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ON THE COMMUTING VARIETY OF A REDUCTIVE LIE ALGEBRA AND OTHER
RELATED VARIETIES.

JEAN-YVES CHARBONNEL AND MOUCHIRA ZAITER

AssTtrRACT. The nilpotent cone of a reductive Lie algebra has a desingularization given by the cotangent bundle
of the flag variety. Analogously, the nullcone of a cartesian power of the algebra has a desingularization given
by a vector bundle over the flag variety. As for the nullcone, the subvariety of elements whose components are
in a same Borel subalgebra, has a desingularization given by a vector bundle over the flag variety. In this note,
we study geometrical properties of these varieties. For the study of the commuting variety, the analogous variety
to the flag variety is the closure in the Grassmannian of the set of Cartan subalgebras. So some properties of
this variety are given. In particular, it is smooth in codimension 1. We introduce the generalized isospectral
commuting varieties and give some properties. Furthermore, desingularizations of these varieties are given
by fiber bundles over a desingularization of the closure in the grassmannian of the set of Cartan subalgebras
contained in a given Borel subalgebra.
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1. INTRODUCTION

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra
of finite dimension, ¢ is its rank, dimg = ¢ + 2n and G is its adjoint group. As usual, b denotes a
Borel subalgebra of g, h a Cartan subalgebra of g, contained in b, and B the normalizer of b in G.

1.1. Main results. Let B%® be the subset of elements (xi, ..., x;) of g* such that xi,...,x; are in
a same Borel subalgebra of g. This subset of g* is closed and contains two interesting subsets: the
nullcone of g* denoted by N® and the generalized commuting variety of g that is the closure in g*
of the subset of elements (xi, ..., x;) such that xy, ..., x; are in a same Cartan subalgebra of g. We
denote it by C®. According to [Mu65, Ch.2, §1, Theorem], for (xi,...,x;) in B®, (x,...,x) is
in N® if and only if x,, ..., x; are nilpotent. According to a Richardson Theorem [Ri79], C? is
the commuting variety of g.
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There is a natural projective morphism G Xg b* —— B® | For k = 1, this morphism is not
birational but for k > 2, it is birational (see Lemma 2.2 and Lemma 2.4). Furthermore, denoting
by X the subvariety of elements (x, y) of g X b such that y is in the closure of the orbit of x under
G, the morphism

Gxb——=X, (g, x) — (g.x, %)

with X the projection of x onto f) defines through the quotient a projective and birational morphism
G xpb—— X and g is the categorical quotient of X under the action of W(RR) on the factor b,

with W(R) the Weyl group of g. For k > 2, the inverse image of B% by the canonical projection
from X* to g* is not irreducible but the canonical action of W(R)* on X* induces a simply transitive
action on the set of its irreducible components. Setting:

B;k) = {((g(X1), X_l), ] (g(xk)’ x_k)) | (g’ Xisenns xk) €eGX bk}?

BY is an irreducible component of the inverse image of B® in X* (see Corollary 2.8) and we have
a commutative diagram

G xp bF BY

A

B&

with 7 the restriction to B® of the canonical projection @ from X* to g*. The first main theorem

of this note is the following theorem:

Theorem 1.1. (i) The variety N® is normal if and only if so is BY.

(ii) The variety N® is Cohen-Macaulay if and only if so is BY.

(iii) The variety N® has rational singularities if and only if it is Cohen-Macaulay.

(1v) The variety BE has rational singularities if and only if it is Cohen-Macaulay.

(v) The algebra k[B;k)] is a free extension of k[B;k)]G which identifies with S(H").

(vi) The algebra k[B®1C identifies with S(H)V® with respect to the diagonal action of W(R) in
b,
(vii) The ideal kK[ BOTK[B®1S of k[BW] is strictly contained in the ideal of definition of N® in
K[B®)].

According to K. Vilonen and T. Xue [VX15], N® and B¥ are not normal in general. In the
study of the generalized commuting variety, the closure in Gr,(g) of the orbit of ) under the action
of G plays an analogous role to the flag variety. Denoting by X the closure in Gr,(b) of the orbit of
b under B, G.X is the closure of the orbit of G.}) and we have the following second main result:

Theorem 1.2. Let X’ be the set of centralizers of regular elements of b whose semisimple compo-
nents is regular or subregular.
(1) All element of X is a commutative algebraic subalgebra of g.
(1) For x in g, the set of elements of G.X containing x has dimension at most dimg”* — ¢.
(i11) The sets X\ B.h and G. X\ G .} are equidimensional of dimension n—1 and 2n—1 respectively.
(iv) The sets X" and G.X" are smooth big open subsets of X and G.X respectively.

This is a main result with respect to the generalized commuting varieties as it will be shown in

the next two notes. We recall that an element of g is subregular if its centralizer in g has dimension
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¢ + 2. Let X, be the closure in b of B.h* and let I be a desingularization of X in the category of
B-varieties. Let &, be the tautological bundle over X and set:

85 = 8OXXF’ (o’gk) = SSXF"'XFSS'
—_——

k factors

Then €Y is a desingularization of ¥g,. Set: C¥ := 57!(€®). The following theorem is the third
main result of this note:

Theorem 1.3. The variety CF is irreducible and G x5 X is a desingularization of C.

It will be proved in a next note that the normalizations of Xy, C* and €% are Gorenstein with
rational singularities. As a matter of fact, as a consequence, X, is normal.

Acknowledgments We are grateful to K. Vilonen and T. Xue for pointing out a negative result
about the nullcone in a previous version. We are also grateful to the referee for his remarks and
suggestions.

1.2. Notations. e An algebraic variety is a reduced scheme over k of finite type.

e For V a vector space, its dual is denoted by V* and the augmentation ideal of its symmetric
algebra S(V) is denoted by S, (V). For A a graded algebra over N, A, is the ideal generated by the
homogeneous elements of positive degree.

e All topological terms refer to the Zariski topology. If Y is a subset of a topological space X,
denote by Y the closure of Y in X. For Y an open subset of the algebraic variety X, Y is called a
big open subset if the codimension of X \ Y in X is at least 2. For Y a closed subset of an algebraic
variety X, its dimension is the biggest dimension of its irreducible components and its codimension
in X is the smallest codimension in X of its irreducible components. For X an algebraic variety, O
is its structural sheaf, k[ X] is the algebra of regular functions on X and k(X) is the field of rational
functions on X when X is irreducible.

e For X an algebraic variety and for M a sheaf on X, I'(V, M) is the space of local sections of M
over the open subset V of X. For i a nonnegative integer, H'(X, M) is the i-th group of cohomology
of M. For example, H’(X, M) = ['(X, M).

Lemma 1.4. [EGAII, Corollaire 5.4.3] Let X be an irreducible affine algebraic variety and let Y
be a desingularization of X. Then H(Y, Oy) is the integral closure of k[X] in its fraction field.

e For K a group and for E a set with a group action of K, EX is the set of invariant elements of E
under K. The following lemma is straightforward and will be used in the proof of Corollary 2.23.

Lemma 1.5. Let A be an algebra generated by the subalgebras A, and A,. Let K be a group acting
on A,. Suppose that the following conditions are verified:

(1) Ay N A, is contained in Af,
(2) A is a free Ay-module having a basis contained in A,
(3) Ay is a free Ay N Ay-module having the same basis.

Then there exists a unique group action of K on the algebra A extending the action of K on A, and
fixing all the elements of A|. Moreover, if Ay N A, = A§ then AX = A,.

e For E a finite set, its cardinality is denoted by |E|. For E a vector space and for x = (xy, ..., x;)

in EX, E, is the subspace of E generated by xi,...,x;. Moreover, there is a canonical action of
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GL,(k) in E* given by:
k
(@1 <0 j <R, ox) = (O axpi= 1, k)
=1

In particular, the diagonal action of G in g¥ commutes with the action of GL,(k).

e For a reductive Lie algebra, its rank is denoted by rk, and the dimension of its Borel subalge-
bras is denoted by b,. In particular, dima = 2b, — rk,.

o If E is a subset of a vector space V, denote by span(E) the vector subspace of V generated by
E. The grassmanian of all d-dimensional subspaces of V is denoted by Gr,(V). By definition, a
cone of V is a subset of V invariant under the natural action of k* := k \ {0} and a multicone of V*
is a subset of V¥ invariant under the natural action of (k*)* on V*.

Lemma 1.6. Let X be an open cone of V and let S be a closed multicone of X x V¥, Denoting by
S’ the image of S by the first projection, S’ X {0} = § N (X X {0}). In particular, S’ is closed in X.

Proof. For x in X, x is in §’ if and only if for some (vy,...,v;) in V&L (x, tva, ..., to;) is in S for
all 7 in k since S is a closed multicone of X x V¥, whence the lemma. ]

e The dual g of g identifies with g by a given non degenerate, invariant, symmetric bilinear form
(.,.yon g X g extending the Killing form of [g, g].

e Let R be the root system of b in g and R, the positive root system of R defined by b. The Weyl
group of R is denoted by W(RR) and the basis of R, is denoted by II. The neutral elements of G
and W(XR) are denoted by 1, and 1 respectively. For @ in R, the corresponding root subspace is
denoted by g* and a generator x, of g* is chosen so that (x,, x_,) = 1 for all @ in R.

e The normalizers of b and }) in G are denoted by B and N (h) respectively. For x in b, X is the
element of b such that x — X is in the nilpotent radical u of b.

e For X an algebraic B-variety, denote by G X X the quotient of G X X under the right action of
B given by (g, x).b := (gb, b~'.x). More generally, for k positive integer and for X an algebraic B*-
variety, denote by G* Xz X the quotient of G* x X under the right action of B* given by (g, x).b :=
(gb, b~'.x) with g and b in G* and B respectively.

Lemma 1.7. Let P and Q be parabolic subgroups of G such that P is contained in Q. Let X be a
Q-variety and let Y be a closed subset of X, invariant under P. Then Q.Y is a closed subset of X.
Moreover, the canonical map from Q Xp Y to Q.Y is a projective morphism.

Proof. Since P and Q are parabolic subgroups of G and since P is contained in Q, Q/P is a
projective variety. Denote by Q Xp X and Q Xp Y the quotients of Q X X and Q X Y under the right
action of P given by (g, x).p := (gp, p~'.x). Let g — g be the quotient map from Q to Q/P. Since
X 1s a Q-variety, the map

OxX

Q/PxX,  (9,%) > (9,9.X)

defines through the quotient an isomorphism from Q Xp X to Q/P X X. Since Y is a P-invariant
closed subset of X, O Xp Y is a closed subset of O Xp X and its image by the above isomorphism is

closed. Hence Q.Y is a closed subset of X since Q/P is a projective variety. From the commutative
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diagram:
OxpY—=Q/PxQ.Y

o~

Q.Y
we deduce that the map Q Xp Y — Q.Y is a projective morphism. O
e For k > 1 and for the diagonal action of B in b¥, b* is a B-variety. The image of (g, x,, .. ., X;)

in G x b* in G x3 b* is denoted by (g, x1, . . ., x). The sets B® and N® are the images of G x b* and
G x v respectively by the map (g, x1, ..., x) = (g(x1), . ..,g(x)) so that B® and N® are closed
subsets of g by Lemma 1.7. Let BY be the normalization of B® and let 1, be the normalization
morphism. The map

Gka—>B(k) ’ (g’xl"”’xk) — (g(xl)’---’g(xk))
defines through the quotient a morphism vy : G X b* ——= B® and we have the commutative
diagram:

G xp bF B

Yn
X %
B®

where v, is uniquely defined by this diagram. Let N be the normalization of N® and let x be the
normalization morphism. We have the commutative diagram:

G Xp uk o Nflk)
N
with v the restriction of y to G X u* and v, is uniquely defined by this diagram.
e Let i be the injection (xi,...,x) = (lg, xy,...,x) from b* to G Xz b*. Then ¢ := yei is the

identity of b* and ¢, := yyoi is a closed embedding of b* into BY. In particular, B® = G..(b*) and
BY = G.1n(0Y).

e Let e be the sum of the xz’s, 5 in I1, and let /& be the element of h N [g, g] such that B(h) = 2
for all B in I1. Then there exists a unique f in [g, g] such that (e, A, f) is a principal sl,-triple. The
one-parameter subgroup of G generated by adh is denoted by ¢ — h(r). The Borel subalgebra
containing f is denoted by b_ and its nilpotent radical is denoted by u_. Let B_ be the normalizer
of b_ in G and let U and U_ be the unipotent radicals of B and B_ respectively.

Lemma 1.8. Letk > 2 be an integer. Let X be an affine variety and set Y := W*xX. Let Z be a closed
B-invariant subset of Y under the group action given by g.(vy,...,0,x) = (g(v1),...,9(k), X)
with (g,v1,...,v) in Bx b and x in X. Then Z N Y x X is the image of Z by the projection
1,06, x) B (U1, ..., U, X).

Proof. For all vin b,
V= lirgl h(t)(v)
—

whence the lemma since Z is closed and B-invariant. O
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e For x € g, let x; and x, be the semisimple and nilpotent components of x in g. Denote by g*
and G* the centralizers of x in g and G respectively. For a a subalgebra of g and for A a subgroup
of G, set:

a:=ang” AY =ANG*
The set of regular elements of g is
Oreg (= {x € g|dimg" = {}
and denote by gy ss the set of regular semisimple elements of g. Both g,¢; and gy, ¢ are G-invariant

dense open subsets of g. Setting hreg 1= b N Greg, Dreg := D N Gregs Ureg 1= U N Greg, Gregss = G(Dreg),
dreg = G(breg) and G(11,) is the set of regular elements of the nilpotent cone N, of g.

Lemma 1.9. Let k > 2 be an integer and let x be in g*. For O open subset of Oree» Ex N O is not
empty if and only if for some g in GL(k), the first component of g.x is in O.

Proof. Since the components of g.x are in E,, for all g in GL(k), the condition is sufficient. Suppose
that £, N O is not empty and denote by xi, ..., x; the components of x. For some (ay,...,a;) in

K\ {0},

aix;+---+axy € O
Let i be such that a; # 0 and let 7 be the transposition such that 7(1) = i. Denoting by g the element
of GL(k) such that g ; = a,; for j=1,...,k,g;; =1for j=2,...,kand g;; = O for j > 2 and
J # [, the first component of g7.x is in O. O

e Denote by S(g)® the algebra of g-invariant elements of S(g). Let py,..., p, be homogeneous
generators of S(g)® of degree di,...,d; respectively. Choose the polynomials py,..., p; so that
di<---<d,. Fori=1,...,0and (x,y) € g X g, consider a shift of p; in the direction y: p;(x + ty)
with ¢ € k. Expanding p;(x + ty) as a polynomial in ¢, we obtain

di
o)) pi(x + ty) = Zpgm)(x, ", Yt xy) ekxagxg
m=0

where y — (m!) pgm)(x, y) is the derivative at x of p; at the order m in the direction y. The elements
pgm) defined by (1) are invariant elements of S(g) ®, S(g) under the diagonal action of G in g X g.
Remark that p*(x, ) = p,(x) while p*(x,y) = pi(y) for all (x,y) € g X o.

Remark 1.10. The family P, := {p(x,.); 1 < i < {,1 < m < d;} for x € g, is a Poisson-
commutative family of S(g) by Mishchenko-Fomenko [MF78]. We say that the family P, is con-
structed by the argument shift method.

eletie{l,...,f}. For xin g, denote by &;(x) the element of g given by

d
(&i(x),y) = api(x + 1Y) =0

for all y in g. Thereby, &; is an invariant element of S(g) ®, g under the canonical action of G.

