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Computational stochastic heat transfer with model uncertainties in a

plasterboard submitted to fire load and experimental validation

S. Sakji1, C. Soize2∗ & J.-V. Heck3

February 21, 2008

Abstract: The paper deals with probabilistic modeling of heat transfer throughout plasterboard
plates when exposed to an equivalent ISO thermal load. The proposed model takes into account
data and model uncertainties. This research addresses a general need to perform robust model-
ing of plasterboard-lined partition submitted to fire load. The first step of this work concerns the
development of an experimental thermo physical identification data base for plasterboard. These ex-
perimental tests are carried out by the use of a bench test specially designed within the framework of
this research. A computational heat transfer model is constructed using data from the literature and
also the identified plasterboard thermophysical properties. The developed mean model constitutes
the basis of the computational stochastic heat transfer model that has been constructed employing
the nonparametric probabilistic approach. Numerical results are compared to the experimental ones.

Keywords: computational heat transfer modeling, uncertainties, probabilistic modeling, experi-
ments.

1 Introduction

Large Light Partitions (LLP) of 10 meters height and more, are non-loadbearing structures made
up of plasterboards screwed on both sides of a metal frame of various constructive configurations.
Besides structural requirements such as the resistance to impact loading and collision loads [1], a
light partition must satisfy various fire resistance criteria when subjected to full scale tests under
the ISO 834 thermal loading curve [2]. This last requirement can not be met when the structure
dimensions exceed those of the testing furnaces (up to 3 m). One way to circumvent the dimensional
difficulty is to evaluate partition behavior by means of experiments and computational models.
The different steps and/or difficulties of such an approach consists of, (1) the choice of the com-
putational heat transfer model to adopt, (2) the experimental identification of the thermophysical
properties, (3) the validation of the computational model to predict the thermal response of the sys-
tem and (4) the updating of the parameters if necessary. It is obvious that this procedure introduces
errors and approximations in the different levels of the approach and then in the computational heat
transfer (CHT) model. For the first level, the more simplifications one uses in the modeling (in or-
der to make simulations reasonable), the more modeling errors are introduced. For the second level
which concerns the experimental identification of the thermophysical properties, it is clear that the
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errors increase with the number of constants used in the modeling and their level of complexity in the
experimental characterization procedure. In order to take into account uncertainties induced by the
errors introduced in the different levels, a probabilistic modeling of uncertainties can be introduced.

In this context, data uncertainties can be taken into account using a parametric probabilistic
approach by modeling uncertain parameters with random variables or stochastic fields (see e.g.

Shinozuka [3], Székely [4], [5], [6], [7], [8]). The modeling with stochastic fields of the boundary value
problem parameters and their representation on the polynomial chaos have introduced the notion of
the stochastic finite element method (see e.g. [9],[10], [11], [12], [13]). Recently, the nonparametric
probabilistic approach which takes into account data and model uncertainties [14] has been developed
and validated for many applications in structural dynamics of complex systems and vibroacoustics
(see e.g. [15], [16], [17]). It is important to notice that, by construction, the parametric approach
can not take into account model uncertainties.
A plasterboard (cardboard-plaster-cardboard (CPC) multilayer) gives a higher resistance to an LLP
thanks to the important quantity of capillary and chemically bound water contained in the plaster
(21% of its weight) [18]. An ideal modeling of an LLP subjected to ISO thermal load should be a
thermo-hygro-chemico-mechanical modeling. The complexity of such an approach and the important
number of parameters which has to be identified led us to choose a thermo-mechanical approach
[19]. In this approach, the hydrous phase is implicitly taken into account in the model as well as
in the experimental protocol. Indeed, the mechanical plasterboards properties are determined by
submitting them to the same thermal time evolution law that a light partition would receive during
a conventional fire resistance test. For this matter, a new thermal loading bench (TLB) is designed
allowing a time evolution thermal load equivalent to the ISO834 function to be reproduced on CPC
specimens and then one performs, ”quickly”, mechanical tests [20]. During ISO834 equivalent thermal
loading, each CPC specimen is parallel to the heat source panel. This paper deals only with the heat
transfer aspect and the development of a probabilistic CHT model of prediction for plasterboard
submitted to fire load.
The outline of the paper is as follows. In Section 2, an overview of the literature about the thermo
physical properties of plasterboard is presented. The principle and the use of the TLB is also briefly
described. In Section 3, a mean computational heat transfer model for plasterboards submitted to
fire load is constructed. Its numerical predictions are also compared to the reference experimental
results presented in Section 2. In Section 4, a computational probabilistic heat transfer model is
constructed on the basis of the mean CHT model. Its numerical results are presented in Section 5.

