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ON THE COMMUTING VARIETY OF A REDUCTIVE LIE ALGEBRA AND OTHER

RELATED VARIETIES.

JEAN-YVES CHARBONNEL AND MOUCHIRA ZAITER

Abstract. In this note, we discuss some varieties which are constructed analogously to the isospectral commut-

ing varieties. These varieties are subvarieties of varieties having very simple desingularizations. For instance,

this is the case of the nullcone of any cartesian power of a reductive Lie algebra and we prove that it is normal.

Moreover, as a byproduct of these investigations and a Ginzburg’s result, we get that the normalizations of the

isospectral commuting variety and the commuting variety have rational singularities.
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1. Introduction

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra

of finite dimension, ℓ is its rank, dimg = ℓ + 2n and G is its adjoint group. As usual, b denotes a

Borel subalgebra of g, h a Cartan subalgebra of g, contained in b, and B the normalizer of b in G.

1.1. Main results. By definition, B(k) is the subset of elements (x1, . . . , xk) of gk such that x1, . . . , xk

are in a same Borel subalgebra of g. This subset of gk is closed and contains two interesting sub-

sets: the generalized commuting variety of g, denoted by C(k) and the nullcone of gk denoted by

N(k). According to [Mu65, Ch.2, §1, Theorem], for (x1, . . . , xk) in B(k), (x1, . . . , xk) is in N(k) if and

only if x1, . . . , xk are nilpotent. By definition, C(k) is the closure in gk of the set of elements whose

all components are in a same Cartan subalgebra. According to a Richardson Theorem [Ri79], C(2)

is the commuting variety of g.

There is a natural projective morphism G×Bb
k → B(k). For k = 1, this morphism is not birational

but for k ≥ 2, it is birational. Furthermore, denoting by X the subvariety of elements (x, y) of g × h

such that y is in the closure of the orbit of x under G, the canonical morphism G ×B b → X is
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projective and birational and g is the categorical quotient of X under the action of W(R) on the

factor h. For k ≥ 2, the inverse image of B(k) by the canonical projection from Xk to gk is not

irreducible but the canonical action of W(R)k on Xk induces a simply transitive action on the set

of its irreducible components. Denoting by B
(k)

X
one of these components, we have a commutative

diagram

G ×B b
k //

γ
##G

GG
GG

GG
GG

B
(k)

X

η
}}{{
{{
{{
{

B(k)

with η the restriction to B
(k)

X
of the canonical projection ̟ from Xk to gk. The first main theorem

of this note is the following theorem:

Theorem 1.1. (i) The variety B
(k)

X
is normal. Moreover, for k ≥ 2, B

(k)

X
is the normalization of B(k)

and η is the normalization morphism.

(ii) The variety N(k) is normal. Moreover, for k ≥ 2, it is the underlying variety to a non reduced

well defined subscheme of gk.

(iii) The algebra k[B
(k)

X
] is a free extension of S(hk) and k[B(k)] is a free extension of S(hk)W(R).

According to Ting Xue and K. Vilonen, in general N(k) and B
(k)

X
have no rational singularities

for k ≥ 2. In the study of the generalized commuting variety, the closure in Grℓ(g) of the orbit of h

under the action of G plays an important role. Denoting by X the closure in Grℓ(b) of the orbit of

h under B, G.X is the closure of the orbit of G.h and we have the following result:

Theorem 1.2. Let X′ be the set of centralizers of regular elements of g whose semisimple compo-

nents is regular or subregular.

(i) All element of X is a commutative algebraic subalgebra of g.

(ii) For x in g, the set of elements of G.X containing x has dimension at most dimgx − ℓ.

(iii) The sets X′ \ B.h and G.X′ \G.h are dense in X \ B.h and G.X \G.h respectively.

(iv) The sets X′ and G.X′ are smooth big open subsets of X and G.X respectively.

Let X0,k be the closure in bk of B.hk and let Γ be a desingularization of X in the category of

B-varieties. Let E be the tautological bundle over X and set:

Es := E ×X Γ, E(k)
s := Es ×Γ · · · ×Γ Es︸            ︷︷            ︸

k factors

.

Then E
(k)
s is a desingularization of X0,k. Set: C

(k)
n := η−1(C(k)). The following theorem is the second

main result of this note:

Theorem 1.3. (i) The variety C
(k)
n is irreducible and G ×B E

(k)
s is a desingularization of C

(k)
n .

(ii) For k = 2, the normalizations of C
(k)
n and C(k) have rational singularities.

The proof of Assertion (ii) is a consequence of the proof of Assertion (i), and the deep result of

Ginzburg [Gi12] which asserts that the normalization of C
(2)
n is Gorenstein.

Acknowledgments We are grateful to Ting Xue and K. Vilonen for pointing out a negative result

about the nullcone.
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1.2. Notations. • An algebraic variety is a finite type reduced scheme over k.

• For V a vector space, its dual is denoted by V∗ and the augmentation ideal of its symmetric

algebra S(V) is denoted by S+(V). For A a graded algebra over N, A+ is the ideal generated by the

homogeneous elements of positive degree.

• All topological terms refer to the Zariski topology. If Y is a subset of a topological space X,

denote by Y the closure of Y in X. For Y an open subset of the algebraic variety X, Y is called a

big open subset if the codimension of X \ Y in X is at least 2. For Y a closed subset of an algebraic

variety X, its dimension is the biggest dimension of its irreducible components and its codimension

in X is the smallest codimension in X of its irreducible components. For X an algebraic variety, OX

is its structural sheaf, k[X] is the algebra of regular functions on X and k(X) is the field of rational

functions on X when X is irreducible. When X is smooth, the sheaf of regular differential forms of

top degree on X is denoted by ΩX.

• For X an algebraic variety and for M a sheaf on X, Γ(V,M) is the space of local sections of M

over the open subset V of X. For i a nonnegative integer, Hi(X,M) is the i-th group of cohomology

of M. For example, H0(X,M) = Γ(X,M).

Lemma 1.4. [EGAII, Corollaire 5.4.3] Let X be an irreducible affine algebraic variety and let Y

be a desingularization of X. Then H0(Y,OY ) is the integral closure of k[X] in its fraction field.

• For K a group and for E a set with a group action of K, EK is the set of invariant elements of E

under K. The following lemma is straightforward and will be used in the proof of Corollary 2.14.

Lemma 1.5. Let A be an algebra generated by the subalgebras A1 and A2. Let K be a group with

a group action of K on A2. Suppose that the following conditions are verified:

(1) A1 ∩ A2 is contained in AK
2

,

(2) A is a free A2-module having a basis contained in A1,

(3) A1 is a free A1 ∩ A2-module having the same basis.

Then there exists a unique group action of K on the algebra A extending the action of K on A2 and

fixing all the elements of A1. Moreover, if A1 ∩ A2 = AK
2

then AK
= A1.

• For E a set and k a positive integer, Ek denotes its k-th cartesian power. If E is finite, its

cardinality is denoted by |E|. If E is a vector space, for x = (x1, . . . , xk) in Ek, Px is the subspace of

E generated by x1, . . . , xk. Moreover, there is a canonical action of GLk(k) in Ek given by:

(ai, j, 1 ≤ i, j ≤ k).(x1, . . . , xk) := (

k∑

j=1

ai, jx j, i = 1, . . . , k)

In particular, the diagonal action of G in gk commutes with the action of GLk(k).

• For a reductive Lie algebra, its rank is denoted by ℓa and the dimension of its Borel subalgebras

is denoted by ba . In particular, dima = 2ba − ℓa .

• If E is a subset of a vector space V , denote by span(E) the vector subspace of V generated by

E. The grassmanian of all d-dimensional subspaces of V is denoted by Grd(V). By definition, a

cone of V is a subset of V invariant under the natural action of k∗ := k \ {0} and a multicone of Vk

is a subset of Vk invariant under the natural action of (k∗)k on Vk.

Lemma 1.6. Let X be an open cone of V and let S be a closed multicone of X ×Vk−1. Denoting by

S 1 the image of S by the first projection, S 1 × {0} = S ∩ (X × {0}). In particular, S 1 is closed in X.
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Proof. For x in X, x is in S 1 if and only if for some (v2, . . . , vk) in Vk−1, (x, tv2, . . . , tvk) is in S for

all t in k since S is a closed multicone of X × Vk−1, whence the lemma. �

• The dual of g is denoted by g∗ and it identifies with g by a given non degenerate, invariant,

symmetric bilinear form 〈., .〉 on g × g extending the Killing form of [g, g].

• Let b be a Borel subalgebra of g and let h be a Cartan subalgebra of g contained in b. Denote

by R the root system of h in g and by R+ the positive root system of R defined by b. The Weyl

group of R is denoted by W(R) and the basis of R+ is denoted by Π. The neutral elements of G

and W(R) are denoted by 1g and 1h respectively. For α in R, the corresponding root subspace is

denoted by gα and a generator xα of gα is chosen so that 〈xα, x−α〉 = 1 for all α in R. As usual, the

half sum of positive roots is denoted by ρ.

• The normalizers of b and h in G are denoted by B and NG(h) respectively. For x in b, x is the

element of h such that x − x is in the nilpotent radical u of b.

• For X an algebraic B-variety, denote by G ×B X the quotient of G × X under the right action of

B given by (g, x).b := (gb, b−1.x). More generally, for k positive integer and for X an algebraic Bk-

variety, denote by Gk ×Bk X the quotient of Gk × X under the right action of Bk given by (g, x).b :=

(gb, b−1.x) with g and b in Gk and Bk respectively.

Lemma 1.7. Let P and Q be parabolic subgroups of G such that P is contained in Q. Let X be a

Q-variety and let Y be a closed subset of X, invariant under P. Then Q.Y is a closed subset of X.

Moreover, the canonical map from Q ×P Y to Q.Y is a projective morphism.

Proof. Since P and Q are parabolic subgroups of G and since P is contained in Q, Q/P is a

projective variety. Denote by Q ×P X and Q ×P Y the quotients of Q × X and Q × Y under the right

action of P given by (g, x).p := (gp, p−1.x). Let g 7→ g be the quotient map from Q to Q/P. Since

X is a Q-variety, the map

Q × X −→ Q/P × X (g, x) 7−→ (g, g.x)

defines through the quotient an isomorphism from Q ×P X to Q/P × X. Since Y is a P-invariant

closed subset of X, Q ×P Y is a closed subset of Q ×P X and its image by the above isomorphism

equals Q/P × Q.Y . Hence Q.Y is a closed subset of X since Q/P is a projective variety. From the

commutative diagram:

Q ×P Y //

&&N
NN

NN
NN

NN
NN

Q/P × Q.Y

��

Q.Y

we deduce that the map Q ×P Y → Q.Y is a projective morphism. �

• For k ≥ 1 and for the diagonal action of B in bk, bk is a B-variety. The canonical map from

G × bk to G ×B b
k is denoted by (g, x1, . . . , xk) 7→ (g, x1, . . . , xk). Let B(k) and N(k) be the images

of G × bk and G × uk respectively by the map (g, x1, . . . , xk) 7→ (g(x1), . . . , g(xk)) so that B(k) and

N(k) are closed subsets of gk by Lemma 1.7. Let B
(k)
n be the normalization of B(k) and let η be the

normalization morphism. We have the commutative diagram:

G ×B b
k

γn
//

γ
##H

HH
HH

HH
HH

B
(k)
n

η
}}zz
zz
zz
zz

B(k)
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Let N
(k)
n be the normalization of N(k) and let κ be the normalization morphism. We have the

commutative diagram:

G ×B u
k

υ
$$H

HH
HH

HH
HH

υn
// N

(k)
n

κ
}}zz
zz
zz
zz

N(k)

with υ the restriction of γ to G ×B u
k.

• Let i be the injection (x1, . . . , xk) 7→ (1g, x1, . . . , xk) from bk to G ×B b
k. Then ι := γ◦i and

ιn := γn◦i are closed embeddings of bk into B(k) and B
(k)
n respectively. In particular, B(k)

= G.ι(bk)

and B
(k)
n = G.ιn(bk).

• Let e be the sum of the xβ’s, β in Π, and let h be the element of h ∩ [g, g] such that β(h) = 2

for all β in Π. Then there exists a unique f in [g, g] such that (e, h, f ) is a principal sl2-triple. The

one parameter subgroup of G generated by adh is denoted by t 7→ h(t). The Borel subalgebra

containing f is denoted by b− and its nilpotent radical is denoted by u−. Let B− be the normalizer

of b− in G and let U and U− be the unipotent radicals of B and B− respectively.

Lemma 1.8. Let k ≥ 2 be an integer. Let X be an affine variety and set Y := bk×X. Let Z be a closed

B-invariant subset of Y under the group action given by g.(v1, . . . , vk, x) = (g(v1), . . . , g(vk), x)

with (g, v1, . . . , vk) in B × bk and x in X. Then Z ∩ hk × X is the image of Z by the projection

(v1, . . . , vk, x) 7→ (v1, . . . , vk, x).

Proof. For all v in b,

v = lim
t→0

h(t)(v)

whence the lemma since Z is closed and B-invariant. �

• For x ∈ g, let xs and xn be the semisimple and nilpotent components of x in g. Denote by gx

and Gx the centralizers of x in g and G respectively. For a a subalgebra of g and for A a subgroup

of G, set:

ax := a ∩ gx Ax := A ∩Gx

The set of regular elements of g is

greg := {x ∈ g | dimgx
= ℓ}

and denote by greg,ss the set of regular semisimple elements of g. Both greg and greg,ss are G-invariant

dense open subsets of g. Setting hreg := h ∩ greg, breg := b ∩ greg, ureg := u ∩ greg, greg,ss = G(hreg),

greg = G(breg) and G(ureg) is the set of regular elements of the nilpotent cone Ng of g.

