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ON THE COMMUTING VARIETY OF A REDUCTIVE LIE ALGEBRA AND OTHER
RELATED VARIETIES.

JEAN-YVES CHARBONNEL AND MOUCHIRA ZAITER

ABsTRACT. In this note, we discuss some varieties which are constructed analogously to the isospectral commut-
ing varieties. These varieties are subvarieties of varieties having very simple desingularizations. For instance,
this is the case of the nullcone of any cartesian power of a reductive Lie algebra and we prove that it is normal.
Moreover, as a byproduct of these investigations and a Ginzburg’s result, we get that the normalizations of the
isospectral commuting variety and the commuting variety have rational singularities.
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1. INTRODUCTION

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra
of finite dimension, ¢ is its rank, dimg = ¢ + 2n and G is its adjoint group. As usual, b denotes a
Borel subalgebra of g, h a Cartan subalgebra of g, contained in b, and B the normalizer of b in G.

1.1. Main results. By definition, B® is the subset of elements (xy, . .., x;) of g* such that x;, ..., x;
are in a same Borel subalgebra of g. This subset of g* is closed and contains two interesting sub-
sets: the generalized commuting variety of g, denoted by C% and the nullcone of g* denoted by
N®_ According to [Mu65, Ch.2, §1, Theorem], for (xi, ..., x;) in B® (x,...,x)is in N® if and
only if xi, ..., x; are nilpotent. By definition, C® is the closure in g* of the set of elements whose
all components are in a same Cartan subalgebra. According to a Richardson Theorem [Ri79], C®
is the commuting variety of g.

There is a natural projective morphism Gxgb* — B®. For k = 1, this morphism is not birational
but for k > 2, it is birational. Furthermore, denoting by X the subvariety of elements (x, y) of g X D
such that y is in the closure of the orbit of x under G, the canonical morphism G Xz b — X is
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projective and birational and g is the categorical quotient of X under the action of W(R) on the
factor h. For k > 2, the inverse image of B® by the canonical projection from X* to g* is not
irreducible but the canonical action of W(R)* on X* induces a simply transitive action on the set
of its irreducible components. Denoting by Bg? one of these components, we have a commutative
diagram

G Xp bk 'Bg?

N

k)

with 7 the restriction to Bg? of the canonical projection @ from X* to g*. The first main theorem
of this note is the following theorem:

Theorem 1.1. (i) The variety Bg]g) is normal. Moreover, for k > 2, Bg? is the normalization of B®
and n is the normalization morphism.

(i) The variety N® is normal. Moreover, for k > 2, it is the underlying variety to a non reduced
well defined subscheme of g.

(ii1) The algebra k[Bg]g)] is a free extension of S(H*) and k[B®] is a free extension of S(HHVR),

According to Ting Xue and K. Vilonen, in general N® and Bg]g) have no rational singularities
for k > 2. In the study of the generalized commuting variety, the closure in Gr,(g) of the orbit of |
under the action of G plays an important role. Denoting by X the closure in Gr(b) of the orbit of
b under B, G.X is the closure of the orbit of G.I) and we have the following result:

Theorem 1.2. Let X’ be the set of centralizers of regular elements of § whose semisimple compo-
nents is regular or subregular.

(1) All element of X is a commutative algebraic subalgebra of g.

(i1) For x in g, the set of elements of G.X containing x has dimension at most dimg”* — £.

(ii1) The sets X' \ B.h and G.X" \ G.}) are dense in X \ B.)) and G.X \ G.}) respectively.

(iv) The sets X" and G.X" are smooth big open subsets of X and G.X respectively.

Let X, be the closure in b* of B.h* and let I' be a desingularization of X in the category of
B-varieties. Let E be the tautological bundle over X and set:

E,:=E xxT, E® = E;xp---Xr Es.
N’

k factors

Then EX is a desingularization of Xo. Set: € := 571(€®). The following theorem is the second
main result of this note:

Theorem 1.3. (i) The variety CW is irreducible and G x5 E® is a desingularization of ew,
(i1) For k = 2, the normalizations of Y and €® have rational singularities.

The proof of Assertion (ii) is a consequence of the proof of Assertion (i), and the deep result of
Ginzburg [Gi12] which asserts that the normalization of Gflz) is Gorenstein.
Acknowledgments We are grateful to Ting Xue and K. Vilonen for pointing out a negative result

about the nullcone.
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1.2. Notations. e An algebraic variety is a finite type reduced scheme over k.

e For V a vector space, its dual is denoted by V* and the augmentation ideal of its symmetric
algebra S(V) is denoted by S, (V). For A a graded algebra over N, A, is the ideal generated by the
homogeneous elements of positive degree.

e All topological terms refer to the Zariski topology. If Y is a subset of a topological space X,
denote by Y the closure of ¥ in X. For Y an open subset of the algebraic variety X, Y is called a
big open subset if the codimension of X \ Y in X is at least 2. For Y a closed subset of an algebraic
variety X, its dimension is the biggest dimension of its irreducible components and its codimension
in X is the smallest codimension in X of its irreducible components. For X an algebraic variety, O
is its structural sheaf, k[ X] is the algebra of regular functions on X and k(X) is the field of rational
functions on X when X is irreducible. When X is smooth, the sheaf of regular differential forms of
top degree on X is denoted by Qy.

e For X an algebraic variety and for M a sheaf on X, I'(V, M) is the space of local sections of M
over the open subset V of X. For i a nonnegative integer, H'(X, M) is the i-th group of cohomology
of M. For example, H(X, M) = I'(X, M).

Lemma 1.4. [EGALII, Corollaire 5.4.3] Let X be an irreducible affine algebraic variety and let Y
be a desingularization of X. Then H(Y, Oy) is the integral closure of k[X] in its fraction field.

e For K a group and for E a set with a group action of K, EX is the set of invariant elements of E
under K. The following lemma is straightforward and will be used in the proof of Corollary 2.14.

Lemma 1.5. Let A be an algebra generated by the subalgebras A, and A,. Let K be a group with
a group action of K on A,. Suppose that the following conditions are verified:

(1) A; N A, is contained in AX,
(2) A is a free Ay-module having a basis contained in Ay,
(3) Ay is a free Ay N Ay-module having the same basis.

Then there exists a unique group action of K on the algebra A extending the action of K on A, and
fixing all the elements of A. Moreover, if Ay N Ay = AX then A¥ = A,.

e For E a set and k a positive integer, EX denotes its k-th cartesian power. If E is finite, its
cardinality is denoted by |E|. If E is a vector space, for x = (x1, ..., x) in EX, P, is the subspace of
E generated by xi, ..., x;. Moreover, there is a canonical action of GL;(k) in E*X given by:

k
(@1 <0 j <R, ox) = (O anxpi= 1, k)
=1

In particular, the diagonal action of G in g¥ commutes with the action of GL,(k).

e For areductive Lie algebra, its rank is denoted by ¢, and the dimension of its Borel subalgebras
is denoted by b,. In particular, dima = 2b, — ¢,.

o If E is a subset of a vector space V, denote by span(E) the vector subspace of V generated by
E. The grassmanian of all d-dimensional subspaces of V is denoted by Gr,(V). By definition, a
cone of V is a subset of V invariant under the natural action of k* := k \ {0} and a multicone of V*
is a subset of V¥ invariant under the natural action of (k*)* on V*.

Lemma 1.6. Let X be an open cone of V and let S be a closed multicone of X x V¥, Denoting by
S| the image of S by the first projection, S| X {0} = § N (X x{0}). In particular, S is closed in X.
3



Proof. For x in X, x is in S if and only if for some (v, ...,v;) in V&', (x,tv,, ..., 1) isin S for
all 7 in k since S is a closed multicone of X x V¥, whence the lemma. ]

e The dual of g is denoted by g* and it identifies with g by a given non degenerate, invariant,
symmetric bilinear form (., .) on g X g extending the Killing form of [g, g].

e Let b be a Borel subalgebra of g and let h be a Cartan subalgebra of g contained in b. Denote
by R the root system of ) in g and by R, the positive root system of R defined by b. The Weyl
group of R is denoted by W(RR) and the basis of R, is denoted by II. The neutral elements of G
and W(XR) are denoted by 1, and 1 respectively. For @ in R, the corresponding root subspace is
denoted by g* and a generator x, of g* is chosen so that (x,, x_,) = 1 for all @ in R. As usual, the
half sum of positive roots is denoted by p.

e The normalizers of b and §) in G are denoted by B and Ng(h) respectively. For x in b, X is the
element of b such that x — X is in the nilpotent radical u of b.

e For X an algebraic B-variety, denote by G X X the quotient of G X X under the right action of
B given by (g, x).b := (gb, b~'.x). More generally, for k positive integer and for X an algebraic B*-
variety, denote by G* xz X the quotient of G* x X under the right action of B* given by (g, x).b :=
(gb, b~".x) with g and b in G* and B* respectively.

Lemma 1.7. Let P and Q be parabolic subgroups of G such that P is contained in Q. Let X be a
Q-variety and let Y be a closed subset of X, invariant under P. Then Q.Y is a closed subset of X.
Moreover, the canonical map from Q Xp Y to Q.Y is a projective morphism.

Proof. Since P and Q are parabolic subgroups of G and since P is contained in Q, Q/P is a
projective variety. Denote by Q Xp X and Q Xp Y the quotients of Q X X and Q X Y under the right
action of P given by (g, x).p := (gp, p~'.x). Let g — g be the quotient map from Q to Q/P. Since
X 1s a Q-variety, the map

OxX —>Q/PxX (g,x) — (g9,9.x)

defines through the quotient an isomorphism from Q Xp X to Q/P X X. Since Y is a P-invariant
closed subset of X, O Xp Y is a closed subset of Q Xp X and its image by the above isomorphism
equals Q/P x Q.Y. Hence Q.Y is a closed subset of X since Q/P is a projective variety. From the
commutative diagram:

OxpY—=Q/PxQ.Y

o~

0.Y

we deduce that the map Q Xp Y — Q.Y is a projective morphism. O

e For k > 1 and for the diagonal action of B in b¥, b* is a B-variety. The canonical map from
G x b* to G xp bX is denoted by (g, x1,...,x) = (g, x1,...,x). Let B® and N® be the images
of G x b* and G x u* respectively by the map (g, x1,...,x) = (g(x1),...,g(x)) so that B® and
N® are closed subsets of g¢ by Lemma 1.7. Let B be the normalization of B® and let 7 be the
normalization morphism. We have the commutative diagram:

G xp bF n B

A

Bk
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Let N be the normalization of N® and let % be the normalization morphism. We have the
commutative diagram:

G Xp uk Nflk)

~ A

N®

with v the restriction of y to G X u*.

e Let i be the injection (xy,...,x) = (1g,x1,...,x) from b* to G Xz b*. Then ¢ := y-i and
ta 1= ynoi are closed embeddings of b* into B® and BY respectively. In particular, B® = G..(b%)
and BY = G.,(b").

e Let e be the sum of the xz’s, B in I1, and let 4 be the element of h N [g, g] such that S(h) = 2
for all B in I1. Then there exists a unique f in [g, g] such that (e, A, f) is a principal sl,-triple. The
one parameter subgroup of G generated by ad# is denoted by ¢ — h(). The Borel subalgebra
containing f is denoted by b_ and its nilpotent radical is denoted by u_. Let B_ be the normalizer
of b_ in G and let U and U_ be the unipotent radicals of B and B_ respectively.

Lemma 1.8. Letk > 2 be an integer. Let X be an affine variety and set Y := W*xX. Let Z be a closed
B-invariant subset of Y under the group action given by g.(vy,...,0,x) = (g(v1),...,9(k), X)
with (g,v1,...,v00) in BXx b and x in X. Then Z N W x X is the image of Z by the projection
1,..., 0, %) > (U1, ..., 0, X).

Proof. For all vin b,
V= lirgl h(t)(v)
—

whence the lemma since Z is closed and B-invariant. O

e For x € g, let x; and x, be the semisimple and nilpotent components of x in g. Denote by g*
and G* the centralizers of x in g and G respectively. For a a subalgebra of g and for A a subgroup
of G, set:

at:=anNg* AY:=ANG*
The set of regular elements of g is
Oreg = {xegl dll’l’lgx ={}

and denote by g, ss the set of regular semisimple elements of g. Both g, and gy, ¢ are G-invariant
dense open subsets of g. Setting hreg 1= h N Greg, Dreg := D N Gregs Upeg 1= U N Greg, Gregss = G(Dreg)s
Oreg = G(breg) and G(11,) is the set of regular elements of the nilpotent cone N, of g.

Lemma 1.9. Let k > 2 be an integer and let x be in g*. For O open subset of Ore» Px N O is not
empty if and only if for some g in GL(k), the first component of g.x is in O.