2 Experimental identification of the thermo-physical properties of
the CPC

Thermophysical properties of plasterboards depend on the composition of the plaster and on the
plasterboard manufacturing process. These two aspects induce a variability in the microstructure and
in the quantity of free and bound water which causes a variability of the plasterboard fire resistance
capability. The review of the literature concerning plasterboards’ thermophysical properties affirms
the above comments. Indeed, some authors such as Mehaffey [21], Axenenko [18], Thomas [22], were
interested in modeling the heat transfer throughout an LLP and focus on identifying thermophysical
properties of plasterboard. These experimental results show a relatively important difference from
one author to another which make difficult the choice of parameters to be used in the modeling.
Moreover, Mehaffey [21] highlights the impact of heat evolution rate on the apparent specific heat of
plasterboards small specimens (10-30 mg) by identifying this property using a differential scanning
calorimeter for two scanning rates 2 ◦C.min−1 and 20 ◦C.min−1 (Fig. 1).
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Figure 1: Impact of heat evolution rate on the apparent specific heat of plasterboards [21].

However, the actual thermal load in conventional fire resistance tests corresponds, at the exposed
surface of an LLP, to a heat rate higher than 20 ◦C.min−1 till the first eight minutes of conventional
tests. For this reason and taking into account previous remarks it turns out that it is worth trying
to get indications about the plasterboard thermophysical properties according to a time evolution
thermal load equivalent to that of the ISO 834 curve. In order to perform such tests we have used
the experimental bench conceived and developed, within the framework of this research, to identify
the thermo-mechanical characteristics of CPC plates. A brief description of this device is reported
below.

2.1 Thermal load bench (TLB)

The TLB (See Fig. 2) reproduces an incidental heat flux equivalent to the one that a partition would
receive during a mandatory test using a gas furnace. It is composed of a radiant panel (the heat
source) and a mobile cart provided with a specimen holder. The heat flux received by the specimen,
hung on the specimen holder, is modified by moving the cart with respect to the radiant panel.
Hence, one can reproduce the ISO-thermal-load-equivalent heat flux, not by modifying the flow of
combustible gas (as during tests on conventional furnaces (see e.g. [23])), but by modifying the
distance between the specimen and the radiant panel. The specimen thermal loading takes place
only when the radiant panel reaches its steady state. Therefore the emissive power can be considered
as constant throughout the test duration. The combination of a heat source used in its steady state
and a specimen movement controlled with a millimeter precision insures an excellent reproducibility
of the thermal load. Furthermore, the use of a software [24] developed in order to model thermal
exchanges in fire resistance furnaces, allows us to perform the calculation of the total heat flux
received by the specimen surface at different time steps of conventional fire resistance test. First, one
characterizes the incident heat flux received using a fluxmeter at different distances from the radiant
panel and then, the cart displacement program is found out in order to reproduce by means of the
TLB the incident heat flux calculated by the software. Figure 3 compares the proposed TLB heat
flux with the calculated incident heat flux on the surface of a plasterboard specimen submitted to
the ISO thermal load in a conventional furnace. It is to notice that during such tests only one side
of the specimen is exposed to the heat source panel. Consequently, the direction of the heat flux and
the hydrous transport are mainly transversal to the panel. Under these conditions, the assumption
of a unidirectional heat transfer analysis throughout the thickness of the plasterboard is appropriate.
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Figure 2: Thermal load bench composed of: 1©: Specimen holder, 2©: mobile cart and 3©: radiant
panel.