Lemma 1.9. Let k ≥ 2 be an integer and let x be in gk. For O open subset of greg, Px ∩ O is not

empty if and only if for some g in GLk(k), the first component of g.x is in O.

Proof. Since the components of g.x are in Px for all g in GLk(k), the condition is sufficient. Suppose

that Px ∩ O is not empty and denote by x1, . . . , xk the components of x. For some (a1, . . . ,ak) in

kk \ {0},

a1x1 + · · · + akxk ∈ O

Let i be such that ai , 0 and let τ be the transposition of Sk such that τ(1) = i. Denoting by g the

element of GLk(k) such that g1, j = aτ( j) for j = 1, . . . , k, g j, j = 1 for j = 2, . . . , k and g j,l = 0 for

j ≥ 2 and j , l, the first component of gτ.x is in O. �
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• Denote by S(g)g the algebra of g-invariant elements of S(g). Let p1, . . . , pℓ be homogeneous

generators of S(g)g of degree d1, . . . , dℓ respectively. Choose the polynomials p1, . . . , pℓ so that

d1≤ · · · ≤dℓ. For i = 1, . . . , ℓ and (x, y) ∈ g × g, consider a shift of pi in the direction y: pi(x + ty)

with t ∈ k. Expanding pi(x + ty) as a polynomial in t, we obtain

pi(x + ty) =

di∑

m=0

p
(m)

i
(x, y)tm; ∀(t, x, y) ∈ k × g × g(1)

where y 7→ (m!)p
(m)

i
(x, y) is the derivative at x of pi at the order m in the direction y. The elements

p
(m)

i
defined by (1) are invariant elements of S(g) ⊗k S(g) under the diagonal action of G in g × g.

Remark that p
(0)

i
(x, y) = pi(x) while p

(di)

i
(x, y) = pi(y) for all (x, y) ∈ g × g.

Remark 1.10. The family Px := {p
(m)

i
(x, .); 1 ≤ i ≤ ℓ, 1 ≤ m ≤ di} for x ∈ g, is a Poisson-

commutative family of S(g) by Mishchenko-Fomenko [MF78]. We say that the family Px is con-

structed by the argument shift method.

• Let i ∈ {1, . . . , ℓ}. For x in g, denote by εi(x) the element of g given by

〈εi(x), y〉 =
d

dt
pi(x + ty) |t=0

for all y in g. Thereby, εi is an invariant element of S(g) ⊗k g under the canonical action of G.

According to [Ko63, Theorem 9], for x in g, x is in greg if and only if ε1(x), . . . , εℓ(x) are linearly

independent. In this case, ε1(x), . . . , εℓ(x) is a basis of gx.

Denote by ε
(m)

i
, for 0 ≤ m ≤ di − 1, the elements of S(g × g) ⊗k g defined by the equality:

εi(x + ty) =

di−1∑

m=0

ε
(m)

i
(x, y)tm, ∀(t, x, y) ∈ k × g × g(2)

and set:

Vx,y := span({ε
(0)

i
(x, y), . . . , ε

(di−1)

i
(x, y), i = 1, . . . , ℓ})

for (x, y) in g × g. According to [Bol91, Corollary 2], Vx,y has dimension bg if and only if Px,y has

dimension 2 and Px,y \ {0} is contained in greg.

2. On the varieties B(k)

Let k ≥ 2 be an integer. According to the above notations, we have the commutative diagrams:

G ×B b
k

γn
//

γ
##H

HH
HH

HH
HH

B
(k)
n

η
}}zz
zz
zz
zz

B(k)

G ×B u
k

υ
$$H

HH
HH

HH
HH

υn
// N

(k)
n

κ
}}zz
zz
zz
zz

N(k)

Since the Borel subalgebras of g are conjugate under G, B(k) is the subset of elements of gk whose

components are in a same Borel subalgebra and N(k) are the elements of B(k) whose all the compo-

nents are nilpotent.

Lemma 2.1. (i) The morphism γ from G ×B b
k to B(k) is projective and birational. In particular,

G ×B b
k is a desingularization of B(k) and B(k) has dimension kbg + n.

(ii) The morphism υ from G ×B u
k to N(k) is projective and birational. In particular, G ×B u

k is a

desingularization of N(k) and N(k) has dimension (k + 1)n.

6



Proof. (i) Denote by Ω
(2)
g the subset of elements (x, y) of g2 such that Px,y has dimension 2 and

such that Px,y \ {0} is contained in greg. According to Lemma 1.7, γ is a projective morphism. For

1 ≤ i < j ≤ k, let Ω
(k)

i, j
be the inverse image of Ω

(2)
g by the projection

(x1, . . . , xk) 7−→ (xi, x j)

Then Ω
(k)

i, j
is an open subset of gk whose intersection with B(k) is not empty. Let Ω

(k)
g be the union

of the Ω
(k)

i, j
. According to [Bol91, Corollary 2] and [Ko63, Theorem 9], for (x, y) in Ω

(2)
g ∩B

(2), Vx,y

is the unique Borel subalgebra of g containing x and y so that the restriction of γ to γ−1(Ω
(k)
g ) is a

bijection onto Ω
(k)
g . Hence γ is birational. Moreover, G×B b

k is a smooth variety as a vector bundle

over the smooth variety G/B, whence the assertion since G ×B b
k has dimension kbg + n.

(ii) According to Lemma 1.7, υ is a projective morphism. Let N
(k)
reg be the subset of elements

of N(k) whose at least one component is a regular element of g. Then N
(k)
reg is an open subset of

N(k). Since a regular nilpotent element is contained in one and only one Borel subalgebra of g, the

restriction of υ to υ−1(N
(k)
reg) is a bijection onto N

(k)
reg. Hence υ is birational. Moreover, G ×B u

k is a

smooth variety as a vector bundle over the smooth variety G/B, whence the assertion since G×B u
k

has dimension (k + 1)n. �

2.1. Denote by πg : g → g//G and πh : h → h/W(R) the quotient maps, i.e the morphisms

defined by the invariants. Recall g//G = h/W(R), and let X be the following fiber product:

X
γ

//

ρ

��

g

πg

��

h
πh

// h/W(R)

where γ and ρ are the restriction maps. The actions of G and W(R) on g and h respectively induce

an action of G ×W(R) on X.

Lemma 2.2. (i) There exists a well defined G-equivariant morphism γn from G ×B b to X such that

γ is the composition of γn and γ.

(ii) The morphism γn is projective and birational. Moreover, X is irreducible.

(iii) The subscheme X is normal. Moreover, every element of greg × h∩X is a smooth point of X.

(iv) The algebra k[X] is the space of global sections of OG×Bb and k[X]G
= S(h).

Proof. (i) Since the map (g, x) 7→ (g(x), x) is constant on the B-orbits, there exists a uniquely

defined morphism γn from G ×B b to g × h such that (g(x), x) is the image by γn of the image of

(g, x) in G ×B b. The image of γn is contained in X since for all p in S(g)G, p(x) = p(x) = p(g(x)).

Furthermore, γn verifies the condition of the assertion.

(ii) According to Lemma 1.7, γn is a projective morphism. Let (x, y) be in g × h such that

p(x) = p(y) for all p in S(g)G. For some g in G, g(x) is in b and its semisimple component is y so

that (x, y) is in the image of γn. As a result, X is irreducible as the image of the irreducible variety

G ×B b. Since for all (x, y) in X ∩ hreg × hreg, there exists a unique w in W(R) such that y = w(x),

the fiber of γn at any element X ∩ G.(hreg × hreg) has one element. Hence γn is birational, whence

the assertion.

(iii) The morphism πh is finite, and so is γ. Moreover πh is smooth over hreg, γ is smooth over

greg. Finally, πg is flat and all fibers are normal and Cohen-Macaulay. Thus the same holds for the
7



morphism ρ. Since h is smooth this implies that X is normal and Cohen-Macaulay by [MA86, Ch.

8, §23].

(iv) According to (ii), (iii) and Lemma 1.4, k[X] = H0(G ×B b,OG×Bb). Under the action of G

in g × h, k[g × h]G
= S(g)G ⊗k S(h) and its image in k[X] by the quotient morphism equals S(h).

Moreover, since G is reductive, k[X]G is the image of k[g× h]G by the quotient morphism, whence

the assertion. �

Proposition 2.3. [He76, Theorem B and Corollary] (i) For i > 0, Hi(G/B,L0(S(b∗)) equals 0.

(ii) The variety X has rational singularities.

Corollary 2.4. (i) Let x and x′ be in breg such that (x′, x′) is in G.(x, x). Then x′ is in B(x).

(ii) For all w in W(R), the map

U− × breg −→ X, (g, x) 7−→ (g(x), w(x))

is an isomorphism onto a smooth open subset of X.

Proof. (i) The semisimple components of x and x′ are conjugate under B since they are conjugate

to x under B. Let b and b′ be in B such that x is the semisimple component of b(x) and b′(x′). Then

the nilpotent components of b(x) and b′(x′) are regular nilpotent elements of gx, belonging to the

Borel subalgebra b ∩ gx of gx. Hence x′ is in B(x).

(ii) Since the action of G and W(R) on X commute, it suffices to prove the corollary for w = 1h.

Denote by θ the map

U− × breg −→ X, (g, x) 7−→ (g(x), x).

Let (g, x) and (g′, x′) be in U− × breg such that θ(g, x) = θ(g′, x′). By (i), x′ = b(x) for some b in

B. Hence g−1g′b is in Gx. Since x is in breg, Gx is contained in B and g−1g′ is in U− ∩ B, whence

(g, x) = (g′, x′) since U− ∩ B = {1g}. As a result, θ is a dominant injective map from U− × breg to

the normal variety X. Hence θ is an isomorphism onto a smooth open subset of X, by Zariski Main

Theorem [Mu88, §9]. �

2.2. According to Lemma 2.1,(i), G ×B b
k is a desingularization of B(k) and we have the commu-

tative diagram:

G ×B b
k

γn
//

γ
##H

HH
HH

HH
HH

B
(k)
n

η
}}zz
zz
zz
zz

B(k)

Lemma 2.5. Let ̟ be the canonical projection from Xk to gk. Denote by ιk the map

bk −→ Xk, (x1, . . . , xk) 7−→ (x1, . . . , xk, x1, . . . , xk).

(i) The map ιk is a closed embedding of bk into Xk.

(ii) The subvariety ιk(b
k) of Xk is an irreducible component of ̟−1(bk).

(iii) The subvariety ̟−1(bk) of Xk is invariant under the canonical action of W(R)k in Xk and

this action induces a simply transitive action of W(R)k on the set of irreducible components of

̟−1(bk).

Proof. (i) The map

bk −→ Gk × bk, (x1, . . . , xk) 7−→ (1g, . . . , 1g, x1, . . . , xk)
8



defines through the quotient a closed embedding of bk in Gk ×Bk bk. Denote it by ι′. Let γ
(k)
n be the

map

Gk ×Bk bk −→ Xk, (x1, . . . , xk) 7−→ (γn(x1), . . . , γn(xk)).

Then ιk = γ
(k)
n ◦ι

′. Since γn is a projective morphism, ιk is a closed morphism. Moreover, it is

injective since ̟◦ιk is the identity of bk.

(ii) Since S(h) is a finite extension of S(h)W(R), ̟ is a finite morphism. So ̟−1(bk) and bk have

the same dimension. According to (i), ιk(b
k) is an irreducible subvariety of ω−1(bk) of the same

dimension, whence the assertion.

(iii) Since all the fibers of ̟ are invariant under the action of W(R)k on Xk, ̟−1(bk) is invariant

under this action and W(R)k permutes the irreducible components of ̟−1(bk). For w in W(R)k, set

Zw := w.ιk(b
k). Then Zw is an irreducible component of ̟−1(bk) for all w in W(R)k by (ii). For w in

W(R)k such that Zw = ιk(b
k), for all (x1, . . . , xk) in hkreg, (x1, . . . , xk, w.(x1, . . . , xk)) is in ιk(b

k) so that

(x1, . . . , xk) is invariant under w and w is the identity.

Let Z be an irreducible component of ̟−1(bk) and let Z0 be its image by the map

(x1, . . . , xk, y1, . . . , yk) 7−→ (x1, . . . , xk, y1, . . . , yk).

Since ̟ is Gk-equivariant and bk is invariant under Bk, ̟−1(bk) and Z are invariant under Bk. Hence

by Lemma 1.8, Z0 is closed. Moreover, since the image of the map

Z0 × u
k −→ Xk, ((x1, . . . , xk, y1, . . . , yk), (u1, . . . , uk)) 7−→ (x1 + u1, . . . , xk + uk, y1, . . . , yk)

is an irreducible subset of ̟−1(bk) containing Z, Z is the image of this map. Since Z0 is contained

in Xk, Z0 is contained in the image of the map

hk ×W(R)k −→ hk × hk, (x1, . . . , xk, w1, . . . , wk) 7−→ (x1, . . . , xk, w1(x1), . . . , wk(xk)).