Proof. Since the components of g.x are in P, for all g in GL,(k), the condition is sufficient. Suppose
that P, N O is not empty and denote by x, ..., x; the components of x. For some (ay,...,a;) in
K\ {0},

ax;+---+ax, €0

Let i be such that a; # 0 and let 7 be the transposition of S; such that (1) = i. Denoting by ¢ the

element of GL(k) such that g, ; = a,; for j =1,...,k, g;; = 1for j =2,...,kand g;; = O for

Jj = 2and j # [, the first component of g7.x is in O. O
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e Denote by S(g)® the algebra of g-invariant elements of S(g). Let py,..., p, be homogeneous
generators of S(g)® of degree di,...,d, respectively. Choose the polynomials py,..., p; so that
di<---<d,. Fori=1,...,0and (x,y) € g X g, consider a shift of p; in the direction y: p;(x + ty)
with ¢ € k. Expanding p;(x + ty) as a polynomial in #, we obtain

di
(1) pix+y) =y p" ey V(L x.y) €kxaxg

m=0

where y — (m!) pgm)(x, y) is the derivative at x of p; at the order m in the direction y. The elements
pgm) defined by (1) are invariant elements of S(g) ®, S(g) under the diagonal action of G in g X g.
Remark that pgo)(x, y) = pi(x) while pgdi)(x, y) = pi(y) for all (x,y) € g X g.

Remark 1.10. The family P, := {pgm)(x, D) 1 <i<¢6,1 <m < d}forx € g, is a Poisson-
commutative family of S(g) by Mishchenko-Fomenko [MF78]. We say that the family P, is con-
structed by the argument shift method.

eletie{l,...,f}. For xin g, denote by &;(x) the element of g given by

d
(€i(x),y) = —pix + ty) |0

dr
for all y in g. Thereby, &; is an invariant element of S(g) ®, g under the canonical action of G.
According to [Ko63, Theorem 9], for x in g, x is in gy if and only if £;(x), ..., &/(x) are linearly
independent. In this case, &(x), ..., &/(x) is a basis of g*.

Denote by sgm), for 0 < m < d; — 1, the elements of S(g X g) ® g defined by the equality:

di-1
) sx+1y)= Y &"yr",  V(txy) ekxgxg

m=0
and set:

V., = span({eP(x,p), ..., Vx,y), i=1,...,0))

for (x,y) in g X g. According to [Bol91, Corollary 2], V., has dimension by if and only if P, , has
dimension 2 and P, , \ {0} is contained in gyc,.

2. ON THE VARIETIES B®

Let k > 2 be an integer. According to the above notations, we have the commutative diagrams:

NP

Un

G Xp b* i 'Bflk) G Xp uk

A A

B® N®

Since the Borel subalgebras of g are conjugate under G, B® is the subset of elements of g* whose
components are in a same Borel subalgebra and N® are the elements of B® whose all the compo-
nents are nilpotent.

Lemma 2.1. (i) The morphism y from G xg b* to B® is projective and birational. In particular;
G xp b* is a desingularization of B® and B® has dimension kb, + n.
(ii) The morphism v from G Xz u* to N® is projective and birational. In particular, G xgv* is a
desingularization of N® and N® has dimension (k + 1)n.
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Proof. (i) Denote by ng) the subset of elements (x, y) of g such that P, , has dimension 2 and
such that P, , \ {0} is contained in g.,. According to Lemma 1.7, y is a projective morphism. For

I1<i<j<klet Qg‘j) be the inverse image of ng) by the projection
(.X1, o ,Xk) L— (-xi’ -xj)

Then Qf.f‘; is an open subset of g* whose intersection with B® is not empty. Let Q' be the union
of the Ql(.?. According to [Bol91, Corollary 2] and [Ko63, Theorem 9], for (x, y) in ng) NB, v,,
is the unique Borel subalgebra of g containing x and y so that the restriction of y to y‘l(Qg‘)) is a
bijection onto Qg‘). Hence 7 is birational. Moreover, G X b* is a smooth variety as a vector bundle
over the smooth variety G/B, whence the assertion since G Xp b* has dimension kb, + n.

(i1) According to Lemma 1.7, v is a projective morphism. Let Nﬁ% be the subset of elements
of N® whose at least one component is a regular element of g. Then Ng% is an open subset of
N® . Since a regular nilpotent element is contained in one and only one Borel subalgebra of g, the
restriction of v to v‘l(NEf%) is a bijection onto NE’% Hence v is birational. Moreover, G Xz ¥ is a
smooth variety as a vector bundle over the smooth variety G/B, whence the assertion since G X 1
has dimension (k + 1)n. O

2.1. Denote by m; : ¢ — g//G and m, : h — h/W(R) the quotient maps, i.e the morphisms
defined by the invariants. Recall g//G = H/W(R), and let X be the following fiber product:

¥

X g
N
b D h/W(R)

where y and p are the restriction maps. The actions of G and W(R) on g and §) respectively induce
an action of G x W(R) on X.

Lemma 2.2. (i) There exists a well defined G-equivariant morphism y, from G Xg b to X such that
v is the composition of y, andy.
(ii) The morphism vy, is projective and birational. Moreover, X is irreducible.
(iii) The subscheme X is normal. Moreover, every element of gree X ) N X is a smooth point of X.
(iv) The algebra k[X] is the space of global sections of Ogx,, and k[X]¢ = S(b).

Proof. (i) Since the map (g, x) — (g(x),x) is constant on the B-orbits, there exists a uniquely
defined morphism 7y, from G X b to g X h such that (g(x), x) is the image by vy, of the image of
(g, x) in G X b. The image of 7y, is contained in X since for all p in S(g)°, p(x%) = p(x) = p(g(x)).
Furthermore, 7, verifies the condition of the assertion.

(i1) According to Lemma 1.7, vy, is a projective morphism. Let (x,y) be in g X b such that
p(x) = p(y) for all p in S(g)°. For some g in G, g(x) is in b and its semisimple component is y so
that (x, i) is in the image of y,. As a result, X is irreducible as the image of the irreducible variety
G xg b. Since for all (x,y) in X N hreg X byee, there exists a unique w in W(R) such that y = w(x),
the fiber of y, at any element X N G.(be X byee) has one element. Hence v, is birational, whence
the assertion.

(ii1) The morphism 7 is finite, and so is y. Moreover my is smooth over b, ¥ is smooth over

Oreg- Finally, , is flat and all fibers are normal and Cohen-Macaulay. Thus the same holds for the
7



morphism p. Since b is smooth this implies that X is normal and Cohen-Macaulay by [MA86, Ch.
8, §23].

(iv) According to (ii), (iii) and Lemma 1.4, k[X] = H%G X3 b, Ogx,p). Under the action of G
in g X b, k[g X h]¢ = S(9) ®, S(h) and its image in k[X] by the quotient morphism equals S(b).
Moreover, since G is reductive, k[X]¢ is the image of k[g X h]“ by the quotient morphism, whence
the assertion. O

Proposition 2.3. [He76, Theorem B and Corollary] (i) Fori > 0, H(G/B, £(S(b*)) equals 0.
(ii) The variety X has rational singularities.

Corollary 2.4. (i) Let x and x’ be in b, such that (x', X) is in G.(x,X). Then x' is in B(x).
(1) For all w in W(R), the map

U_ x breg B x’ (ga x) — (g(X), LU(}))
is an isomorphism onto a smooth open subset of X.

Proof. (i) The semisimple components of x and x” are conjugate under B since they are conjugate
to x under B. Let b and b’ be in B such that x is the semisimple component of b(x) and b’(x"). Then
the nilpotent components of b(x) and b’(x’) are regular nilpotent elements of g, belonging to the
Borel subalgebra b N ¢* of g*. Hence x’ is in B(x).
(i1) Since the action of G and W(R) on X commute, it suffices to prove the corollary for w = 1.
Denote by 6 the map
U- X beg — X, (g, x) — (g(x),X).

Let (g, x) and (¢g’, x’) be in U_ X by, such that (g, x) = 6(¢g’, x'). By (i), X' = b(x) for some b in
B. Hence g~ 'g’b is in G*. Since x is in by, G* is contained in B and g~'¢g’ is in U_ N B, whence
(g,x) = (g',x") since U_ N B = {1,}. As aresult, 6 is a dominant injective map from U_ X b, to
the normal variety X. Hence 6 is an isomorphism onto a smooth open subset of X, by Zariski Main
Theorem [Mu88, §9]. m|

2.2. According to Lemma 2.1,(i), G X b is a desingularization of B® and we have the commu-
tative diagram:

” K
G xp bk ®

S~ A

B&

Lemma 2.5. Let @ be the canonical projection from X* to g*. Denote by v, the map
bk_>xk9 (XI,...,Xk)’_>(x1,---,x1¢,x_1,-..,x_k).

(i) The map v is a closed embedding of b* into X*.

(ii) The subvariety 1,(b%) of X* is an irreducible component of =" (b%).

(iii) The subvariety @' (b%) of X* is invariant under the canonical action of W(R)* in X* and
this action induces a simply transitive action of W(R)* on the set of irreducible components of
@ (bh).

Proof. (i) The map

b* — G* x b, X1y X)) = (Lgy ooy Ly X1, oo, X0)
8



defines through the quotient a closed embedding of b* in G* X b*. Denote it by ’. Let y be the
map

G xp b — X5 (0 = (), - Ya(0)-
Then ¢, = yflk)oL’. Since 7y, is a projective morphism, ¢, is a closed morphism. Moreover, it is
injective since wo is the identity of b*.

(i) Since S(b) is a finite extension of S(h)"™®, @ is a finite morphism. So @' (b¥) and b* have
the same dimension. According to (i), ¢(b%) is an irreducible subvariety of w™!(b*) of the same
dimension, whence the assertion.

(iii) Since all the fibers of @ are invariant under the action of W(R)* on X*, @~ !(b%) is invariant
under this action and W(R)* permutes the irreducible components of @~!(b*). For w in W(R)*, set
Z, 1= w.(6%). Then Z, is an irreducible component of @' (b%) for all w in W(R)* by (ii). For w in
W(R)* such that Z,, = ¢(6%), for all (x, ..., %) in D, (X1, ..., X w.(x1, . . ., X)) s in 4 (b) so that
(x1,...,x) is invariant under w and w is the identity.

Let Z be an irreducible component of @' (b%) and let Z, be its image by the map

(xla' s Xk Y1, - "yk) — (-x_l’ . -,X_k,yl,- . -,!/k)'
Since @ is G*-equivariant and b* is invariant under B*, @w~!(b%) and Z are invariant under B*. Hence
by Lemma 1.8, Z; is closed. Moreover, since the image of the map
k k
Zy X u" — X7, (Xt e X Yt e )y Uy o)) = (X + Uy, e, X+ U, Y1 o Yk

is an irreducible subset of @~ !(bX) containing Z, Z is the image of this map. Since Z; is contained
in X*, Z, is contained in the image of the map

b x WRY — b* x b, (e xwr, e w) = (X X wi (X)), . (X))
Then, since W(R) is finite and Z; is irreducible, for some w in W(R)X, Z, is the image of h* by the
map

(X1, .o, x) — (X1, xw(X, .00, X))
and Z = Z,,, whence the assertion. O

Set 9 := G* X b*. The map
G x b — G* x b, (g, 015, 00) ¥ (Gy oo ., G5 U1y o o, k)

defines through the quotient a closed immersion from G X3 b* to 9. Denote it by v. Consider the
diagonal action of G on X* and identify G x b* with v(G x b¥) by the closed immersion v.

Corollary 2.6. Set Bg? = G.y (BY).

(1) The subset Bg? is the image of G x5 b* by yr(lk). Moreover, the restriction of yflk) to G x5 bk is
a projective birational morphism from G xz b* onto Bglg).

(i1) The subset Bg]g) of X* is an irreducible component of @~ (BW).

(iii) The subvariety @' (B®) of X* is invariant under W(R)* and this action induces a simply
transitive action of W(R)* on the set of irreducible components of w~'(B®).

(iv) The subalgebra X[B®] of k[@™ (B®] equals k[w (B VP with respect to the action of
W(R)* on @ {(B®).

Proof. (i) The variety G/B identifies with the diagonal of (G/B)* so that G X b* is a closed subva-

riety of G* Xz bX. Let yy be the restriction of y{ to G x5 b¥. Since i, = Yo', G x5 0% = G./(0P)

and yflk) is G-equivariant, Bg? = (G X5 b¥). Hence Bg? is closed in X* and yy is a projective
9



morphism from G X b* to Bg? since Y2 is a projective morphism. According to Lemma 2.1,(i),

@oyy is a birational morphism onto B®. Then vy is birational since @(BY') = B®, whence the
assertion.

(i) Since @ is a finite morphism, @' (B®), Bgf) and B® have the same dimension, whence the
assertion since Bg?) is irreducible as an image of an irreducible variety.