According to [Ko63, Theorem 9], for x in g, x i8 in gy, if and only if £,(x), ..., &/(x) are linearly
independent. In this case, &(x), ..., &/(x) is a basis of g*.
Denote by 3, the center of g and for x in g by 3, the center of g*. As ¢,..., &, are invariant, for

all xin g, £1(x), ..., &/(x) are in 3,.
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e Denote by sgm), for 0 < m < d; — 1, the elements of S(g X g) ® g defined by the equality:

di—1

2) s(xtiy)= ) &My, Mt xy) ekxgxg

m=0
and set:
Viy = span({sgo)(x, Y),... ,sgd"_l)(x, y),i=1,...,6})

for (x,y) in g X g. According to [Bol91, Corollary 2], V,, has dimension b, if and only if E,, has
dimension 2 and E,, \ {0} is contained in gye.

2. ON THE VARIETIES B®

Let k > 2 be an integer. According to the above notations, we have the commutative diagrams:

G xp b n BY G xput NP

A A

B® N®

Since the Borel subalgebras of g are conjugate under G, B® is the subset of elements of g* whose
components are in a same Borel subalgebra and N® are the elements of B® whose all the compo-
nents are nilpotent.

Lemma 2.1. (i) The morphism y from G x5 b* to B® is projective and birational. In particular,
G xp b* is a desingularization of B® and B® has dimension kb, + n.

(ii) The morphism v from G Xz u* to N® is projective and birational. In particular, G xg1* is a
desingularization of N and N® has dimension (k + 1)n.

Proof. (i) Denote by ng) the subset of elements (x, y) of g* such that E,, has dimension 2 and
such that E, , \ {0} is contained in g,,. According to Lemma 1.7, y is a projective morphism. For

1<i<j<klet Qg‘j.) be the inverse image of ng) by the projection
(.X1, o ,Xk) — (-xia -xj)

Then ka]) is an open subset of g whose intersection with B® is not empty. Let Qg‘) be the union
of the kaj) According to [Bol91, Corollary 2] and [Ko63, Theorem 9], for (x,y) in Q2 n B, V,,
is the unique Borel subalgebra of g containing x and y so that the restriction of y to y‘l(Qg‘)) isa
bijection onto Qg‘). Hence 1 is birational. Moreover, G X b* is a smooth variety as a vector bundle
over the smooth variety G/B, whence the assertion since G Xp b* has dimension kbg + n.

(i1) According to Lemma 1.7, v is a projective morphism. Let Nﬁﬁ; be the subset of elements
of N® whose at least one component is a regular element of g. Then NE'% is an open subset of
N®_ Since a regular nilpotent element is contained in one and only one Borel subalgebra of g, the
restriction of v to U‘I(Nﬁle‘i,) is a bijection onto Nﬁle‘i,. Hence v is birational. Moreover, G Xz 1 is a
smooth variety as a vector bundle over the smooth variety G/B, whence the assertion since G X ut*

has dimension (k + 1)n. i
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2.1. Let x be the map
U- X ltpeg — Ny (g, x) — g(x)

Lemma 2.2. Let V be the set of elements of N® whose first component is in U_(\g) and let Vi be
the set of elements x of N® such that E, N 8,q is not empty.

(1) The image of k is a smooth open subset of N, and k is an ismorphism onto U_(l).

(ii) The subset V of N® is open.

(iii) The open subset V of N® is smooth.

(iv) The set Vy is a smooth open subset of N®.

Proof. (1) Since N, is the nullvariety of py,..., p, in g, N3 N gr, 18 @ smooth open susbet of I,
by [Ko63, Theorem 9]. For (g, x) in U_ X 11, such that g(x) is in 1, b~'g is in G* for some b in B
since B(x) = 11,. Hence g = 1, since G* is contained in B and since U_ N B = {1,}. As aresult, «
is an injective morphism from the smooth variety U_ X 1, to the smooth variety 9, N g,.,. Hence
Kk is an open immersion by Zariski’s Main Theorem [Mu88, §9].

(ii) By definition, V is the intersection of N¥ and U_(11,¢) X t&™!. So, by (i), it is an open subset
of N®,

(iii) Let (xi, ..., x) be in u* and let g be in G such that (g(x,), . ..,g(xy)) is in V. Then x; is in
lUre and for some (g’,b) in U_ X B, g'b(x;) = g(x;). Hence g 'g’bis in G*' and g is in U_B since
G™' is contained in B. As a result, the map

U_x ureg X uk_l —V (g3 Xlyeoos -xk) — (g(-xl)s ey g(xk))

is an isomorphism whose inverse is given by
) o (o) kT ) (), kT ()1 ()

with 7! the inverse of «x and k~!(x); the component of x~!(x;) on U_, whence the assertion since
U_ X g X 1¥71 is smooth.
(iv) According to Lemma 1.9, V;, = GL,(k).V, whence the assertion by (iii). a

Corollary 2.3. (i) The subvariety N® \ V, of N® has codimension k + 1.
(ii) The restriction of v to v~'(Vy) is an isomorphism onto V.
(iii) The subset v (V}) is a big open subset of G xg L.

V — U X lgeg X 15

Proof. (i) By definition, N® \ V, is the subset of elements x of N® such that E, is contained in
3\ greg- Hence N® \ V; is contained in the image of G X (11 \ ee)* by v. Let (x1,. .., x;) be in
b N (N®\ V,). Then, for all (ay, ..., a) in kX,

(x_pg,ayxy + - +apxg) =0

for some B in II. Since II is finite, E, is orthogonal to x_g for some $ in II. As a result, the
subvariety of Borel subalgebras of g containing xi, ..., x; has positive dimension. Hence

dim(N® \ V;) < dimG Xg (U \ teg)* =1+ k(n — 1)

Moreover, for g in I, denoting by 15 the orthogonal complement of a?in u, v(G Xg (u/_;)k) 1S
contained in N® \ V, and its dimension equal (k + 1)(n — 1) since the variety of Borel subalgebras
containing ug has dimension 1, whence the assertion.

(ii) For x in N® | E. is contained in all Borel subalgebra of g, containing the components of x.
Then the restriction of v to v~!(V,) is injective since all regular nilpotent element of g is contained
in a single Borel subalgebra of g, whence the assertion by Zariski’s Main Theorem [Mu88, §9]

since Vj is a smooth open subset of N® by Lemma 2.2,(iv).
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(ii1) Identify U_ with the open subset U_B/B of G/B and denote by m, the bundle projection
from G xu* —— G/B . Since v~ (Vj) is G-invariant, it suffices to prove that v™'(Vy) N 75" (U-)
is a big open subset of 7 Y(U.). Let V, be the subset of elements x of u* such that £, N Oreg 1S NOL
empty. Then 1* \ V; is contained in (1t \ 1t,¢,)* and has codimension at least 2 in u* since k > 2. As
aresult, U_ X Vj is a big open subset of U_ x u*. The open subset 7;'(U_) of G X u* identifies
with U_ x u* and v~ (V) N ;' (U_) identifies with U_ x V,, whence the assertion. o

2.2. Denote by ry : ¢ —¢//G and m, : h——=1b/W(R) the quotient maps, i.e. the mor-
phisms defined by the invariants. Recall g//G = )/ W(R), and let X be the following fiber product:

X X q
Tk
b H/W(R)

T B

where y and p are the restriction maps. The actions of G and W(R) on g and I respectively induce
an action of G X W(R) on X: (g, w).(x,y) := (g(x), w(y)).

Lemma 2.4. (i) There exists a well defined G-equivariant morphism y, from G Xz b to X such that
v is the composition of x, and .
(ii) The morphism x, is projective and birational. Moreover, X is irreducible.
(iii) The subscheme X is normal. Moreover, every element of gree X ) N X is a smooth point of X.
(iv) The algebra k[X] is the space of global sections of Ogx,, and k[X]¢ = S(b).

Proof. (i) Since the map (g, x) — (g(x),x) is constant on the B-orbits, there exists a uniquely
defined morphism y, from G Xg b to g X ) such that (g(x), x) is the image by y, of the image of
(g, x) in G X b. The image of y, is contained in X since for all p in S(g)°, p(x) = p(x) = p(g(x)).
Furthermore, y, verifies the condition of the assertion.

(i1) According to Lemma 1.7, y, is a projective morphism. Let (x,y) be in g X b such that
p(x) = p(y) for all p in S(g)°. For some g in G, g(x) is in b and its semisimple component is y so
that (x, y) is in the image of y,. As a result, X is irreducible as the image of the irreducible variety
G xg b. Since for all (x,y) in X N hreg X byee, there exists a unique w in W(R) such that y = w(x),
the fiber of y, at any element X N G.(be X byey) has one element. Hence y, is birational, whence
the assertion.

(ii1) The morphism 7 is finite, and so is y. Moreover m, is smooth over by, Y 1s smooth over
Oreg- Finally, 7, is flat and all fibers are normal and Cohen-Macaulay. Thus the same holds for the
morphism p. Since b is smooth this implies that X is normal and Cohen-Macaulay by [MA86, Ch.
8, §23].

(iv) According to (ii), (iii) and Lemma 1.4, k[X] = H%(G X b, Ogx,). Under the action of G in
a x b, k[g X h]% = S(g)¢ ®, S(h) and its image in k[X] by the quotient morphism is equal to S(b).
Moreover, since G is reductive, k[X]° is the image of k[g x h]° by the quotient morphism, whence
the assertion. O

Proposition 2.5. [He76, Theorem B and Corollary] The variety X has rational singularities.

Corollary 2.6. (i) Let x and x’ be in by, such that x" is in G.x and X' =X Then X' is in B(x).
(ii) For all w in W(R), the map

U_ X brg — X, (g, x) > (9(x), w(x))
9



is an isomorphism onto a smooth open subset of X.

Proof. (i) The semisimple components of x and x” are conjugate under B since they are conjugate
to X under B. Let b and b’ be in B such that X is the semisimple component of b(x) and b’(x").
Then the nilpotent components of b(x) and b’(x’) are regular nilpotent elements of g*, belonging to
the Borel subalgebra b N g* of ¢*. Hence x’ is in B(x) since regular nilpotent elements of a Borel
subalgebra of a reductive Lie algebra are conjugate under the correponding Borel subgroup.

(ii) Since the action of G and W(R) on X commute, it suffices to prove the assertion for w = 1.
Denote by 6 the map

U_ X Byeq X, (g, x) > (g(x), X).

Let (g, x) and (¢g’, x’) be in U_ X by, such that (g, x) = 6(¢g’, x'). By (i), X' = b(x) for some b in
B. Hence g~'g’b is in G*. Since x is in by, G* is contained in B and g~'¢’ is in U_ N B, whence
(9,x) = (g’,x') since U_N B = {1,}. As aresult, 6 is a dominant injective map from U_ X b, to the
normal variety X. Hence 6 is an isomorphism onto a smooth open subset of X, by Zariski’s Main
Theorem [Mu88, §9]. m|

2.3.  According to Lemma 2.1,(i), G X b is a desingularization of B® and we have the commu-
tative diagram:

k
G xp b ®

Yn B
X %

B®

Lemma 2.7. Let @ be the canonical projection from X* to o*. Denote by v, the map
bk_>xk9 (-X1,...,.Xk)'_>(X1,...,Xk,x_1,...,x_k)-

(i) The map v is a closed embedding of b* into X*.

(ii) The subvariety 1;(bX) of X* is an irreducible component of @' (b%).

(iii) The subvariety @' (b%) of X* is invariant under the canonical action of W(R)* in X* and
this action induces a simply transitive action of W(R)* on the set of irreducible components of
@ (bh).

Proof. (1) The map
bk

Gkka, (xl,...,xk)t—>(1g,...,1g,x1,...,xk)

defines through the quotient a closed embedding of b* in G* x b*. Denote it by . Let y be the
map

Gk XBk bk xk s (-xl’ ey -xk) — (Xn(xl), oo ,Xn(xk))-
®,,

Then ¢, = y, o'. Since y, is a projective morphism, ¢; is a closed morphism. Moreover, it is an
embedding since @t is the identity of b¥.

(i) Since S(b) is a finite extension of S(h)"™®, @ is a finite morphism. So @' (b¥) and b* have
the same dimension. According to (i), ¢(b%) is an irreducible subvariety of w™!(b¥) of the same
dimension, whence the assertion.

(iii) Since all the fibers of @ are invariant under the action of W(R)* on X*, @~!(b%) is invariant

under this action and W(R)* permutes the irreducible components of @~!(b*). For w in W(R)*, set
10



Zy = wy (0. If Z,, = 4(0Y), then for all (xy, ..., x) in D, (x1s. .., X6 w.(Xy, ..., X)) ds in (05
so that (x, ..., x;) is invariant under w and w is the identity.
Let Z be an irreducible component of @' (b¥) and let Z, be its image by the map

(-x19---9-xk9yla---syk) L (-x_ls'--3-x_k9yl3---ayk)'

Since @ is G*-equivariant and b* is invariant under B¥, w~!(b%) and Z are invariant under B*. Hence
by Lemma 1.8, Z; is closed. Moreover, since the image of the map

Z x 1k

xk > ((xl" s X Yl - -,yk),(ul,- . ',uk)) — (X1+I/l1,. s Xpt Uk, YL, - -,yk)

is an irreducible subset of @~!(b*) containing Z, Z is the image of this map. Since Z, is contained
in X(*, Z, is contained in the image of the map

bk x W(R)* BEXBHY . (xp, e X Wi e wi) > (X1 X Wi (X)), - wi(X)).
As W(R) is finite and Z, is irreducible, for some w in W(R), Z, is the image of h* by the map
X1y, x) — (X, x wa(Xy, .00, X))
and Z = Z,,, whence the assertion. O
Set 9 := G* X b*. The map
G x b GF x b~ | (G015 s V) (G Gy UL, e, UR)

defines through the quotient a closed immersion from G X b* to ). Denote it by v. Consider the
diagonal action of G on ¢* and X*: g.(x1,..., X, Y1, ... yx) = (g(x1),....9(X), Y1, ..., yx), and
identify G x b* with v(G x b¥) by the closed immersion v.

Corollary 2.8. Set BY := G.y(bh).

(i) The subset BL is the image of G X b* by )(flk). Moreover; the restriction of )(E,k) to G xg bk is
a projective birational morphism from G xg b* onto B;k).

(ii) The subset B® of X* is an irreducible component of @ (B®).

(iii) The subvariety w ' (BP) of X* is invariant under W(R)* and this action induces a simply
transitive action of W(R)* on the set of irreducible components of w™'(B®).

(iv) The subalgebra k[B®] of k[w ™ (BP] equals k[w‘l(B(k))]W(fR)k with respect to the action of
W(R)K on @ {(B®).

(k)

Proof. (i) Let y be the restriction of ¥ to G x5 b*. Since ¢, = yFor’, G x5 bF = G./(0P) and ¥
is G-equivariant, BH = ¥«x(G x5 b¥). Hence BY is closed in X* and Yx 18 a projective morphism
from G x5 b* to BY since y is a projective morphism. According to Lemma 2.1,(i), @weyy is a
birational morphism onto B®. Then 1, is birational since w(BY) = B®, whence the assertion.

(ii) Since @ is a finite morphism, @' (B®), B® and B have the same dimension, whence the
assertion since BY is irreducible as an image of an irreducible variety.