2.2 Thermophysical experimental identification

As mentioned previously the plasterboard thermophysical properties depend on thermal load evolu-
tion rate, it was then necessary, in order to be consistent with our approach, to identify the thermal
conductivity and the diffusivity of the plasterboard according to ISO 834 thermal load. These tests
were performed using the TLB (see Fig. 2). The thermal conductivity is determined by performing
tests which consist on measuring, in the steady state conditions, the temperature at the heat exposed
side and the unexposed side of plasterboard’s specimens. Tests are performed for three different steps
of thermal loading (3, 6 and 9 minutes of ISO thermal loading with the TLB). Knowing exactly the
heat flux at the exposed side of the plasterboard (Fig. 3) we calculate the thermal conductivity.
Figure 4 gives the thermal conductivity of the plasterboard BA13 for three different steps of thermal
loading (marked points). According to the literature (e.g [22]) and the global shape of the thermal
diffusivity (see Fig. 5), we determine an interpolation between the three points. The thermal dif-
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Figure 3: Heat flux (vertical axis in kW/m2) as a function of time (horizontal axis in second):
calculated heat flux (thick solid line), TLB measured heat flux (thin lines), upper and lower ISO 834
equivalent density flux bounds (dashed lines).
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Figure 4: Thermal conductivity (vertical axis in W/m/K) as a function of temperature (◦K): mea-
sured conductivity (marks), interpolation (thin line).

fusivity (Fig. 5) is identified by solving an inverse problem for which the temperature is given at
the exposed and the unexposed sides of plasterboard samples submitted to fire load using the TLB
(Fig. 6). Figure 7 gives the comparison of these results with the reconstituted diffusivity using data
collected from different authors (selected from literature see [21], [22]). It is clear that there is a shift
of the first thermal diffusivity damping point when the thermal loading rate increases. This shift
comes certainly from the shift of the specific heat (which is in agreement with Mehaffey’s results
(Fig. 1)). In order to update the CHT model prediction this remark is taken into consideration.

3 Mean computational heat transfer model

The usual finite element model for the nonlinear heat transfer analysis developed using the determin-
istic parameters is called the mean computational heat transfer (CHT) model. For a time duration
tmax, the transient response {T(t), t ∈ [0 , tmax]} of the mean CHT model satisfies the usual non
linear time evolution problem,

[M ] Ṫ(t) + [K(T)]T(t) = f(t) , t ∈ [0 , tmax] , (1)
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Figure 5: Thermal diffusivity of plasterboard as a function of temperature. Identified diffusivity
(thin solid lines). Fitted diffusivity (thick dashed line).
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Figure 6: Thermal diffusivity tests performed on plasterboard. Temperature as a function of thermal
loading time. Temperature measured at the heat exposed side (solid lines), temperature measured
at the unexposed side of the plasterboard (dashed lines).

with T(0) = T0. Matrices [M ] and [K(T)] correspond to the global matrices constructed by the
assembly of the elementary finite element matrices [M e] and [Ke(T)] such that

[M e]ij =

∫

Ω
N e

i N e
j dx , (2a)

[Ke(T)]ij =

∫

Ω
∇N e

j . ([a(T )]∇N e
i ) dx +

∫

Γ2

hc

ρ(T ) c(T )
N e

i N e
j ds , (2b)

where Ω is the domain and Γ2 the part of its boundary which corresponds to the unexposed side
of the plasterboard. Note that interpolation functions N e of the finite element elementary domain
Ωe is zero if x does not belong to Ωe. The term ρ(T ) corresponds to the density and [a(T )] to the
diffusivity matrix such that [a(T )] = [λ(T )](ρ(T ) c(T ))−1, in which [λ(T )] is the thermal conductivity
matrix, c(T ) is the specific heat. The vector f(t) is constructed by the assembly of the elementary
vectors f e(T) such that

f e
i (T) =

∫

Γ2

hc

ρ(T ) c(T )
N e

i Tamb ds , (3)
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Figure 7: Reconstituted diffusivity according to different authors and the diffusivity used in the
modeling (thick solid line).

where hc is the convective heat transfer coefficient and Tamb is the room temperature. We introduce
the time stepping tn+1 = tn + ∆t for n = 0, 1, 2, . . . with t0 = 0. The time discretization tn+1 =
∆t + tn of Eq. (1) is performed using a central finite difference scheme which yields

[M ]
Tn+1,k − Tn

∆t
+ [K(Tn+1,k−1)]

Tn+1,k + Tn

2∆t
= fn+1 , n ≥ 0 , (4)

in which the subscript k corresponds to internal iterations with k ≥ 1 and where Tn+1,0 = Tn. The
convergence of the internal iterations is controlled by verifying the condition | Tn+1,k −Tn+1,k−1 |≤
εTn+1,k. At convergence, we write Tn+1 = Tn+1,kconv obtained for k = kconv.