Then, since W(R) is finite and Z0 is irreducible, for some w in W(R)k, Z0 is the image of hk by the

map

(x1, . . . , xk) 7−→ (x1, . . . , xk, w.(x1, . . . , xk))

and Z = Zw, whence the assertion. �

Set Y := Gk ×Bk bk. The map

G × bk −→ Gk × bk, (g, v1, . . . , vk) 7−→ (g, . . . , g, v1, . . . , vk)

defines through the quotient a closed immersion from G ×B b
k to Y. Denote it by ν. Consider the

diagonal action of G on Xk and identify G ×B b
k with ν(G ×B b

k) by the closed immersion ν.

Corollary 2.6. Set B
(k)

X
:= G.ιk(b

k).

(i) The subset B
(k)

X
is the image of G ×B b

k by γ
(k)
n . Moreover, the restriction of γ

(k)
n to G ×B b

k is

a projective birational morphism from G ×B b
k onto B

(k)

X
.

(ii) The subset B
(k)

X
of Xk is an irreducible component of ̟−1(B(k)).

(iii) The subvariety ̟−1(B(k)) of Xk is invariant under W(R)k and this action induces a simply

transitive action of W(R)k on the set of irreducible components of ̟−1(B(k)).

(iv) The subalgebra k[B(k)] of k[̟−1(B(k)] equals k[̟−1(B(k))]W(R)k

with respect to the action of

W(R)k on ̟−1(B(k)).

Proof. (i) The variety G/B identifies with the diagonal of (G/B)k so that G ×B b
k is a closed subva-

riety of Gk ×Bk bk. Let γX be the restriction of γ
(k)
n to G ×B b

k. Since ιk = γ
(k)
n ◦ι

′, G ×B b
k
= G.ι′(b(k))

and γ
(k)
n is G-equivariant, B

(k)

X
= γX(G ×B b

k). Hence B
(k)

X
is closed in Xk and γX is a projective

9



morphism from G ×B b
k to B

(k)

X
since γ

(k)
n is a projective morphism. According to Lemma 2.1,(i),

̟◦γX is a birational morphism onto B(k). Then γX is birational since ̟(B
(k)

X
) = B(k), whence the

assertion.

(ii) Since ̟ is a finite morphism, ̟−1(B(k)), B
(k)

X
and B(k) have the same dimension, whence the

assertion since B
(k)

X
is irreducible as an image of an irreducible variety.

(iii) Since the fibers of ̟ are invariant under W(R)k, ̟−1(B(k)) is invariant under this action and

W(R)k permutes the irreducible components of ̟−1(B(k)). Let Z be an irreducible component of

̟−1(B(k)). Since ̟ is Gk-equivariant, ̟−1(B(k)) and Z are invariant under the diagonal action of

G. Moreover, Z = G.(Z ∩ ̟−1(bk)) since B(k)
= G.bk. Hence for some irreducible component

Z0 of Z ∩ ̟−1(bk), Z = G.Z0. According to Lemma 2.5,(iii), Z0 is contained in w.ιk(b
k) for some

w in W(R)k. Hence Z = w.B
(k)

X
since the actions of Gk and W(R)k on Xk commute and Z is an

irreducible component of ̟−1(B(k)).

Let w = (w1, . . . , wk) be in W(R)k such that w.B
(k)

X
= B

(k)

X
. Let x be in hreg and let i = 1, . . . , k.

Set:

z := (x1, . . . , xk, x1, . . . , xk) with x j :=

{
x if j = i

x j = e otherwise
.

Then there exists (y1, . . . , yk) in bk and g in G such that

w.z = (g(y1), . . . , g(yk), y1, . . . , yk).

For some b in B, b(yi) = yi since yi is a regular semisimple element, belonging to b. As a result,

gb−1(yi) = x and wi(x) = yi. Hence gb−1 is an element of NG(h) representing w−1
i . Furthermore,

since gb−1(b(y j)) = e for j , i, b(y j) is a regular nilpotent element belonging to b. Then, since

there is one and only one Borel subalgebra containing a regular nilpotent element, gb−1(b) = b and

wi = 1h. As a result, w is the identity of W(R)k, whence the assertion.

(iv) Since the fibers of ̟ are invariant under W(R)k, k[B(k)] is contained in k[̟−1(B(k))]W(R)k

.

Let p be in k[̟−1(B(k))]W(R)k

. Since W(R) is a finite group, p is the restriction to̟−1(B(k)) of an el-

ement q of k[X]⊗k, invariant under W(R)k. Since k[X]W(R)
= S(g), q is in S(g)⊗k by Lemma 2.1,(iv),

and p is in k[B(k)], whence the assertion. �

2.3. For α a positive root, denote by hα the kernel of α and by S α the closure of U(hα) in b. For β

in Π, set:

uβ :=
⊕

α∈R+\{β}

gβ, bβ := hβ ⊕ uβ.

Lemma 2.7. For α in R+, let h′α be the set of subregular elements belonging to hα.

(i) For α in R+, S α is a subvariety of codimension 2 of b. Moreover, it is contained in b \ breg.

(ii) For β in Π, S β = bβ.

(iii) The S α’s, α ∈ R+, are the irreducible components of b \ breg.

Proof. (i) For x in h′α, bx
= h+ kxα. Hence U(h′α) has dimension n− 1+ ℓ− 1, whence the assertion

since U(h′α) is dense in S α and h′α is contained in b \ breg.

(ii) For β in Π, U(h′β) is contained in bβ since bβ is an ideal of b, whence the assertion by (i).

(iii) According to (i), it suffices to prove that b \ breg is the union of the S α’s. Let x be in b \ breg.

According to [V72], for some g in G and for some β in Π, x is in g(bβ). Since bβ is an ideal of b,

by Bruhat’s decomposition of G, for some b in B and for some w in W(R), b−1(x) is in w(bβ) ∩ b.
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By definition,

w(bβ) = w(hβ) ⊕ w(uβ) = hw(β) ⊕
⊕

α∈R+\{β}

gw(α).

So,

w(bβ) ∩ b = hw(β) ⊕ u0 with u0 :=
⊕

α∈R+\{β}

w(α)∈R+

gw(α).

The subspace u0 of u is a subalgebra, not containing gw(β). Then, denoting by U0 the closed sub-

group of U whose Lie algebra is adu0,

U0(hw(β)) = w(bβ) ∩ b

since the left hand side is contained in the right hand side and has the same dimension. As a result,

x is in S w(β) since S w(β) is B-invariant, whence the assertion. �

Recall that θ is the map

U− × breg −→ X, (g, x) 7−→ (g(x), x)

and denote by W ′
k

the inverse image of θ(U− × breg) by the projection

B
(k)

X
−→ X, (x1, . . . , xk, y1, . . . , yk) 7−→ (x1, y1).

Lemma 2.8. Let Wk be the subset of elements (x, y) of B
(k)

X
(x ∈ gk, y ∈ hk) such that Px ∩ greg is not

empty.

(i) The subset W ′
k

of B
(k)

X
is a smooth open subset. Moreover, the map

U− × breg × b
k−1 −→ W ′

k, (g, x1, . . . , xk) 7−→ (g(x1), . . . , g(xk), x1, . . . , xk).

is an isomorphism of varieties.

(ii) The subset B
(k)

X
of gk × hk is invariant under the canonical action of GLk(k).

(iii) The subset Wk of B
(k)

X
is a smooth open subset. Moreover, Wk is the G × GLk(k)-invariant

set generated by W ′
k
.

(iv) The subvariety B
(k)

X
\Wk of B

(k)

X
has codimension at least 2k.

Proof. (i) According to Corollary 2.4,(ii), θ is an isomorphism onto a smooth open subset of X. As

a result, W ′
k

is an open subset of B
(k)

X
and the map

U− × breg × b
k−1 −→ W ′

k, (g, x1, . . . , xk) 7−→ (g(x1), . . . , g(xk), x1, . . . , xk)

is an isomorphism whose inverse is given by

W ′
k −→ U− × breg × b

k−1

(x1, . . . , xk) 7−→ (θ−1(x1, x1)1, θ
−1(x1, x1)1(x1), . . . , θ−1(x1, x1)1(xk))

with θ−1 the inverse of θ and θ−1(x1, x1)1 the component of θ−1(x1, x1) on U−, whence the assertion

since U− × breg × b
k−1 is smooth.

(ii) For (x1, . . . , xk) in bk and for (ai, j, 1 ≤ i, j ≤ k) in GLk(k),

k∑

j=1

ai, jx j =

k∑

j=1

ai, jx j

11



so that ιk(b
k) is invariant under the action of GLk(k) in gk × hk defined by

(ai, j, 1 ≤ i, j ≤ k).(x1, . . . , xk, y1, . . . , yk) := (

k∑

j=1

ai, jx j, j = 1, . . . , k,

k∑

j=1

ai, jy j, j = 1, . . . , k),

whence the assertion since B
(k)

X
= G.ιk(b

k) and the actions of G and GLk(k) in gk × hk commute.

(iii) According to (i), G.W ′
k

is a smooth open subset of B
(k)

X
. Moreover, G.W ′

k
is the subset of

elements (x, y) such that the first component of x is regular. So, by (ii) and Lemma 1.9, Wk =

GLk(k).(G.W
′
k
), whence the assertion.

(iv) According to Corollary 2.6,(i), B
(k)

X
is the image of G ×B b

k by the restriction γX of γ
(k)
n

to G ×B b
k. Then B

(k)

X
\ Wk is contained in the image of G ×B (b \ breg)k by γX. As a result, by

Lemma 2.7,

dimBk
X
\Wk ≤ n + k(bg − 2),

whence the assertion. �

2.4. For E a B-module, denote by L0(E) the sheaf of local sections of the vector bundle G ×B E

over G/B. Let ∆ be the diagonal of (G/B)k and let J∆ be its ideal of definition in O(G/B)k . The

variety G/B identifies with ∆ so that O(G/B)k/J∆ is isomorphic to OG/B. For E a Bk-module, denote

by L(E) the sheaf of local sections of the vector bundle Gk ×Bk E over (G/B)k.

Lemma 2.9. Let E be a Bk-module and let A be a trivial Bk-module. Denote by E the B-module

defined by the diagonal action of B on E.

(i) The short sequence of O(G/B)k -modules

0 −→ J∆ ⊗O
Gk×

Bk b
k
L(E) −→ L(E) −→ L0(E) −→ 0

is exact.

(ii) The space H0((G/B)k,L(E ⊗k A)) is equal to H0((G/B)k,L(E)) ⊗k A.

Proof. (i) Since L(E) is a locally free O(G/B)k-module, the short sequence of O(G/B)k-modules

0 −→ J∆ ⊗O
(G/B)k

L(E) −→ L(E) −→ O∆ ⊗O
(G/B)k

L(E) −→ 0

is exact, whence the assertion since O∆ ⊗O
(G/B)k

L(E) is isomorphic to L0(E).

(ii) Since A is a trivial Bk-module, the vector bundle Gk ×Bk (E ⊗k A) is isomorphic to

(Gk ×Bk E) ⊗k A, whence

L(E ⊗k A) = L(E) ⊗k A and H0((G/B)k,L(E ⊗k A)) = H0((G/B)k,L(E)) ⊗k A.

�

From Lemma 2.9 results a canonical morphism

H0((G/B)k,L(E)) −→ H0(G/B,L0(E))

for all Bk-module E. According to the identification of g and g∗ by 〈., .〉, the duals of b and u

identify with b− and u− respectively so that b− and u− are B-modules.

Lemma 2.10. (i) The algebra k[B
(k)
n ] is equal to H0(G/B,L0(S(bk−))).

(ii) The algebra k[N
(k)
n ] is equal to H0(G/B,L0(S(uk

−))).
12



(iii) The algebra k[B
(k)

X
] is the image of the morphism

H0((G/B)k,L(S(bk−))) −→ H0(G/B,L0(S(bk−))).

Proof. (i) Since G ×B b
k is a desingularization of the normal variety B

(k)
n , k[B

(k)
n ] is the space of

global sections of OG×Bb
k by Lemma 1.4. Let π be the bundle projection of the fiber bundle G×B b

k.

Since S(bk−) is the space of polynomial functions on bk,

π∗(OG×Bbk ) = L0(S(bk−)),

whence the assertion.

(ii) By Lemma 2.1,(ii), G×B u
k is a desingularization of N

(k)
n so that k[N

(k)
n ] is the space of global

sections of OG×Bu
k by Lemma 1.4. Denoting by π0 the bundle projection of G ×B u

k,

π0∗(OG×Buk ) = L0(S(uk
−)),

whence the assertion.

(iii) Since Gk ×Bk bk is isomorphic to (G ×B b)
k,

H0((G/B)k,OGk×
Bkb

k ) = H0(G/B,OG×Bb)
⊗k.

By (i),

H0(G/B,OG×Bb) = H0(G/B,L(S(b−)) = k[X]

since G ×B b is a desingularization of X by Lemma 2.1,(i) and (ii), whence

H0((G/B)k,L(S(bk−)) = k[X
k].

By definition, B
(k)

X
is a closed subvariety of Xk. According to Corollary 2.6, k[B(k)] is a subal-

gebra of k[B
(k)

X
] having the same fraction field. Hence k[B

(k)

X
] is a subalgebra of k[B

(k)
n ] having the

same fraction field. Then by (i), the image of the morphism

H0((G/B)k,L(bk−)) −→ H0(G/B,L0(S(bk−)))

is equal to k[B
(k)

X
]. �

Proposition 2.11. Let A be the image of the morphism

H0((G/B)k,L(S(uk
−))) −→ H0((G/B)k,L0(S(uk

−))).