(iii) Since the fibers of @ are invariant under W(R)*, @' (B®) is invariant under this action and
W(R)* permutes the irreducible components of @' (B®). Let Z be an irreducible component of
@ '(BW). As @ is G*-equivariant, @~ !(B®) and Z are invariant under the diagonal action of G.
Moreover, Z = G.(Z N @' (bX)) since B® = G.b*. Hence for some irreducible component Z, of
ZNw ' (v"), Z = G.Zy. According to Lemma 2.7,(iii), Z, is contained in w.,(b%) for some w in
W(R)*. Hence Z = w.BY since the actions of G* and W(R)* on X* commute and Z is an irreducible
component of @~ (B®).

1



Letw = (wy,...,w) be in W(R)* such that w.BY = BY. Let x be in by and leti = 1,...,k.
Set:
X if j=1i

Z2:= (X1, ooy Xy X1, ..., X)) With x; := .
(X1 oo X X155 ) / x; =e otherwise

Then there exists (y, . .., y;) in b* and g in G such that
w.z = (gW1s .9, Y1, - - - Yoo)-

For some b in B, b(y;) = y; since y; is a regular semisimple element, belonging to b. As a result,
gb~'(y;) = x and w;(x) = y;. Hence gb™' is an element of Ng(b) representing w;'. Furthermore,
since gb~'(b(y;)) = e for j # i, b(y;) is a regular nilpotent element belonging to b. Then, since
there is one and only one Borel subalgebra containing a regular nilpotent element, gh~!(b) = b and
w; = 1y. As aresult, w is the identity of W(R)*, whence the assertion.

(iv) Since the fibers of @ are invariant under W(R)*, k[B®] is contained in k[w ! (B®)]"®",
Let p be in k[ (B®)]"®' Since W(R) is a finite group, p is the restriction to @' (B®) of an el-
ement g of k[X]®, invariant under W(R)*. Since k[X]"™® = S(g), ¢ is in S(g)® by Lemma 2.1,(iv),
and p is in k[B®], whence the assertion. O

2.4. For a a positive root, denote by b, the kernel of @ and by S, the closure in b of the image of
the map

UXxb,

b, (g, x) — g(x).
For g in 11, set:

Ug 1= @ gﬁ, bﬁ = bﬁ@ﬂlg.
@R\ {B}

Lemma 2.9. For @ in R, let V), be the set of subregular elements belonging to ,.
(i) For a in R,, S, is a subvariety of codimension 2 of b. Moreover, it is contained in b \ bye,.
(1) For BinIl, Sg = bg.
(iii) The S, ’s, a € R, are the irreducible components of b \ Dye,.

Proof. (1) For xin b, b* = h+kx,. Hence U(),,) has dimension n— 1 + £ — 1, whence the assertion
since U(h;,) is dense in §, and D), is contained in b \ Dye.
(i) ForginIl, U (%) is contained in by since bg is an ideal of b, whence the assertion by (i).
(iii) According to (i), it suffices to prove that b \ by is the union of the S,’s. Let x be in b \ by,.
According to [V72], for some g in G and for some g in I, x is in g(bg). Since bg is an ideal of b,
by Bruhat’s decomposition of G, for some b in B and for some w in W(R), b~'(x) is in w(bg) N b.
By definition,
w(bg) = w(bp) & witg) = bup & () 9"
aeR\(B)
So,
w(bﬁ) Nb= bw(ﬁ) ® 1y with Uy 1= @ gw(a).

aeR\(B)
w(@)eR +

The subspace 1, of 1 is a subalgebra, not containing g“. Then, denoting by U, the closed sub-
group of U whose Lie algebra is aduy,

Uo(hus) = w(bg) N D
12



since the left hand side is contained in the right hand side and has the same dimension. As a result,
xisin S, since S ) is B-invariant, whence the assertion. O

Recall that 6 is the map

U X breg X, (g, x) — (9(x),X)

and denote by W; the inverse image of 6(U_ X by) by the projection

BY

x’ ('xl?"'9xk?yl""’yk)l_)('xl’yl)'

Lemma 2.10. Let W, be the subset of elements (x, y) of Bf(k) (x € g5,y € V) such that E, N Oreg IS
not empty.
(1) The subset W, of BY is a smooth open subset. Moreover, the map

U— X breg X bk_l W[; 5 (ga Xy ,Xk) [ (g(xl)’ .. ’g(xk)a x_l’ ‘e 9x_k)

is an isomorphism of varieties.

(i1) The subset B;k) of 6 x b* is invariant under the canonical action of GL(k).

(ii1) The subset Wy of Bf(k) is a smooth open subset. Moreover, Wy is the G X GLy(k)-invariant
set generated by W,.

(iv) The subvariety BON\ W, of BY has codimension at least 2k.

Proof. (i) According to Corollary 2.6,(ii), 8 is an isomorphism onto a smooth open subset of X. As
aresult, W/ is an open subset of BY and the map

U_ X by X b1

W, (g, X155 X)) o (g(x1), - o, g(xa), X5 ooy Xg)

is an isomorphism whose inverse is given by

w; U_ X by X b1

(X15 e e ey X0) > (07, X1, 07 (et X101, - -+, 071 (g, X0)1(300)

with 6! the inverse of 6 and 87! (x;, X7), the component of 8~!(x;, X7) on U_, whence the assertion
since U_ X byeg X B¥! is smooth.
(ii) For (x1, ..., x) in b* and for (a; ;, | < i, j < k) in GLy(k),

k k
E aijXj = E aijXj
J=1 J=1

so that 1;(b%) is invariant under the action of GL(k) in g* x b* defined by

k k
(@1 <0 j SR Xyt y) = O axy i = 1ok Y ayy =1 k),
=1

=

whence the assertion since BY = G.¢;(b%) and the actions of G and GL;(k) in g* X b* commute.
(iii) According to (i), G.W, is a smooth open subset of BY. Moreover, G.W/ is the subset of
elements (x,y) such that the first component of x is regular. So, by (ii) and Lemma 1.9, W, =

GL(k).(G.W,), whence the assertion.
13



(iv) According to Corollary 2.8,(1), B;k) is the image of G X b* by the restriction y, of )(flk) to
G xgb*. Then B;k) \ W, is contained in the image of GXxg (b \ breg)k by yx. As aresult, by Lemma 2.9,

dim B4\ W, < n + k(b, — 2),
whence the assertion. O

Corollary 2.11. The restriction of yy to y;' (Wy) is an isomorphism onto W. Moreover, y;'(W,) is
a big open subset of G X b-.

Proof. Since the subset of Borel subalgebras containing a regular element is finite, the fibers of y,
over the elements of W, are finite. In particular, the restriction of y, to y;'(W,) is a quasi finite
surjective morphism onto W;. So, by Zariski’s Main Theorem [Mu88, §9], it is an isomorphism
since W is smooth by Lemma 2.10,(ii1).

Recall that G x b¥ identifies with a closed subset of G/B X g*. For u in G/B and x in g* such
that (u, x) is in G X b, (u, x) is in ¥ (W) if and only if E, N reg 18 NOt empty. Denote by 7 the
bundle projection of the vector bundle G X b* over G/B. Let X be an irreducible component of
G x5 b* \ v 1(W)). For u in 7(X), set:

T o={xed | (u,x) e}

Since W, is a cone, for all u in 1(X), T, is a closed cone of u*, whence n1(X) x {0} = XN G/Bx {0} so
that 7(X) is a closed subset of G/B. Suppose that X has codimension 1 in G Xz b*. A contradiction
is expected. Then n(X) has codimension at most 1 in G/B. If n(X) has codimension 1 in G/B, then
for all u in n(X), X, = u*. It is impossible since u N Oreg 18 DOt empty. As a result, for all u in a
dense open subset of G/B, ¥, is closed of codimension 1 in u*. According to Lemma 2.9, u \ Oreg
has codimension 2 in # and X, is contained in (u \ greg)", whence the contradiction. O

2.5. For E a B-module, denote by £((E) the sheaf of local sections of the vector bundle G X3 E
over G/B. Let A be the diagonal of (G/B)* and let J, be its ideal of definition in O/py- The
variety G/B identifies with A so that O,y /da is isomorphic to Og/p. For E a Bf-module, denote
by L(E) the sheaf of local sections of the vector bundle G* xz E over (G/B)*.

Lemma 2.12. Let E be a B*-module. Denote by E the B-module defined by the diagonal action of
B on E. The short sequence of O g, gy-modules

0 — Ja ®o L(E) — L(E) — Lo(E) — 0

kaBkbk
Is exact.

Proof. Since L(E) is alocally free O/ py-module, the short sequence of O g, zr-modules

0— HA ® L(E) 4 L(E) S OA ®p L(E) — 0

(G/BY (G/BK

is exact, whence the assertion since O, ®¢ L(E) is isomorphic to Lo(E). O

(G/B)

From Lemma 2.12 results a canonical morphism

H((G/B)", L(E)) H’(G/B, Lo(E))

for all B¥*-module E. According to the identification of g and g* by {.,.), the duals of b and u

identify with b_ and u_ respectively so that b_ and u_ are B-modules.
14



Lemma 2.13. (i) The algebra k[B®] is equal to HY(G/B, Lo(S(b5))).
(ii) The algebra kIN®] is equal to H(G/B, Lo(S(ik))).
(ii1) The algebra k[BP] is the image of the morphism

HY((G/B)", L(S(¥Y))) HY(G/B, Lo(S(®L))) .

(iv) The algebra k[N®] is the image of the morphism

HY((G/BY, L(S(ub))) HY(G/B, Lo(S(uL))) .

Proof. (i) Since G X b* is a desingularization of the normal variety BY, k[BY] is the space of
global sections of Ogy, by Lemma 1.4. Let 7 be the bundle projection of the fiber bundle G X b*.
Since S(b*) is the space of polynomial functions on b,

ﬂ'*(OGbik) = LO(S(b]i))a

whence the assertion.
(ii) By Lemma 2.1,(ii), G Xz u* is a desingularization of Nflk) so that k[Nflk)] is the space of global
sections of Ogy,+ by Lemma 1.4. Denoting by 7y the bundle projection of G X 1,

NO*(OGXBH") = LO(S(HE))’

whence the assertion.
(iii) Since G* Xz b* is isomorphic to (G X b)¥,

HY((G/B)", Ogix,6) = H(G/B, Ogy)™.
By (),
H"(G/B, Ogx,») = H(G/B, £(S(b-)) = k[X]
since G Xp b is a desingularization of X by Lemma 2.1,(i) and (ii), whence
H(G/B)", L(S(bY)) = k[ X*].

By definition, B is a closed subvariety of X*. According to Corollary 2.8, k[B®] is a subal-
gebra of k[Bff‘)] having the same fraction field and k[Bff‘)] is a finite extension of k[B®]. Hence
k[Bg‘)] is a subalgebra of k[Bflk)]. For ¢ in k[Bg‘)], @ is the restriction to B;k) of an element ¢ of
k[X®]. As mentioned above, i is a global section of £(b*). Denoting by i its restriction to the
diagonal of (G/B)*, ¥ is a global section of £o(S(b*))) so that ¢ is in k[BY]. Moreover, for all
smooth point x of Bik), W(x) = p(x). Hence ¢ is in the image of the morphism

HY((G/B)", L(S(®Y))) HY(G/B, Lo(S(®L))) .

Conversely, for ¢ image of ¥ in H'((G/B)¥, £(S(b*)) by this morphism, ¢ is in k[X*] and ¢(x) =
Y(x) for all smooth point x of BY 50 that @ is the restriction of ¥ to BY.
(iv) Let ¢ be in K[N®]. Since N is a closed subvariety of Nt%, ¢ is the restriction to N® of an

element ¢ of k[‘ﬁ’g]. As mentioned above, i is a global section of £(S(1t)). Denoting by i the

restriction of ¢ to the diagonal of (G/ B)k,_l,_b is a global section of Lo(S(11*))) so that i is in k[Nflk)].
Moreover, for all smooth point x of N®_ y(x) = ¢(x). Hence ¢ is in the image of the morphism

HY((G/B)", L(S(ut))) HY(G/B, £o(S(L))) .




Conversely, for ¢ image of ¢ in H’((G/B)*, £(S(u*)) by this morphism, ¢ is in k[%}] and ¢(x) =

Y(x) for all smooth point x of N® so that ¢ is the restriction of ¢ to N®, |
Let xy,. .., xi be a basis of h¥ verifying the following conditions for j = 1,...,k:
(1) xjy=0forl< (j—1)and > jl
(2) xjjc = h,
(3) Xj(j-1ye+15---»Xjjc—1 18 a basis of the orthogonal complement to 4 in b,

with x;; the component of x; on the j-th factor b. Set:
Ey :=1{0}, Fy :=bF, E; ;= span({xy, ..., x;}), F; = b /E;

fori=1,...,k¢ Inthe B-module b_, ) is the subspace of invariant elements and 1_ is the quotient
of b_bybh. Sofori =0,...,k¢, F; is a B~-module. As a matter of fact, because of the choice of
the basis xi, ..., Xk, F; = F;;X--- X F;; where F;, ..., F;; are B-modules quotient of b_ and the
action of B* on F; is the product action. For i =0, ..., k¢, set:

A; :=H%G/B,Lo(S(F))) and C;:=H(G/B)", L(S(F))).

Denote by B; the image of C; by the restriction map to the diagonal of (G/B)*. Then A;, B;, C;
are integral graded algebras. Moreover, by Lemma 1.4, A; and C; are normal as spaces of global
sections of structural sheaves of vector bundles over G/B and (G/B)*. For i < k¢, the B*-module
F;, is a quotient of the Bf-module F; so that S(Fi,) is a quotient of S(F;) as a B*-algebra and
L(S(Fiy1)) and Ly(S(Fi41)) are quotients of L(S(F;)) and Lo(m) respectively, whence mor-
phisms of algebras

Ci . Ciyi and A $Ai+l .
Fori =0,...,kl — 1 and m positive integer, denote again by x;,; the image of x;,; in F; by the

m
i+

quotient morphism and by J,,; the ideal of S(F;) generated by x
Bf-module F;, J,,; is a B*-submodule of S(F)).

\- As xj,1 is a fixed point of the

Lemma 2.14. Leti = 0,...,kl — 1 and m a positive integer.

(1) The algebra k[ x;,,] is canonically embedded in A; and C;.

(ii) The space H*(G/B, Lo(m)) is the ideal of A; generated by x!, | and the image of the canon-
ical morphism

H(G/B, Lo(J,n,))

HY(G/B, Lo(S(Fis1) @ k7))

is equal 10 v;o(A;) & kx|

(iii) The space H'((G/B)*, £L(J,,.)) is the ideal of C; generated by x!., and the image of the
canonical morphism

H((G/B)", £(Jn.) H((G/BY, L(S(Fis1) ®: kx)))

+

is equal to Ciy1 @ kx"

i+1°
(iv) Let vy, ...,v; be in A; such that v;y(vy), . . ., vio(v)) are linearly free over k. Then vy, ...,v; are
linearly free over k[ x;.1].
(v) Let wy,...,w; be in C; such that vi(w,),...,vi(w;) are linearly free over k. Then wy,...,w,

are linearly free over k[ x;.1].
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Proof. (i) Since x;,; is a fixed point of the B*-module S(F;), £(k[x;;]) and Lo(k[x;,;]) are sub-
modules of L(S(F;)) and Lo(m) respectively. Moreover they are isomorphic to O, py ® k[ xi11]
Og/s @ k[x;11] respectively, whence the assertion.