Mean model prediction

A finite element code is developed for the CHT model according to the scheme described by Eq. (4).
The diffusivity implemented is the updated one given in Fig. 7. The implemented thermal conduc-
tivity is given by Fig .4. The heat convection coefficient is taken as 7 W/(m2.K). Figure 8 shows the
comparison of the numerical simulations output, using different authors’ thermophysical identified
properties and the updated one, with the experimental results (temperature at the unexposed side
of plasterdoard’s specimens submitted to fire load as a function of thermal loading time). A second
study which correspond to the use of the identified thermophysical properties (Fig. 5) is considered
(thick dashed line in Fig. 8). The two updated mean CHT models of prediction constitute the basis
of the probabilistic model presented in the next section. In Fig. 8, temperature is in (◦K) as a
function of thermal loading time in (s). Mean updated model prediction is based on thermophysical
properties selected from literature (thick solid curve), mean model prediction is based on identified
thermophysical properties (thick dashed curve), measured temperature at the unexposed side (dashed
lines). Model prediction according to Mehaffey’s data (dot curves), Sultan’s data (thin solid curve)
and Andersson’s data (dash-dot curve).

4 Computational stochastic heat transfer model

4.1 Data and modeling uncertainties

The sources of the data and model uncertainties are due to:
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Figure 8: Mean model results compared to the temperature at the unexposed side of the plasterboard.

• thermo-physical properties: the diffusivity is assumed to be the same throughout the thickness
of the plasterboard whereas it varies along the thickness of the plaster.

• the use of a simplified heat transfer model: in the proposed modeling the hydrous media is
taken implicitly into account, whereas, in reality, the phenomenon is more complicated and
should be modeled by a complete thermo-hygro-chemical model.

• the introduction of a one dimensional analysis.

• the variability of plasterboard composition.

Due to the presence of data and model uncertainties, a nonparametric probabilistic approach is
adopted in order to take them into account.

4.2 Nonparametric probabilistic approach

According to the nonparametric probabilistic approach [14, 25], for a given vector [T] of temperature,
the matrices [M ] and [K(T)] in Eq. (1) are replaced respectively by random matrices [M] and [K(T)]
whose mean values are such that

E{[M]} = [M ] ∈  +
n , E{[K(T)]} = [K(T)] ∈  +

n or ∈  +0
n , (5)

where E denotes the mathematical expectation,  +
n denotes the set of positive-definite symmetric

real matrices and  +0
n denotes the set of positive symmetric real matrices. The probability density

function of matrices [M] and [K(T)] are defined in the Sections 4.3 and 4.4 respectively. For all fixed
time t, the deterministic unknown vector T(t) of temperature is no longer deterministic and becomes
then a random vector T(t). Consequently, the family of random vectors {T(t), t ∈ !+} defines a
stochastic process. For any fixed time t, random vectors T(t) and Ṫ(t) verify the nonlinear stochastic
differential equation,

[M] Ṫ(t) + [K(T(t))] T(t) = f(t) . (6)

It can be verified (see e.g. [25]) that Eq. (6) has a second order solution (i.e , E{‖T(t))‖2} < +∞ ,∀t)
if

[M] ∈ SE+ , (7)
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and if, for every T fixed in  n,

[K(T)] ∈ SE+ , when [K(T)] ∈ !+
n , (8)

or,
[K(T)] ∈ SE+0 , when [K(T)] ∈ !+0

n , (9)

where SE+ denotes the set of all second-order random matrices with values in !+( ) and SE+ set
of all second-order random matrices with values in !+0( ).

4.3 Probability density function of matrix [M]

The probability density function of the matrix [M] has values in SE+. Under this condition, its
probabilistic model is well defined (see e.g [14]) and it can be expressed as follows.
The mean value of random matrix [M] is equal to [M ] ∈ !+

n ( ) and can be written according

[M ] = [LM ]T [LM ] , (10)

where [LM ] is a real upper triangular matrix. The random matrix [M] can be written such that

[M] = [LM ]T [GM ][LM ] , (11)

where [GM ] is a random matrix with values in !+
n ( ) and which the probability density function is

expressed as a function of a unique dispersion parameter δM ,

p[GM ]([GM ]) = "

!