(iii) Since the fibers of @ are invariant under W(R)*, @ '(B®) is invariant under this action and
W(R)* permutes the irreducible components of @~ !(B®). Let Z be an irreducible component of
@ (BW). Since @ is G*-equivariant, @ !(B®) and Z are invariant under the diagonal action of
G. Moreover, Z = G.(Z N @ (b")) since B® = G.b*. Hence for some irreducible component
Zy of ZN @ '(b"), Z = G.Zy. According to Lemma 2.5,(iii), Z, is contained in w.;(b*) for some
w in W(R)*. Hence Z = w.Bg? since the actions of G¥ and W(R)* on X* commute and Z is an
irreducible component of @~ (B®).

Letw = (wi,...,w;) be in W(R)* such that w. B = BY. Let x be in by, and leti = 1,...,k.
Set:

— _ . X if j=1i
2= (X150 Xy X1, oo, X)) With X = { v —e otherwise .
=

Then there exists (y, . .., y,) in b* and g in G such that

w.z = (9gW1), - 9gW)> Y1, - - > Yi)-

For some b in B, b(y;) = y; since y; is a regular semisimple element, belonging to b. As a result,
gb~'(y7) = x and w;(x) = y;. Hence gb™' is an element of Ng(b) representing w;'. Furthermore,
since gb™'(b(y;)) = e for j # i, b(y;) is a regular nilpotent element belonging to b. Then, since
there is one and only one Borel subalgebra containing a regular nilpotent element, gh~!(b) = b and
w; = 1y. As aresult, w is the identity of W(R)*, whence the assertion.

(iv) Since the fibers of @ are invariant under W(R)*, k[B®] is contained in k[@ ! (B®)]"®",
Let p be in k[ (B®)]"®'  Since W(R) is a finite group, p is the restriction to @' (B®) of an el-
ement g of k[X]®, invariant under W(R)*. Since k[X]"™® = S(g), ¢ is in S(g)® by Lemma 2.1,(iv),
and p is in k[B®], whence the assertion. O

2.3. For a a positive root, denote by b, the kernel of @ and by S, the closure of U(},) in b. For 8
in I1, set:

Ug 1= @ gﬁ, bﬁ = bﬁ@ﬂlg.

a€R\(B)

Lemma 2.7. For a in R,, let V), be the set of subregular elements belonging to b,.
(i) For ain Ry, S, is a subvariety of codimension 2 of b. Moreover, it is contained in b \ by,.
(i1) For Bin 11, Sp = bg.
(iii) The S, ’s, a € R, are the irreducible components of b \ Dyeg.

Proof. (1) For xin b, b* = h+kx,. Hence U(h),,) has dimension n— 1 + £ — 1, whence the assertion
since U(b),,) is dense in S, and b}, is contained in b \ by,
(i) ForginIl, U (%) is contained in by since bg is an ideal of b, whence the assertion by (i).
(iii) According to (i), it suffices to prove that b \ by is the union of the S,’s. Let x be in b \ by,.
According to [V72], for some g in G and for some g in I, x is in g(bg). Since bg is an ideal of b,

by Bruhat’s decomposition of G, for some b in B and for some w in W(R), b~"(x) is in w(bg) N b.
10



By definition,
w(by) = whp) & w(ig) = bup & () "

aeR\(B)
So,

w(bp) N = By & g with 1y <= @ Q@

aeR\(B)
w(@)eR +

The subspace 1, of 11 is a subalgebra, not containing g“%). Then, denoting by U, the closed sub-
group of U whose Lie algebra is adu,

Uo(Bu) = w(bg) N'D

since the left hand side is contained in the right hand side and has the same dimension. As a result,
xisin § ) since S, 18 B-invariant, whence the assertion. m|

Recall that 6 is the map
U-XDbeg — X, (9, %) — (9(x), %)
and denote by W; the inverse image of 6(U_ X by) by the projection
BY — X, W X Y i) F (X1 10).

Lemma 2.8. Let W, be the subset of elements (x, y) of Bg? (x € ",y € b¥) such that P, N Oreg IS NOL

empty.
(1) The subset W, of Bg? is a smooth open subset. Moreover, the map

U— X breg X bk_l — W];’ (ga X5 ,Xk) [ (g(xl)’ .. ’g(xk)a x_l’ ce 9x_k)

is an isomorphism of varieties.
(i1) The subset Bg]g) of o x b* is invariant under the canonical action of GL;(k).

(ii1) The subset W), o BY is a smooth open subset. Moreover, Wy is the G X GLy(k)-invariant
x
set generated by W,.

(iv) The subvariety Bg? \ Wi of Bg? has codimension at least 2k.

Proof. (i) According to Corollary 2.4,(ii), 8 is an isomorphism onto a smooth open subset of X. As
aresult, W/ is an open subset of Bg? and the map

U- X beg X B — W, (goxi, ..o xi) > (g(x1), - o, g0, X1 - - - Xg)
is an isomorphism whose inverse is given by
W, — U_ X bpeg X b1
(Xts ) = (07 (L X)L 07 (e, X010 -, 07 (L X1 ()

with #7! the inverse of 6 and 6~ !(x;, X7); the component of 8~!(x;, X7) on U_, whence the assertion
since U X Dyeg X b¥! is smooth.
(ii) For (xy, ..., x;) in b* and for (aij, 1 <1, j < k)in GLi(k),

k

k
§ a;jXj = § ai jXj
j=1

j=1
11



so that ;(b%) is invariant under the action of GL(k) in g* x b* defined by
k k

(ai,j’ 1< l,] < k)-(xl’ e X Yl - ',yk) = (Z ai’ij,j = 1, .. "k’Zai,jyj’j = 1, .. .,k),
j=1 J=1

whence the assertion since Bg]g) = G.;(b") and the actions of G and GL(k) in ¢* X h* commute.

(iii) According to (i), G.W, is a smooth open subset of Bg?. Moreover, G.W/ is the subset of
elements (x,y) such that the first component of x is regular. So, by (ii) and Lemma 1.9, W =
GL(k).(G.W,), whence the assertion.

(k)

(iv) According to Corollary 2.6,(1), Bg]g) is the image of G X b* by the restriction yy of yy

to G Xz b*. Then Bg? \ W, is contained in the image of G Xp (b \ by,)* by yx. As a result, by
Lemma 2.7,

dim B \ Wy < n + k(b — 2),

whence the assertion. O

2.4. For E a B-module, denote by £((E) the sheaf of local sections of the vector bundle G X3 E
over G/B. Let A be the diagonal of (G/B)* and let J, be its ideal of definition in O/py. The
variety G/B identifies with A so that O g,py/da is isomorphic to Og,p. For E a B*-module, denote
by L(E) the sheaf of local sections of the vector bundle G* xg E over (G/B)*.

Lemma 2.9. Let E be a B*-module and let A be a trivial B*-module. Denote by E the B-module
defined by the diagonal action of B on E.
(i) The short sequence of O py-modules

0 — Ja®o,, . LE) — L(E) — Ly(E) — 0

is exact.
(ii) The space H*((G/B)*, L(E &, A)) is equal to H'((G/B)*, L(E)) ®, A.

Proof. (i) Since L£(E) is a locally free Og,pr-module, the short sequence of O/ py-modules

0 — Ja ®o L(E) — L(E) — 0p ®p L(E)— 0

(G/BYk (G/BK

is exact, whence the assertion since Oy B0,k L(E) is isomorphic to Lo(E).

(ii) Since A is a trivial B*-module, the vector bundle G* Xy (E ® A) is isomorphic to
(G* Xz E) ® A, whence

LE® A)=LE)eA and H(G/B), L(E ®, A)) = H'(G/B)*, L(E)) ®, A.

From Lemma 2.9 results a canonical morphism
H(G/B)", L(E)) — H’(G/B, L(E))

for all B*-module E. According to the identification of g and g* by (.,.), the duals of b and u
identify with b_ and u_ respectively so that b_ and u_ are B-modules.

Lemma 2.10. (i) The algebra k[B®] is equal to HY(G/B, Lo(S(b))).

(ii) The algebra kIN®] is equal to H(G/B, Lo(S(k))).
12



(ii1) The algebra k[Bg]g)] is the image of the morphism
HY((G/B)", £(S(b"))) — H(G/B, Lo(S(bY))).

Proof. (i) Since G X b* is a desingularization of the normal variety BY, k[BY] is the space of
global sections of Ogy,i« by Lemma 1.4. Let  be the bundle projection of the fiber bundle G x b*.
Since S(b*) is the space of polynomial functions on b,

(Oguper) = Lo(S(BL)),

whence the assertion.
(ii) By Lemma 2.1,(ii), G x3 ¥ is a desingularization of Nflk) so that k[Nflk)] is the space of global
sections of Ogy,+ by Lemma 1.4. Denoting by 7y the bundle projection of G xp 1,

NO*(OGXBH") = LO(S(HE))’

whence the assertion.
(iii) Since G* x g b is isomorphic to (G Xz b),

H((G/B)", Ot 06) = HY(G/B, Ogy) ™.
By (i),
H®(G/B, Ogx) = H(G/B, £(S(b.)) = k[X]
since G Xp D is a desingularization of X by Lemma 2.1,(i) and (ii), whence
H'((G/B)", £(S(bL)) = K[X"].
By definition, Bg]g) is a closed subvariety of X*. According to Corollary 2.6, k[B®] is a subal-

gebra of k[Bg?] having the same fraction field. Hence k[Bg]g)] is a subalgebra of k[Bflk)] having the
same fraction field. Then by (i), the image of the morphism

H(G/B)", L(bY)) — HY(G/B, Lo(S(bY)))
is equal to k[Bg?]. O
Proposition 2.11. Let A be the image of the morphism
H(G/B), £(S(4)) — H(G/B), Lo(S(E))).

(1) The algebra k[B;k)] is equal to k[Nflk)] ®: S(HY).
(i) The algebra k[Bg]g)] is equal to A ®, S(b).

Proof. Since b* is the direct sum of 1* and b,
S(*) = Sk) @, SOHY).

In the B-module b_, §) is a subspace of invariant elements. Then S(H¥) is a trivial B¥-module. So,
by Lemma 2.10,(i) and (ii), and Lemma 2.9,(ii),

k[BY] = KINPT @, S(HY).

Moreover,
H'((G/B)", £(S(v%))) = H'((G/B)", L(S(u"))) & S(HY),

whence the proposition by Lemma 2.10,(iii). O



Remark 2.12. According to Proposition 2.11, S(h*) is embedded in k[Bflk)] and by Lemma 2.10,(iii),
the embedding is given by the map

S(bk) — k[‘B:(;)]’ pr— ((xla e Xk Y1y e 9yk) — p(yla oo 9yk)'
Denote by ® this map.

Theorem 2.13. (i) The variety Bg? is normal. In particular, BY = 33?, Yn = Yx and the normal-
ization morphism of B® is the restriction of @ to Bg?.
(ii) The image of ® is equal to k[By]®. Moreover, k[Bg?] is generated by k[ B®] and k[B1°.

(iii) The subalgebras k[ B®1° and ®(S(H)*)V™® of k[Bg?]G are equal.

Proof. (i) Since S(b¥) is a polynomial algebra of dimension k¢, the depth of localizations of k[Bg?]
at every maximal ideal is at least k¢ by Proposition 2.11,(ii). In particular, it is at least 2 since
k > 2. According to Lemma 2.8,(iii) and (iv), Bg]g) is smooth in codimension 1. Then Bg? is
normal by Serre’s normality criterion [Bou98, §1, n°10, Théoreme 4], whence the assertion by
Corollary 2.6,(1).

(i1) Since Bg? is a closed subvariety of X* and k[X] is generated by S(g) and S(b), k[Bg?] is
generated by S(b¥) and the image of S(g*) in k[Bg?] which is equal to k[B®]. For p in k[Bg]g)],
denote by p the element of S(h)®* such that

DXty ey Xi) 1= P(X1y ey Xy X1y e e o5 Xk)-
Then the restriction of p — ®(p) to 1 (b*) equals 0. Moreover, if p is in k[Bg]g)]G, p — D(p) is
G-invariant so that p = ®(p), whence the assertion.
(iii) For (x1, ..., x;) in b¥, for w in W(R) and for g,, a representative of w in Ng (D), we have
(WCx1), - .o wx), wxy), - ., wW(XK)) = Gu-(X15 -, X, WX, - W)

so that the subalgebra k[BW]C of k[Bg]g)]G is contained in ®(S(H*))Y™® by (ii). Moreover, since
G is reductive, k[BP]C is the image of (S(g)®¥)¢ by the restriction morphism. According to [J07,

Theorem 2.9 and some remark], the restriction morphism (S(g)®)¢ — (S(H)®)"® is surjective,
whence the equality k[ BP]C = O(S(h*))"™. o

Corollary 2.14. Let M be a graded complement to k[ B®19k[B®] in k[BW].
(i) The space M contains a basis of k[BY*] over S(b)*.