(i) Since F;,, is the quotient of F; by kx;,;, we have the exact sequence of B*-modules,

O — Jm+1,i — Jm,i — S(Fi+l) ®k kxm

i — 0,

whence the exact sequence of Og,z-modules,

0 —> Lo(pi1) — Lo(Tmi) — Lo(S(Fisr) & kx™ ) — 0,

and whence the canonical morphism

H'(G/B, Lo(Tm)))

HY(G/B, Lo(S(Fis1) @ kxl} ) -

m
i+1

In particular, v; o(A;)® kx]} | is contained in its image since the image of ax i)
for all a in A;.

Let a be in H(G/B, Lo(m)). Let Oy,...,0; be a cover of G/B by affine trivialization open
subsets of the vector bundle G X S(F;). For j = 1,...,/, denoting by ®; a trivialization over O,

we have a commutative diagram:

is equal to v;p(a)ex

@;
7H0)) O; X S(F)
\ \Lprl
0;j

with 7r; the bundle projection. Since x;,; is invariant under B, for ¢ local section of Ly(S(F;)) above
0;, ©;(x",¢) = xI},D;(¢), whence

1+ i+1
D;,(T(O;, Lo(Jm)) = K[O;] ® S(F)X,,.

As a result, for some local section a; above O; of Ly(S(F))), a = x!},a;. Moreover, a; is uniquely
defined by this equality. Then for all j, j/, a; and a; have the same restriction to O;N O . Denoting
by a’ the global section of £,(S(F;)) extending ay, ...,a;, a = a’x}},, whence the assertion.

(1i1) According to [He76, Theorem B and Corollary], for a B-module quotient V of b_ having
u_ as quotient, H'(G/B, £y(V)) = 0. Hence Cj,, is the image of v;. From the exact sequence of
(G/B)*-modules

0— Jps1i — Iy — SFu) & kx;, — 0,
we deduce the exact sequence of O g, pr-modules,
0 — L) — L) — LS(Fi) & kxjy) — 0,

and whence the canonical morphism

HY((G/B)", £(Jn)) HY((G/B)", L(S(Fi1) ® kx; ) .

In particular, Cy,; ®, kx'}, is its image since the image of ax],
and C;, is the image of v;.

Let a be in H(G/B, L(Jn,i)). Prove by induction on [ that for some a; in C;, a — a;x}, is in
HG/B, £L(J,,,1,)). It is true for [ = 0. Suppose that it is true for /. By the above result for m + [,

for some a; in C;, a — a;x;| — a;xl’.ﬁ’ is in H*(G/B, £(J,14111.)), whence the statement. As C; is a
17
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graded algebra and H(G/B, £(J,,,;;)) is a graded subspace whose elements have degree at least
m + 1, for [ sufficiently big, a = a;x} |, whence the assertion.
(iv) Suppose that vy,...,v; is not linearly free over k[x;,;]. A contradiction is expected. Let

ai,...,a; be in k[x;.;] such that a; # O for some i and
apv; +---+au; =0.

Suppose that m is the biggest integer such that x7} | divides ay,...,aq; in k[x;,]. For j = 1,...,1,
denote by c; the element of k such that x”"*! divides a; — c¢;x",. Then by (ii),

i+1°
c1vio(vr) + -+ cvipvy) =0,

whence a contradiction by the maximality of m.
(v) Suppose that wy,...,w; is not linearly free over k[x;;;]. A contradiction is expected. Let
ai,...,a; be in k[x;,;] such that a; # 0 for some i and

ayw;, + -+ aquw; = 0.

Suppose that m is the biggest integer such that x7} | divides ay,...,aq; in k[x;,]. For j = 1,...,1,
denote by ¢; the element of k such that x*! divides a; — ¢ ;jxi:,. Then by (iii),

i+1

crvi(wy) + -+ cvi(wy) =0,
whence a contradiction by the maximality of m. O

Corollary 2.15. Leti=0,...,k¢ — 1.

(1) The algebra A; is a free extension of kl[x;.1] and v;o(A;) is the quotient of A; by the ideal
generated by x;,,.

(i1) The algebra C; is a free extension of k[x;;1] and Ci,, is the quotient of C; by the ideal
generated by x;,1.

(ii1) The algebra B; is a free extension of k[x;.1] and B;,, is the quotient of B; by the ideal
generated by x;,1.

Proof. (1) Let K be a k-subspace of A; such that the restriction of v; to K is an isomorphism onto
the k-space v;(A;). Prove by induction on m the equality

A; = Kok[x;11] + HY(G/B, Lo(J ).

The equality is true for m = 0. Suppose that it is true for m. Let a be in HO(G/B,LO(K,,-)).
By Lemma 2.14,(i1), for some b in A;, a — bx(}, is in HO(G/B,LO(THJ)), whence the equality.
Since A; is graded with x;;; having degree 1, A; = Kok[x;;1]. So A; is a free k[x;;;]-module by
Lemma 2.14,(iv). Again by Lemma 2.14,(ii), v;o(A;) is the quotient of A; by the ideal generated by
Xit+1-

(i1) Let K be a k-subspace of C; such that the restriction of v; to K is an isomorphism onto the
k-space C;,;. Prove by induction on m the equality

Ci = Kk[x;11]1 + H'(G/B)", L(J ).

The equality is true for m = 0. Suppose that it is true for m. Let a be in H'(G/B)*, £L(J,.,).
By Lemma 2.14,(iii), for some b in C;, a — bx}, is in H°((G/B)*, £(J,u41.i)), whence the equality.
Since C; is graded with x;;; having degree 1, C; = Kk[x;11]. So C; is a free k[x;;;]-module by
Lemma 2.14,(v). Again by Lemma 2.14,(iii), C;; is the quotient of C; by the ideal generated by
Xit1-
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(i11) We have the commutative diagram

Vi

Ci Ci+1
B, —— By,

where the vertical arrows are the restriction morphisms to the diagonal of (G/B)* and Vi, is the
restriction of v;o to B;. In particular v/ is surjective since so is v;. Let Kj be a k-subspace of
B; such that the restriction of v/ to K| is an isomorphism onto the k-space B;,;. For m positive

integer, denote by J,,; the image of the restriction morphism to the diagonal of (G/B),

HY((G/B)", £(Jn)) B;.

Prove by induction on m the equality
B; = Kék[xi+1] + Jmii

The equality is true for m = 0. Suppose that it is true for m. Let a be in J,,;. Then a is the
image of an element a’ of H*((G/B)*, £(J,,,)). By Lemma 2.14.(iii), for some »’ in C;, @’ — b'xl,
is in H*((G/B)*, £(J,p+1.)). Denoting by b the image of b’ in B;, a — bx!}, is in 3,1, whence the
equality. Since B, is graded with x;; having degree 1, B; = K{k[x;;]. So B; is a free k[x;,;]-module
by Lemma 2.14,(iv).

Since B, is contained in v;o(A), K| can be chosen contained in K. Letv;, [ € L be a basis of K
such that v;,/ € L’ is a basis of K for some subset L’ of L. Let a be in the kernel of v} . Then a is

in the kernel of v;( so that a = bx;,; for some b in A; by Lemma 2.14,(ii). By (i) and the freeness

of the extension B; of k[x;,],
b= Zvlpl and a= Zvl(]l

leL lel’

with p;,l € L and ¢;,1 € L’ in k[x;;] with finite supports. Then ¢, = p;x;;; forall /in L" and p; = 0
for /in L \ L’ so that a is in B;x;.;, whence the assertion. O

For j = 0,...,k¢t, set F; := Specm(S(F;)). By definition, F; is the subspace of elements
(Y1, .. yp) of B¥ such that form = 1,...,kand [ = 1,..., j, (Y, Xms) = O.

Lemma 2.16. Let i = 0,...,k( — 1. Denote by T the annihilator of x;. in the A;-module
H'(G/B, Lo(S(F))).

(1) The algebra A; is the integral closure of B; in its fraction field.

(i1) There is a well defined morphismu : T — A1 of Ai-modules.

(111) The A;-module A, is the direct sum of u(T) and v;(A;).

Proof. Since A; is the space of global sections of £o(S(F;)), for all integer m, H*(G/B, Lo(S(F})))
is a A;-module.

(1) According to the proof of Lemma 2.1, Qg‘) is an open subset of g* such that for all x in
Qg‘) N B®, there exists only one Borel subalgebra of g containing E,. By definition, F I is the
subspace of elements (y, . ..,yx) of b* such that for j = 1,...,kand [ =1,...,i, (yj, x;>) = 0. By
Lemma 1.7, G.F} is a closed subset of g* and the morphism G X F; — G.F; is projective. By

Conditions (1), (2), (3), for some y», ..., Y1 in b, (e,ys,...,yx-1,h) is in F. Hence Qg‘) NG.F;
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is a dense open subset of G.F; and the above morphism is birational. So, by Lemma 1.4, A; is the
integral closure of k[G.F}] in its fraction field.

By Lemma 1.7, GX.F; is a closed subset of g* containing G.F;. Then for all ¢ in kK[G.F], ¢
is the restriction to G.F; of an element i of k[G*.F *] so that ¢ is a global section of L(S(F7)).
Denoting by ¢ the restriction of ¢ to the diagonal of (G/B)X, ¢ = ¢. Hence k[G.F 71 is contained
in B; so that A; is the integral closure of B; in its fraction field.

(i) Let O := Oy,...,0,, be a cover of G/B by open subsets isomorphic to the affine space of
dimension n so that O; is a trivialization open subset of the vector bundles G Xp m and G Xp
S(F:11). Denote by Z' the space of cocycles of degree 1 of the complex C* of Cech cohomology
of O with values in Lo(S(F))).

Let @ be in T and a a representative of @ in Z'. Since @ is in T, x;,a is the boundary of an
element b of C°. For [ = 1,...,m, denote by b; the component of b in ['(O;, O(S(F ))) and by b1
its image in I['(O;, £ o(S(Fir1) z+1))) by the quotlent morphism. Then for 1 < [,I” < m, b1 and b[/ have
the same restriction to O; N Oy so that b, is the restriction to O; of an element b of A Ifd isa
representative of @ in 2!, @’ — a is the boundary of an element 5" in C° and x;,,a is the boundary
of b+ x;1b’. Hence b only depends on a, whence a well defined map T —— A, . Itis clearly a
morphism of A;-modules.

(11i1) From the exact sequence of Og,z-modules

0 — Lo(xin1S(F7)) — Lo(S(Fy) — Lo(S(Fir1)) — 0
we deduce the long exact sequence of cohomology
++— A — Ay — x:H'(G/B, Lo(S(F))) — H'(G/B, Lo(S(F))) — -+

since x;; is a global section of L(S(F;)) by Lemma 2.14,(i). Since the Og,g-modules L (x;1S(F;))
and L£y(S(F};)) are isomorphic, we have an isomorphism

H'(G/B, Lo(xir1S(F))) H'(G/B, Lo(S(F)))
and the image of the kernel of the arrow
xi:H'(G/B, Lo(S(F1)) — H'(G/B, Lo(S(F))))
by this isomorphism is equal to 7', whence an exact sequence
A — A, — T — 0.
By (ii), from the definition of the arrow
HY(G/B, Lo(S(Fix1)) — xiriH'(G/B, Lo(S(F))

we deduce that for a in T, the image of u(a) is equal to a. Hence A;, is the direct sum of u(7") and
Vio(Ap). |

Corollary 2.17. Fori=0,...,kl — 1, v;o(A;) is equal to A;,.

Proof. According to Lemma 2.16, A;; is the direct sum of u(7T") and v;o(A;). Let a be in u(T).

By Lemma 2.16,(1) A;;; and v;((A;) have the same fraction field since B;,; is contained in v;((A;)

by the proof of Corollary 2.15,(iii). So for some b in v;((A;), ba is in v;((A;), whence ba = 0 by

Lemma 2.16,(i1) and (iii). As a result, u(7) = {0} and v;o(4;) = Ai11- O
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Proposition 2.18. (i) The algebra k[Bg‘)] is a free extension of S(H) and k[Nflk)] is the quotient of
k[Bflk)] by the ideal generated by S (b").

(ii) The algebra k[B;k)] is a free extension of S(b*) and k[NW] is the quotient of k[B;k)] by the
ideal generated by S (b").

Proof. (i) According to Lemma 2.13,(i) and (ii), Ay = k[Bflk)] and Ay, = k[Nflk)]. Moreover,
S(H*) = k[xy, ..., x] by definition. So the assertion will result from the following claim:

Claim 2.19. Fori =1,...,kl, Ay is a free extension of k[xy, ..., x;] and A; is the quotient of Ay by
the ideal generated by x, ..., x;.

Prove the claim by induction on i. According to Corollary 2.15,(i) and Corollary 2.17, the claim
is true for i = 1. Suppose that it is true for i. By Corollary 2.15,(i) and Corollary 2.17, A;,; is the
quotient of A; by the ideal generated by x;.;. So by induction hypothesis, A;;; is the quotient of
Ay by the ideal generated by x,...,x;;. For j=1,...,i+ 1, denote by y; the quotient morphism

Ap—A; . Let K;,; be a k-subspace of A, such that the restriction of y;;; to K;;; is a k-linear
isomorphism onto A;;;. Then Ay = K;41 + Apx; + -+ - + Agxiy1. So by induction on m,

Ag = Kiikl[xy, ..., xi1 ] + Ao

with 3, the ideal of k[xi,...,x;;1] generated by its monomials of degree m. As a result, Ay =
Kik[xy,...,x;41] since A is a graded algebra.
Let vy,...,v, be linearly free over k in K;;; and let ay,...,q; be in k[x, ..., x;;1] such that

av; +---au; = 0.

aj= Z AjmXisy

meN

For j=1,...,1, a; has an expansion

with aj,,,m € Nink[xy, ..., x;] with finite support. According to Corollary 2.15,(i), the sequence
Xl wi(vy), (jym) € {1,..., [} XN is linearly free over k. So, by induction hypothesis, a;,, = 0 for all
(j,m). As aresult, Ay is a free extension of k[xy, ..., x;11], whence the claim.

(ii) According to Lemma 2.13,(iii) and (iv), By = k[BX] and By, = k[N®]. So the assertion will
result from the following claim:

Claim 2.20. Fori =1,...,kl, By is a free extension of k[xy, ..., x;] and B; is the quotient of B, by
the ideal generated by xi, ..., x;.

Prove the claim by induction on i. According to Corollary 2.15,(iii), the claim is true for i = 1.
Suppose that it is true for i. By Corollary 2.15,(iii), B;; is the quotient of B; by the ideal generated
by x;+1. So by induction hypothesis, B, is the quotient of By by the ideal generated by xi, ..., X;1.
For j = 0,...,k¢, B;is contained in A; and the quotient morphism By, — B; is the restriction
of uj to By. Let K| be a k-subspace of By such that the restriction of y;,; to K, is a k-linear
isomorphism onto B;.;. Then By = K, | + Box; + -+ + Box;;;. So by induction on m,

By = K/ [k[x1,..., X ]+ BoS,.

i+1
As aresult, By = K/, k[x;,...,x;] since By is a graded algebra. Moreover by (i), a basis of
K’ , is linearly free over k[xy, ..., x;;1] so that By is a free extension of k[x, ..., x;;1], whence the

claim. m|
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Remark 2.21. According to Proposition 2.18, S(h*) is embedded in k[B;k)] and by Lemma 2.13,(iii),
the embedding is given by the map

S(bk) k[B;k)] ’ P’_>((xl,---,xk,yl,---,yk)’_)p(yl,---,yk)-

Denote by ® this map.