+

n

(
 

)([GM ]) × cGM
× (det[GM ])

(n+1)
1−δ

2
M

2δ2
M × exp

(
−(n + 1)

2δ2
M

tr[GM ]

)
, (12)

in which the normalization positive constant cGM
is written such

cGM
=

(2π)−n(n−1)/4
(

n+1
2δ2

M

)n(n+1)/(2δ2
M

)

{∏n
ℓ=1 Γ

(
n+1
2δ2

M

+ 1−ℓ
2

)} . (13)

The dispersion parameter δM of the random matrix [M] is such that

δM =

{E{‖[GM ] − [GM ]‖2
F }

‖[GM ]‖2
F

}1/2

, (14)

and must be such

0 < δM <

√
n + 1

n + 5
. (15)

4.4 Probability density function of random matrix [K(T(t))]

For each temperature vector T fixed in  n, two cases can be met: either matrix [K(T)] of the mean
model belongs to !+

n ( ), or it belongs to !+0
n ( ). The two cases studied correspond to taking or

not convective heat flux boundary condition on the unexposed face of plasterboard’s specimens. In
the first case, matrix [K(T)] is definite-positive whereas in the second one it is only positive and its
range is m = n − 1 for every temperature T.
Case 1: convective boundary condition at the unexposed face. According to Eq. (8), for all temperature
field T with values in  n, random matrix [K(T)] has values in SE+. In this condition, its probabilistic
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model is well defined (see [14]). The mean value of the random matrix [K(T)] given by Eq. (5) is
equal to [K(T)] ∈  +

n and can be written then according

[K(T)] = [LK(T)]T [LK(T)] , (16)

where T 7→ [LK(T)] is a function with values in the set of the upper triangular matrices in  n(!),
it is constructed from the function T 7→ [K(T)].
Case 2: without convective boundary condition at the unexposed face. According to Eq. (9), for all
temperature field T fixed in !n, random matrix [K(T)] have to be with values in the set SE+0. In
this condition, its probabilistic model is well defined (see [14]). The mean value of the random matrix
[K(T)], given by Eq. (5), is equal to [K(T)] ∈  +0

n and can be written then according

[K(T)] = [LK(T)]T [LK(T)] , (17)

where T 7→ [LK(T)] is a function with values in the set of rectangular matrix  m,n(!), which is
constructed from the knowledge of the function T 7→ [K(T)].
Construction of the random matrix [K(T)]. For all temperature field T fixed in !n, the random
matrix [K(T)] is defined by

[K(T)] = [LK(T)]T [GK ] [LK(T)] , (18)

where [GK ] is a random matrix with values in +
m(!) which the probability density function is defined

by Eq. (19). Obviously it is clear that m = n for the first case and m = n − 1 in the second one.
The probability density function of the matrix [K(T)] is expressed as a function of the dispersion
parameter δK according

p[GK ]([GK ]) = "
 

+

m(!)
([GK ]) × cGK

× (det[GK ])
(m+1)

1−δ
2
K

2δ2
K × exp

(
−(m + 1)

2δ2
K

tr[GK ]

)
, (19)

where cGK
is a positive variable such that

cGK
=

(2π)−m(m−1)/4
(

m+1
2δ2

K

)m(m+1)/(2δ2
K

)

{∏m
ℓ=1 Γ

(
m+1
2δ2

K

+ 1−ℓ
2

)} . (20)

The dispersion parameter δK of the random matrix [K(T)] is independent of T and is such that,

δK =

{E{‖[GK ] − [GK ]‖2
F }

‖[GK ]‖2
F

}1/2

, (21)

and must verify the condition

0 < δK <

√
m + 1

m + 5
. (22)

Construction of the random matrix [K(T(t))]. When the temperature vector describes the vectorial
stochastic process T, for each fixed t, T(t) describe a random vector and the the probabilistic vector
of the random matrix [K(T(t))] is

[K(T(t))] = [LK(T(t))]T [GK ] [LK(T(t))] , (23)

where [GK ] is the random matrix defined previously.