(i) The algebra k[B
(k)
n ] is equal to k[N

(k)
n ] ⊗k S(hk).

(ii) The algebra k[B
(k)

X
] is equal to A ⊗k S(hk).

Proof. Since bk− is the direct sum of uk
− and hk,

S(bk−) = S(uk
−) ⊗k S(hk).

In the B-module b−, h is a subspace of invariant elements. Then S(hk) is a trivial Bk-module. So,

by Lemma 2.10,(i) and (ii), and Lemma 2.9,(ii),

k[B(k)
n ] = k[N(k)

n ] ⊗k S(hk).

Moreover,

H0((G/B)k,L(S(bk−))) = H0((G/B)k,L(S(uk
−))) ⊗k S(hk),

whence the proposition by Lemma 2.10,(iii). �
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Remark 2.12. According to Proposition 2.11, S(hk) is embedded in k[B
(k)
n ] and by Lemma 2.10,(iii),

the embedding is given by the map

S(hk) −→ k[B
(k)

X
], p 7−→ ((x1, . . . , xk, y1, . . . , yk) 7→ p(y1, . . . , yk).

Denote by Φ this map.

Theorem 2.13. (i) The variety B
(k)

X
is normal. In particular, B

(k)
n = B

(k)

X
, γn = γX and the normal-

ization morphism of B(k) is the restriction of ̟ to B
(k)

X
.

(ii) The image of Φ is equal to k[BX]G. Moreover, k[B
(k)

X
] is generated by k[B(k)] and k[BX]G.

(iii) The subalgebras k[B(k)]G and Φ(S(h)⊗k)W(R) of k[B
(k)

X
]G are equal.

Proof. (i) Since S(hk) is a polynomial algebra of dimension kℓ, the depth of localizations of k[B
(k)

X
]

at every maximal ideal is at least kℓ by Proposition 2.11,(ii). In particular, it is at least 2 since

k ≥ 2. According to Lemma 2.8,(iii) and (iv), B
(k)

X
is smooth in codimension 1. Then B

(k)

X
is

normal by Serre’s normality criterion [Bou98, §1, n◦10, Théorème 4], whence the assertion by

Corollary 2.6,(i).

(ii) Since B
(k)

X
is a closed subvariety of Xk and k[X] is generated by S(g) and S(h), k[B

(k)

X
] is

generated by S(hk) and the image of S(gk) in k[B
(k)

X
] which is equal to k[B(k)]. For p in k[B

(k)

X
],

denote by p the element of S(h)⊗k such that

p(x1, . . . , xk) := p(x1, . . . , xk, x1, . . . , xk).

Then the restriction of p − Φ(p) to ιk(h
k) equals 0. Moreover, if p is in k[B

(k)

X
]G, p − Φ(p) is

G-invariant so that p = Φ(p), whence the assertion.

(iii) For (x1, . . . , xk) in hk, for w in W(R) and for gw a representative of w in NG(h), we have

(w(x1), . . . , w(xk), w(x1), . . . , w(xk)) = gw.(x1, . . . , xk, w(x1), . . . , w(xk))

so that the subalgebra k[B(k)]G of k[B
(k)

X
]G is contained in Φ(S(hk))W(R) by (ii). Moreover, since

G is reductive, k[B(k)]G is the image of (S(g)⊗k)G by the restriction morphism. According to [J07,

Theorem 2.9 and some remark], the restriction morphism (S(g)⊗k)G → (S(h)⊗k)W(R) is surjective,

whence the equality k[B(k)]G
= Φ(S(hk))W(R). �

Corollary 2.14. Let M be a graded complement to k[B(k)]G
+
k[B(k)] in k[B(k)].

(i) The space M contains a basis of k[B⊗k
X

] over S(h)⊗k.

(ii) The intersection of M and S+(h
k)k[B

(k)

X
] is different from 0.

Proof. (i) Since M is a graded complement to k[B(k)]G
+
k[B(k)] in k[B(k)], by induction on l,

k[B(k)] = Mk[B(k)]G
+ (k[B(k)]G

+
)lk[B(k)].

Hence k[B(k)] = Mk[B(k)]G since k[B(k)] is graded. Then, by Theorem 2.13,(ii), k[B
(k)

X
] = MS(h)⊗k.

In particular,

k[B
(k)

X
] = M + S+(h

k)k[B
(k)

X
].

Then M contains a graded complement M′ to S+(h
k)k[B

(k)

X
] in k[B

(k)

X
], whence the assertion by

Proposition 2.11,(i).

(ii) Suppose that M′ = M. We expect a contradiction. According to (i), the canonical maps

M ⊗k S(h)
⊗k −→ k[B

(k)

X
], M ⊗k k[B

(k)]G −→ k[B(k)]
14



are isomorphisms. Then, according to Lemma 1.5, there exists a group action of W(R) on k[B
(k)
n ]

extending the diagonal action of W(R) in S(h)⊗k and such that k[B
(k)

X
]W(R)

= k[B(k)] since k[B(k)]∩

S(h)⊗k
= (S(h)⊗k)W(R) by Theorem 2.13,(iii). Moreover, since W(R) is finite, the subfield of invari-

ant elements of the fraction field of k[B
(k)

X
] is the fraction field of k[B

(k)

X
]W(R). Hence the action

of W(R) in k[B
(k)

X
] is trivial since k[B

(k)

X
] and k[B(k)] have the same fraction field, whence the

contradiction since (S(h)⊗k)W(R) is strictly contained in S(h)⊗k. �

Corollary 2.15. The restriction of γX to γ−1
X

(Wk) is an isomorphism onto Wk.

Proof. Since the subset of Borel subalgebras containing a regular element is finite, the fibers of

γX over the elements of Wk are finite. Indeed, according to Zariski Main Theorem [Mu88, §9],

they have only one element since B
(k)

X
is normal by Theorem 2.13 and since γX is projective and

birational. So, the restriction of γX to γ−1
X

(Wk) is a bijection onto the open subset Wk, whence the

corollary by Zariski Main Theorem [Mu88, §9] since Wk is smooth by Lemma 2.8. �

3. On the nullcone

Let k ≥ 2 be an integer. Let I be the ideal of k[B
(k)

X
] generated by S+(h

k) and let N be the

subscheme of B
(k)

X
defined by I. Recall that according to Theorem 2.13,(i), η is the canonical

projection from B
(k)

X
onto B(k).

Lemma 3.1. Set N
(k)

X
:= η−1(N(k)).

(i) The variety N
(k)

X
equals γX(G ×B u

k).

(ii) The nullvariety of I in B
(k)

X
equals N

(k)

X
.

Proof. (i) By definition, γ−1(N(k)) = G ×B u
k. Then, since γ = η◦γX, N

(k)

X
= γX(G ×B u

k).

(ii) Let VI be the nullvariety of I in B
(k)

X
. According to Remark 2.12, for (g, x1, . . . , xk) in G × bk,

γX((g, x1, . . . , xk)) is a zero of I if and only if x1, . . . , xk are nilpotent, whence the assertion. �

Theorem 3.2. Let I0 be the ideal of k[B(k)] generated by k[B(k)]G
+

.

(i) The variety N
(k)

X
is a normal variety and I is its ideal of definition in k[B

(k)

X
]. In particular, I

is prime.

(ii) The variety N(k) is normal.

(iii) The ideal I0 is strictly contained in the ideal of definition of N(k) in k[B(k)].

Proof. (i) According to Theorem 2.13,(i) and Proposition 2.11,(i),

k[Bk
X

] = k[Nk
n] ⊗k S(hk).

Hence k[N] = k[N
(k)
n ]. As a result, N is an irreducible normal scheme and I is a prime ideal. So,

by Lemma 3.1,(ii), N
(k)

X
is a normal variety.

(ii) According to Theorem 2.13,(ii), k[B
(k)

X
] is generated by k[B(k)] and S(h)⊗k. So, the restriction

to k[B(k)] of the quotient map from k[B
(k)

X
] to k[N

(k)

X
] is surjective. Furthermore, the image of

k[B(k)] by this morphism equals k[N(k)] since N
(k)

X
= η−1(N(k)), whence k[N(k)] = k[N

(k)

X
]. As a

result, N(k) is normal by (i).

(iii) Since k[B(k)]G
+

is contained in S+(h
k), I0 is contained in I∩k[B(k)]. According to Lemma 3.1,(ii)

and (i), I ∩ k[B(k)] is the ideal of definition of N(k) in k[B(k)]. Let M be a graded complement of

k[B(k)]G
+
k[B(k)] in k[B(k)]. According to Corollary 2.14,(ii), I ∩ M is different from 0. Hence I0 is

strictly contained in I ∩ k[B(k)], whence the assertion. �
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4. Main varieties

Denote by X the closure in Grℓ(g) of the orbit of h under B. According to Lemma 1.7, G.X is the

closure in Grℓ(g) of the orbit of h under G.

4.1. For α in R, denote by hα the kernel of α. Set Vα := hα ⊕ g
α and denote by Xα the closure in

Grℓ(g) of the orbit of Vα under B.

Lemma 4.1. Let α be in R+. Let p be a parabolic subalgebra containing b and let P be its

normalizer in G.

(i) The subset P.X of Grℓ(g) is the closure in Grℓ(g) of the orbit of h under P.

(ii) The closed set Xα of Grℓ(g) is an irreducible component of X \ B.h.

(iii) The set P.Xα is an irreducible component of P.X \ P.h.

(iv) The varieties X \ B.h and P.X \ P.h are equidimenional of codimension 1 in X and P.X

respectively.

Proof. (i) Since X is a B-invariant closed subset of Grℓ(g), P.X is a closed subset of Grℓ(g) by

Lemma 1.7. Hence P.h is contained in P.X since h is in X, whence the assertion since P.h is a

P-invariant subset containing X.

(ii) Denoting by Hα the coroot of α,

lim
t→∞

exp(tad xα)(
−1

2t
Hα) = xα.

So Vα is in the closure of the orbit of h under the one parameter subgroup of G generated by ad xα.

As a result, Xα is a closed subset of X \ B.h since Vα is not a Cartan subalgebra. Moreover, Xα has

dimension n− 1 since the normalizer of Vα in g is h+ gα. Hence Xα is an irreducible component of

X \ B.h since X has dimension n.

(iii) Since Xα is a B-invariant closed subset of Grℓ(g), P.Xα is a closed subset of Grℓ(g) by

Lemma 1.7. According to (ii), P.Xα is contained in P.X \ P.h and it has dimension dimp − ℓ − 1,

whence the assertion since P.X has dimension dimp − ℓ.

(iv) Let Pu be the unipotent radical of P and let L be the reductive factor of P whose Lie algebra

contains adh. Denote by NL(h) the normalizer of h in L. Since B.h and P.h are isomorphic to U

and L/NL(h) × Pu respectively, they are affine open subsets of X and P.X respectively, whence the

assertion by [EGAIV, Corollaire 21.12.7]. �

For x in V , set:

Vx := span({ε1(x), . . . , εℓ(x)}).

Lemma 4.2. Let ∆ be the set of elements (x,V) of g ×G.X such that x is in V.

(i) For (x,V) in b×X, (x,V) is in the closure of B.(hreg × {h}) in b×Grℓ(b) if and only if x is in V.

(ii) The set ∆ is the closure in g × Grℓ(g) of G.(hreg × {h}).

(iii) For (x,V) in ∆, Vx is contained in V.

Proof. (i) Let ∆′ be the subset of elements (x,V) of b × X such that x is in V and let ∆′
0

be the

closure of B.(hreg × {h}) in b × Grℓ(b). Then ∆′ is a closed subset of b × Grℓ(b) containing ∆′
0
. Let

(x,V) be in ∆′. Let E be a complement to V in b and let ΩE be the set of complements to E in g.

Then ΩE is an open neighborhood of V in Grℓ(b). Moreover, the map

Homk(V, E)
κ
−→ ΩE, ϕ 7−→ κ(ϕ) := span({v + ϕ(v) | v ∈ V}).
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is an isomorphism of varieties. Let Ωc
E

be the inverse image of the set of Cartan subalgebras. Then

0 is in the closure of Ωc
E

in Homk(V, E) since V is in X. For all ϕ in Ωc
E
, (x + ϕ(x), κ(ϕ)) is in ∆′

0
.

Hence (x,V) is in ∆′
0
.

(ii) Let (x,V) be in ∆. For some g in G, g(V) is in X. So by (i), (g(x), g(V)) is in ∆′0 and (x,V) is

in the closure of G.(hreg × {h}) in g × Grℓ(g), whence the assertion.

(iii) For i = 1, . . . , ℓ, let ∆i be the set of elements (x,V) of ∆ such that εi(x) is in V . Then ∆i is a

closed subset of g × G.X, invariant under the action of G in g × Grℓ(g) since εi is a G-equivariant

map. For all (g, x) in G×hreg, (g(x), g(h)) is in ∆i since εi(g(x)) centralizes g(x). Hence ∆i = ∆ since

G.(hreg × {h}) is dense in ∆ by (ii). As a result, for all V in G.X and for all x in V , ε1(x), . . . , εℓ(x)

are in V . �

Corollary 4.3. Let (x,V) be in ∆ and let z be the center of gxs .

(i) The subspace z is contained in Vx and V.