Corollary 2.22. (i) The image of ® is equal to k[ B 1. Moreover, k[BL] is generated by k[ B®]
and k[B®1°.

(ii) The image of ® is equal to k[B®1C.

(iii) The subalgebras kK[B®1S and O((SH))V®) of kK[BP1C are equal.

Proof. (i) Since B;k) is a closed subvariety of X* and k[X] is generated by S(g) and S(b), k[Bg‘)]
is generated by S(h*) and the image of S(g*) in k[B¥] which is equal to k[B®]. For p in k[BY],
denote by p the element of S(h)®* such that

DXty ey Xi) 1= P(X1y ey Xy X1y e o o5 Xk)-

Then the restriction of p — ®(p) to 1 (h*) is equal to 0. Moreover, if p is in k[B¥1C, p— D) is
G-invariant so that p = ®(p) since G.i(h*) is dense in B;k), whence the assertion.

(i1) Since k[B;k)] is contained in k[Bflk)], S0 18 k[Bik)]G by (i). Since G is reductive, there exists
a projection k[BY] ——=k[BP1S which is k[BY]%-linear. As a result, k[B¥]C is the integral
extension of k[B;k)]G in k[Bflk)] since k[B;k)] is an integral extension of k[B;k)]. Let J be the ideal
of augmentation of k[B;k)]G and set J' = k[Bflk)]J. By (i) and Proposition 2.18,(i), J is a prime
ideal. Suppose that k[B;k)]G is strictly contained in k[Bg‘)]G. A contradiction is expected. The
algebras k[Bflk)]G and k[Bik)]G are graded subalgebras of k[Bflk)]. Let a be a homogeneous element
in k[BY1° \ k[BP1° of minimal degree. Then a has positive degree. As a result, it is in J’ since J’
is radical and a satifies a dependence integral equation over k[BX1¢. Since k[B®1°J is the image
of J' by the projection k[BY] —=k[BX1% | ais in K[BY1°J. By the minimality of the degree

of a, aisin k[Bg‘)]G, whence the contradiction.
(iii) For (xi, ..., x;) in b¥, for w in W(R) and for g,, a representative of w in Ng (D), we have

(w(x1), ..., wlx), wlxy), . .., wXK)) = Gu-(X1, - ooy X, WX, - W)
so that the subalgebra k[B®]C of k[BX1C is contained in ®((S(H))"™®) by (i). Moreover, since
G is reductive, k[B®1 is the image of (S(g)®)“ by the restriction morphism. According to [JO7,

Theorem 2.9 and some remark], the restriction morphism (S(g)®)¢ — (S(H)*)"™® is surjective,
whence the equality k[BX] = d((S(H))V ™). o

According to Proposition 2.18,(ii)) and Corollary 2.22,(i), k[Bff‘)] is a free extension of
K[BL1% = S(6°).

Corollary 2.23. Let M be a graded complement to k[ B®19k[B®] in k[BW].
(1) The space M contains a basis of k[BP] over S(H)*.
(i1) The intersection of M and S+(b")k[3§k)] is different from {0}.

Proof. (i) Since M is a graded complement to k[B®1k[B®] in k[B®], by induction on /,
K[BY] = ME[B]% + (K[BY1)K[BY).
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Hence k[B®] = MK[B®]° since k[ B*®] is graded. Then, by Corollary 2.22,(i) and (ii),
k[B;k)] = MS(H)** and k[B;k)] =M+ S+(bk)k[3;k)].

Then M contains a graded complement M’ to S+(bk)k[3;k)] in k[Bf(k)], whence the assertion.
(i1) Suppose that M’ = M. We expect a contradiction. According to (i), the canonical maps

M ®, S(b)** k[BY], M &, k[B®1C k[B®]

are isomorphisms. Then, according to Lemma 1.5, there exists a group action of W(R) on
k[B"] extending the diagonal action of W(R) in S(§)®* and such that k[BX]"® = k[B®] since
k[B®] N S(H)** = (S(H)®)"® by Corollary 2.22,(iii). Moreover, since W(R) is finite, the subfield
of invariant elements of the fraction field of k[B"] is the fraction field of k[B®1"® . Hence the
action of W(R) in k[B;k)] is trivial since k[Bg‘)] and k[B®] have the same fraction field, whence
the contradiction since (S(h)®)"® is strictly contained in S(h)%*. o

3. ON THE NULLCONE
Let kK > 2 be an integer. Let I be the ideal of k[Bflk)] generated by 1eS, (b*).

Lemma 3.1. Let N be the subscheme of BE defined by 1.
(1) The ideal I is prime and N is isomorphic to Nflk).
(ii) The variety N is the inverse image of N® by .

Proof. (i) By Proposition 2.18,(1), k[N] = k[Nflk)], whence the assertion.
(i1) By (i), N is reduced hence a variety. According to Remark 2.21, for (g, xi, ..., x) in G X ¥,
vu((g, X1, ..., X)) is a zero of I if and only if x1, ..., x; are nilpotent, whence the assertion. O

Theorem 3.2. (i) The variety N® is normal if and only if so is BX. If so, y, = vx and the
restriction of @ to B is the normalization morphism of B®.

(ii) The variety N® is Cohen-Macaulay if and only if so is B .

(iii) The variety N® has rational singularities if and only if it is Cohen-Macaulay.

(iv) The variety BY has rational singularities if and only if it is Cohen-Macaulay.

(v) Let Iy be the ideal of k| BW] generated by k[ BP9, Then I, is strictly contained in the ideal
of definition of N® in k[B®].

Proof. (i) According to Proposition 2.18,(ii), k[BY] is a free extension of S(b*) and k[N®] is the
quotient of k[Bg‘)] by the ideal generated by S, (b*). So by [MA86, Ch. 8, Theorem 23.9 and
Corollary], 0 is a normal point of B if N® is normal. As a result B is normal if so is N®
since BY is a cone and its set of normal points is open. Conversely, suppose that B is normal
so that B = B and y, = y,. Moreover, by Corollary 2.8,(i), the restriction of @ to BY is the
normalization morphism of B®. According to Proposition 2.18,(i), k[Nr(lk)] is the image of k[Bflk)]
by a morphism and by Proposition 2.18,(ii), k[N®] is the image of k[BX] by this morphism,
whence k[N®] = k[N®.

(ii) Suppose that N® is Cohen-Macaulay. Then the localization of k[B¥] at 0 is Cohen-
Macaulay by [MAS86, Ch. 8, Theorem 23.9] and Proposition 2.18,(ii). By [MA86, Ch. 8, Theorem
24.5], the set of points of B® at which the localization is Cohen-Macaulay is open. Hence BH is
Cohen-Macaulay since its is a cone.

Conversely suppose that BH is Cohen-Macaulay. According to Proposition 2.18,(ii), any basis

in S(b¥) is a regular sequence in k[B;k)] and k[N®] is the quotient of k[Bf(k)] by the ideal generated
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by this sequence. Then the localization at 0 of k[N®] is Cohen-Macaulay by [MAS&6, Ch .6,
Theorem 17.4 and Ch. 5, Theorem 14.1]. So, again by [MA86, Ch. 8, Theorem 24.5], N® is
Cohen-Macaulay since its is a cone.

(iii) According to [KK73, p. 50], N® is Cohen-Macaulay if it has rational singularities. Suppose
that N® is Cohen-Macaulay. By Lemma 2.2,(iv) and Corollary 2.3,(i), N® is smooth in codimen-
sion 1. Then, by Serre’s normality criterion [Bou98, §1,no 10, Théoreme 4], N® is normal. So, by
[KK73, p.50], it remains to prove that for U open subset of N® and w a regular differential form
of top degree on the smooth locus of U, v*(w) has a regular extension to v~ (U).

Let U’ be the smooth locus of U. According to Lemma 2.2,(iv), U N V; is contained in U’.
So by Corollary 2.3,(iii), v~'(U’) is a big open subset of v~ !(U). Let Q1) be the sheaf of
regular differential forms of top degree on v~'(U). For some open cover O, ..., 0,, of v '(U),
fori = 1,...,m, the restriction of Q-1 to O; is a free Op,-module of rank 1. Denoting by w; a
generator, for some regular function a; on O; N v I(U),

w |O,ﬂu‘1(U’) = aj(w; |O,ﬂu‘1(U’))'

Since O; is normal and O; N v~!(U’) is a big open subset of O;, a; has a regular extension to O;.
Denoting again by a; this extension, a;w; is a regular differential form of top degree on O; having
the same restriction as v*(w) to O; N v~ (U’). As a result, since Q,-1(y) 1s torsion free and v I(U)
is irreducible, for 1 < i, j < m, a;w; and a;w; have the same restriction to O; N O;. Denoting by w’
the global section of -1, whose restriction to O; is a;w; fori = 1,...,m, v*(w) is the restriction
of w’ to v 1(U"), whence the assertion.

(iv) According to [KK73, p. 50], B is Cohen-Macaulay if it has rational singularities. Suppose
that Bf(k) is Cohen-Macaulay. By Lemma 2.10,(iv), Bf(k) is smooth in codimension 1. Then, by
Serre’s normality criterion [Bou98, §1,no 10, Théoreme 4], Bf(k) is normal. So, by [KK73, p.50], it
remains to prove that for U open subset of BY and w a regular differential form of top degree on
the smooth locus of U, y;(w) has a regular extension to y; L.

Let U’ be the smooth locus of U. According to Lemma 2.10,(iv), U N W; is contained in
U’. So by Corollary 2.11, y;'(U’) is a big open subset of y;'(U). Let Q1) be the sheaf of
regular differential forms of top degree on 7y, Y(U). For some open cover Oy,...,0,, of Vs L,
fori = 1,...,m, the restriction of Q1) 10 O; is a free Op,-module of rank 1. Denoting by w; a
generator, for some regular function a; on O; N y;(U"),

w |0,~my;1(U') = a;(w; |0,~my;1(Uf))-

Since O; is normal and O; N y; 1(U") is a big open subset of O, a; has a regular extension to O;.
Denoting again by a; this extension, a;w; is a regular differential form of top degree on O; having
the same restriction as y:(w) to O; Ny (U’). As a result, since Q1) is torsion free and y, )
is irreducible, for 1 < i, j < m, a;w; and a;w; have the same restriction to O; N O;. Denoting by «’
the global section of Q. -1,y whose restriction to O; is a;w; fori = 1,. .., m, y(w) is the restriction
of o’ to y;'(U”), whence the assertion.

(v) Since k[B®]Y is contained in S,(H*), Iy is contained in I N k[BP]. According to
Lemma 3.1,(ii) and (i), I N k[B®] is the ideal of definition of N® in k[B®]. Let M be a graded
complement of k[BP]9k[B®] in k[B®]. According to Corollary 2.23,(ii), I N M is different from

{0}. Hence I is strictly contained in I N k[B®], whence the assertion. O

Remark 3.3. According to [VX15, 6.2], for g simple of type B, N'¥ is not normal and according

to [VX15, Theorem 6.1], for g = sl3, N® has rational singularities for all k.
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Summarizing the results of the preceding subsections, Theorem 1.1,(1), (ii), (iii), (iv), (vii) are
given by Theorem 3.2, Theorem 1.1,(v) is given by Proposition 2.18,(ii) and Corollary 2.22,(i) and
Theorem 1.1,(vi) is given by Corollary 2.22,(iii). To complete Theorem 1.1, recall that x is the
normalization morphism of N® and denote by 1 the normalization morphism of B;k).

Proposition 3.4. (i) The morphism 1| is a homeomorphism.
(i1) The morphism x is a homeomorphism.

Proof. Recall that the morphisms
G/Bxg and G xgb~

G Xz b G/B x ¢

are closed embeddings. For x = (xy,..., X, Y1,...,Y;) In B;k), denote by B, the subset of Borel
subalgebras b’ of g such that y, (', x;) = (x;, ;) fori = 1,..., k. Then y;'({x}) = B, x {(x1,..., %)}
From the two commutative diagramms

G Xp b* o 'Bflk) , G Xp uk N;k)

N A

(k) *)
¢ N

we deduce that it suffices to prove that B, is connected for all x in B® since v is the restriction of
¥x to G Xp 1k,

For $ a simple root, denote by sz the reflection of ) with respect to 8. For w in W(XR) denote
by l(w) its length with respect to the set of simple roots, n, a representative of w in Ng(h) and
set w(b) := n,(). Let x = (x1,..., X Y1,-..,Yx) be in Bf(k) and b’ and b” in B,. By Bruhat
decomposition of G, for some (g, b, w) in G X B X W(R), v’ = g(b), b” = gbw(b). Set:

l(w) :=gq, ;=g ' (x;), v; == b ()

fori = 1,...,k. In particular, v := (v1,...,06, Y15...,Yx) 1S 1N B;k) and b and w(b) are in B, and it
suffices to prove b and w(b) are in the same connected component of B, since x = gb.v. It will be
a consequence of the following claim.

Claim 3.5. There exist a sequence Ly, ..., L, of projective lines contained in B, and a sequence
by, ..., b, in B, such that

b=D0yp, w)=D>b, Dbii€L;, beL
fori=1,...,q.

Prove the claim by induction on g. For g = 0, b = w(b). Suppose that g = 1 and w = s for some
simple root 8. Then vy, ... v are in b N sg(b) and fori = 1, ...k,

Xn(D,0) = xn(sp(b), v;) = (v, y)).

Let ps be the parabolic subalgebra g + b and I, the reductive factor containing h. The set Ly of
Borel subalgebras of g, contained in pg, is a projective line. In the case g = I, N® is normal and n
is an isomorphism by Theorem 3.2,(1). Then, by Zariski’s Main Theorem [Mu88, §9], the fibers of

vx are connected. So, Lg is contained in B, since b and sz(b) are two different points of B, N L.
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Suppose the claim true for the integers smaller than g. Let w = s, - - 5, be a reduced decompo-

sition of w and set w’ := sy---5,-1. Fori=1,..., g, let §; be the simple root such that s; = sg,. For
i=1,...,k,
v, Eh® @ ¢“? and n)'(v)ebhe @ S,
yeR+ yeR+
wER wER

Since si- - - 5, is the reduced decomposition of w, w(B,) is a negative root, whence
{y e Rilw(y) € Ry} c Ry \ {Bq}

As a result n}(v)),...,n,) () are in b. So, by induction hypothesis, there exist a sequence
Lo, ..., L, of projective lines contained in B, and a sequence by, ..., b,_; in B, such that

b = by, w'(b) = bq—l, b1 € L;, b; € L;

fori =1,...,q— 1. By the case g = 1, for some projective line L, contained in B,-1 ,, b and s,(b)
are in L;. Then, setting b, = w(b) and L, := n,.L;, the sequences Ly, ..., L, and bo, ..., b, verify
the conditions of the claim. O

4. MAIN VARIETIES

Denote by X the closure in Gr,(g) of the orbit of §) under B. According to Lemma 1.7, G.X
is the closure in Gr(g) of the orbit of ) under G. Let &, and & be the restrictions to X and G.X
respectively of the totaulogical vector bundle over Gr/(g). By definition, € is the subvariety of
elements (V, x) of G.X X g such that x is in V and & is the intersection of € and X X b. In this
section, we give geometric properties of X and G.X. These varieties play an important role in
the study of the generalized commuting varieties and isospectrale commuting varieties as it is
suggested by Theorem 1.3 and it will be shown in two future notes.