(i1) The intersection of M and S+(bk)]1§[Bg]g)] is different from Q.
Proof. (i) Since M is a graded complement to k[B®1k[B®] in k[B®], by induction on /,
k[B®] = Mk[B®1° + k[B19)'k[BP].

Hence k[B®] = Mk[B®]° since k[ B®] is graded. Then, by Theorem 2.13,(ii), k[Bg]g)] = MS(p)®*.
In particular,

K[BY] = M+ S, (e[ BY].
Then M contains a graded complement M’ to S+(bk)k[Bg?] in k[Bg]g)], whence the assertion by
Proposition 2.11,(1).
(i1) Suppose that M’ = M. We expect a contradiction. According to (i), the canonical maps

M SO — k[BY], M kBP9 — k[BY]
14



are isomorphisms. Then, according to Lemma 1.5, there exists a group action of W(R) on k[BP]
extending the diagonal action of W(R) in S(h)®* and such that k[Bg'C‘)]W(y) = k[B®] since k[ BP] n
S(H)® = (S(H)®**)"™ by Theorem 2.13,(iii). Moreover, since W(R) is finite, the subfield of invari-
ant elements of the fraction field of k[Bg?] is the fraction field of k[Bg]g)]W(R). Hence the action
of W(R) in k[Bg?] is trivial since k[Bé’C‘)] and k[B®] have the same fraction field, whence the
contradiction since (S(h)®*)"™® is strictly contained in S(p)* . o

Corollary 2.15. The restriction of yy to y;cl(Wk) is an isomorphism onto Wy.

Proof. Since the subset of Borel subalgebras containing a regular element is finite, the fibers of
vx over the elements of W are finite. Indeed, according to Zariski Main Theorem [Mu88, §9],
they have only one element since Bg? is normal by Theorem 2.13 and since yy is projective and
birational. So, the restriction of yy to y;cl(Wk) is a bijection onto the open subset W;, whence the
corollary by Zariski Main Theorem [Mu88, §9] since W;, is smooth by Lemma 2.8. O

3. ON THE NULLCONE

Let k > 2 be an integer. Let I be the ideal of k[Bg?] generated by S, (b%) and let N be the
subscheme of Bg]g) defined by /. Recall that according to Theorem 2.13,(i), n is the canonical
projection from B onto B®,

Lemma 3.1. Set N := 577! (N®),
(1) The variety Ng?) equals yx(G X ).
(ii) The nullvariety of I in Bg? equals Ng?.

Proof. (i) By definition, y"'(N®) = G x u*. Then, since y = 5oy, Ngé‘) = y%(G x5 1b).
(i1) Let V; be the nullvariety of  in Bg?. According to Remark 2.12, for (g, xi, . .., x;) in G X b¥,
vx((g, x1,...,x)) is a zero of I if and only if xy, ..., x; are nilpotent, whence the assertion. O

Theorem 3.2. Let Iy be the ideal of k| B®] generated by k[ BW]°.

(1) The variety Ng? is a normal variety and 1 is its ideal of definition in k[Bg?]. In particular, 1
is prime.

(i) The variety N® is normal.

(iii) The ideal I, is strictly contained in the ideal of definition of N® in k[B®].

Proof. (i) According to Theorem 2.13,(i) and Proposition 2.11,(i),
K[ By] = kINy] @ SOH°).

Hence k[N] = k[Nflk)]. As aresult, N is an irreducible normal scheme and [ is a prime ideal. So,
by Lemma 3.1,(ii), Ngé‘) is a normal variety.

(ii) According to Theorem 2.13,(ii), k[Bg]g)] is generated by k[B®] and S(h)®*. So, the restriction
to k[B®] of the quotient map from k[Bg]g)] to k[Ngé‘)] is surjective. Furthermore, the image of
k[B®] by this morphism equals k[N®] since Ng? = 7' (NW), whence k[N®] = k[Ngé‘)]. As a
result, N® is normal by (i).

(iii) Since k[B®]¢ is contained in S, (H¥), Iy is contained in INk[BP]. According to Lemma 3.1,(ii)
and (i), I N k[B®] is the ideal of definition of N® in k[B®]. Let M be a graded complement of
k[B®ISk[BP] in k[BP]. According to Corollary 2.14,(ii), I N M is different from 0. Hence I is
strictly contained in I N k[B®], whence the assertion. O
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4. MAIN VARIETIES

Denote by X the closure in Gr,(g) of the orbit of h under B. According to Lemma 1.7, G.X is the
closure in Gr,(g) of the orbit of h under G.

4.1. For a in R, denote by b, the kernel of a. Set V,, := b, ® g* and denote by X, the closure in
Gr,(g) of the orbit of V, under B.

Lemma 4.1. Let @ be in R,. Let p be a parabolic subalgebra containing b and let P be its
normalizer in G.

(1) The subset P.X of Gry(g) is the closure in Gry(g) of the orbit of ) under P.

(i1) The closed set X,, of Gry(g) is an irreducible component of X \ B.}.

(ii1) The set P.X,, is an irreducible component of P.X \ P.}.

(iv) The varieties X \ B.Y and P.X \ Py are equidimenional of codimension 1 in X and P.X
respectively.

Proof. (i) Since X is a B-invariant closed subset of Gr/(g), P.X is a closed subset of Gr/(g) by
Lemma 1.7. Hence P.J is contained in P.X since b is in X, whence the assertion since P is a
P-invariant subset containing X.

(i1) Denoting by H,, the coroot of a,

-1
lim exp(tad x, )(—H,) = X,.
t—00 2t

So V, is in the closure of the orbit of ) under the one parameter subgroup of G generated by ad x,.
As aresult, X, is a closed subset of X \ B.h) since V,, is not a Cartan subalgebra. Moreover, X, has
dimension n — 1 since the normalizer of V,, in g is ) + g®. Hence X, is an irreducible component of
X \ B.)) since X has dimension 7.

(iii) Since X, is a B-invariant closed subset of Gr,(g), P.X, is a closed subset of Gr/(g) by
Lemma 1.7. According to (ii), P.X, is contained in P.X \ P and it has dimension dimp — £ — 1,
whence the assertion since P.X has dimension dimp — €.

(iv) Let P, be the unipotent radical of P and let L be the reductive factor of P whose Lie algebra
contains adl. Denote by N.(b) the normalizer of h in L. Since B.}) and P.}) are isomorphic to U
and L/N.(b) X P, respectively, they are affine open subsets of X and P.X respectively, whence the
assertion by [EGAIV, Corollaire 21.12.7]. m|

For x in V, set:
V, := span({g|(x), ..., &/(x)}).

Lemma 4.2. Let A be the set of elements (x, V) of g X G.X such that x isin V.
(1) For (x,V)inbx X, (x, V) is in the closure of B.(De X {b}) in b X Gre(b) if and only if x is in V.
(i1) The set A is the closure in § X Gr(g) of G.(hree X {b}).
(ii1) For (x, V) in A, V, is contained in V.

Proof. (i) Let A’ be the subset of elements (x, V) of b X X such that x is in V and let A} be the
closure of B.(hrg X {h}) in b X Gry(b). Then A’ is a closed subset of b x Gr,(b) containing A;. Let
(x,V)bein A’. Let E be a complement to V in b and let g be the set of complements to E in g.
Then Qg is an open neighborhood of V in Gr,(b). Moreover, the map

Hom,(V,E) = Qp, ¢+ K(g) := span({v + ¢(v) | v € V).
16



is an isomorphism of varieties. Let Qf. be the inverse image of the set of Cartan subalgebras. Then
0 is in the closure of Qf in Homy(V, E) since V is in X. For all ¢ in QF, (x + ¢(x), K(¢)) is in A,
Hence (x, V) is in A}

(i1) Let (x, V) be in A. For some g in G, g(V) is in X. So by (i), (g(x), g(V)) is in Aj and (x, V) is
in the closure of G.(he X {b}) in g X Gr,(g), whence the assertion.

(i) Fori =1,...,¢, let A; be the set of elements (x, V) of A such that g;(x) isin V. Then A; is a
closed subset of g X G.X, invariant under the action of G in g X Gr,(g) since &; is a G-equivariant
map. For all (g, x) in G XD, (g(x), g(h)) is in A; since ;(g(x)) centralizes g(x). Hence A; = A since
G.(breg X {b}) is dense in A by (ii). As a result, for all V in G.X and for all xin V, g1(x), ..., &/(x)
arein V. a

Corollary 4.3. Let (x,V) be in A and let 3 be the center of g*.
(1) The subspace 3 is contained in V. and V.
(i1) The space V is an algebraic, commutative subalgebra of g.

Proof. (i) If x is regular semisimple, V is a Cartan subalgebra of g. Suppose that x is not regular
semisimple. Denote by 3 the center of g*. Let 9, be the nilpotent cone of ¢* and let ., be
the regular nilpotent orbit of g*. For all y in Qye,, X + y 1S N Greg and &1(xs + ), . .., E¢(Xs + y) is
a basis of g®™ by [Ko63, Theorem 9]. Then for all z in 3, there exist regular functions on Q,
aiz .- .,de; such that

= al,z(y)gl(xs + y) +ee af,z(y)gt’(xs + y)
for all y in Q,,. Furthermore, these functions are uniquely defined by this equality. Since Ny is

a normal variety and Ngx \ Q. has codimension 2 in N, the functions a, _, . .., a, have regular
extensions to Ny« . Denoting again by a; , the regular extension of g; . fori =1,...,¢,

= al,z(y)gl(xs + y) +ee af,z(y)gt’(xs + y)

for all y in M. As aresult, 3 is contained in V,. Hence 3 is contained in V by Lemma 4.2,(iii).
(i1) Since the set of commutative subalgebras of dimension ¢ is closed in Gr,(g), V is a commu-
tative subalgebra of g. According to (i), the semisimple and nilpotent components of the elements
of V are contained in V. For x in V' \ 9, all the replica of x, are contained in the center of g*.
Hence V is an algebraic subalgebra of g by (i). O

4.2. For s in b, denote by X* the subset of elements of X, contained in g°.

Lemma 4.4. Let s be in ) and let 3 be the center of g°.
(1) The set X* is the closure in Gry(g*) of the orbit of \) under B°.
(11) The set of elements of G.X containing 3 is the closure in Gry(g) of the orbit of b under G°.

Proof. (i) Set p := g* + b, let P be the normalizer of p in G and let p, be the nilpotent radical of p.
For g in P, denote by g its image by the canonical projection from P to G*. Let Z be the closure in
Gr(g) X Gr(g) of the image of the map

B — Gr(b) x Gr(b), g — (g(h), g(b))
and let Z’ be the subset of elements (V, V) of Gr/(b) x Gr,(b) such that
VcgnNb and VcCV @p,.

Then Z’ is a closed subset of Gr.(b) X Gr,(b) and Z is contained in Z’ since (g(h), g(bh)) is in Z’
for all g in B. Since Gr(b) is a projective variety, the images of Z by the projections (V, V') = V
17



and (V, V') = V' are closed in Gr,(b) and they equal X and B°.h respectively. Furthermore, B*.h is
contained in X°.
Let V be in X°. For some V' in Gr/(b), (V, V') is in Z. Since

Vecg, Vcg, VeV @p,,

V =V’ so that V is in BT.I), whence the assertion.

(i1) Since 3 is contained in b, all element of G*.b is an element of G.X containing 3. Let V be in
G.X, containing 3. Since V is a commutative subalgebra of g° and since g°* N b is a Borel subalgebra
of g°, for some g in G°, g(V) is contained in b N g*. So, one can suppose that V is contained in b.
According to the Bruhat decomposition of G, since X is B-invariant, for some b in U and for some
win W(R), Visin bw.X. Set:

Riw:=la e R, |w(a@) € R}, Ry =lae R, |wl@) & R},

=P w= P wi= e,

a€R, ae-R, , R,
B” := wBw ™!, b :=hdu & us,
so that adb” is the Lie algebra of B* and w.X is the closure in Gr/(g) of the orbit of ) under B".
Moreover, u is the direct sum of u1; and u,. For i = 1,2, denote by U; the closed subgroup of U
whose Lie algebra is adu,;. Then U = U,U, and b = b,b; with b; in U, for i = 1,2. Since w™'(11;)
is contained in u and X is invariant under B, b,byw.X = b,w.X. Then b; "(V)isin w.X and

by'(Vycbnb’=pheuy
since V is contained in b. Set:
U =1 Ng’, Up := Uy NPy

and fori = 1, 2, denote by U, the closed subgroup of U, whose Lie algebra is adu, ;. Then 1, is the
direct sum of 1, ; and u,, and U, = U, U, so that by = by by, with by; in U, fori = 1,2. Asa
result, 3 is contained in b5 (V) and b3 (3) is contained h®1,. Hence b3 5(3) = 3 since u; N, = {0}

Suppose by, # 1,. We expect a contradiction. For some x in 11,5, b, = exp(adx). The space
1, 1s a direct sum of root spaces since so are u, and p,. Let 4, ..., a, be the positive roots such
that the corresponding root spaces are contained in 11, . They are ordered so that for i < j, a; — «;
is a positive root if it is a root. Fori = 1, ..., m, let ¢; be the coordinate of x at x,, and let i be the
smallest integer such that ¢;, # 0. For all z in 3,

b35(2) = 2 = €iy@iy(D) Xy, € @ g%,
J>io
whence the contradiction since for some z in 3, @;,(z) # 0. As a result, bg’ll(V) is an element of
w.X = B*.h, contained in g*. So, by (i), bg’ll(V) and V are in G*.1), whence the assertion. O

4.3. Define a torus of g as a commutative algebraic subalgebra of g whose all elements are
semisimple. For x in g, denote by Z, the subset of elements of G.X containing x and by (G¥),
the identity component of G*.