(ii) The space V is an algebraic, commutative subalgebra of g.

Proof. (i) If x is regular semisimple, V is a Cartan subalgebra of g. Suppose that x is not regular

semisimple. Denote by z the center of gxs . Let Ngxs be the nilpotent cone of gxs and let Ωreg be

the regular nilpotent orbit of gxs . For all y in Ωreg, xs + y is in greg and ε1(xs + y), . . . , εℓ(xs + y) is

a basis of gxs+y by [Ko63, Theorem 9]. Then for all z in z, there exist regular functions on Ωreg,

a1,z, . . . , aℓ,z, such that

z = a1,z(y)ε1(xs + y) + · · · + aℓ,z(y)εℓ(xs + y)

for all y in Ωreg. Furthermore, these functions are uniquely defined by this equality. Since Ngxs is

a normal variety and Ngxs \ Ωreg has codimension 2 in Ngxs , the functions a1,z, . . . , aℓ,z have regular

extensions to Ngxs . Denoting again by ai,z the regular extension of ai,z for i = 1, . . . , ℓ,

z = a1,z(y)ε1(xs + y) + · · · + aℓ,z(y)εℓ(xs + y)

for all y in Ngxs . As a result, z is contained in Vx. Hence z is contained in V by Lemma 4.2,(iii).

(ii) Since the set of commutative subalgebras of dimension ℓ is closed in Grℓ(g), V is a commu-

tative subalgebra of g. According to (i), the semisimple and nilpotent components of the elements

of V are contained in V . For x in V \ Ng, all the replica of xs are contained in the center of gxs .

Hence V is an algebraic subalgebra of g by (i). �

4.2. For s in h, denote by Xs the subset of elements of X, contained in gs.

Lemma 4.4. Let s be in h and let z be the center of gs.

(i) The set Xs is the closure in Grℓ(g
s) of the orbit of h under Bs.

(ii) The set of elements of G.X containing z is the closure in Grℓ(g) of the orbit of h under Gs.

Proof. (i) Set p := gs
+ b, let P be the normalizer of p in G and let pu be the nilpotent radical of p.

For g in P, denote by g its image by the canonical projection from P to Gs. Let Z be the closure in

Grℓ(g) × Grℓ(g) of the image of the map

B −→ Grℓ(b) × Grℓ(b), g 7−→ (g(h), g(h))

and let Z′ be the subset of elements (V,V ′) of Grℓ(b) × Grℓ(b) such that

V ′ ⊂ gs ∩ b and V ⊂ V ′ ⊕ pu.

Then Z′ is a closed subset of Grℓ(b) × Grℓ(b) and Z is contained in Z′ since (g(h), g(h)) is in Z′

for all g in B. Since Grℓ(b) is a projective variety, the images of Z by the projections (V,V ′) 7→ V
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and (V,V ′) 7→ V ′ are closed in Grℓ(b) and they equal X and Bs.h respectively. Furthermore, Bs.h is

contained in Xs.

Let V be in Xs. For some V ′ in Grℓ(b), (V,V ′) is in Z. Since

V ⊂ gs, V ′ ⊂ gs, V ⊂ V ′ ⊕ pu,

V = V ′ so that V is in Bs.h, whence the assertion.

(ii) Since z is contained in h, all element of Gs.h is an element of G.X containing z. Let V be in

G.X, containing z. Since V is a commutative subalgebra of gs and since gs∩b is a Borel subalgebra

of gs, for some g in Gs, g(V) is contained in b ∩ gs. So, one can suppose that V is contained in b.

According to the Bruhat decomposition of G, since X is B-invariant, for some b in U and for some

w in W(R), V is in bw.X. Set:

R+,w := {α ∈ R+ | w(α) ∈ R+}, R′
+,w := {α ∈ R+ | w(α) < R+},

u1 :=
⊕

α∈R+,w

gw(α), u2 :=
⊕

α∈−R′+,w

gw(α), u3 :=
⊕

α∈R′+,w

gw(α),

Bw := wBw−1, bw := h ⊕ u1 ⊕ u3,

so that adbw is the Lie algebra of Bw and w.X is the closure in Grℓ(g) of the orbit of h under Bw.

Moreover, u is the direct sum of u1 and u2. For i = 1, 2, denote by Ui the closed subgroup of U

whose Lie algebra is adui. Then U = U2U1 and b = b2b1 with bi in Ui for i = 1, 2. Since w−1(u1)

is contained in u and X is invariant under B, b2b1w.X = b2w.X. Then b−1
2 (V) is in w.X and

b−1
2 (V) ⊂ b ∩ bw = h ⊕ u1

since V is contained in b. Set:

u2,1 := u2 ∩ g
s, u2,2 := u2 ∩ pu

and for i = 1, 2, denote by U2,i the closed subgroup of U2 whose Lie algebra is adu2,i. Then u2 is the

direct sum of u2,1 and u2,2 and U2 = U2,1U2,2 so that b2 = b2,1b2,2 with b2,i in U2,i for i = 1, 2. As a

result, z is contained in b−1
2,1

(V) and b−1
2,2

(z) is contained h⊕u1. Hence b−1
2,2

(z) = z since u1∩u2,2 = {0}.

Suppose b2,2 , 1g. We expect a contradiction. For some x in u2,2, b2,2 = exp(ad x). The space

u2,2 is a direct sum of root spaces since so are u2 and pu. Let α1, . . . , αm be the positive roots such

that the corresponding root spaces are contained in u2,2. They are ordered so that for i ≤ j, α j − αi

is a positive root if it is a root. For i = 1, . . . ,m, let ci be the coordinate of x at xαi
and let i0 be the

smallest integer such that ci0 , 0. For all z in z,

b−1
2,2(z) − z − ci0αi0(z)xαi0

∈
⊕

j>i0

gα j ,

whence the contradiction since for some z in z, αi0(z) , 0. As a result, b−1
2,1

(V) is an element of

w.X = Bw.h, contained in gs. So, by (i), b−1
2,1

(V) and V are in Gs.h, whence the assertion. �

4.3. Define a torus of g as a commutative algebraic subalgebra of g whose all elements are

semisimple. For x in g, denote by Zx the subset of elements of G.X containing x and by (Gx)0

the identity component of Gx.

Lemma 4.5. Let x be in Ng and let Z be an irreducible component of Zx. Suppose that some

element of Z is not contained in Ng.

(i) For some torus s of gx, all element of a dense open subset of Z contains a conjugate of s under

(Gx)0.
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(ii) For some s in s and for some irreducible component Z1 of Zs+x, Z is the closure in Grℓ(g) of

(Gx)0.Z1.

(iii) If Z1 has dimension smaller than dimgs+x − ℓ, then Z has dimension smaller than dimgx − ℓ.

Proof. (i) After some conjugation by an element of G, we can suppose that gx ∩ b and gx ∩ h are

a Borel subalgebra and a maximal torus of gx respectively. Let Z0 be the subset of elements of Z

contained in b and let (Bx)0 be the identity component of Bx. Since Z is an irreducible component of

Zx, Z is invariant under (Gx)0 and Z = (Gx)0.Z0. Since (Gx)0/(B
x)0 is a projective variety, according

to the proof of Lemma 1.7, (Gx)0.Z∗ is a closed subset of Z for all closed subset Z∗ of Z. Hence for

some irreducible component Z∗ of Z0, Z = (Gx)0.Z∗. According to Corollary 4.3,(ii), for all V in

Z∗, there exists a torus s, contained in gx ∩ h and verifying the following two conditions:

(1) V is contained in s + (gx ∩ u),

(2) V contains a conjugate of s under (Bx)0.

Let s be a torus of maximal dimension verifying Conditions (1) and (2) for some V in Z∗. By

hypothesis, s has positive dimension. Let Zs be the subset of elements of Z∗ verifying Conditions

(1) and (2) with respect to s. By maximality of dims, for V in Z∗ \ Zs, dimV ∩ u > ℓ − dims or

dimV ∩ u = ℓ − dims and V is contained in s′ + u for some torus of dimension dims, different

from s. By rigidity of tori, s is not in the closure in Grdim s(h) of the set of tori different from s.

Hence Z∗ \ Zs is a closed subset of Z∗ since for all V in Z∗ \ Zs, dim V ∩ u has dimension at least

ℓ−dims. As a result, (Gx)0.Zs contains a dense open subset whose all elements contain a conjugate

of s under (Gx)0.

(ii) For some s in s, gs is the centralizer of s in g. Let Zs be the subset of elements of Z containing

s. Then Zs is contained in Zs+x and according to Corollary 4.3,(i), Zs is the subset of elements of

Z, containing s. By (i), for some irreducible component Z′1 of Zs, (Gx)0.Z
′
1 is dense in Z. Let Z1 be

an irreducible component of Zs+x, containing Z′1. According to Corollary 4.3,(ii), Z1 is contained

in Zx since x is the nilpotent component of s + x. So Z1 = Z′
1

and (Gx)0.Z1 is dense in Z.

(iii) Since Z1 is an irreducible component of Zs+x, Z1 is invariant under the identity component

of Gs+x. Moreover, Gs+x is contained in Gx since x is the nilpotent component of s+ x. As a result,

by (ii),

dimZ ≤ dimgx − dimgs+x
+ dimZ1,

whence the assertion. �

Denote by Ch the G-invariant closed cone generated by h.

Lemma 4.6. Suppose g semisimple. Let Γ be the closure in g × Grℓ(g) of the image of the map

k∗ ×G −→ g × Grℓ(g) (t, g) 7−→ (tg(h), g(h))

and let Γ0 be the inverse image of the nilpotent cone by the first projection.

(i) The subvariety Γ of g × Grℓ(g) has dimension 2n + 1. Moreover, Γ is contained in ∆.

(ii) The varieties Ch and G.X are the images of Γ by the first and second projections respectively.

(iii) The subvariety Γ0 of Γ is equidimensional of codimension 1.

(iv) For x nilpotent in g, the subvariety of elements V of G.X, containing x and contained in

G(x), has dimension at most dimgx − ℓ.

Proof. (i) Since the stabilizer of (h, h) in k∗×G equals {1}×H, Γ has dimension 2n+1. Since tg(h)

is in g(h) for all (t, g) in k∗ ×G and ∆ is a closed subset of g × Grℓ(g), Γ is contained in ∆.
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(ii) Since Grℓ(g) is a projective variety, the image of Γ by the first projection is closed in g.

So, it equals Ch since it is contained in Ch and it contains the cone generated by G.h. Let π

be the canonical map from g \ {0} to the projective space P(g) of g and let Γ̃ be the image of

Γ ∩ (g \ {0}) × Grℓ(g) by the map (x,V) 7→ (π(x),V). Since Ch is a closed cone, Γ̃ is a closed

subset of P(g)×Grℓ(g). Hence the image of Γ̃ by the second projection is a closed subset of Grℓ(g).

So, it equals G.h since it is contained in G.h and it contains G.h. As a result, the image of Γ by

the second projection equals G.h since it is contained in G.h and it contains the image of Γ̃ by the

second projection.

(iii) The subvariety Ch of g has dimension 2n + 1 and the nullvariety of p1 in Ch is contained in

Ng since it is the nullvariety in g of the polynomials p1, . . . , pℓ. Hence Ng is the nullvariety of p1

in Ch and Γ0 is the nullvariety in Γ of the function (x,V) 7→ p1(x). So Γ0 is equidimensional of

codimension 1 in Γ.

(iv) Let T be the subset of elements V of G.X, containing x and contained in G(x). Denote by

ΓT the inverse image of G.T by the projection from Γ to G.X. Then ΓT is contained in Γ0. Since

x is in all element of T and since ΓT is invariant under G, the image of ΓT by the first projection

equals G(x). Moreover, {x} × T = {x} ×G.X ∩ ΓT . Hence

dimΓT = dim T + dimg − dimgx.

By (i) and (iii),

dimΓT ≤ dimg − ℓ

since ΓT is contained in Γ0. Hence T has dimension at most dimgx − ℓ. �

When g is semisimple, denote by (G.X)u the subset of elements of G.X contained in Ng.

Corollary 4.7. Suppose g semisimple. Let x be in Ng.

(i) The variety (G.X)u has dimension at most 2n − ℓ.

(ii) The variety Zx ∩ (G.X)u has dimension at most dimgx − ℓ.

Proof. (i) Let T be an irreducible component of (G.X)u and let ∆T be its inverse image by the

canonical projection from ∆ to G.X. Then ∆T is a vector bundle of rank ℓ over T . So it has

dimension dim T + ℓ. Let Y be the projection of ∆T onto g. Since T is an irreducible projective

variety, Y is an irreducible closed subvariety of g contained in Ng. The subvariety (G.X)u of G.X is

invariant under G since so is Ng. Hence ∆T and Y are G-invariant and for some y in Ng, Y = G(y).

Denoting by Fy the fiber at y of the projection ∆T → Y , V is contained in G(y) and contains y for

all V in Fy. So, by Lemma 4.6,(iv),

dim Fy ≤ dimgy − ℓ.

Since the projection is G-equivariant, this inequality holds for the fibers at the elements of G(y).

Hence,

dim∆T ≤ dimg − ℓ and dimT ≤ 2n − ℓ.