10



4.5 Generator of random germ matrices

For the Monte-Carlo simulation method, independent realizations of random matrices [GK ] and [GM ]
(or random germs) are constructed using the following algebraic representation. Let [A] be a random
matrix with values in  +

n (!) which represents the random matrix [M] or [K]. The random germ of
the matrix [A] can be written according,

[GA] = [L]T [L] , (24)

where [L] is an upper random triangular matrix such that,

• Random variables {[L]kk′ , k ≤ k′} are independent,

• For ℓ ≤ ℓ′, the random variable [L]ℓℓ′ , is such [L]ℓℓ′ = σYℓℓ′ , in which σ = δ/
√

n + 1 and Yℓℓ′ is
a normalized Gaussian random variable,

• For ℓ = ℓ′, [L]ℓℓ = σ
√

2Vℓ where Vℓ is a gamma random variable which probability density
function is given by

pVℓ
(ν) =  

!

+(ν)
1

Γ
(

n+1
2δ2

A

+ 1−ℓ
2

)ν

(
n+1

2δ2
A

+ 1−ℓ

2

)

exp−ν . (25)

5 Finite element discretization of the stochastic boundary value
problem

The nonlinear boundary value problem of heat transfer analysis is approximated by the stochastic
finite element method according to Eq. (6).

5.1 Stochastic solver

The Monte-Carlo simulation method is used as the stochastic solver for the nonlinear stochastic
equation defined by Eq. (6). For a realization rℓ, the realization {Tn(rℓ), n ≥ 1} of the temperature
random vector is given by solving the Eq. (6) according to the scheme (see Eq. (4)),

[M(rℓ)]
T

n+1,k(rℓ) − T
n(rℓ)

∆t
+ [K(Tn+1,k−1(rℓ), rℓ)]

T
n+1,k(rℓ) + T

n(rℓ)

2∆t
= fn+1, n ≥ 0, (26)

for k ≥ 1 and T
n+1,0(rℓ) = T

n(rℓ). The convergence of the internal iterations is controlled by verifying
the condition | T

n+1,k(rℓ) − T
n+1,k−1(rℓ) |≤ εT

n+1,k(rℓ). At convergence (obtained for k = kconv),
we write T

n+1(rℓ) = T
n+1,kconv(rℓ) in which T

n+1(rℓ) = T(tn+1, rℓ). The realization of the random
matrices [M(rℓ)] and [K(T, rℓ)] are constructed according to Eq. (11) and Eq. (17) respectively.

5.2 Confidence region estimator and stochastic convergence

For each time t, the confidence region is constructed for a given component Tj(t) of the random
response temperature vector T(t). For a given probability Pc, the confidence region is defined by the
upper and the lower bounds (τ+(t) and τ−(t) respectively) such as

Prob(τ−(t) < Tj(t) ≤ τ+(t)) = Pc . (27)

11



In order to simplify notations, t is omitted below. Let T1 = Tj(r1), . . . , Tns
= Tj(rns

) be ns

independent realizations of the random variable Tj . Let T̂1 < . . . < T̂ns
be the order statistics of

the independent variables T1, . . . , Tns
. Therefore, a possible estimation of τ− and τ+ is

τ− ≃ T̂j− with j− = fix(ns(1 − Pc)/2) , (28a)

τ+ ≃ T̂j+ with j+ = fix(ns(1 + Pc)/2) , (28b)

where fix(x) is the integer part of the real number x. The convergence for an observed component of
the stochastic temperature (subscript jobs) with respect to the number ns of realizations r1, . . . , rns

used in the Monte Carlo simulation is studied by analyzing the function

ns 7→ conv(ns) =

{
1

ns

ns∑

ℓ=1

∑

n>0

|Tn
jobs(rℓ)|2

}1/2

. (29)

5.3 Experimental identification of the probabilistic model dispersion parameters

When the mean model is in a reasonable agreement with the experimental average responses, the
identification of the two dispersion parameters δK and δM with respect to the experimental dispersion
δexp can be performed by minimizing the objective function defined by

J (δM , δK) = {δmod
ν̃ (δM , δK) − δexp

ν }2 (30)

under the constraints defined by Eq. (15) and Eq. (22). In Eq. (30), δmod
ν̃ (δM , δK) and δexp

ν correspond
to an estimation of the modeling and the experimental dispersions. The estimations are written as