Lemma 4.5. Let x be in N, and let Z be an irreducible component of Z,. Suppose that some
element of Z is not contained in N,,.

(1) For some torus s of o, all element of a dense open subset of Z contains a conjugate of s under
(GYo.
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(i1) For some s in s and for some irreducible component Z, of Zs.,, Z is the closure in Gr,(g) of
(G Z;.

(iii) If Z, has dimension smaller than dim g***

—{, then Z has dimension smaller than dim g* — ¢.

Proof. (i) After some conjugation by an element of G, we can suppose that g* N b and g* N b are
a Borel subalgebra and a maximal torus of g* respectively. Let Z, be the subset of elements of Z
contained in b and let (B*), be the identity component of B*. Since Z is an irreducible component of
Z,, Z is invariant under (G*)y and Z = (G¥)y.Z. Since (G*)y/(B")o is a projective variety, according
to the proof of Lemma 1.7, (G¥)y.Z. is a closed subset of Z for all closed subset Z, of Z. Hence for
some irreducible component Z, of Z,, Z = (G*)y.Z.. According to Corollary 4.3,(ii), for all V in
Z., there exists a torus s, contained in g* N f) and verifying the following two conditions:

(1) Vis contained in s + (g* N u),
(2) V contains a conjugate of s under (B¥),.

Let s be a torus of maximal dimension verifying Conditions (1) and (2) for some V in Z,. By
hypothesis, s has positive dimension. Let Z, be the subset of elements of Z, verifying Conditions
(1) and (2) with respect to s. By maximality of dims, for Vin Z, \ Z,, dimV Nnu > { — dims or
dimV Nu = ¢ — dims and V is contained in ¢’ + u for some torus of dimension dims, different
from s. By rigidity of tori, s is not in the closure in Grg, s(h) of the set of tori different from s.
Hence Z. \ Z, is a closed subset of Z, since for all V in Z, \ Z,, dim V N u has dimension at least
{—dims. As aresult, (GY)y.Z; contains a dense open subset whose all elements contain a conjugate
of s under (G%),.

(ii) For some s in s, g° is the centralizer of s in g. Let Z* be the subset of elements of Z containing
s. Then Z* is contained in Z,, and according to Corollary 4.3,(i), Z° is the subset of elements of
Z, containing s. By (1), for some irreducible component Z| of Z*, (G*).Z] is dense in Z. Let Z; be
an irreducible component of Z. ., containing Z]. According to Corollary 4.3,(i1), Z, is contained
in Z, since x is the nilpotent component of s + x. So Z; = Z] and (G*)o.Z; is dense in Z.

(ii1) Since Z; is an irreducible component of Z,,, Z; is invariant under the identity component
of G***. Moreover, G*** is contained in G* since x is the nilpotent component of s + x. As a result,
by (ib),

S+Xx

dimZ < dimg* — dimg*"™™* + dimZ,,

whence the assertion. m|
Denote by C;, the G-invariant closed cone generated by .

Lemma 4.6. Suppose g semisimple. Let I be the closure in g X Gry(g) of the image of the map
k*XG — g xGr(g)  (1,9) > (tg(h), g(h))

and let T'y be the inverse image of the nilpotent cone by the first projection.
(1) The subvariety I of g X Gr(g) has dimension 2n + 1. Moreover, I is contained in A.
(i1) The varieties C, and G.X are the images of I by the first and second projections respectively.
(i11) The subvariety Iy of T is equidimensional of codimension 1.
(iv) For x nilpotent in g, the subvariety of elements V of G.X, containing x and contained in
G(x), has dimension at most dimg* — €.

Proof. (i) Since the stabilizer of (A, ) ink* X G equals {1} x H, I" has dimension 2n + 1. Since tg(h)

is in g(b) for all (¢, g) in k* X G and A is a closed subset of g X Gr,(g), I" is contained in A.
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(i1) Since Gr(g) is a projective variety, the image of I' by the first projection is closed in g.
So, it equals Cj since it is contained in C, and it contains the cone generated by G.h. Let
be the canonical map from g \ {0} to the projective space P(g) of ¢ and let I' be the image of
I'n (g )\ {0}) x Grg(g) by the map (x,V) — (7(x), V). Since Cj, is a closed cone, I' is a closed
subset of P(g) X Gr(g). Hence the image of r by the second projection is a closed subset of Gr/(g).
So, it equals G.} since it is contained in G.h and it contains G.h. As a result, the i image of I' by
the second projection equals G. since it is contained in G.} and it contains the image of r by the
second projection.

(ii1) The subvariety C;, of g has dimension 2n + 1 and the nullvariety of p; in C}, is contained in
N, since it is the nullvariety in g of the polynomials p, ..., p,. Hence N, is the nullvariety of p,
in Cj, and Iy is the nullvariety in I" of the function (x, V) — p(x). So I'y is equidimensional of
codimension 1 inT. L

(iv) Let T be the subset of elements V of G.X, containing x and contained in G(x). Denote by
I'; the inverse image of G.T by the projection from I' to G.X. Then I'; is contained in Ty. Since
x is in all element of T and since I'7 is invariant under G, the image of I'7 by the first projection
equals % Moreover, {x} X T = {x} x G.X N I'7. Hence

dimI'; = dim7T + dimg — dimg".

By (i) and (iii),
dimI'y < dimg—-+¢

since I'; is contained in I['y. Hence T has dimension at most dimg* — £. O
When g is semisimple, denote by (G.X), the subset of elements of G.X contained in 9.

Corollary 4.7. Suppose g semisimple. Let x be in N,.
(1) The variety (G.X), has dimension at most 2n — {.
(i1) The variety Z, N (G.X), has dimension at most dimg* — £.

Proof. (i) Let T be an irreducible component of (G.X), and let Ay be its inverse image by the
canonical projection from A to G.X. Then Ar is a vector bundle of rank ¢ over 7. So it has
dimension dim7T + £. Let Y be the projection of Ay onto g. Since 7 is an irreducible projective
variety, Y is an irreducible closed subvariety of g contained in 9,. The subvariety (G.X), of G.X is
invariant under G since so is 9,. Hence Ay and Y are G-invariant and for some y in i, ¥ = G(y).
Denoting by F), the fiber at y of the projection Az — Y, V is contained in G(y) and contains y for
all Vin F,. So, by Lemma 4.6,(iv),

dimF, < dimg’ - ¢.
Since the projection is G-equivariant, this inequality holds for the fibers at the elements of G(y).

Hence,
dimAr <dimg—{and dim7 < 2n - ¢.

(i1) Let Z be an irreducible component of Z, N (G.X), and let T be an irreducible component of
(G.X),, containing Z. Let A7 and Y be as in (i). Then G(x) is contained in Y and the inverse image
of G(x) in Ar has dimension at least dim G(x) + dimZ. So, by (i),

dimG(x) + dimZ < dimg — ¢,

whence the assertion. O
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Theorem 4.8. For x in g, the variety of elements of G.X, containing x, has dimension at most
dimg* - C.

Proof. Prove the theorem by induction on dimg. If g is commutative, G.X = {g}. If the derived
Lie algebra of g is simple of dimension 3, G.X has dimension 2 and for x not in the center of g,
Z, = {g"}. Suppose the theorem true for all reductive Lie algebra of dimension strictly smaller than
dimg. Let x be in g. Since G.X has dimension dimg — £, we can suppose that x is not in the center
of g. If x is not nilpotent, g* has dimension strictly smaller than dimg and all element of G.X
containing x is contained in g™ by Corollary 4.3,(i), whence the theorem in this case by induction
hypothesis. As a result, by Lemma 4.5, for all x in g, all irreducible component of Z,, containing
an element not contained in ,, has dimension at most dimg* — £.

Let 3, be the center of g and let x be a nilpotent element of g. Denoting by Z the subset of
elements of G.(h N [g, g]) containing x, Z, is the image of Z by the map V +— V + 3,, whence the
theorem by Corollary 4.7. O

4.4. Letsbeinb)\ {0}. Set p := g* + b and denote by p, the nilpotent radical of p. Let P be the
normalizer of p in G and let P, be its unipotent radical. For a nilpotent orbit Q of G* in ¢°, denote
by Q¥ the induced orbit by Q from g* to g.

Lemma 4.9. Let Y be a G-invariant irreducible closed subset of ¢ and let Y’ be the union of G-
orbits of maximal dimension in Y. Suppose that s is the semisimple component of an element x of
Y’. Denote by Q the orbit of x, under G* and set Y, := 3 + Q+ Pu.

(1) The subset Y, of v is closed and invariant under P.

(i1) The subset G(Y1) of g is a closed subset of dimension dim3 + dim G(x).

(ii1) For some nonempty open subset Y" of Y’, the conjugacy class of ¢” under G does not
depend on the element y of Y.

(iv) For a good choice of x in Y"”, Y is contained in G(Y)).

Proof. (i) By [Ko63, §3.2, Lemma 5], G* is connected and P = P,G°. For all y in p and for all g in
Py, g(y) is in y + p,. Hence X | 1s invariant under P since it is invariant under G*. Moreover, it is a
closed subset of p since 3 + Q is a closed subset of g°.

(i1) According to (i) and Lemma 1.7, G(Y)) is a closed subset of g. According to [CMa93,
Theorem 7.1.1], Q* N (Q + p,) is a P-orbit and the centralizers in g of its elements are contained in
p. For y in Q* N (Q + p,) and for g in G, if g(y) is in Y; then it is in Q + p, since it is nilpotent. So,
for y in Q* N (Q + p,), the subset of elements g of G such that g(y) is in ¥; has dimension dim p.
As a result,

dimG(Y;) = dimG Xp Y| = dimp, + dimY;.
Since dimg* = dimg* — dimQ,
dim Yl
dimG(Y,) = dim3+ 2dimp, + dimg® — dimg*
= dim3 + dim G(x).

dim3 + dimp, + dimg® — dimg*

(iii) Let T be the canonical morphism from g to its categorical quotient g//G under G and let Z be
the closure in g//G of t(Y). Since Y is irreducible, Z is irreducible and there exists an irreducible
component Z of the preimage of Z in ) whose image in g//G equals Z. Since the set of conjugacy
classes under G of the centralizers of the elements of ) in g is finite, for some nonempty open

subset Z* of Z, the centralizers of its elements are conjugate under G. The image of Z* in g//G
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contains a dense open subset Z’ of Z. Let Y” be the inverse image of Z’ by the restriction of T to
Y’. Then Y” is a dense open subset of Y and the centralizers in g of the semisimple components of
its elements are conjugate under G.

(iv) Suppose that x is in Y. Let Zy be the set of elements y of Y such that ¢ = g¢*. Then
G.Zy = Y”. For all nilpotent orbit Q of G* in ¢°, set:

YQ:3+§+pu

Then Zy is contained in the union of the Yo’s. Hence Y” is contained in the union of the G(Yq)’s.
According to (ii), G(Yq) is a closed subset of g. Hence Y is contained in the union of the G(Yq)’s
since Y” is dense in Y. Then Y is contained in G(Yq) for some € since Y is irreducible and there
are finitely many nilpotent orbits in g*, whence the assertion. O

Theorem 4.10. (i) The variety G.X is the union of G.h and the G.X3’s, 5 € 11
(ii) The variety X is the union of U.)) and the X,,’s, a € R,.

Proof. Let 3, be the center of g and let u be the map
Gre([g, g1) — Gre(a), Vi3 +V
with ¢ the rank of [g, g] and set:

X4 := B.(bN[g,al), Xoa := B.(V,N1[g,al)

for @ in R,. Then X, G .X, X,, G.X, are the images of X;, G.X;, X,.4, G.Xoq by u respectively. So
we can suppose g semisimple.