(ii) Let Z be an irreducible component of Zx ∩ (G.X)u and let T be an irreducible component of

(G.X)u, containing Z. Let ∆T and Y be as in (i). Then G(x) is contained in Y and the inverse image

of G(x) in ∆T has dimension at least dimG(x) + dimZ. So, by (i),

dimG(x) + dimZ ≤ dimg − ℓ,

whence the assertion. �
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Theorem 4.8. For x in g, the variety of elements of G.X, containing x, has dimension at most

dimgx − ℓ.

Proof. Prove the theorem by induction on dimg. If g is commutative, G.X = {g}. If the derived

Lie algebra of g is simple of dimension 3, G.X has dimension 2 and for x not in the center of g,

Zx = {g
x}. Suppose the theorem true for all reductive Lie algebra of dimension strictly smaller than

dimg. Let x be in g. Since G.X has dimension dimg − ℓ, we can suppose that x is not in the center

of g. If x is not nilpotent, gxs has dimension strictly smaller than dimg and all element of G.X

containing x is contained in gxs by Corollary 4.3,(i), whence the theorem in this case by induction

hypothesis. As a result, by Lemma 4.5, for all x in g, all irreducible component of Zx, containing

an element not contained in Ng, has dimension at most dimgx − ℓ.

Let zg be the center of g and let x be a nilpotent element of g. Denoting by Z′x the subset of

elements of G.(h ∩ [g, g]) containing x, Zx is the image of Z′x by the map V 7→ V + zg, whence the

theorem by Corollary 4.7. �

4.4. Let s be in h \ {0}. Set p := gs
+ b and denote by pu the nilpotent radical of p. Let P be the

normalizer of p in G and let Pu be its unipotent radical. For a nilpotent orbit Ω of Gs in gs, denote

by Ω# the induced orbit by Ω from gs to g.

Lemma 4.9. Let Y be a G-invariant irreducible closed subset of g and let Y ′ be the union of G-

orbits of maximal dimension in Y. Suppose that s is the semisimple component of an element x of

Y ′. Denote by Ω the orbit of xn under Gs and set Y1 := z + Ω + pu.

(i) The subset Y1 of p is closed and invariant under P.

(ii) The subset G(Y1) of g is a closed subset of dimension dim z + dimG(x).

(iii) For some nonempty open subset Y ′′ of Y ′, the conjugacy class of gys under G does not

depend on the element y of Y ′′.

(iv) For a good choice of x in Y ′′, Y is contained in G(Y1).

Proof. (i) By [Ko63, §3.2, Lemma 5], Gs is connected and P = PuGs. For all y in p and for all g in

Pu, g(y) is in y + pu. Hence Y1 is invariant under P since it is invariant under Gs. Moreover, it is a

closed subset of p since z + Ω is a closed subset of gs.

(ii) According to (i) and Lemma 1.7, G(Y1) is a closed subset of g. According to [CMa93,

Theorem 7.1.1], Ω# ∩ (Ω+ pu) is a P-orbit and the centralizers in g of its elements are contained in

p. For y in Ω# ∩ (Ω+ pu) and for g in G, if g(y) is in Y1 then it is in Ω+ pu since it is nilpotent. So,

for y in Ω# ∩ (Ω + pu), the subset of elements g of G such that g(y) is in Y1 has dimension dimp.

As a result,

dimG(Y1) = dimG ×P Y1 = dimpu + dimY1.

Since dimgx
= dimgs − dimΩ,

dim Y1 = dim z + dimpu + dimgs − dimgx

dimG(Y1) = dim z + 2dimpu + dimgs − dimgx

= dim z + dimG(x).

(iii) Let τ be the canonical morphism from g to its categorical quotient g//G under G and let Z be

the closure in g//G of τ(Y). Since Y is irreducible, Z is irreducible and there exists an irreducible

component Z̃ of the preimage of Z in h whose image in g//G equals Z. Since the set of conjugacy

classes under G of the centralizers of the elements of h in g is finite, for some nonempty open

subset Z# of Z̃, the centralizers of its elements are conjugate under G. The image of Z# in g//G
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contains a dense open subset Z′ of Z. Let Y ′′ be the inverse image of Z′ by the restriction of τ to

Y ′. Then Y ′′ is a dense open subset of Y and the centralizers in g of the semisimple components of

its elements are conjugate under G.

(iv) Suppose that x is in Y ′′. Let ZY be the set of elements y of Y ′′ such that gys = gs. Then

G.ZY = Y ′′. For all nilpotent orbit Ω of Gs in gs, set:

YΩ = z + Ω + pu

Then ZY is contained in the union of the YΩ’s. Hence Y ′′ is contained in the union of the G(YΩ)’s.

According to (ii), G(YΩ) is a closed subset of g. Hence Y is contained in the union of the G(YΩ)’s

since Y ′′ is dense in Y . Then Y is contained in G(YΩ) for some Ω since Y is irreducible and there

are finitely many nilpotent orbits in gs, whence the assertion. �

Theorem 4.10. (i) The variety G.X is the union of G.h and the G.Xβ’s, β ∈ Π.

(ii) The variety X is the union of U.h and the Xα’s, α ∈ R+.

Proof. Let zg be the center of g and let µ be the map

Grℓ′([g, g]) −→ Grℓ(g), V 7−→ zg + V

with ℓ′ the rank of [g, g] and set:

Xd := B.(h ∩ [g, g]), Xα,d := B.(Vα ∩ [g, g])

for α in R+. Then X, G.X, Xα, G.Xα are the images of Xd, G.Xd, Xα,d, G.Xα,d by µ respectively. So

we can suppose g semisimple.

(i) For ℓ = 1, g is simple of dimension 3. In this case, G.X is the union of G.h and G.ge. So, we

can suppose ℓ ≥ 2. According to Lemma 4.1,(iii), for α in R+, G.Xα is an irreducible component

of G.X \ G.h. Moreover, for all β in Π ∩ W(R)(α), G.Xα = G.Xβ since Vα and Vβ are conjugate

under NG(h).

Let T be an irreducible component of G.X \G.h. Set:

∆T := ∆ ∩ g × T

and denote by Y the image of ∆T by the first projection. Then Y is closed in g since Grℓ(g) is a

projective variety. Since ∆T is a vector bundle over T and since T is irreducible, ∆T is irreducible

and so is Y . Since T is an irreducible component of G.X \ G.h, T , ∆T and Y are G-invariant.

According to Lemma 4.1,(iii), T has codimension 1 in G.X. Hence, by Corollary 4.7,(i) Y is not

contained in the nilpotent cone since ℓ ≥ 2. Let Y ′ be the set of elements x of Y such that gx has

minimal dimension. According to Lemma 4.9,(ii) and (iv), for x in a G-invariant dense subset Y ′′

of Y ′,

dim Y ≤ dimG(x) + dim z

with z the center of gxs and according to Theorem 4.8,

dim∆T ≤ dimG(x) + dim z + dimgx − ℓ = dimg + dim z − ℓ

Hence ∆T has dimension at most 2n + dim z and dim z = ℓ − 1 since T has codimension 1 in G.X.

Let x be in Y ′′ such that xs is in h. Then xs is subregular and z is the kernel of a positive root α.

Denoting by sα the subalgebra of g generated by gα and g−α, gxs is the direct sum of hα and sα.

Since the maximal commutative subalgebras of sα have dimension 1, a commutative subalgebra of

dimension ℓ of gxs is either a Cartan subalgebra of g or conjugate to Vα under the adjoint group of

gxs . As a result, Vα is in T and T = G.Vα = G.Xα since T is G-invariant, whence the assertion.
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(ii) According to Lemma 4.1,(ii), for α in R+, Xα is an irreducible component of X \ B.h. Let

g1, . . . , gm be its simple factors. For j = 1, . . . ,m, denote by X j the closure in Grℓg j
(g j) of the orbit

of h ∩ g j. Then X = X1× · · · ×Xm and the complement to B.h in X is the union of the

X1× · · · ×X j−1 × (X j \ B.(h ∩ g j)) × X j+1× · · · ×Xm

So, we can suppose g simple. Consider

b = p0⊂ · · · ⊂ pℓ = g

an increasing sequence of parabolic subalgebras verifying the following condition: for i = 0, . . . , ℓ−

1, there is no parabolic subalgebra q of g such that

pi $ q $ pi+1.

For i = 0, . . . , ℓ, let Pi be the normalizer of pi in G, let pi,u be the nilpotent radical of pi and let Pi,u

be the unipotent radical of Pi. For i = 0, . . . , ℓ and for α in R+, set Xi := Pi.X and Xi,α := Pi.Xα.

Prove by induction on ℓ − i that for all sequence of parabolic subalgebras verifying the above

condition, the Xi,α’s, α ∈ R+, are the irreducible components of Xi \ Pi.h.

For i = ℓ, it results from (i). Suppose that it is true for i + 1. According to Lemma 4.1,(iii), the

Xi,α’s are irreducible components of Xi \ Pi.h.

Claim 4.11. Let T be an irreducible component of Xi \ Pi.h such that Pi is its stabilizer in Pi+1.

Then T = Xi,α for some α in R+.

Proof. According to the induction hypothesis, T is contained in Xi+1,α for some α in R+. According

to Lemma 4.1,(iv), T has codimension 1 in Xi so that Pi+1.T and Xi+1,α have the same dimension.

Then they are equal and T contains gx for some x in breg such that xs is a subregular element

belonging to h. Denoting by α′ the positive root such that α′(xs) = 0, gx
= Vα′ since Vα′ is

the commutative subalgebra contained in b and containing hα′ , which is not Cartan, so that T =

Xi,α′ . �

Suppose that Xi \ Pi.h is not the union of the Xi,α’s, α ∈ R+. We expect a contradiction. Let T be

an irreducible component of Xi \ Pi.h, different from Xi,α for all α. According to Claim 4.11 and

according to the condition verified by the sequence, T is invariant under Pi+1. Moreover, according

to Claim 4.11, it is so for all sequence p′
0
, . . . , p′

ℓ
of parabolic subalgebras verifying the above

condition and such that p′j = p j for j = 0, . . . , i. As a result, for all simple root β such that g−β is

not in pi, T is invariant under the one parameter subgroup of G generated by adg−β. Hence T is

invariant under G. It is impossible since for x in g \ {0}, the orbit G(x) is not contained in pi since

g is simple, whence the assertion. �

4.5. Let X′ be the subset of gx with x in breg such that xs is regular or subregular. For α in R+,

denote by θα the map

k −→ X, t 7−→ exp(tad xα).h.

According to [Sh94, Ch. VI, Theorem 1], θα has a regular extension to P1(k), also denoted by θα.

Set Zα := θα(P1(k)) and X′α := B.Zα so that X′α = U.h ∪ B.Vα.

Lemma 4.12. Let α be in R+ and let V be in X. Denote by V the image of V by the projection

x 7→ x.

(i) For x in h, x is subregular if and only if Vx = hγ for some positive root γ.

(ii) If V has dimension ℓ − 1, then V = Vx = hγ for some x in V and for some γ in R+.

(iii) If V = hα, then V is conjugate to Vα under B.
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Proof. (i) First of all, since ε1, . . . , εℓ are G-equivariant maps, Vx is contained in the center of gx

for all x in g. Then for x in h, Vx is the center of gx by Corollary 4.3,(i), whence the assertion.

(ii) For γ in R+, set:

Vγ := V ∩ (hγ + u).

Suppose V = ℓ − 1. Then V does not contain regular semisimple element. Hence V is the union of

Vγ, γ ∈ R+. Since V is irreducible and R+ is finite, V = Vγ for some γ in R+ so that V = hγ since V

has dimension ℓ − 1. Let x be in V such that x is subregular. Then Vx = hγ by (i).

(iii) Suppose V = hα. By (ii), Vx = hα for some x in V . Let b be in B such that b(xs) = x.

Then b(V) centralizes hα by Corollary 4.3,(i). Moreover, b(V) is not a Cartan subalgebra since V

does not contain regular semsimple element. The centralizer of hα in b equals h + gα and Vα is the

commutative algebra of dimension ℓ contained in h + gα which is not a Cartan subalgebra, whence

the assertion. �

Corollary 4.13. Let α be a positive root.

(i) The sets X′α and G.X′α are open subsets of X and G.X respectively.

(ii) The sets X′ and G.X′ are big open subsets of X and G.X respectively.

Proof. (i) Prove that X′α is a neighborhood of Vα in X. Denote by Hα the coroot of α and set:

E′ :=
⊕

γ∈R+\{α}

gγ, E := kHα ⊕ E′.

Let ΩE be the set of subspaces V of b such that E is a complement to V in b and let Ω′
E

be the

complement in X ∩ ΩE to the union of Xγ, γ ∈ R+ \ {α}. Then Ω′E is an open neighborhood of

Vα in X. Let V be in Ω′E such that V is not a Cartan subalgebra and denote by V its image by the

projection x 7→ x. Then V is contained in V + u so that h = kHα + V . Since V is not a Cartan

subalgebra, V has dimension ℓ − 1. Hence V = hγ for some positive root γ by Lemma 4.12,(ii).

According to Lemma 4.12,(iii), V is conjugate to Vγ under B. Then α = γ and V is in X′α since

V is not in Xδ for all positive root δ different from α. Hence Ω′E is contained in X′α so that X′α is a

neighborhood of Vα in X. As a result, X′α is an open subset of X since it is the union of B.Vα and

the open subset U.h of X. Hence G.(X \ X′α) is a closed subset of G.X by Lemma 1.7, whence the

assertion.

(ii) By definition, X′ is the union of the X′α’s, α ∈ R+. Hence X′ is an open subset of X by (i).