δmod
ν̃ (δM , δK) =

1

‖m̂mod
ν̃ (δM , δK)‖

{
1

ν̃

ν̃∑

ℓ=1

‖Tmod
∂Ω (rℓ, δM , δK) − m̂mod

ν̃ (δM , δK)‖2

}1/2

, (31a)

δexp
ν =

1

‖m̂exp
ν ‖

{
1

ν

ν∑

ℓ=1

‖Texp
∂Ω (τν) − m̂exp

ν ‖2

}1/2

. (31b)

in which Tmod
∂Ω (r1, δM , δK), . . . , Tmod

∂Ω (rν̃ , δM , δK) are ν̃ independent realizations of the random vari-
able Tmod

∂Ω (δM , δK) and where T
exp
∂Ω (τ1), . . . T

exp
∂Ω (τν) are ν independent realizations of the random

variable T
exp
∂Ω . In Eq. (31.a) and (31.b), the estimations of the mean value of Tmod

∂Ω (δM , δK) and of
the mean value of T

exp
∂Ω are written as

m̂exp
ν =

1

ν

ν∑

ℓ=1

T
exp
∂Ω (rℓ) , (32)

m̂mod
ν̃ (δM , δK) =

1

ν̃

ν̃∑

ℓ=1

Tmod
∂Ω (rℓ, δM , δK) . (33)

5.4 Probabilistic model prediction and experimental comparisons

We consider the boundary value problem corresponding to a heat transfer analysis throughout a
plasterboard and which is discretized using the stochastic finite element method. We are interested in
the random response Tjobs of the temperature at the unexposed side of the plasterboard as a function
of the thermal loading time. The correspondence between the thermal loading time and the heat load

12



at the exposed side is easy to perform. Two analyses are considered, the first one corresponds to the
computational stochastic heat transfer (CSHT) model constructed using the mean CHT model where
the implemented parameters are given according to the updated data from the literature (thick solid
curve in Fig 8). The second analysis corresponds to the CSHT model constructed around the mean
CHT model (thick dashed curve in Fig. (8)) where the measured thermal diffusivity (thick dashed
curve in Fig. (5)) and thermal conductivity (Fig. (4)) are used.

5.4.1 Case 1

The dispersion parameters δM and δK of the random matrices [M] and [K(T)] are identified with the
experimental data using the random response Tjobs of the temperature at the unexposed side. Para-
metric analysis has been performed for (δM , δK) taking their values in {0.1, 0.12, 0.14, . . . , 0.56, 0.58, 0.6}×
{0.1, 0.12, 0.14, . . . , 0.56, 0.58, 0.6}. For each value of the dispersion parameters, the Monte Carlo
simulation method is carried out with ns = 1200 simulations. Figure 9 displays the graph of
ns 7→ conv(ns) related to the convergence of the stochastic heat transfer model output. It can
be seen that for ns = 700 simulations, the solution of the stochastic model of the heat transfer
analysis verifies the second-order convergence defined by Eq. (29). An ”optimal” value of δM and δK

has been determined in the time interval [0, 350]s, the lower envelope of the confidence region being
close to the minimum values of the experiments. We have then obtained δM = 0.25 and δK = 0.4.
Figure 10 displays the comparison of the experiments with the confidence region calculated according
to Eq. (27) with Pc = 0.95 and for δM = 0.25 and δK = 0.4. The estimation of the probability density
function of the random variable Tjobs of the temperature at the unexposed side at observation time
t = 900s is given in Fig. 11.

0 200 400 600 800 1000 1200
0.994

0.996

0.998

1

Number of simulations

Figure 9: Convergence with respect to the number ns of simulations: graph of function ns 7→
conv(ns).