(i) For ¢ = 1, g is simple of dimension 3. In this case, G.X is the union of G.} and G.g°. So, we
can suppose £ > 2. According to Lemma 4.1,(iii), for @ in R,, G.X,, is an irreducible component
of G.X \ G.bh. Moreover, for all g in II N W(R)(@), G.X, = G.X; since V, and Vj are conjugate
under Ng(h).

Let T be an irreducible component of G.X \ G.}. Set:

Ar =ANgxT

and denote by Y the image of A7 by the first projection. Then Y is closed in g since Gr,(g) is a
projective variety. Since Ar is a vector bundle over T and since T is irreducible, Ay is irreducible
and so is Y. Since T is an irreducible component of G.X \ G.h, T, Ay and Y are G-invariant.
According to Lemma 4.1,(iii), T has codimension 1 in G.X. Hence, by Corollary 4.7,(i) Y is not
contained in the nilpotent cone since £ > 2. Let Y’ be the set of elements x of Y such that g* has
minimal dimension. According to Lemma 4.9,(ii) and (iv), for x in a G-invariant dense subset Y”’
of Y/,
dimY < dimG(x) + dim3
with 3 the center of g™ and according to Theorem 4.8,
dimA7 < dimG(x) + dim3 + dimg* — € = dimg + dim3 — ¢

Hence A7 has dimension at most 27 + dim3 and dim3 = € — 1 since T has codimension 1 in G.X.
Let x be in Y” such that x, is in ). Then x, is subregular and 3 is the kernel of a positive root a.
Denoting by s, the subalgebra of g generated by g% and g7¢, g* is the direct sum of b, and s,.
Since the maximal commutative subalgebras of s, have dimension 1, a commutative subalgebra of
dimension ¢ of g™ is either a Cartan subalgebra of g or conjugate to V,, under the adjoint group of

gs. Asaresult, V,isin 7T and T = G.V, = G.X, since T is G-invariant, whence the assertion.
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(i1) According to Lemma 4.1,(ii), for @ in R,, X,, is an irreducible component of X \ B.h. Let
g1, - - ., 8y be its simple factors. For j = 1,...,m, denote by X; the closure in Gr,ggj(g ;) of the orbit

of N g;. Then X = X;X - -- X X,, and the complement to B.h) in X is the union of the
XiX- XX X (Xj\B.(hNgj)) X Xju XXX,
So, we can suppose g simple. Consider
b=pC---Cpr=g

an increasing sequence of parabolic subalgebras verifying the following condition: fori =0, ..., {—
1, there is no parabolic subalgebra q of g such that

Pi&Eas P

Fori=0,...,¢, let P; be the normalizer of p; in G, let p;, be the nilpotent radical of p; and let P,
be the unipotent radical of P;. Fori = 0,...,¢ and for @ in R,, set X; := P;.X and X;, := P;.X,.
Prove by induction on ¢ — i that for all sequence of parabolic subalgebras verifying the above
condition, the X;,’s, @ € R, are the irreducible components of X; \ P;.b.

For i = ¢, it results from (i). Suppose that it is true for i + 1. According to Lemma 4.1,(iii), the
X, .’s are irreducible components of X; \ P;.b.

Claim 4.11. Let T be an irreducible component of X; \ P;.h such that P; is its stabilizer in P;,;.
Then T = X;, for some @ in R,.

Proof. According to the induction hypothesis, 7 is contained in X;,; , for some @ in R,. According
to Lemma 4.1,(iv), T has codimension 1 in X; so that P;;;.T and X, have the same dimension.
Then they are equal and T contains g* for some x in by, such that x; is a subregular element
belonging to h. Denoting by o’ the positive root such that a’(x;) = 0, ¢* = V, since V, is
the commutative subalgebra contained in b and containing b,, which is not Cartan, so that T =
Xi,a’- O

Suppose that X; \ P;.} is not the union of the X;,’s, @ € R,. We expect a contradiction. Let 7" be
an irreducible component of X; \ P;.h, different from X;, for all @. According to Claim 4.11 and
according to the condition verified by the sequence, 7 is invariant under P,,,. Moreover, according
to Claim 4.11, it is so for all sequence pj,...,p; of parabolic subalgebras verifying the above
condition and such that p;. = p;for j =0,...,i. As aresult, for all simple root 8 such that a?is
not in p;, T is invariant under the one parameter subgroup of G generated by adg™®. Hence T is
invariant under G. It is impossible since for x in g \ {0}, the orbit G(x) is not contained in p; since
g is simple, whence the assertion. m]

4.5. Let X’ be the subset of g* with x in b, such that x, is regular or subregular. For a in R,
denote by 0, the map

k— X, t — exp(rad x,).bh.
According to [Sh94, Ch. VI, Theorem 1], 6, has a regular extension to P!(k), also denoted by 0,.
Set Z, := 0,(P'(k)) and X!, := B.Z, so that X!, = Uh U B.V,,.

Lemma 4.12. Let a be in R, and let V be in X. Denote by V the image of V by the projection
XX

(1) For x in b, x is subregular if and only if V. = b, for some positive root vy.

(i) If V has dimension € — 1, then V = Vy = b, for some x in V and for some y in R,.

(iii) If V = by, then V is conjugate to V,, under B.
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Proof. (i) First of all, since ¢y,..., &, are G-equivariant maps, V, is contained in the center of g*
for all x in g. Then for x in b, V, is the center of g* by Corollary 4.3,(i), whence the assertion.
(ii) For y in R,, set:

V, =vVn(@®, +u.

Suppose V = £ — 1. Then V does not contain regular semisimple element. Hence V is the union of
V,,y € R.. Since V is irreducible and R, is finite, V = V,, for some y in R, so that V= b, since Vv
has dimension £ — 1. Let x be in V such that X is subregular. Then Vx = b, by (i).

(ii1) Suppose V =, By (ii), Vz = b, for some x in V. Let b be in B such that b(x;) = X.
Then b(V) centralizes I, by Corollary 4.3,(1). Moreover, b(V) is not a Cartan subalgebra since v
does not contain regular semsimple element. The centralizer of b, in b equals f) + g* and V,, is the
commutative algebra of dimension £ contained in b + g* which is not a Cartan subalgebra, whence
the assertion. O

Corollary 4.13. Let a be a positive root.
(1) The sets X, and G.X, are open subsets of X and G.X respectively.
(1) The sets X' and G.X" are big open subsets of X and G.X respectively.

Proof. (1) Prove that X/, is a neighborhood of V,, in X. Denote by H,, the coroot of @ and set:

E' = @ a7, E =kH,®E'.
yeR:\(a)

Let Qp be the set of subspaces V of b such that £ is a complement to V in b and let ). be the
complement in X N Qg to the union of X,y € R, \ {a}. Then Q7 is an open neighborhood of
Ve, in X. Let V be in Q. such that V is not a Cartan subalgebra and denote by V its image by the
projection x — X. Then V is contained in V + u so that h = kH, + V. Since V is not a Cartan
subalgebra, V has dimension £ — 1. Hence V = b, for some positive root y by Lemma 4.12,(ii).
According to Lemma 4.12,(iii), V is conjugate to V, under B. Then @ = y and V is in X|, since
V is not in X, for all positive root ¢ different from a. Hence €2}, is contained in X, so that X, is a
neighborhood of V, in X. As a result, X/, is an open subset of X since it is the union of B.V,, and
the open subset U.h of X. Hence G.(X \ X],) is a closed subset of G.X by Lemma 1.7, whence the
assertion.

(ii) By definition, X’ is the union of the X/,’s, @ € R,. Hence X’ is an open subset of X by (i).
Moreover, by Theorem 4.10,(ii), X \ X’ is the union of the X, \ X”’s, @ € R,. Then X’ is a big open
subset of X since, for all @, X,, \ X’ is strictly contained in the irreducible subvariety X, of X.

Since G.X’ is the union of the G.X!’s, @ € R,, G.X’ is an open subset of G.X by (i). Moreover,
by Theorem 4.10,(1), G.X \ G.X" is the union of the G. X3 \ G.X"’s, B € Il. Hence G.X’ is a big open
subset of G.X since, for all 8, G. X3 \ G.X is strictly contained in the irreducible subvariety G.Xj
of G.X. O

Proposition 4.14. The sets X' and G.X" are smooth big open subsets of X and G.X respectively.

Proof. According to Corollary 4.13,(ii), it remains to prove that X’ and G.X’ are smooth open
subsets of X and G.X respectively. Denote by 7 the canonical projection from A onto G.X and set
Ay := n71(X). Let u be the map

greg — Gr,(gf) X gx
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and let y be its restriction to bye. Then u is a regular map. Denoting by I', and I, the graphs of
w1 and p, respectively, I', and I, are smooth varieties contained in A and A, respectively since for
X 1N g s, §* 1s a Cartan subalgebra, contained in b when x is in b. Set:

[o=T,Nr ' (GX)=ANGgexGX and T, =T, Na'(X')=ANDg XX’

Then I'}, is a smooth variety as an open susbet of I, and I}, is an open subset of 7~ '(G.X’) such that
n(l",) = G.X’ since all element of G.X" contains regular elements. In the same way, I}, is a smooth
open subset of 77! (X’) such that n(7,) =X". Asaresult, I’ and I/ are smooth fiber bundles over

G.X’ and X’ respectively since A and A, are vector bundles over G.X and X respectively. Hence
G.X’" and X’ are smooth varieties by [MA86, Ch. 8, Theorem 23.7]. O

5. ON THE GENERALIZED ISOSPECTRAL COMMUTING VARIETY

Let kK > 2 be an integer. According to Section 2, we have the commutative diagram

G xp bF n B

A

Bk

with B® the normalization of B® and n the normalization morphism. By Theorem 2.13,(i) and
Lemma 2.5,(i), ¢ is a closed embedding of b* into BY, BY is the closure of G.4(b%) in X¥ and 7 is
the restriction to B of the canonical projection from X* to g*. Denote by €% the closure of G.h*
in g* with respect to the diagonal action of G in ¢* and set C¥ := 57'(€®). The varieties €* and
C% are called generalized commuting variety and generalized isospectral commuting variety re-

spectively. For k = 2, C® is the isospectral commuting variety considered by M. Haiman in [Ha99,
§8] and [Ha02, §7.2].

5.1. Set:

E® .= {(u,xl,...,xk)EXka|u3x1,...,u9xk}.

Lemma 5.1. Denote by E** the intersection of E® and U} x (Breg,ss N b)* and for w in W(R),
denote by 6, the map

E® —0'xb,  x,.x) o (e X WD, . w()).

(1) Denoting by Xy the image of E® by the projection (u, x1, ..., xx) = (X1, ..., %), Xox is the
closure of B.Y* in b* and C® is the image of G x Xy by the map (g, x1, ..., x;) = (g(x1), . . ., g(x)).
(ii) For all w in W(R), 0,(E*) is dense in 0,(E®).

Proof. (i) Since X is a projective variety, X is a closed subset of b*. The variety E® is irreducible
of dimension n + k¢ as a vector bundle of rank k¢ over the irreducible variety X. So, B.({b} x b¥) is
dense in E® and X is the closure of B.h* in b¥, whence the assertion by Lemma 1.7.

(ii) Since U.h X (8reg s ND)* is an open susbet of X x b¥, E®*) is an open subset of E®. Moreover,
it is a dense open subset since E® is irreducible, whence the assertion since 6,, is a morphism of
algebraic varieties. m|
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5.2. Let s be in }) and let G° be the centralizer of s in G. According to [Ko63, §3.2, Lemma 5],
G* is connected. Denote by R, the set of roots whose kernel contains s and denote by W(R;) the
Weyl group of R;. Let 3, be the center of g°.

Lemma 5.2. Let x = (xi,...,x;) be in C® verifying the following conditions:

(1) s is the semisimple component of xi,
(2) for z in P,, the centralizer in g of the semisimple component of z has dimension at least
dimg®.
Then fori =1,...,k, the semisimple component of x; is contained in 3.

Proof. Since x is in C®, [x;, x ;1 = 0 for all (i, j). Suppose that for some i, the semisimple compo-
nent x;, of x; is not in 3,. A contradiction is expected. Since [x, x;] = 0, for all #ink, s + x; is
the semisimple component of x; + tx;. Moreover, after conjugation by an element of G*, we can
suppose that x; is in . Since R is finite, there exists ¢ in k* such that the subset of roots whose
kernel contains s + £x; is contained in R;. Since x;s is not in 3, for some « in Ry, a(s + tx;5) # 0
that is g**™ is strictly contained in g°, whence the contradiction. O

For w in W(R), set:
C, := G'wB/B, B” := wBw ™.

Lemma 5.3. [Hu95, §6.17, Lemma] Let B be the set of Borel subalgebras of g and let B be the
set of Borel subalgebras of g containing s.

(1) For all w in W(R), C, is a connected component of B.

(ii) For (w, w') in W(R) x W(R), C,, = Cy if and only if w'w™" is in W(R,).