Moreover, by Theorem 4.10,(ii), X \ X′ is the union of the Xα \ X′’s, α ∈ R+. Then X′ is a big open

subset of X since, for all α, Xα \ X′ is strictly contained in the irreducible subvariety Xα of X.

Since G.X′ is the union of the G.X′α’s, α ∈ R+, G.X′ is an open subset of G.X by (i). Moreover,

by Theorem 4.10,(i), G.X \G.X′ is the union of the G.Xβ \G.X′’s, β ∈ Π. Hence G.X′ is a big open

subset of G.X since, for all β, G.Xβ \ G.X′ is strictly contained in the irreducible subvariety G.Xβ

of G.X. �

Proposition 4.14. The sets X′ and G.X′ are smooth big open subsets of X and G.X respectively.

Proof. According to Corollary 4.13,(ii), it remains to prove that X′ and G.X′ are smooth open

subsets of X and G.X respectively. Denote by π the canonical projection from ∆ onto G.X and set

∆0 := π−1(X). Let µ be the map

greg −→ Gr,(gℓ) x 7−→ gx
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and let µ0 be its restriction to breg. Then µ is a regular map. Denoting by Γµ and Γµ0
the graphs of

µ and µ0 respectively, Γµ and Γµ0
are smooth varieties contained in ∆ and ∆0 respectively since for

x in greg,ss, g
x is a Cartan subalgebra, contained in b when x is in b. Set:

Γ
′
µ := Γµ ∩ π

−1(G.X′) = ∆ ∩ greg ×G.X′ and Γ
′
µ0

:= Γµ0
∩ π−1(X′) = ∆ ∩ breg × X′

Then Γ′µ is a smooth variety as an open susbet of Γµ and Γ′µ is an open subset of π−1(G.X′) such that

π(Γ′µ) = G.X′ since all element of G.X′ contains regular elements. In the same way, Γ′µ0
is a smooth

open subset of π−1(X′) such that π(Γ′µ0
) = X′. As a result, Γ′µ and Γ′µ0

are smooth fiber bundles over

G.X′ and X′ respectively since ∆ and ∆0 are vector bundles over G.X and X respectively. Hence

G.X′ and X′ are smooth varieties by [MA86, Ch. 8, Theorem 23.7]. �

5. On the generalized isospectral commuting variety

Let k ≥ 2 be an integer. According to Section 2, we have the commutative diagram

G ×B b
k

γn
//

γ
##H

HH
HH

HH
HH

B
(k)
n

η
}}zz
zz
zz
zz

B(k)

with B
(k)
n the normalization of B(k) and η the normalization morphism. By Theorem 2.13,(i) and

Lemma 2.5,(i), ιk is a closed embedding of bk into B
(k)
n , B

(k)
n is the closure of G.ιk(b

k) in Xk and η is

the restriction to B
(k)
n of the canonical projection from Xk to gk. Denote by C(k) the closure of G.hk

in gk with respect to the diagonal action of G in gk and set C
(k)
n := η−1(C(k)). The varieties C(k) and

C
(k)
n are called generalized commuting variety and generalized isospectral commuting variety re-

spectively. For k = 2, C
(k)
n is the isospectral commuting variety considered by M. Haiman in [Ha99,

§8] and [Ha02, §7.2].

5.1. Set:

E(k) := {(u, x1, . . . , xk) ∈ X × bk | u ∋ x1, . . . , u ∋ xk}.

Lemma 5.1. Denote by E(k,∗) the intersection of E(k) and U.h × (greg,ss ∩ b)
k and for w in W(R),

denote by θw the map

E(k) −→ bk × hk, (u, x1, . . . , xk) 7−→ (x1, . . . , xk, w(x1), . . . , w(xk)).

(i) Denoting by X0,k the image of E(k) by the projection (u, x1, . . . , xk) 7→ (x1, . . . , xk), X0,k is the

closure of B.hk in bk and C(k) is the image of G×X0,k by the map (g, x1, . . . , xk) 7→ (g(x1), . . . , g(xk)).

(ii) For all w in W(R), θw(E(k,∗)) is dense in θw(E(k)).

Proof. (i) Since X is a projective variety, X0,k is a closed subset of bk. The variety E(k) is irreducible

of dimension n + kℓ as a vector bundle of rank kℓ over the irreducible variety X. So, B.({h} × hk) is

dense in E(k) and X0,k is the closure of B.hk in bk, whence the assertion by Lemma 1.7.

(ii) Since U.h× (greg,ss ∩ b)
k is an open susbet of X × bk, E(k,∗) is an open subset of E(k). Moreover,

it is a dense open subset since E(k) is irreducible, whence the assertion since θw is a morphism of

algebraic varieties. �
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5.2. Let s be in h and let Gs be the centralizer of s in G. According to [Ko63, §3.2, Lemma 5],

Gs is connected. Denote by Rs the set of roots whose kernel contains s and denote by W(Rs) the

Weyl group of Rs. Let zs be the center of gs.

Lemma 5.2. Let x = (x1, . . . , xk) be in C(k) verifying the following conditions:

(1) s is the semisimple component of x1,

(2) for z in Px, the centralizer in g of the semisimple component of z has dimension at least

dimgs.

Then for i = 1, . . . , k, the semisimple component of xi is contained in zs.

Proof. Since x is in C(k), [xi, x j] = 0 for all (i, j). Suppose that for some i, the semisimple compo-

nent xi,s of xi is not in zs. A contradiction is expected. Since [x1, xi] = 0, for all t in k, s + txi,s is

the semisimple component of x1 + txi. Moreover, after conjugation by an element of Gs, we can

suppose that xi,s is in h. Since R is finite, there exists t in k∗ such that the subset of roots whose

kernel contains s + txi,s is contained in Rs. Since xi,s is not in zs, for some α in Rs, α(s + txi,s) , 0

that is gs+txi,s is strictly contained in gs, whence the contradiction. �

For w in W(R), set:

Cw := GswB/B, Bw := wBw−1.

Lemma 5.3. [Hu95, §6.17, Lemma] Let B be the set of Borel subalgebras of g and let Bs be the

set of Borel subalgebras of g containing s.

(i) For all w in W(R), Cw is a connected component of Bs.

(ii) For (w, w′) in W(R) ×W(R), Cw = Cw′ if and only if w′w−1 is in W(Rs).

(iii) The variety Cw is isomorphic to Gs/(Gs ∩ Bw).

For x in B(k), denote by Bx the subset of Borel subalgebras containing Px.

Corollary 5.4. Let x = (x1, . . . , xk) be in C(k). Suppose that x verifies Conditions (1) and (2) of

Lemma 5.2. Then {Cw ∩Bx | w ∈ W(R)} is the set of connected components of Bx.

Proof. Since a Borel subalgebra contains the semisimple component of its elements and since s is

the semisimple component of x1, Bx is contained in Bs. As a result, according to Lemma 5.3,(i),

every connected component of Bx is contained in Cw for some w in W(R). Set xn := (x1,n, . . . , xk,n).

Since [xi, x j] = 0 for all (i, j), Px is contained in gs. Let Bs be the set of Borel subalgebras of gs

and for y in (gs)k, let Bs
y be the set of Borel subalgebras of gs containing Py. According to [Hu95,

Theorem 6.5], Bs
xn

is connected. Moreover, according to Lemma 5.2, the semisimple components

of x1, . . . , xk are in zs so that Bs
xn
= Bs

x. Let w be in W(R). According to Lemma 5.3,(iii), there is

an isomorphism from Bs to Cw. Moreover, the image of Bs
x by this isomorphism equals Cw ∩ Bx,

whence the corollary. �

Corollary 5.5. Let x = (x1, . . . , xk) be in C(k) verifying Conditions (1) and (2) of Lemma 5.2. Then

η−1(x) is contained in the set of the (x1, . . . , xk, w(x1,s), . . . , w(xk,s))’s with w in W(R).

Proof. Since γ = η◦γn, η−1(x) is the image of γ−1(x) by γn. Furthermore, γn is constant on the

connected components of γ−1(x) since η−1(x) is finite. Let C be a connected component of γ−1(x).

Identifying G ×B b
k with the subvariety of elements (u, x) of B × gk such that Px is contained in u,

C identifies with (Cw ∩Bx) × {x} for some w in W(R) by Corollary 5.4. Then for some g in Gs and

for some representative gw of w in NG(h), ggw(b) contains Px so that

γn(C) = {(x1, . . . , xk, (ggw)−1(x1), . . . , (ggw)−1(xk))}.
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By Lemma 5.2, x1,s, . . . , xk,s are in zs so that w−1(xi,s) is the semisimple component of (ggw)−1(xi)

for i = 1, . . . , k. Hence

γn(C) = {(x1, . . . , xk, w
−1(x1,s), . . . , w

−1(xk,s))},

whence the corollary. �

Proposition 5.6. The variety C
(k)
n is irreducible and equal to the closure of G.ιk(h

k) in B
(k)
n .

Proof. Denote by G.ιk(hk) the closure of G.ιk(h
k) in B

(k)
n . Then G.ιk(hk) is irreducible as the closure

of an irreducible set. Since η is G-equivariant, η(G.ιk(h
k)) = G.hk. Hence η(G.ιk(hk)) = C(k) since

η is a finite morphism and C(k) is the closure of G.hk in gk by definition. So, it remains to prove

that for all x in C(k), η−1(x) is contained in G.ιk(hk). There is a canonical action of GLk(k) on gk and

Xk. Since this action commutes with the action of G in Xk, B
(k)
n is invariant under GLk(k) and η

is GLk(k)-equivariant. As a result, since C(k) and G.ιk(h
k) are invariant under GLk(k), for x in C(k),

η−1(x′) is contained in G.ιk(hk) for all x′ in Pk
x such that Px′ = Px if η−1(x) is contained in G.ιk(hk).

Then, according to Lemma 5.2, since η is G-equivariant, it suffices to prove that η−1(x) is contained

in G.ιk(hk) for x in C(k) ∩ bk verifying Conditions (1) and (2) of Lemma 5.2 for some s in h.

According to Corollary 5.5,

η−1(x) ⊂ {(x1, . . . , xk, w(x1,s), . . . , w(xk,s)) | w ∈ W(R)} with x = (x1, . . . , xk).

For s regular, Px is contained in h and xi = xi,s for i = 1, . . . , k. By definition,

(w(x1), . . . , w(xk), w(x1), . . . , w(xk)) ∈ ιk(h
k)

and for gw a representative of w in NG(h),

g−1
w .(w(x1), . . . , w(xk), w(x1), . . . , w(xk)) = (x1, . . . , xk, w(x1), . . . , w(xk)).

Hence η−1(x) is contained in G.ιk(h
k). As a result, according to the notations of Lemma 5.1, for all

w in W(R), θw(E(k,∗)) is contained in G.ιk(h
k). Hence, by Lemma 5.1,(ii), θw(E(k)) is contained in

G.ιk(hk), whence the proposition. �

5.3. Let ̟ be the canonical projection from Xk to gk. By Corollary 2.4,(ii), B
(k)
n is an irreducible

component of ̟−1(B(k)) and the action of W(R)k on Xk induces a simply transitive action on the

set of irreducible components of ̟−1(B(k)). According to Remark 2.12, there is an embedding Φ

of S(h)⊗k into k[B
(k)
n ] given by

p 7−→ ((x1, . . . , xk, y1, . . . , yk) 7→ p(y1, . . . , yk)).

This embedding identifies S(h)⊗k with a subalgebra of k[B
(k)
n ].

Lemma 5.7. Let Ψ be the restriction to S(h)⊗k of the canonical map from k[B
(k)
n ] to k[C

(k)
n ].

(i) The subvariety C
(k)
n of Xk is invariant under the diagonal action of W(R) in Xk.

(ii) The map Ψ is an embedding of S(h)⊗k into k[C
(k)
n ]. Moreover, Ψ(S(h)⊗k) equals k[C

(k)
n ]G.

(iii) The image of (S(h)⊗k)W(R) by Ψ equals k[C(k)]G.

Proof. (i) For x in B
(k)
n and w in W(R), η(x) = η(w.x), whence the assertion by Proposition 5.6.

(ii) According to Theorem 2.13,(ii), S(h)⊗k equals k[B
(k)
n ]G. Moreover, for P in S(h)⊗k, P = 0

if P(x) = 0 for all x in ιk(h
k). Hence Ψ is injective. Since G is reductive, k[C

(k)
n ]G is the image of

k[B
(k)
n ]G by the quotient morphism, whence the assertion.

(iii) Since G is reductive, k[C(k)]G is the image of k[B(k)]G by the quotient morphism, whence

the assertion since (S(h)⊗k)W(R) equals k[B(k)]G by Theorem 2.13,(iii). �
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Identify S(h)⊗k with a subalgebra of k[C
(k)
n ] by Ψ.

Proposition 5.8. Let C̃
(k)
n and C̃(k) be the normalizations of C

(k)
n and C(k).

(i) The variety C(k) is the categorical quotient of C
(k)
n under the action of W(R).

(ii) The variety C̃(k) is the categorical quotient of C̃
(k)
n under the action of W(R).

Proof. (i) According to Theorem 2.13,(ii), k[B
(k)
n ] is generated by k[B(k)] and S(h)⊗k. Since

C
(k)
n = η−1(C(k)) by Proposition 5.6, the image of k[B(k)] in k[C

(k)
n ] by the restriction morphism

equals k[C(k)]. Hence k[C
(k)
n ] is generated by k[C(k)] and S(h)⊗k. Then, by Lemma 5.7,(iii),

k[C
(k)
n ]W(R)

= k[C(k)].