4.1. ForainR,setV, := b, ® g* and denote by X,, the closure in Gr,(g) of the orbit of V, under
B.

Lemma 4.1. Let a be in R,. Let p be a parabolic subalgebra containing b and let P be its
normalizer in G.

(1) The subset P.X of Gry(g) is the closure in Gry(g) of the orbit of ) under P.

(i1) The closed set X,, of Gry(g) is an irreducible component of X \ B.}.

(ii1) The set P.X,, is an irreducible component of P.X \ P.}.

(1v) The varieties X \ B.Y) and P.X \ Py are equidimenional of codimension 1 in X and P.X
respectively.

Proof. (1) Since X is a B-invariant closed subset of Gr,(g), P.X is a closed subset of GI'[(C[) by
Lemma 1.7. Hence Pb is contained in P.X since b is in X, whence the assertion since Pb is a
P-invariant subset containing X.

(i1) Denoting by H,, the coroot of a,

-1
hm exp(tadxa)( H ) =

So V, is in the closure of the orbit of ) under the one parameter subgroup of G generated by ad x,.
As aresult, X, is a closed subset of X \ B.h since V,, is not a Cartan subalgebra. Moreover, X, has
dimension n — 1 since the normalizer of V,, in g is f) + g*. Hence X, is an irreducible component of

X \ B.} since X has dimension 7.
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(iii) Since X, is a B-invariant closed subset of Gr,(g), P.X, is a closed subset of Gr/(g) by
Lemma 1.7. According to (ii), P.X, is contained in P.X \ Pl and it has dimension dimp — £ — 1,
whence the assertion since P.X has dimension dimp — £.

(iv) Let P, be the unipotent radical of P and let L be the reductive factor of P whose Lie algebra
contains adl. Denote by N.(b) the normalizer of h in L. Since B.}) and P.}) are isomorphic to U
and L/N.(b) x P, respectively, they are affine open subsets of X and P.X respectively, whence the
assertion by [EGAIV, Corollaire 21.12.7]. O

For x in g, set:
V, = span({e((x), ..., &/(xX)}).

Lemma 4.2. (i) For (V,x) in X X b, (V, x) is in the closure of B.({h} X bye,) in Gry(b) X b if and only
ifxisinV.

(ii) The set € is the closure in Gry(g) X g of G.({D} X byeg).

(iii) For (V, x) in &, V, is contained in V.

Proof. (i) Let £ be the closure of B.({h} X by,) in Gry(b) X b. Then | is a closed subset of €. Let
(V,x) be in &,. Let E be a complement to V in b and let Qf be the set of complements to E in g.
Then Qg is an open neighborhood of V in Gr,(b). Moreover, the map

Homy(V, E) —
is an isomorphism of varieties. Let Qf, be the inverse image of the set of Cartan subalgebras. Then
0 is in the closure of Q¢ in Homy(V, E) since V is in X. For all ¢ in Q¢ (x(¢), x + ¢(x)) is in &;,.
Hence (V, x) isin &j.

(i1) Let (V, x) be in €. For some g in G, g(V) is in X. So by (i), (g(V), g(x)) is in &; and (V, x) is
in the closure of G.({b} X by.) in Gr,(g) X g, whence the assertion.

(iii) Fori =1,...,¢, let &; be the set of elements (V, x) of € such that g;(x) isin V. Then &; is a
closed subset of G.X X g, invariant under the action of G in Gr/(g) X g since &; is a G-equivariant
map. For all (g, x) in G X by, (g(h), g(x)) is in &; since &;(g(x)) centralizes g(x). Hence &; = € since
G.(hreg X {b}) is dense in € by (ii). As a result, for all V in G.X and for all x in V, £/(x),...,&¢(x)
arein V. O

Corollary 4.3. Let (V,x) be in €.
(1) The space 3., is contained in V, and V.
(11) The space V is an algebraic, commutative subalgebra of g.

Qg , @ +— K(p) = span({v + ¢(v) [ v € V}).

Proof. (i) If x is regular semisimple, V is a Cartan subalgebra of g whence the assertion in this case
by Lemma 4.2,(iii) and [Ko63, Theorem 9]. Suppose that x is not regular semisimple. Let 9t be
the nilpotent cone of g™ and let .., be the regular nilpotent orbit of g*. For all y in Q,, x; + y is
in grep and &;(x; + y), ..., &(xs + y) is a basis of g** by [Ko63, Theorem 9]. Then for all z in 3,
there exist regular functions on Q,, @i, . . ., dc, such that

z=a(Ye(xs +y) + - +ag(yedxs + y)

for all y in Q,,. Furthermore, these functions are uniquely defined by this equality. Since Ny« is
a normal variety and Ngx \ Q. has codimension 2 in N, the functions a, _, . . ., a, have regular
extensions to Ny« . Denoting again by a; , the regular extension of g; . fori = 1,...,¢,

z=ai(Ye(xs +y)+ - +ac(yYexs +y)

for all y in Ng. As aresult, 3, is contained in V,. Hence 3, is contained in V by Lemma 4.2,(iii).
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(i1) Since the set of commutative subalgebras of dimension ¢ is closed in Gr,(g), V is a commu-
tative subalgebra of g. According to (i), the semisimple and nilpotent components of the elements
of V are contained in V. For x in V' \ 9,, all the replica of x, are contained in the center of g*.
Hence V is an algebraic subalgebra of g by (i). O

4.2. For s in I, denote by X* the subset of elements of X, contained in g°.

Lemma 4.4. Let s be in b
(1) The set X® is the closure in Gry(g*) of the orbit of Y under B°.
(i1) The set of elements of G.X containing 3 is the closure in Gry(g) of the orbit of ) under G°.

Proof. (i) Set p := g* + b, let P be the normalizer of p in G and let p, be the nilpotent radical of p.
For g in P, denote by g its image by the canonical projection from P to G*. Let Z be the closure in
Gr(g) X Gr(g) of the image of the map

B Gr(b) X Gr,(b) , g — (g9(b), g(b))
and let Z’ be the subset of elements (V, V") of Gr,(b) X Gr.(b) such that
Vicg®Nnb and VcCcV ®p,.

Then Z’ is a closed subset of Gr,(b) X Gr,(b) and Z is contained in Z’ since (g(h), g(h)) is in Z’ for
all g in B. Since Gr(b) is a projective variety, the images of Z by the projections (V, V') — V and
(V, V') = V" are closed in Gr,(b) and they are equal to X and BS.}) respectively. Furthermore, BS.})
is contained in X*.

Let V be in X°. For some V' in Gr,(b), (V, V') is in Z. Since

Vcg, Vcg, VcV @p,,

V =V’ so that V is in BT.I), whence the assertion.

(i1) Since 3, is contained in b, all element of G*.}) is an element of G.X containing 3,. Let V be in
G.X, containing 3,. Since V is a commutative subalgebra of g* and since g*NDb is a Borel subalgebra
of g°, for some g in G°, g(V) is contained in b N g*. So, one can suppose that V is contained in b.
According to the Bruhat decomposition of G, since X is B-invariant, for some b in U and for some
win W(R), Vis in bw.X. Set:

Riw ={la e R, |w(a) € Ry}, Ry =lae R, |wl@) & R},
we= P wi= P w= e,
a€R,y ae-R, , R,
B” := wBw ™, b :=hdu & us,
so that adb” is the Lie algebra of B* and w.X is the closure in Gr/(g) of the orbit of ) under B".
Moreover, u is the direct sum of 1; and u,. For i = 1,2, denote by U, the closed subgroup of U
whose Lie algebra is adw;. Then U = U,U, and b = b,b; with b; in U; for i = 1,2. Since w™!(u;)
is contained in u and X is invariant under B, b,byw.X = bow.X. Then b} '(V)is inw.X and

by'(Vycbnb’=phey

since V is contained in b. Set:
. — S «—
Uy :=uNg, Upp := Uy NPy

and for i = 1,2, denote by U, the closed subgroup of U, whose Lie algebra is adu,;. Then u, is
the direct sum of 1, ; and u,, and U, = U, U;, so that by = b, 1b,, with by; in Uy; fori = 1,2.
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As a result, 3, is contained in b3 (V) and b3’(3,) is contained h @ 1. Hence b35(3,) = 3, since
u N Upo = {O}

Suppose by, # 1,. We expect a contradiction. For some x in 11,5, b, = exp(adx). The space
1, 1s a direct sum of root spaces since so are u, and p,. Let 4, ..., a, be the positive roots such
that the corresponding root spaces are contained in 11, . They are ordered so that for i < j, a; — «;
is a positive root if itis a root. Fori = 1, ..., m, let ¢; be the coordinate of x at x,, and let i, be the
smallest integer such that ¢;, # 0. For all z in 3,

-1 .
by5(2) = 7= iy @iy (D) Xy, € GB g%,

J>io
whence the contradiction since for some z in 3,, @;,(z) # 0. As a result, b, 11(V) is an element of
w.X = B*.h, contained in g°. So, by (1), b; 11(V) and V are in G*.}), whence the assertion. O

Define a torus of g as a commutative algebraic subalgebra of g whose all elements are semisim-
ple. For A subset of R, denote by b, the intersection of the kernels of the elements of A.

Corollary 4.5. Let V be in X. Then for some subset A of R and for some g in B, g(V) is the direct
sum of hp and g(V) N u.

Proof. By Corollary 4.3,(ii), V is the direct sum of a subtorus of b and its intersection with 1. So
for some g in B,

gV)y=gV)nbpog(V)Nu.

Let A be the set of roots such that g(V) N b is contained in h,. If A = R, g(V) is contained in 1.
Suppose A strictly containd in R. For some s in g(V) N D, a(s) # 0 for all @ in R \ A. Since g(V) is
a commutative algebra, g(V) is contained in g*. So, by Lemma 4.4,(i), g(V) is in B*.h. In particular,
by Corollary 4.3,(i), b, is contained in g(V) since b, is the center of g°, whence h, = g(V) N} and
g(V) is the direct sum of h, and g(V) N u. O

4.3. For xin g, denote by Z, the subset of elements of G.X containing x and by (G¥), the identity
component of G*.

Lemma 4.6. Let x be in N, and let Z be an irreducible component of Z,. Suppose that some
element of Z is not contained in N,,.

(1) For some torus s of §*, all element of a dense open subset of Z contains a conjugate of s under
(G%o-

(11) For some s in s and for some irreducible component Z| of Zs.,, Z is the closure in Gr,(g) of
(G*)o-Z.

(iii) If Z, has dimension smaller than dim g***

— ¢, then Z has dimension smaller than dim g* — ¢.

Proof. (i) After some conjugation by an element of G, we can suppose that g* N b and g* N b are
a Borel subalgebra and a maximal torus of g* respectively. Let Z, be the subset of elements of Z
contained in b and let (B¥), be the identity component of B*. Since Z is an irreducible component of
Z,, Z is invariant under (G*)y and Z = (G¥)y.Z,. Since (G*)y/(B")o is a projective variety, according
to the proof of Lemma 1.7, (G¥)y.Z. is a closed subset of Z for all closed subset Z, of Z. Hence for
some irreducible component Z, of Zy, Z = (G*)y.Z..

For A subset of R, denote by Z, 5 the subset of elements V of Z, such that

gV)=bhrdg(V)Nu
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for some g in (B*)y. According to Corollary 4.5, Z, is the union of Z, », A C R. Since all element
of Z, A is contained in by + u,
Z*,A - U Z*’A/.

RDOA’DA

So, by induction on [R \ A|, Z,  is a constructible subset of Z.. Then, since R is finite, for some
subset A of R, Z, 4 is dense in Z,. As a result, (G*).Z. o contains a dense open subset of Z and for
all V in (G¥)y.Z. A, the biggest torus contained in V' is conjugate to b, under (G*),.

(ii) For some s in s, g° is the centralizer of s in g. Let Z* be the subset of elements of Z containing
s. Then Z* is contained in Z,, and according to Corollary 4.3,(i), Z° is the subset of elements of
Z, containing s. By (i), for some irreducible component Z; of Z*, (G*)o.Z] is dense in Z. Let Z; be
an irreducible component of Z. ., containing Z]. According to Corollary 4.3,(i1), Z; is contained
in Z, since x is the nilpotent component of s + x. So Z; = Z] and (G*)¢.Z, is dense in Z.

(ii1) Since Z; is an irreducible component of Z,,, Z; is invariant under the identity component
of G***. Moreover, G*** is contained in G* since x is the nilpotent component of s + x. As a result,
by (ib),

dimZ < dimg* — dimg*™* + dimZ,,

whence the assertion. O

Denote by C;, the G-invariant closed cone generated by 4 with £ in ) such that 8(h) = 2 for all 8
in I1.

Lemma 4.7. Suppose g semisimple. Let I" be the closure in Gry(g) X g of the image of the map

Gre(g) X g, (t,g9) — (g(b), tg(h))

and Iy the intersection of I' and Gr,(g) X N,.
(1) The subvariety I of Gr,(g) X g has dimension 2n + 1. Moreover, I is contained in €.
(i1) The varieties G.X and Cj, are the images of I by the first and second projections respectively.
(ii1) The subvariety I'y of T is equidimensional of codimension 1.
(iv) For x nilpotent in g, the subvariety of elements V of G.X, containing x and contained in
G(x), has dimension at most dimg* — €.

k*x G

Proof. (i) Since the stabilizer of (b, #) in k™ X G equals {1} x H, I" has dimension 2n + 1. Since tg(h)
is in g(b) for all (¢, g) in k* X G and € is a closed subset of Gr/(g) X g, I is contained in €.

(i1) Since Gr/(g) is a projective variety, the image of I' by the second projection is closed in g.
So, it equals Cj, since it is contained in C;, and it contains the cone generated by G.h. Let Y be
the image of I' by the first projection. Since I is a closed subset of Gry(g) X g, invariant by the
automorphisms (V, x) — (V, tx) with ¢ in k*, Y X {0} is the intersection of I" and Gr,(g) X {0}. Then
Y is a closed subset of Gry(g) containing G.}. Moreover I is contained in the closed subset G.X X g
of Gr,(g) X g. Hence Y = G .X.

(ii1) The subvariety C;, of g has dimension 2n + 1 and the nullvariety of p; in C), is contained
in N, since it is the nullvariety in g of the polynomials py,..., p,. Hence N, is the nullvariety of
p1 in Cy, and Iy is the nullvariety in I' of the function (V, x) — p;(x). So I'y is equidimensional of
codimension 1 inT".

(iv) Let T be the subset of elements V of G.X, containing x and contained in G(x). Denote by

I'; the inverse image of G.T by the projection I' — G.X . Then I'; is contained in I,. Since all
30



element of T contains x and is contained in G(x) and since I'7 is invariant under G, the image of
I'7 by the second projection is equal to G(x). Moreover, T X {x} C G.X X {x} N I'7. Hence

dimI'; > dim7T + dimg — dimg".

By (i) and (iii),
dimI'y < dimg—+¢

since I'; is contained in I['y. Hence T has dimension at most dimg* — £. O
When g is semisimple, denote by (G.X), the subset of elements of G.X contained in 9.

Corollary 4.8. Suppose g semisimple. Let x be in N,
(1) The variety (G.X), has dimension at most 2n — {.
(1) The variety Z, N (G.X), has dimension at most dimg* — €.