(ii1) The variety C,, is isomorphic to G*/(G* N B").

For x in B®, denote by B, the subset of Borel subalgebras containing P,.

Corollary 5.4. Let x = (xi,...,x) be in C®. Suppose that x verifies Conditions (1) and (2) of
Lemma 5.2. Then {C, N B, | w € W(R)} is the set of connected components of B,.

Proof. Since a Borel subalgebra contains the semisimple component of its elements and since s is
the semisimple component of x;, B, is contained in B;,. As a result, according to Lemma 5.3,(i),
every connected component of B, is contained in C,, for some w in W(R). Set x, := (X1, ..., Xkn)-
Since [x;, x;] = 0 for all (i, j), P, is contained in g*. Let B* be the set of Borel subalgebras of g*
and for y in (g*), let B, be the set of Borel subalgebras of g* containing P,. According to [Hu95,
Theorem 6.5], B; is connected. Moreover, according to Lemma 5.2, the semisimple components
of x,...,x; are in 3, so that B = B. Let w be in W(R). According to Lemma 5.3,(iii), there is
an isomorphism from B’ to C,,. Moreover, the image of B! by this isomorphism equals C,, N B,

whence the corollary. m|
Corollary 5.5. Let x = (x, ..., x;) be in C® verifying Conditions (1) and (2) of Lemma 5.2. Then
77 1(x) is contained in the set of the (xi, . .., X, W(x18), -« w(xs))'s with w in W(R).

Proof. Since y = noy,, 17'(x) is the image of y~!(x) by y,. Furthermore, y, is constant on the
connected components of y~!(x) since 17! (x) is finite. Let C be a connected component of y~!(x).
Identifying G X b* with the subvariety of elements (i, x) of B X g* such that P, is contained in u,
C identifies with (C, N B,) X {x} for some w in W(R) by Corollary 5.4. Then for some g in G* and
for some representative g,, of w in Ns(h), gg,,(b) contains P, so that

Yo(C) = {(x1, ..., Xk, (9gw)~H(xD), - . -, (9gu) (X))
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By Lemma 5.2, x4, ..., x;s are in 3, so that w‘l(xi,s) is the semisimple component of (gg,,) ™" (x;)
fori=1,...,k. Hence

')’n(c) = {(XI, R w_l(xl,s)’ RN w_l(xk,s))}’

whence the corollary. m|
Proposition 5.6. The variety CW is irreducible and equal to the closure of G.,(b¥) in B,

Proof. Denote by G.4(b¥) the closure of G.,(H*) in Bflk). Then G.1(H) is irreducible as the closure
of an irreducible set. Since 7 is G-equivariant, 7(G.,.(h*)) = G.b*. Hence n(G.,(h*)) = C¥ since
1 is a finite morphism and C® is the closure of G.b* in g* by definition. So, it remains to prove
that for all x in C®, 57!(x) is contained in G.t(b*). There is a canonical action of GL,(k) on g* and
X*. Since this action commutes with the action of G in X*, B® is invariant under GL,(k) and n
is GLi(k)-equivariant. As a result, since €% and G.¢(b") are invariant under GL,(k), for x in C®,
77 1(x") is contained in G.¢(h) for all x’ in P* such that P,, = P, if 7!(x) is contained in G.y(bF).
Then, according to Lemma 5.2, since 7 is G-equivariant, it suffices to prove that 7! (x) is contained
in G.(H%) for x in €® N ¥ verifying Conditions (1) and (2) of Lemma 5.2 for some s in b.
According to Corollary 5.5,

77N (x) C {(xi, ..., X w(Xys), ..., wxes)) |w e W(R)} with x = (xq,. .., x).
For s regular, P, is contained in ) and x; = x; fori = 1, ..., k. By definition,
W(x1), . .., wx), w(xy), . .., wxe) € u(H)
and for g,, a representative of w in N (),
g;l.(w(xl), o wx), wlxy), . w(x)) = (X, . X w(xy), L, w(xg)).

Hence 777! (x) is contained in G.¢(h¥). As a result, according to the notations of Lemma 5.1, for all
w in W(R), 6,(E*") is contained in G.;,(h*). Hence, by Lemma 5.1,(ii), 6,,(E®) is contained in
G.(H%), whence the proposition. O

5.3. Let @ be the canonical projection from X* to g*. By Corollary 2.4,(ii), B® is an irreducible
component of @~ !(B®) and the action of W(R)* on X* induces a simply transitive action on the
set of irreducible components of @ !(B®). According to Remark 2.12, there is an embedding ®
of S(5)%* into k[B¥] given by

pr ((XI, e Xk Y, e '?yk) = p(yl’ .. "yk))'
This embedding identifies S(h)® with a subalgebra of k[BY].

Lemma 5.7. Let ¥ be the restriction to S(h)®* of the canonical map from k[BL] 1o k[CP].
(i) The subvariety C¥ of X* is invariant under the diagonal action of W(R) in X*,
(ii) The map ¥ is an embedding of S(h)®* into k[CP]. Moreover, Y(S(H)%*) equals k[Cc®1e.
(iff) The image of (S®)*)"™® by W equals K[CV 0,

Proof. (i) For x in Bg‘) and w in W(R), n(x) = n(w.x), whence the assertion by Proposition 5.6.

(ii) According to Theorem 2.13,(ii), S(h)® equals k[BX15. Moreover, for P in S(H)**, P = 0
if P(x) = 0 for all x in ¢(H%). Hence ¥ is injective. Since G is reductive, k[C%1C is the image of
k[BY1S by the quotient morphism, whence the assertion.

(iii) Since G is reductive, k[CP]C is the image of k[B®]% by the quotient morphism, whence
the assertion since (S()**)"® equals k[B®]° by Theorem 2.13,(iii). o
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Identify S(9)®* with a subalgebra of k[C¥] by ¥

Proposition 5.8. Let CY and C® be the normalizations of C* and C®.
(i) The variety C® is the categorical quotient of Gﬂ(rﬁ under the action of W(R).

(i1) The variety C® js the categorical quotient of C® under the action of W(R).

Proof. (i) According to Theorem 2.13,(ii), k[B¥] is generated by k[B®] and S(h)®. Since
W = p71(€®) by Proposition 5.6, the image of k[B®] in k[C¥] by the restriction morphism
equals k[€®]. Hence k[C¥] is generated by k[€®] and S())®. Then, by Lemma 5.7,(iii),
k[CPTVD = k[CM].

(ii) Let K be the fraction field of k[C%]. Since €% is a W(R)- -variety, there is an action of W(R)
in K and K"™ is the fraction field of k[CP]"® since W(R) is finite. As a result, the integral

closure k[e(k)] of k[€¥] in K is invariant under W(R) and k[e(k)] is contained in k[G(k)]W(R) by (i).

Let a be in k[@flk)]w(y). Then a verifies a dependence integral equation over J]g[@f1 )],

A"+ a1 d" o+ ap=0

whence .
(— W.p)a™ + e —— w.ag =0
WR) ;;m 1 WR) w;;m ’
since a is invariant under W(XR) so that a is in k[é%] by (i), whence the assertion. O

6. DESINGULARIZATION

Let k > 2 be an integer. Let X, X’ be as in Subsection 4.5. Denote by X, the normalization of X
and by 6 the normalization morphism. According to Proposition 4.14, X" identifies with a smooth
big open subset of X, and according to [Hir64], there exists a desingularization (I', r,) of X, in the
category of B-varieties such that the restriction of m, to 77'(X’) is an isomorphism onto X’. Set
7 = Ogermr, so that (I', 7r) is a desingularization of X in the category of B-varieties. Recall that X, is
the closure in b* of B.h* and set X; := G X Xo4. Then X, is a closed subvariety of G X b*.

Lemma 6.1. Let E be the restriction to X of the tautological vector bundle of rank € over Gr,(b)
and let T’ be the canonical morphism from E to b.

(1) The morphism 1’ is projective and birational.

(i1) Let v be the canonical map from n*(E) to E. Then v and T := 7'ov are B-equivariant
birational projective morphisms from n*(E) to E and b respectively. In particular, n*(E) is a
desingularization of E and .

Proof. (i) By definition, E is the subvariety of elements (u, x) of X X b such that x is in u so that 7/
is the projection from E to b. Since X is a projective variety, 7’ is a projective morphism and 7'(E)
is closed in b. Moreover, 7/(E) is B-invariant since 7’ is a B-equivariant morphism and it contains
b since b is in X. For x in Dy, ()" (x) = {(b, x)} since g* = h. Hence 7’ is a birational morphism
and 7'(E) = b since B(b,) is an open subset of b.

(i1) Since E is a vector bundle over X and since x is a projective birational morphism, v is a
projective birational morphism. Then 7 is a projective birational morphism from n*(E) to b by (1).
It is B-equivariant since so are v and 7'. Moreover, n*(E) is a desingularization of E and b since

m*(E) is smooth as a vector bundle over a smooth variety. O
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Denote by ¢ the canonical projection from 7*(E) to I'. Then, according to the above notations,
we have the commutative diagram:

7 (E) LT
AN
b E X

Lemma 6.2. Let Eék) be the fiber product n*(E) X, - - - X, 7" (E) and let T be the canonical morphism
from Egk) to b¥.

(1) The vector bundle Egk) over I is a vector subbundle of the trivial bundle T x b*. Moreover,
Egk) has dimension k€ + n.

(i1) The morphism 7 is a projective birational morphism from E® onto Xox. Moreover, E¥ isa
desingularization of Xy in the category of B-varieties.

Proof. (i) By definition, Egk) is the subvariety of elements (u, x1, . . ., x;) of xb* such that xi, ..., x;
are in (x). Since X and I" have dimension 7, Egk) has dimension k€ + n as a vector bundle of rank
k€ overI.

(i1) Since I' is a projective variety, 7 is a projective morphism and T(EP) = X, by Lemma 5.1,(1).
For (xi,...,x0) in b, o, 73 (s, x0) = {(@",(x1,..., X))} since g™ is a Cartan subalgebra.
Hence 7 is a birational morphism, whence the assertion since E® is a smooth variety as a vector
bundle over the smooth variety I'. m|

Set 9 := G X3 ([ x b*). The canonical projections from G x I' x b* to G x I" and G x b* define
through the quotients morphisms from 9) to GxI" and Gxzb*. Denote by ¢ and £ these morphisms.
Then we have the following diagram:

2) GXB bk
Gl l')’n
GxT BH

The map (g, x) — (g, Ti(x)) from G X Egk) to G x b* defines through the quotient a morphism 7
from G Xp Egk) to Xy.

Proposition 6.3. Set € := y,o7;.

(1) The variety G Xp EY is a closed subvariety of ).

(11) The variety G Xp Egk) is a vector bundle of rank k{ over G xg I. Moreover, G X I' and
G Xp Egk) are smooth varieties.

(ii1) The morphism & is a projective birational morphism from G Xp E® onto CW.
Proof. (i) According to Lemma 6.2,(i), Egk) is a closed subvariety of I x b¥, invariant under the
diagonal action of B. Hence G X EY is a closed subvariety of G X I" x b*, invariant under the action
of B, whence the assertion.

(ii) Since E® is a B-equivariant vector bundle over I', G X E®isa G-equivariant vector bundle
over G XgI'. Since G XTI is a fiber bundle over the smooth variety G/B with smooth fibers, G Xz I"

is a smooth variety. As a result, G Xp Egk) is a smooth variety.
29



(ii1) According to Lemma 6.2,(i1), T, is a projective birational morphism from G Xp Egk) to
X;. Since X, is a B-invariant closed subvariety of b*, X; is closed in G x b*. According to
Lemma 5.1,(i), y(¥;) = C®. Moreover, y,(¥,) is an irreducible closed subvariety of B since
va i8 a projective morphism by Lemma 1.7. Hence y,(¥) = C¥ by Proposition 5.6. For all z in
G.Lk(b’r‘eg), ly-1(z)] = 1. Hence the restriction of y, to X is a birational morphism onto Gflk) since

G.Lk(b’r‘eg) is dense in . Moreover, this morphism is projective since y, is projective. As a result,

E is a projective birational morphism from G xz E® onto €. O

The following corollary results from Lemma 6.2,(ii), Proposition 6.3,(ii) and (iii), and Lemma 1 .4.
Corollary 6.4. Let iov,k and Gflk) be the normalizations of X, and Gflk) respectively. Then k[iov,k]
and k[C®] are the spaces of global sections of O E® and O, E® respectively.

7. RATIONAL SINGULARITIES

Let k > 2 be an integer. Let X, X', X;,, 0¢, I, my, 7, E, Egk), W, v, T, T; be as in Section 6. We
have the commutative diagram:

E® 2o Xox

y

with ¢ the canonical projection from E® ontoT.

4 -

7.1. Let g;., be the set of regular elements x such that x; is regular or subregular and set b, :=

reg
Greg N D.

