in which the admissible space C, = {r = (r1,72);71 > 0,72 > 0}. This vector r is identified using the
trial method, consisting in calculating the cost function D(r) for 100 values of the vector r. Then, the
optimal value r,,; defined by Eq. (54) is such that ro,; = (18 N2/Hz,20 (N/m)?/H z). Figure 8 shows
the graph of the function r — D(r) introduced in Eq. (54). The dispersion paramater ¢ is identified
using Eq. (55) with Cs, =|0, 1/3/7[. The maximum of the likelihood function dr — py, (J&P;dF)
is reached for 07" b= 0.04. Figure 9 compares the reference response with the response constructed
with the identified stochastic simplified computational model on which the identified stochastic load

is applied.

7 Conclusions

The problem under consideration is the identification of a stochastic load applied to a structure through
the knowledge of dynamical responses of the structure which has a non-linear behaviour. This identi-
fication is performed using a computational non-linear dynamical model of the structure. Since there
are both data uncertainties and model uncertainties in the computational model used to perform the
identification, the first step of the development consists in introducing a probabilistic model of un-
certainties in the structure. In addition, the identification of the stochastic load is carried out using
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Fig. 9 Power spectral density function (PSD) for (a) the stochastic transversal displacement and (b) the
stochastic rotation in point Pobs: confidence region calculated with the simplified model and the stochastic
load: upper and lower envelopes (mid line) and mean response (thin line); reference model (thick line).

a parametric representation of the stochastic process in order that the optimization problem rela-
tive to this inverse problem be feasible. The introduction of such a parametric representation induces
again model uncertainties on the stochastic loads. The second step of the development then consists
in introducing a probabilistic model of uncertainties concerning the stochastic loads. We have then
presented a complete methodology to identify the stochastic load taking into account uncertainites in
the computational model and in the stochastic loads representation. With respect to the state of the
art, this work proposes a new way to perform the experimental identification of a stochastic load with
a robust method. The robustness is introduced in taking into account (1) uncertainties in the simplified
computational non-linear dynamical model used to carry out this identification and (2) uncertainties
in the mathematical representation of the stochastic process which models the loads to be identified.
The application presented is representative of a real industrial system and validates the methodology
proposed.
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