Proof. (i) Let T be an irreducible component of (G.X), and let 7 be the restriction to 7 of the
vector bundle € over G.X. Then €7 is irreducible and has dimension dim7" + £. Denoting by Y
the image of the projection &7 —— g, Y is an irreducible closed subvariety of g contained in 9t.
The subvariety (G.X), of G.X is invariant under G since so is 9t,. Hence €7 and Y are G-invariant
and for some y in N, ¥ = G(y) since 9N, is a finite union of orbits. Denoting by F), the fiber
at y of the projection & —— Y , V is contained in G(y) and contains y for all V in F - S0, by
Lemma 4.7,(iv),
dimF, < dimg’ - ¢.
Since the projection is G-equivariant, this inequality holds for the fibers at the elements of G(y).
Hence,
dimér < dimg—-¢and dim7T < 2n - ¢.

(i1) Let Z be an irreducible component of Z, N (G.X), and let T be an irreducible component of
(G.X),, containing Z. Let £ and Y be as in (i). Then G(x) is contained in Y and the inverse image
of G(x) in €7 has dimension at least dim G(x) + dimZ. So, by (i),

dimG(x) + dimZ < dimg — ¢,

whence the assertion. O

Theorem 4.9. For x in g, the variety of elements of G.X, containing x, has dimension at most
dimg* — ¢.

Proof. Prove the theorem by induction on dimg. If g is commutative, G.X = {g}. If the derived
Lie algebra of g is simple of dimension 3, G.X has dimension 2 and for x not in the center of g,
Z, = {g"}. Suppose the theorem true for all reductive Lie algebra of dimension strictly smaller than
dimg. Let x be in g. Since G.X has dimension dimg — £, we can suppose that x is not in the center
of g. Suppose that x is not nilpotent. Then g™ has dimension strictly smaller than dimg and all
element of G.X containing x is contained in g™ and contains the center of g* by Corollary 4.3,(1).
So, by Lemma 4.4,(ii), Z, is contained in Gx—s.b, whence the theorem in this case by induction
hypothesis. As a result, by Lemma 4.6, for all x in g, all irreducible component of Z,, containing
an element not contained in N, has dimension at most dimg”* — ¢.

Let x be a nilpotent element of g. Denoting by Z; the subset of elements of G.(h N [g, g]) con-

taining x, Z, is the image of Z; by the map V — V + 3,, whence the theorem by Corollary 4.8. O
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4.4. Letsbeinb)\ {0}. Set p := g° + b and denote by p, the nilpotent radical of p. Let P be the
normalizer of p in G and let P, be its unipotent radical. For a nilpotent orbit Q of G° in g*, denote
by QF the induced orbit by Q from g° to g.

Lemma 4.10. Let Y be a G-invariant irreducible closed subset of g and let Y’ be the union of
G-orbits of maximal dimension in Y. Suppose that s is the semisimple component of an element x
of Y'. Denote by Q the orbit of x, under G* and set Y, := 3, + Q+ Pu-

(1) The subset Y, of v is closed and invariant under P.

(i1) The subset G(Y1) of g is a closed subset of dimension dim3; + dim G(x).

(ii1) For some nonempty open subset Y" of Y’, the conjugacy class of ¢” under G does not
depend on the element y of Y.

(iv) For a good choice of x in Y”, Y is contained in G(Y1).

Proof. (i) By [Ko63, §3.2, Lemma 5], G* is connected and P = P,G°. For all y in p and for all g in
Py, g(y) is in y + p,. Hence Y; is invariant under P since it is invariant under G°. Moreover, it is a
closed subset of p since 3, + Q s a closed subset of a’.

(i1) According to (i) and Lemma 1.7, G(Y) is a closed subset of g. According to [CMa93,
Theorem 7.1.1], Q* N (Q + p,) is a P-orbit and the centralizers in g of its elements are contained in
p. For y in Q* N (Q + p,) and for g in G, if g(y) is in Y; then it is in Q + p, since it is nilpotent. So,
for y in Q* N (Q + p,), the subset of elements g of G such that g(y) is in ¥; has dimension dim p.
As a result,

dlmG(Yl) =dimG Xp Y =dimp, + dll’l’lYl
Since dimg® = dimg® — dimQ,

dimY; = dim3; + dimp, + dimg® — dimg*
dimG(Y;) = dim3, + 2dimp, + dimg* — dimg*
= dim3; + dimG(x).

(iii) Let T be the canonical morphism from g to its categorical quotient g//G under G and let Z be
the closure in g//G of t(Y). Since Y is irreducible, Z is irreducible and there exists an irreducible
component Z of the preimage of Z in ) whose image in g//G equals Z. Since the set of conjugacy
classes under G of the centralizers of the elements of ) in g is finite, for some nonempty open
subset Z* of Z, the centralizers of its elements are conjugate under G. The image of Z* in g//G
contains a dense open subset Z’ of Z. Let Y” be the inverse image of Z’ by the restriction of T to
Y’. Then Y” is a dense open subset of Y and the centralizers in g of the semisimple components of
its elements are conjugate under G.

(iv) Suppose that x is in Y. Let Zy be the set of elements y of Y such that ¢ = g*. Then
G.Zy = Y”. For all nilpotent orbit Q of G* in ¢°, set:

YQ:3S+§+pu

Then Zy is contained in the union of the Yu’s. Hence Y” is contained in the union of the G(Yq)’s.
According to (ii), G(Yq) is a closed subset of g. Hence Y is contained in the union of the G(Yq)’s
since Y” is dense in Y. Then Y is contained in G(Yq) for some Q since Y is irreducible and there
are finitely many nilpotent orbits in g*, whence the assertion. O

Theorem 4.11. (i) The variety G.X is the union of G.h and the G.X3’s, 5 € 11
(ii) The variety X is the union of U.) and the X,,’s, a € R,.
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Proof. Let u be the map

Gre([g, 0]
with ¢’ the rank of [g, g] and set:

Xy := B.(bN[g,al), Xoa := B.(V,N[g,al)

for @ in R,. Then X, G .X, X,, G.X, are the images of X;, G.X;, X,.4, G.Xo.q by u respectively. So
we can suppose g semisimple.

(i) For ¢ = 1, g is simple of dimension 3. In this case, G.X is the union of G.}) and G.g°. So, we
can suppose £ > 2. According to Lemma 4.1,(iii), for @ in R,, G.X,, is an irreducible component
of G.X \ G.bh. Moreover, for all g in II N W(R)(@), G.X, = G.X; since V, and Vj are conjugate
under Ng (D).

Let T be an irreducible component of G.X \ G.}. Set:

Gre(g) , Vi3 +V

(OJT::(OJOTXQ

and denote by Y the image of £ by the second projection. Then Y is closed in g since Gr,(g) is a
projective variety. Since £r is a vector bundle over T and since T is irreducible, €7 is irreducible
and so is Y. Since T is an irreducible component of G.X \ G.bh, T, €7 and Y are G-invariant.
According to Lemma 4.1,(iii), T has codimension 1 in G.X. Hence, by Corollary 4.8,(i) Y is not
contained in the nilpotent cone since £ > 2. Let Y’ be the set of elements x of Y such that g* has
minimal dimension. According to Lemma 4.10,(ii) and (iv), for some x in Y’,

dimY < dimG(x) + dim3,,
and according to Theorem 4.9,
dim &7 < dimG(x) + dim3,, + dimg" — ¢ = dimg + dim3, — ¢

Hence €7 has dimension at most 2n + dim3, and dim3, = ¢ — 1 since T has codimension 1 in
G.X. As aresult, x; is subregular and for some g in G, ¢g(3,,) is the kernel of a positive root a.
Denoting by s, the subalgebra of g generated by g% and g~¢, ¢?*) is the direct sum of b, and s,.
Since the maximal commutative subalgebras of s, have dimension 1, a commutative subalgebra of
dimension ¢ of g/ is either a Cartan subalgebra of g or conjugate to V, under the adjoint group
of g9 Asaresult, V,isin T and T = G.V, = G.X,, since T is G-invariant, whence the assertion.

(i1) According to Lemma 4.1,(ii), for @ in R,, X,, is an irreducible component of X \ B.h. Let
g1, - - ., 9n be the simple factors of g. For j = 1,...,m, denote by X; the closure in Grrkgj(g ;) of the
orbitof h N g;. Then X = X;X--- X X,, and the complement to B.h in X is the union of the

X1X"'XX]'_1 X(Xj\B.(bﬂgj))XXj+1><---><Xm
So, we can suppose g simple. Consider
b=pC---Cpr=g

an increasing sequence of parabolic subalgebras verifying the following condition: for i =
0,...,¢— 1, there is no parabolic subalgebra q of g such that

Pi&Ea& P

Fori=0,...,¢, let P; be the normalizer of p; in G, let p;, be the nilpotent radical of p; and let P;,

be the unipotent radical of P;. Fori = 0,...,¢ and for @ in R,, set X; := P;.X and X;, := P;.X,.
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Prove by induction on £ — i that for all sequence of parabolic subalgebras verifying the above
condition, the X;,’s, @ € R,, are the irreducible components of X; \ P..}.

For i = ¢, it results from (i). Suppose that it is true for i + 1. According to Lemma 4.1,(iii), the
X;o’s are irreducible components of X; \ P;.}h.

Claim 4.12. Let T be an irreducible component of X; \ P;.h such that P; is its stabilizer in P;,;.
Then T = X;, for some @ in R,.

Proof. According to the induction hypothesis, 7 is contained in X}, , for some @ in R,. According
to Lemma 4.1,(iv), T has codimension 1 in X; so that P;.;.T and X;,, have the same dimension.
Then they are equal and T contains g* for some x in by, such that x, is a subregular element
belonging to h. Denoting by o’ the positive root such that a’(x;) = 0, ¢* = V, since V, is
the commutative subalgebra contained in b and containing b,, which is not Cartan, so that 7 =
X m|

Suppose that X; \ P;.} is not the union of the X;,’s, @ € R,. We expect a contradiction. Let 7" be
an irreducible component of X; \ P;.h, different from X;, for all @. According to Claim 4.12 and
according to the condition verified by the sequence, 7 is invariant under P,,,. Moreover, according
to Claim 4.12, it is so for all sequence pj,...,p; of parabolic subalgebras verifying the above
condition and such that p;. = p;for j =0,...,i. As aresult, for all simple root 8 such that a?is
not in p;, T is invariant under the one parameter subgroup of G generated by adg™®. Hence T is
invariant under G. It is impossible since for x in g \ {0}, the orbit G(x) is not contained in p; since
g is simple, whence the assertion. O

4.5. Let X’ be the subset of g* with x in b, such that x, is regular or subregular. For « in R,
denote by 0, the map

k X, t — exp(tad x,).b.

According to [Sh94, Ch. VI, Theorem 1], 0, has a regular extension to P!(k), also denoted by 0,.
Set Z, := 0,(P'(k)) and X, :=B.Z,sothat X, = UhUB.V,.

Lemma 4.13. Let @ be in R, and let V be in X. Then V is in B.Z, if and only if g(V) contains b,
for some g in B.

Proof. The condition is necessary by definition. Suppose that V contains . Since V is commuta-
tive by Corollary 4.3,(ii), V is contained in h + g®. If V is a Cartan subalgebra, then V = 0,(¢) for
some ¢ in k. Otherwise, V = 0,(c0), whence the lemma. ]

Corollary 4.14. Let a be a positive root.
(1) The sets X, and G.X], are open subsets of X and G.X respectively.
(1) The sets X' and G.X" are big open subsets of X and G.X respectively.

Proof. (1) Since X, is a B-invariant subset containing the open subset U.D, it suffices to prove that
X/, is a neighborhood of V,, in X. Denote by H, the coroot of @ and set:

E= ¢, E=kH,0F.
yeR\{a}

Let Qp be the set of subspaces V of b such that £ is a complement to V in b and let €}, be the

complement in X N Qg to the union of X,,y € R, \ {a}. Then Q7. is an open neighborhood of V,

in X. Since X, contains U.h, X/, contains all the Cartan subalgebras contained in Q.. Let V be in

Q7. such that V is not a Cartan subalgebra. According to Corollary 4.5, for some nonempty subset
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A of R, V is contained ) + 1 and contains a conjugate of h, under B. Then h = kH, + b, since
Visin Qg. As aresult, b, = b, for some positive root y and V is conjugate to V, under B by
Lemma 4.13. Since V is not in X; for all 6 in R, \ {a}, ¥ = @ and V is in X/. Then X/ contains
Q). As aresult, X/, is an open subset of X and G.(X \ X)) is a closed subset of G.X by Lemma 1.7,
whence the assertion.

(i1) By definition, X’ is the union of X/,@ € R,. Hence X’ is an open subset of X by (i).
Moreover, by Theorem 4.11,(ii), X \ X’ is the union of X, \ X', € R,. Then X’ is a big open
subset of X since, for all @, X,, \ X’ is strictly contained in the irreducible subvariety X, of X.

Since G.X’ is the union of G.X/,,a@ € R,, G.X’ is an open subset of G.X by (i). Moreover, by
Theorem 4.11,(1), G.X \ G.X" is the union of G. X3\ G.X’, 8 € II. Hence G.X" is a big open subset of
G.X since, for all B, G.Xg \ G.X' is strictly contained in the irreducible subvariety G.Xz of G.X. O

Proposition 4.15. The sets X’ and G. X' are smooth big open subsets of X and G.X respectively.

Proof. According to Corollary 4.14,(ii), it remains to prove that X’ and G.X’ are smooth open
subsets of X and G.X respectively. Denote by 7 the bundle projection of the vector bundle € over
G.X. Recall &, := 771(X). Let u be the map

greg Grf(g) s X gx

and let y be its restriction to by,. Then u is a regular map. Let I', and I';,; be the images of the
graphs of u and pg respectively by the isomorphism

Grt’(g) Xg, (X, V) — (‘/’ -x)-

g X Gre(g)

Then I', and I, are smooth varieties contained in € and &, respectively since for x in g, s, §* 15
a Cartan subalgebra, contained in b when x is in b. Set:

=T,Nr ' (GX)=ENGX Xge and T, =T, Na ' (X)=ENX XDy,
Then I'}, is a smooth variety as an open susbet of I, and I}, is an open subset of n~'(G.X’) such that

n(l7,) = G.X’ since all element of G.X" contains regular elements. In the same way, I, is a smooth

open subset of 771(X’) such that n(l’,) = X’. Asaresult, I, and I/ are smooth open subsets of
vector bundles over G.X’ and X’ respectively since € and & are vector bundles over G.X and X
respectively. Hence G.X” and X’ are smooth varieties by [MA86, Ch. 8, Theorem 23.7]. m|

Summarizing the results of the section, Theorem 1.2,(i) is given by Corollay 4.3,(ii), Theo-
rem 1.2,(i1) is given by Theorem 4.9, Theorem 1.2,(iii) is given by Lemma 4.1,(iv) since X and
G.X have dimension n and 2n respectively and Theorem 1.2,(iv) is given by Proposition 4.15.

5. ON THE GENERALIZED ISOSPECTRAL COMMUTING VARIETY

Let k > 2 be an integer. According to Section 2, we have the commutative diagram

G Xp b* ta 'B;k) .

N

(k)

By Lemma 2.7,(i),  is a closed embedding of b* into Bf(k), by Corollary 2.8,(i) B;k) = G.u(b%) is
closed in X* and 7 is the restriction to BE of the canonical projection from X* to g*. Denote by

C® the closure of G.b* in g* with respect to the diagonal action of G in g* and set C¥ := ~1(C®).
35



The varieties €® and C* are called generalized commuting variety and generalized isospectral
commuting variety respectively. For k = 2, CW is the isospectral commuting variety considered by
M. Haiman in [Ha99, §8] and [Ha02, §7.2].