5.4.2 Case 2

The dispersion parameters δM and δK of the random matrices [M] and [K(T)] are identified with
the experimental data using the random response t 7→ Tjobs(t) of the temperature at the unexposed
side. Figure 12 shows the interpolated meshgrid within the calculated values of the objective function
defined by Eq. (30). The minimum value of the objective function is obtained for δM = 0.03 and
δK = 0.35. For the two fixed dispersion parameters, the Monte Carlo simulation method is carried
out for ns simulations with ns = 2000. Figure 13 displays the graph of ns 7→ conv(ns) related to
the convergence of the stochastic heat transfer model output (second-order convergence is obtained
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Figure 10: Prediction of the probabilistic CHT model for the dispersion parameters δM = 0.22 and
δK = 0.4. Vertical axis: temperature at the unexposed side in ◦K as a function of thermal load time
(s) (horizontal axis). Temperature measured on the unexposed side (dashed thin lines). Prediction
of the mean model (thick solid line). Confidance region of the probabilistic model of heat transfer
analysis for Pc=0.95: (grey zone).
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Figure 11: Graph of the probability density function of the temperature at the unexposed side of the
plasterboard at t=900 s.
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Figure 12: Graph of the objective function (δM , δK) 7→ J(δM , δK).
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for ns = 1000). Figure 14 displays the comparison of the experiments with the confidence region
calculated according to Eq. (27). This result shows that even if the mean model gives a good
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Figure 13: Convergence with respect to the number ns of simulations: graph of function ns 7→
conv(ns).
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Figure 14: Prediction of the probabilistic CHT model for the dispersion parameters δM = 0.03 and
δK = 0.35. Vertical axis: temperature at the unexposed side in ◦K (axe vertical) as a function of
thermal load time (s) (horizontal axis). Experiments (dashed thin lines). Prediction of the mean
model: thick solid line. Confidance region of the probabilistic model of heat transfer analysis for
Pc=0.95 (grey zone).

prediction of the thermal behavior of the plasterboard, the probabilistic model is necessary to take
into account the uncertainty induced firstly by errors in the modeling process and by the variability in
thermophysical characteristics of the plasterboard samples (induced by the manufacturing process).
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Figure 15: Graph of the probability density function of the temperature at the unexposed side of the
plasterboard at t=900 s.
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6 CONCLUSION

A deterministic and a probabilistic nonlinear heat transfer analysis throughout plasterboard have
been presented. Note that a simplified model based on a nonlinear thermo-mechanical modeling
has been used. This model could be improved by using a thermo-chemico-mechanical modeling.
The main objective of this paper is to combine a probabilistic approach with the deterministic heat
transfer analysis of plasterboards submitted to fire loads. Within the probabilistic model a confidence
region can be constructed for the temperature according to the estimated dispersion parameters for
a given probability level. The implemented nonparametric probabilistic approach allows two global
dispersion parameters, which govern the heat transfer through a plasterboard submitted to fire load,
to be identified. These two identified parameters, which take into account uncertainties induced by
data and modeling errors, can be used as parametric probabilistic parameters in a general approach
in order to model a large light partition.
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Notation

The following symbols are used in this paper:

CHT Computational Heat Transfer;
CPC Cardboard Plaster Cardboard;
[GM ], [GK ] random matrices germ related to the random matrices [M] and [K(T)];
hc convective heat transfer coefficient;
[I] identity matrix;
ISO834 the ISO 834 curve;
LLP Large Light partition;
TLB Thermal Load Bench;
[LS ] real upper triangular matrix of cholesky decomposed matrix [S];
[M ], [K] mean matrices of the deterministic CHT model;

 

+(!) set of positive-definite symmetric real matrices;

 

+0(!) set of positive symmetric real matrices;
ns number of simulations;
Pc(X > x) probability that random variable X be greater than x;
rℓ the ℓth realization belonging to the set of all the realizations;

SE+ set of all second-order random matrices with values on  +(!);

SE+0 set of all second-order random matrices with values on  +0(!);
T denotes the stochastic vector of temperature at the different nodes;
T denotes the deterministic vector of temperature at the different nodes;
T vector of the mean temperature;
Tamb denotes the room temperature;
Tjobs temperature at the observation point;
x scalar variable;
x vector;
X random variable associated to the scalar variable x;
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X random vector associated to the vector x;
[S] mean model matrix;
[S] random matrix;
[S]T transpose of matrix [S];

‖[S]‖F Frobenius norm of matrix [S]
(
‖[S]‖F = tr ([S][S]T )1/2

)
;

tr([S]) trace of matrix [S];
δK , δM dispersion parameters of the random matrices [M] and [K(T)];
E{·} mathematical expectation;
τ−, τ+ lower and upper envelopes of the confidence region;

 

!

+(x) equal to 1 if x ∈ !

+ and 0 elsewhere.
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