Lemma 7.1. (1) The subset bj., of b is a big open subset of b.

(i1) The subset o;., of § is a big open subset of g.

Proof. Let x be in g;eg \ Greg,ss- Let W be the set of elements y of g™ such that the restriction of ady
to [x, g] is injective. Then W is an open subset of g*, containing x, and the map

GxW—g, (9,y) — g(y)

is a submersion. Let 3 be the center of g* and set 3’ := W N 3. For some open subset W’ of W,
containing x, for all y in W’, the component of y on 3 is in 3’. Since [g*, g*] is a simple algebra
of dimension 3, W’ N g, is contained in g;eg and G(W’ N g,,) is an open set, contained in g;eg and
containing x. As a result, g/, 1S an open subset of g and by, is an open subset of b.

(1) Suppose that b \ by, has an irreducible component X of codimension 1 in b. A contradiction

is expected. Since X is invariant under B, £ N b is the image of £ by the projection x +— X by
Lemma 1.8. Since X has codimension 1 inb, ZNhH=hHorZ =X NH+ u. Since £ does not contain
regular semisimple element, £ N ) is an irreducible subset of codimension 1 of b, not containing
regular semisimple elements. Hence X N § = b, for some positive root @ and X N (b, + %) N Gy, 15
not empty, whence the contradiction.

(i) Since b \ by, is invariant under B, g \ g = G(b\ by,) and

’
reg’®

dimg\ g, <7n+dimb\D

whence the assertion by (i). O
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Setting Dreg ¢ := Dreg and breg 1 := b;eg, let V. ; be the subset of elements x of X, such that P,Nby

is not empty for j = 0, 1. By definition,
E® = {(u,x,....,x) € X x| usxy,...,u3x)
so that E® is a vector bundle over X. Denote by p; the map
E® — Xo., W, x1, .00 %) > (X1, ..., Xp).

Proposition 7.2. For j =0, 1, let V,:,j be the subset of elements x = (xy, ..., xx) of Xo, such that x,
IS in Byeg ;.

(1) For j=0,1, V,;j is a smooth open subset of X .

(i1) For j = 0,1, Vi is a smooth open subset of X.

(iii) For j = 0,1, p;'(Vi;) is a big open subset of E®.

Proof. (i) By definition, V/ , is the intersection of X, and the open subset by, ; X b*~! of bX. Hence
V,;j is an open subset of X . For x; in breg o, (X1, ..., X) 18 In V,;O if and only if x», ..., x; are in g™
by Corollary 4.3,(ii) and Lemma 6.2,(ii) since g* is in X. According to [Ko63, Theorem 9], for x
in by, £1(X), ..., &x(x) is a basis of g*. Hence the map

0
breg X Mk—l,f(k) — V/;(),

(a1 <i<k=1,1<j<0)— (5, T aneix0),. .., Xy arer,j81(x)
is a bijective morphism. The open subset b, has a cover by open subsets V such that for some

€l,...,e, In b, £1(x),...,g/(x),eq,...,e, 1s a basis of b for all x in V. Then there exist regular
functions ¢y, ...,¢, on V X b such that

¢
v— Z @j(x,v)ej(x) € span(ey, ..., e,)
j=1

for all (x, v) in VXD, so that the restriction of @ to V xM;_; ,(k) is an isomorphism onto X, NV xb*~!
whose inverse is

(.X1,. . .,Xk) — (-xl’((gol(-xla-xi)’ .. -’Soff(xl’-xi))’i = 2’- . ’k))

As aresult, 6 is an isomorphism and V; ; is a smooth variety, whence the assertion since V| is an
open subset of V; .

(ii) The subvariety Xy, of b* is invariant under the natural action of GL;(k) in b* and V}; =
GLk(k).V,;j by Lemma 1.9, whence the assertion by (i).

(ii1) Since Vj; is contained in Vj, it suffices to prove the assertion for j = 1. Suppose that
E®\ p;l(Vk,l) has an irreducible component £ of codimension 1. A contradiction is expected.
Denoting by 7, the canonical projection E®¥ — X, 71,(Z) has codimension at most 1 in X. For u in
U.b, u is a Cartan subalgebra and uf \ Vi1 has dimension k(/ — 1). Hence m has codimension 1
in X so that 1o(X) N X’ is not empty since X’ is a big open subset of X by Corollary 4.13,(ii). For u
in X’, u N by 1 1s not empty. Then {u} X u* is not contained in X for all  in a dense subset of 7y(X),
whence a contradiction since X has codimension 1. m|

Corollary 7.3. Let j =0, 1.
(1) The restriction of py, to p;l(Vk, ;) is an isomorphism onto Vy ;.
(i1) The morphism py. is projective and birational and Vy ; is a big open subset of X .
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Proof. (i) For x = (x1,...,x) in V; ; and u in X such that (u, x) is in E®, u = g¥ for all y in P, NDyeq.
Hence the restriction of p; to p,:l(Vk, ;) is injective. Then, by Zariski Main Theorem [Mu88, §9],
the restriction of py to p; ' (Vy ;) is an isomorphism onto V; ; since Vj ; is smooth.

(i1) Since X is a projective, py is a projective morphism. It is birational by (i). Then, by Proposi-
tion 7.2,(ii1), Vi ; is a big open subset of X . O

7.2. By definition, the restriction of m, to 7;(X’) is an isomorphism onto X’. Identify n;'(X")
and X’ by m,. Set E,, := 0;(E) and denote by E the inverse image of X" by the canonical map from
E, to X,,. Then E; is a smooth variety as a vector bundle above the smooth variety X'.

Lemma 7.4. Denote by v, the canonical morphism from E,, to E and by v, the embedding E| — E,.

(1) There exists a well defined projective birational morphism o, from n*(E) to E, such that
Vv = vyoo,. Moreover, E, is normal.

(i1) The Og,-module t,.(Qg) is free of rank 1.

(i11) The variety E, is Gorenstein and has rational singularities. Moreover, the canonical module
of E,, is free of rank 1.

Proof. (i) Since E,, is a vectore bundle over X, E, is a normal variety. Moreover, it is the normal-
ization of E and v, is the normalization morphism, whence the assertion by Lemma 6.1,(ii).

(i1) Set 1, := 7’ov, and denote by 7, the restriction of 7, to E;. Let w be a volume form on
b. Then 7,"(w) is a global section of Qg , without zero. For ¢ a local section of ¢,,(Q ) above
the open subset U of E,, for some regular function ¢ on U N E/, y7,*(w) is the restriction of ¢
to U N E]. According to Proposition 4.14, X’ is a big open subset of X,,. Hence E; is a big open
subset of E,, and U N E is a big open subset of U so that ¢ has a regular extension to U. As a
result, there exists a well defined morphism from ¢,,.(Qg ) to Of, whose inverse is the morphism

O, e (Qp) U — Yt (W),

whence the assertion.
(ii1) Denote by u the morphism

Qi) U — Yt (w).

By Grauert-Riemenschneider Theorem [GR70], R(0).(£2(g)) 1s isomorphic to ¢,,(€2g;) in the
derived category of the coherent modules on E,. So, by (ii), R%c,, (1) is an isomorphism from O E,
onto Ro(o-n)*(Q,,*(E)) since E, is normal. Then, by [Hi91, §5], E, is Gorenstein and has rational
singularities. Again by (ii), the canonical module of E|, is free of rank 1 since it is equal to ¢,,(Qg)
by definition. O

Or ()

Let E® be the following fiber product:

E® E®
Pk l ka
X, X

Then E® is the normalization of E® since E® is a vector bundle over X.

Proposition 7.5. (i) The variety E¥ isa B-equivariant desingularization of EY.
(i1) The variety El(lk) is Gorenstein and has rational singularities.
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Proof. (i) The variety EY is the normalization of E®, whence a commutative diagram

Egk) Er(1k)

N

E®

According to Lemma 6.2,(ii), the diagonal arrow is a B-equivariant birational projective morphism.
Hence the horizontal arrow is B-equivariant, birational and projective.

(i1) The variety Eflk) is a vector bundle over E,. So, by Lemma 7.4,(iii), Eflk) is Gorenstein and
has rational singularities. O

7.3.  According to Lemma 2.2,(i) and Theorem 2.13,(i), t is an embedding of b* into Bflk). More-
over, (Xox) 18 contained in Gflk). Since E,; and X,; are B-varieties, we have a commutative
diagram

G xz E® G xp Xox G xp b
l \Lyn
Kn k
G(k) B(k)
n n

According to Proposition 7.2 and Corollary 7.3, V;; identifies with a smooth big open subset of
EP.

Lemma 7.6. (i) The set G Xg V1 is a smooth big open subset of G Xp EW.

(1) The set G.; (Vi) is a smooth big open subset of Gflk) and the restriction of Ky to G Xg Vi is
an isomorphism onto G.;(Vy ).

(ii1) A global section of Q¢ v, ) has a regular extension to the smooth locus of G Xp E®.

Proof. (i) According to Proposition 7.2,(iii), Vi is a smooth big open subset of E® . invariant
under B. Then G Xg V}; is a smooth big open subset of G Xp E,(lk) since G/B is smooth.

(i) Since y;1(G.4(Vi1)) equals G X V;; and since v, is projective and birational, G.i(Vy) is
an open subset of eﬁP. Moreover, G X V) s contained in the open subset y; (W) of G x5 b* and
the restriction of y, to y;!(W;) is an isomorphism onto W, by Corollary 2.15, so that the restriction
of y, to G Xp Vi is an isomorphism onto G.¢(Vy 1), whence the assertion by (i).

(ii1) The assertion results from (i), (ii) and Lemma A.1,(v). O

Denote by C% and C® the normalizations of €% and C® respectively.

Theorem 7.7. The varieties C% and C® have rational singularities.

Proof. According to Lemma 7.6,(i1), K, 1s a birational morphism. It is projective since so are py
and y, and G/B is projective. As a result, we have a commutative diagram

Kn2

G xp EY ey

BN

6(2)
n
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with y the normalization morphism. Moreover, «,, is a projective and birational morphism. By
Lemma 7.6,(ii), 4 '(G.t2(V4,1)) is a smooth big open subset of Gflz) and the restriction of u to
wH(G.x(Vy))) is an isomorphism onto G.i5(V,). So, by Lemma 7.6,(iii), all global section of
-1(G.ux(v2y) has a regular extension to the smooth locus of G Xp E? | denoted by Y.

According to Proposition 6.3,(ii), G x5 E is a desingularization of € and by Proposi-
tion 7.5,(1), E is a desingularization of EY with a B-equivariant desingularization morphism.
Hence G x5 E? is a desingularization of C? and G x5 E?. By Proposition 7.5,(ii), E% has ratio-
nal singularities. Hence G xg E has rational singularities as fiber bundle over a smooth variety
with fibers having rational singularities. So, all global section of Qy has a regular extension to
G x E¥ by [KK73, p.50]. As a result, all global section of Q-1(G.ux(v2y) has a regular extension

to G xz E?. According to Proposition 5.6, % is the normalization of the isospectral commuting
variety and according to [Gi12, Theorem 1.3.4], Cflz) is Gorenstein. Hence by [KK73, p.50], Gflz)

has rational singularities. By Proposition 5.8,(ii), C? is the categorical quotient of C$” under the
action of W(R). So, by [EI81, Lemme 1], C® has rational singularities. O

APPENDIX A. RATIONAL SINGULARITIES

Let X and Y be irreducible varieties. Denote by Y’ the smooth locus of Y.

Lemma A.1. Suppose that it is a projective birational morphism from Y to X verifying the follow-
ing conditions for some smooth big open subset X' of X:

(1) the open subset n='(X") of Y is big,
(2) the restriction of w to n~'(X") is an isomorphism onto X'.

Then all regular form of top degree on X’ has a unique regular extension to Y’.

Proof. According to Condition (2), 7~!(X”) is a dense open subset of Y’. Moreover, 7! (X") identi-
fies with X’. Let w be a differential form of top degree on X’. Since Q- is a locally free module of
rank one, there is an affine open cover Oy, ..., O, of Y’ such that restriction of Qy to O; is a free
Op,-module generated by some section w;. Fori = 1,...,k, set O} := O; N X’. Let w be a regular
form of top degree on X’. Fori = 1,. .., k, for some regular function a; on O/, a;w; is the restriction
of w to O). According to Condition (1), O’ is a big open subset of O;. Hence a; has a regular
extension to O; since O; is normal. Denoting again by a; this extension, for 1 < i, j < k, aq;w; and
a;jw; have the same restriction to O; N 0;. and O; N O; since Qy is torsion free as a locally free
module. Let w’ be the global section of Qy, extending the a;w;’s. Then w’ is a regular extension of
w to Y’ and this extension is unique since X’ is dense in Y’ and Qy is torsion free. O
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