5.1. Set:
83‘) ={(u, x1, ..., x%) EXkaluaxl,...,uaxk}.

Lemma 5.1. Denote by Sg"*) the intersection of Ef)k) and Ul X (Gregss N b)* and for w in W(R),
denote by 6, the map

k k k — —
ey —s ¥ x b, (W, X150y X)) = (X1, X W), -, W(XE)).

(1) Denoting by X,y the image of Ef)k) by the projection (u, xy,...,xx) = (X1,...,X), Xoy is the
closure of B.b* in b and CW is the image of G x Xy, by the map (g, X1, . . ., x;) = (g(x1), . .., g(xz)).
(i) For all w in W(R), 0,(ES") is dense in 6,(EY).

Proof. (i) Since X is a projective variety, X is a closed subset of b*. The variety Sg‘) is irreducible
of dimension n + k€ as a vector bundle of rank k¢ over the irreducible variety X. So, B.({b} x b) is
dense in 88") and X, is the closure of B.b* in b¥, whence the assertion by Lemma 1.7.

(ii) Since U.h X (greg,ss N b)* is an open susbet of X x b, Sg"*) is an open subset of Eg‘). Moreover,

it is a dense open subset since 88) is irreducible, whence the assertion since 6, is a morphism of
algebraic varieties. O

5.2. Let s beinb. According to [Ko63, §3.2, Lemma 5], G* is connected. Denote by R, the set
of roots whose kernel contains s and denote by W(R;) the Weyl group of R;.

Lemma 5.2. Let x = (xi, ..., x;) be in C¥ verifying the following conditions:

(1) s is the semisimple component of xi,
(2) for z in E,, the centralizer in g of the semisimple component of z has dimension at least
dimg®.

Then fori =1,...,k, the semisimple component of x; is in 3.

Proof. Since x is in €%, [x;, x;] = 0 for all (i, j). Suppose that for some i, the semisimple compo-
nent x; of x; is not in 3;. A contradiction is expected. Since [xj, x;] = O, for all #in k, s + 7x; is
the semisimple component of x; + tx;. Moreover, after conjugation by an element of G*, we can
suppose that x; is in . Since R is finite, there exists ¢ in k* such that the subset of roots whose
kernel contains s + 1x; is contained in R;. Since x;; is not in 3,, for some @ in R, a(s + tx;5) # 0
that is g**™ is strictly contained in g*, whence the contradiction. O

For w in W(R), set:
C, := G'wB/B, B” := wBw ™.

Lemma 5.3. [Hu95, §6.17, Lemma] Let B be the set of Borel subalgebras of g and let B be the
set of Borel subalgebras of g containing s.

(1) For all w in W(R), C, is a connected component of Bs.

(ii) For (w,w’) in W(R) x W(R), C,, = Cyy if and only if w'w™" is in W(R,).

(ii1) The variety C,, is isomorphic to G*/(G* N B®).

For x in B®, denote by B, the subset of Borel subalgebras containing E,.
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Corollary 5.4. Let x = (xi,...,x) be in C®. Suppose that x verifies Conditions (1) and (2) of
Lemma 5.2. Then {C,, N B, | w € W(R)} is the set of connected components of B,.

Proof. Since a Borel subalgebra contains the semisimple component of its elements and since s is
the semisimple component of x;, B, is contained in B;,. As a result, according to Lemma 5.3,(1),
every connected component of B, is contained in C,, for some w in W(R). Set x, := (X1, ..., Xkn)-
Since [x;, x;] = 0 for all (i, j), E, is contained in g*. Let B* be the set of Borel subalgebras of g*
and for y in (g*), let B, be the set of Borel subalgebras of g* containing E,. According to [Hu95,
Theorem 6.5], B; is connected. Moreover, according to Lemma 5.2, the semisimple components
of xi,...,x are in 3, so that B] = B]. Let w be in W(R). According to Lemma 5.3,(iii), there is an
isomorphism from B* to C,,. Moreover, the image of B} by this isomorphism is equal to C,, N B,,

whence the corollary. m|
Corollary 5.5. Let x = (x1, ..., x;) be in C® verifying Conditions (1) and (2) of Lemma 5.2. Then
n7'(x) is contained in {(xi, . . ., Xy, w(xyg), ..., wxes)) |we W(R)}

Proof. Since y = noyy, 771(x) is the image of y~!(x) by y,. Furthermore, y, is constant on the
connected components of y~!(x) since 17! (x) is finite. Let C be a connected component of y~!(x).
Identifying G X3 b* with the subvariety of elements (u, x) of B x g* such that E, is contained in u,
C identifies with (C, N B,) X {x} for some w in W(R) by Corollary 5.4. Then for some g in G* and
for some representative g,, of w in Ns(h), gg,,(b) contains E, so that

Yx(C) = {(x1, ..., Xk, (990) 71 (x1), - . ., (9gu)~ (X))}

By Lemma 5.2, xy,..., X are in 3, so that w™!(x;,) is the semisimple component of (gg,,) ' (x;)
fori=1,...,k. Hence

Vx(C) = {(-xla e oo Xk w_l(-xl,s)’ ceey w_l(-xk,s))}’

whence the corollary. m|
Proposition 5.6. The variety CW is irreducible and equal to the closure of G., (b)) in B,

Proof. Denote by G.i(b) the closure of G.¢(h*) in Bf(k). Then G.1(H) is irreducible as the closure
of an irreducible set. Since 7 is G-equivariant, n(G.(b*)) = G.b*. Hence n(G.,.(H*)) = CP since
7 is a finite morphism and C% is the closure of G.b* in g* by definition. So, it remains to prove
that for all x in C®, 57!(x) is contained in G.t(b*). There is a canonical action of GL,(k) on g* and
Xk. Since this action commutes with the action of G in X¥, B® is invariant under GL, (k) and n
is GL;(k)-equivariant. As a result, since C% and G.,(b*) are invariant under GL(k), for x in C®,
1771(x’) is contained in G.y(b¥) for all x’ in EX such that E,, = E, if n7'(x) is contained in G.¢;(b).
Then, according to Lemma 5.2, since 7 is G-equivariant, it suffices to prove that 7! (x) is contained
in G..(b%) for x in C® N b* verifying Conditions (1) and (2) of Lemma 5.2 for some s in b.
According to Corollary 5.5,

n () CH{(x - Xi WXL), - W) | w € W(R)Y with x = (xp,. .., Xp).
For s regular, E, is contained in §) and x; = x;s fori = 1,..., k. By definition,
W(x), . . ., w(x), w(xy), ..., wxe) € G
and for g,, a representative of w in N (),

g;l wxy), ., wx), w(xy), ..o, w(xg)) = (X1, ..., Xk, w(Xy), ..., w(Xg)).
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Hence n~!(x) is contained in G.¢(h*). As a result, according to the notations of Lemma 5.1, for all
w in W(R), Hw(Sf)k’*)) is contained in G.;(h*). Hence, by Lemma 5.1,(ii), Gw(Ef)k)) is contained in
G.;.(HY), whence the proposition. O

5.3. Let @ be the canonical projection from X* to g*. By Corollary 2.6,(ii), B is an irreducible
component of @~ !(B®) and the action of W(R)* on X* induces a simply transitive action on the
set of irreducible components of @' (B®). According to Remark 2.21, there is an embedding ®
of S(H)® into k[BY] given by

P — ((-xl’---’-xk,yl’---,yk) g p(yl,...,yk)).
By Corollary 2.22,(i), this embedding identifies S(H)** with k[BP1G.

Lemma 5.7. Let ¥ be the restriction to S()®* of the canonical map from k[B] to k[CP].
(i) The subvariety C of X* is invariant under the diagonal action of W(R) in X*,
(ii) The map ¥ is an embedding of S(H)® into k[CL]. Moreover, ¥(S(H)*) is equal to k[CL1°.
(iff) The image of (S)*)"® by W equals k[CV1C.

Proof. (i) For x in B;k) and w in W(R), n(x) = n(w.x), whence the assertion by Proposition 5.6.
(ii) For P in S(h)®, P = 0 if P(x) = 0 for all x in (b*). Hence W is injective. Since G is
reductive, k[C¥1C is the image of k[B¥1C by the quotient morphism, whence the assertion.
(iii) Since G is reductive, k[CP1C is the image of k[B®]¢ by the quotient morphism, whence
the assertion since (S(H)*)"™® is equal to k[B®]¢ by Corollary 2.22,(iii). o

Identify S(5)® with k[CV1° by ¥

Proposition 5.8. Let CY and C® be the normalizations of C® and C®.
(i) The variety C® is the categorical quotient of Gﬂ(}g under the action of W(R).

(i1) The variety C® js the categorical quotient of CW under the action of W(R).
Proof. (i) According to Corollary 2.22,(i), k[B¥] is generated by k[B®] and S(h)*. Since
W = p1(@®) by Proposition 5.6, the image of k[B®] in k[C¥] by the quotient morphism
is equal to k[C®]. Hence k[C"] is generated by k[C®] and S(h)®. Then, by Lemma 5.7,(iii),
K[C]M® = K[,

(i1) Let K be the fraction field of k[G(k)] Since Gf(k) is a W(RR)-variety, there is an action of W(R)
in K and KW@) is the fraction field of k[G(k)]W(fR) since W(RR) is finite. As a result the integral

closure k[e(k)] of k[€¥] in K is invariant under W(R) and k[e(")] is contained in k[G(k)]W(R) by (i).
Let a be in k[@g‘)]W(R). Then a verifies a dependence integral equation over k[@;k)],

a" + ay @+ +ay=0

whence

|W< ) 2, wan)a" |W< ) 2, v =

weW(R) weW(R)

since a is invariant under W(R) so that a is in k[C®] by (i), whence the assertion. O
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6. DESINGULARIZATION

Let k > 2 be an integer. Let X, X’ be as in Subsection 4.5. Denote by X|, the normalization of X
and by 6 the normalization morphism. According to Proposition 4.15, X" identifies with a smooth
big open subset of X;, and according to [Hir64], there exists a desingularization (I', r,) of X, in the
category of B-varieties such that the restriction of m, to 7;'(X’) is an isomorphism onto X’. Set
m = Bgem, so that (I', ) is a desingularization of X in the category of B-varieties. Recall that &,
is the restriction to X of the tautological vector bundle over Gr(g) and X is the closure in b* of
B.b. Set X, := G Xz Xox- Then X; is a closed subvariety of G Xp b~

Lemma 6.1. Let T’ be the canonical morphism from & to b.

(1) The morphism 1’ is projective and birational.

(ii) Let v be the canonical map from n*(Ey) to €. Then v and v := 7'ov are B-equivariant
birational projective morphisms from *(Ey) to €y and b respectively. In particular, n*(Eo) is a
desingularization of &, and b.

Proof. (i) Since X is a projective variety, 7’ is a projective morphism and 7/(&€y) is closed in b.
Moreover, 7/(€g) is B-invariant since 7’ is a B-equivariant morphism and it contains fj since D is in
X. For x in By, (") 1(x) = {(b, x)}. Hence 7’ is a birational morphism and 7/(&,) = b since B(Byeg)
is an open subset of b.

(i1) Since & is a vector bundle over X and since « is a projective birational morphism, v is a
projective birational morphism. Then 7 is a projective birational morphism from 7*(€y) to b by (i).
It is B-equivariant since so are v and 7. Moreover, 7%(€) is a desingularization of &, and b since
m*(€p) is smooth as a vector bundle over a smooth variety. O

Denote by ¢ the canonical projection from 7*(€) to I'. Then, according to the above notations,
we have the commutative diagram:

7*(€g) ~—=T
bl g, X
Recall that £ is the subvariety of X x b*:
Sg‘) =, xp, . X)) €EX XD Jus Xy, . u3 X

As &g is a vector bundle over X, so is 88‘).

Lemma 6.2. Ser &Y .= 71*(88]‘)). Let 1y be the canonical morphism from &X' 1o b*.

(1) The vector bundle Sgk) over T is a vector subbundle of the trivial bundle T x b*. Moreover,
&Y has dimension k€ + n.

(i1) The morphism 7, is a projective birational morphism from Sgk) onto Xox. Moreover, Sgk) isa
desingularization of Xy in the category of B-varieties.

Proof. (i) By definition, &W is the subvariety of I x b*. Since X and I' have dimension n, &Y has
dimension k¢ + n as a vector bundle of rank k€ over I.
(i) Since I' is a projective variety, 7, is a projective morphism and (W) = Xox by

Lemma 5.1,(i). For (xi,...,x) in bl N Xog 7 (01,50 = {(@'(@™), (x1,..., %))} since
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g™ is a Cartan subalgebra. Hence 7, is a birational morphism, whence the assertion since eWisa
smooth B-variety as a vector bundle over the smooth B-variety I'. O

Set Y := G x5 (I x b*). The canonical projections from G x I' x b* to G x I" and G x b* define
through the quotients morphisms from ) to GxzI" and Gxzb*. Denote by ¢ and ¢ these morphisms.
Then we have the following diagram:

9 G xp bk
Gl l')’x
GxT BH

The map (g, x) — (g, 7x(x)) from G X 8&") to G x bt defines through the quotient a morphism T,
from G Xp Sgk) to X;.

Proposition 6.3. Set E := y,o1y.

(1) The variety G Xp eW is a closed subvariety of 7).

(11) The variety G Xp 82") is a vector bundle of rank k€ over G Xg I. Moreover, G xXg I' and
G Xp Egk) are smooth varieties.

(iii) The morphism € is a projective birational morphism from G x5 €® onto C.

Proof. (i) According to Lemma 6.2,(i), Sg‘) is a closed subvariety of I" x b¥, invariant under the
diagonal action of B. Hence G X e® is a closed subvariety of G x I' x b¥, invariant under the action
of B, whence the assertion.

(i1) Since Sg‘) is a B-equivariant vector bundle over I', G Xp Egk) is a G-equivariant vector bundle
over G XgI'. Since G X3 is a fiber bundle over the smooth variety G/B with smooth fibers, G Xz I"
is a smooth variety. As a result, G Xp &% is a smooth variety.

(iii) According to Lemma 6.2,(ii) and Lemma 1.7, T is a projective birational morphism from
GXp Egk) to X;. Since X is a B-invariant closed subvariety of b¥, X; is closed in Gxgb*. According
to Lemma 5.1,3i), y(¥;) = C®. Moreover, y,(X;) is an irreducible closed subvariety of B;k) since
vx 18 a projective morphism by Lemma 1.7. Hence y,(X;) = ew by Proposition 5.6. For all z in
G.Lk(b’r‘eg), ly:'(z)| = 1. Hence the restriction of y, to ¥, is a birational morphism onto G;k) since

G.Lk(bfeg) is dense in C%. Moreover, this morphism is projective since yy is projective. As a result,
€ is a projective birational morphism from G Xp &% onto ¥, O

Theorem 1.3 results from Proposition 5.6 and Proposition 6.3,(ii) and (iii) and the following
corollary results from Lemma 6.2,(ii), Proposition 6.3,(ii) and (iii), and Lemma 1.4.

Corollary 6.4. Let % and Gik) be the normalizations of Xy and Gik) respectively. Then k[iov,k]

and k[C®] are the spaces of global sections of O e and O, e® respectively.
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