(ii) Let K be the fraction field of k[C
(k)
n ]. Since C

(k)
n is a W(R)-variety, there is an action of W(R)

in K and KW(R) is the fraction field of k[C
(k)
n ]W(R) since W(R) is finite. As a result, the integral

closure k[C̃
(k)
n ] of k[C

(k)
n ] in K is invariant under W(R) and k[C̃(k)] is contained in k[C̃

(k)
n ]W(R) by (i).

Let a be in k[C̃
(k)
n ]W(R). Then a verifies a dependence integral equation over k[C

(k)
n ],

am
+ am−1am−1

+ · · · + a0 = 0

whence

am
+ (

1

|W(R)|

∑

w∈W(R)

w.am−1)am−1
+ · · · +

1

|W(R)|

∑

w∈W(R)

w.a0 = 0

since a is invariant under W(R) so that a is in k[C̃(k)] by (i), whence the assertion. �

6. Desingularization

Let k ≥ 2 be an integer. Let X, X′ be as in Subsection 4.5. Denote by Xn the normalization of X

and by θ0 the normalization morphism. According to Proposition 4.14, X′ identifies with a smooth

big open subset of Xn and according to [Hir64], there exists a desingularization (Γ, πn) of Xn in the

category of B-varieties such that the restriction of πn to π−1
n (X′) is an isomorphism onto X′. Set

π = θ0◦πn so that (Γ, π) is a desingularization of X in the category of B-varieties. Recall that X0,k is

the closure in bk of B.hk and set Xk := G ×B X0,k. Then Xk is a closed subvariety of G ×B b
k.

Lemma 6.1. Let E be the restriction to X of the tautological vector bundle of rank ℓ over Grℓ(b)

and let τ′ be the canonical morphism from E to b.

(i) The morphism τ′ is projective and birational.

(ii) Let ν be the canonical map from π∗(E) to E. Then ν and τ := τ′◦ν are B-equivariant

birational projective morphisms from π∗(E) to E and b respectively. In particular, π∗(E) is a

desingularization of E and b.

Proof. (i) By definition, E is the subvariety of elements (u, x) of X × b such that x is in u so that τ′

is the projection from E to b. Since X is a projective variety, τ′ is a projective morphism and τ′(E)

is closed in b. Moreover, τ′(E) is B-invariant since τ′ is a B-equivariant morphism and it contains

h since h is in X. For x in hreg, (τ′)−1(x) = {(h, x)} since gx
= h. Hence τ′ is a birational morphism

and τ′(E) = b since B(hreg) is an open subset of b.

(ii) Since E is a vector bundle over X and since π is a projective birational morphism, ν is a

projective birational morphism. Then τ is a projective birational morphism from π∗(E) to b by (i).

It is B-equivariant since so are ν and τ′. Moreover, π∗(E) is a desingularization of E and b since

π∗(E) is smooth as a vector bundle over a smooth variety. �
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Denote by ψ the canonical projection from π∗(E) to Γ. Then, according to the above notations,

we have the commutative diagram:

π∗(E)
τ

}}zz
zz
zz
zz
z

ψ
//

ν

��

Γ

π

��

b E
τ′

oo // X

Lemma 6.2. Let E
(k)
s be the fiber product π∗(E)×ψ · · ·×ψπ

∗(E) and let τk be the canonical morphism

from E
(k)
s to bk.

(i) The vector bundle E
(k)
s over Γ is a vector subbundle of the trivial bundle Γ × bk. Moreover,

E
(k)
s has dimension kℓ + n.

(ii) The morphism τk is a projective birational morphism from E
(k)
s onto X0,k. Moreover, E

(k)
s is a

desingularization of X0,k in the category of B-varieties.

Proof. (i) By definition, E
(k)
s is the subvariety of elements (u, x1, . . . , xk) of Γ×bk such that x1, . . . , xk

are in π(u). Since X and Γ have dimension n, E
(k)
s has dimension kℓ + n as a vector bundle of rank

kℓ over Γ.

(ii) Since Γ is a projective variety, τk is a projective morphism and τk(E
(k)
s ) = X0,k by Lemma 5.1,(i).

For (x1, . . . , xk) in bkreg,ss, τ
−1
k

(x1, . . . , xk) = {(g
x1 , (x1, . . . , xk))} since gx1 is a Cartan subalgebra.

Hence τk is a birational morphism, whence the assertion since E
(k)
s is a smooth variety as a vector

bundle over the smooth variety Γ. �

Set Y := G ×B (Γ × bk). The canonical projections from G × Γ × bk to G × Γ and G × bk define

through the quotients morphisms fromY to G×BΓ and G×Bb
k. Denote by ς and ζ these morphisms.

Then we have the following diagram:

Y
ζ

//

ς

��

G ×B b
k

γn

��

G ×B Γ B
(k)
n

The map (g, x) 7→ (g, τk(x)) from G × E
(k)
s to G × bk defines through the quotient a morphism τk

from G ×B E
(k)
s to Xk.

Proposition 6.3. Set ξ := γn◦τk.

(i) The variety G ×B E
(k)
s is a closed subvariety of Y.

(ii) The variety G ×B E
(k)
s is a vector bundle of rank kℓ over G ×B Γ. Moreover, G ×B Γ and

G ×B E
(k)
s are smooth varieties.

(iii) The morphism ξ is a projective birational morphism from G ×B E
(k)
s onto C

(k)
n .

Proof. (i) According to Lemma 6.2,(i), E
(k)
s is a closed subvariety of Γ × bk, invariant under the

diagonal action of B. Hence G×E
(k)
s is a closed subvariety of G×Γ× bk , invariant under the action

of B, whence the assertion.

(ii) Since E
(k)
s is a B-equivariant vector bundle over Γ, G ×B E

(k)
s is a G-equivariant vector bundle

over G×BΓ. Since G×B Γ is a fiber bundle over the smooth variety G/B with smooth fibers, G×B Γ

is a smooth variety. As a result, G ×B E
(k)
s is a smooth variety.
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(iii) According to Lemma 6.2,(ii), τk is a projective birational morphism from G ×B E
(k)
s to

Xk. Since X0,k is a B-invariant closed subvariety of bk, Xk is closed in G ×B b
k. According to

Lemma 5.1,(i), γ(Xk) = C(k). Moreover, γn(Xk) is an irreducible closed subvariety of B
(k)
n since

γn is a projective morphism by Lemma 1.7. Hence γn(Xk) = C
(k)
n by Proposition 5.6. For all z in

G.ιk(h
k
reg), |γ−1

n (z)| = 1. Hence the restriction of γn to Xk is a birational morphism onto C
(k)
n since

G.ιk(h
k
reg) is dense in C

(k)
n . Moreover, this morphism is projective since γn is projective. As a result,

ξ is a projective birational morphism from G ×B E
(k)
s onto C

(k)
n . �

The following corollary results from Lemma 6.2,(ii), Proposition 6.3,(ii) and (iii), and Lemma 1.4.

Corollary 6.4. Let X̃0,k and C̃
(k)
n be the normalizations of X0,k and C

(k)
n respectively. Then k[X̃0,k]

and k[C̃
(k)
n ] are the spaces of global sections of O

E
(k)
s

and O
G×BE

(k)
s

respectively.

7. Rational singularities

Let k ≥ 2 be an integer. Let X, X′, Xn, θ0, Γ, πn, π, E, E
(k)
s , ψ, ν, τ, τk be as in Section 6. We

have the commutative diagram:

E
(k)
s

τk
//

ψk

��

X0,k

Γ

π

66
πn

// Xn

θ0
// X

with ψk the canonical projection from E
(k)
s onto Γ.

7.1. Let g′reg be the set of regular elements x such that xs is regular or subregular and set b′reg :=

g′reg ∩ b.

Lemma 7.1. (i) The subset b′reg of b is a big open subset of b.

(ii) The subset g′reg of g is a big open subset of g.

Proof. Let x be in g′reg \ greg,ss. Let W be the set of elements y of gxs such that the restriction of ady

to [xs, g] is injective. Then W is an open subset of gxs , containing x, and the map

G ×W −→ g, (g, y) 7−→ g(y)

is a submersion. Let z be the center of gxs and set z′ := W ∩ z. For some open subset W ′ of W,

containing x, for all y in W ′, the component of y on z is in z′. Since [gxs , gxs] is a simple algebra

of dimension 3, W ′ ∩ greg is contained in g′reg and G(W ′ ∩ greg) is an open set, contained in g′reg and

containing x. As a result, g′reg is an open subset of g and b′reg is an open subset of b.

(i) Suppose that b \ b′reg has an irreducible component Σ of codimension 1 in b. A contradiction

is expected. Since Σ is invariant under B, Σ ∩ h is the image of Σ by the projection x 7→ x by

Lemma 1.8. Since Σ has codimension 1 in b, Σ ∩ h = h or Σ = Σ ∩ h + u. Since Σ does not contain

regular semisimple element, Σ ∩ h is an irreducible subset of codimension 1 of h, not containing

regular semisimple elements. Hence Σ ∩ h = hα for some positive root α and Σ ∩ (h′α + g
α) ∩ greg is

not empty, whence the contradiction.

(ii) Since b \ b′reg is invariant under B, g \ g′reg = G(b \ b′reg) and

dimg \ g′reg ≤ n + dimb \ b′reg,

whence the assertion by (i). �

30



Setting breg,0 := breg and breg,1 := b′reg, let Vk, j be the subset of elements x of X0,k such that Px∩breg, j

is not empty for j = 0, 1. By definition,

E(k) := {(u, x1, . . . , xk) ∈ X × bk | u ∋ x1, . . . , u ∋ xk}

so that E(k) is a vector bundle over X. Denote by ρk the map

E(k) −→ X0,k, (u, x1, . . . , xk) 7−→ (x1, . . . , xk).

Proposition 7.2. For j = 0, 1, let V ′
k, j

be the subset of elements x = (x1, . . . , xk) of X0,k such that x1

is in breg, j.

(i) For j = 0, 1, V ′
k, j

is a smooth open subset of X0,k.

(ii) For j = 0, 1, Vk, j is a smooth open subset of X0,k.

(iii) For j = 0, 1, ρ−1
k

(Vk, j) is a big open subset of E(k).

Proof. (i) By definition, V ′
k, j

is the intersection of X0,k and the open subset breg, j × b
k−1 of bk. Hence

V ′
k, j

is an open subset of X0,k. For x1 in breg,0, (x1, . . . , xk) is in V ′
k,0

if and only if x2, . . . , xk are in gx1

by Corollary 4.3,(ii) and Lemma 6.2,(ii) since gx1 is in X. According to [Ko63, Theorem 9], for x

in breg, ε1(x), . . . , εℓ(x) is a basis of gx. Hence the map

breg ×Mk−1,ℓ(k)
θ
−→ V ′

k,0
,

(x, (ai, j, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ ℓ)) 7−→ (x,
∑ℓ

j=1 a1, jε j(x), . . . ,
∑ℓ

j=1 ak−1, jε j(x))

is a bijective morphism. The open subset breg has a cover by open subsets V such that for some

e1, . . . , en in b, ε1(x), . . . , εℓ(x), e1, . . . , en is a basis of b for all x in V . Then there exist regular

functions ϕ1, . . . , ϕℓ on V × b such that

v −

ℓ∑

j=1

ϕ j(x, v)ε j(x) ∈ span(e1, . . . , en)

for all (x, v) in V×b, so that the restriction of θ to V×Mk−1,ℓ(k) is an isomorphism onto X0,k∩V×bk−1

whose inverse is

(x1, . . . , xk) 7−→ (x1, ((ϕ1(x1, xi), . . . , ϕℓ(x1, xi)), i = 2, . . . , k))

As a result, θ is an isomorphism and V ′
k,0

is a smooth variety, whence the assertion since V ′
k,1

is an

open subset of V ′
k,0

.

(ii) The subvariety X0,k of bk is invariant under the natural action of GLk(k) in bk and Vk, j =

GLk(k).V
′
k, j

by Lemma 1.9, whence the assertion by (i).

(iii) Since Vk,1 is contained in Vk,0, it suffices to prove the assertion for j = 1. Suppose that

E(k) \ ρ−1
k

(Vk,1) has an irreducible component Σ of codimension 1. A contradiction is expected.

Denoting by π0 the canonical projection E(k) → X, π0(Σ) has codimension at most 1 in X. For u in

U.h, u is a Cartan subalgebra and uk \ Vk,1 has dimension k(l − 1). Hence π0(Σ) has codimension 1

in X so that π0(Σ) ∩ X′ is not empty since X′ is a big open subset of X by Corollary 4.13,(ii). For u

in X′, u∩ breg,1 is not empty. Then {u} × uk is not contained in Σ for all u in a dense subset of π0(Σ),

whence a contradiction since Σ has codimension 1. �

Corollary 7.3. Let j = 0, 1.

(i) The restriction of ρk to ρ−1
k

(Vk, j) is an isomorphism onto Vk, j.

(ii) The morphism ρk is projective and birational and Vk, j is a big open subset of X0,k.
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Proof. (i) For x = (x1, . . . , xk) in Vk, j and u in X such that (u, x) is in E(k), u = gy for all y in Px∩breg.

Hence the restriction of ρk to ρ−1
k

(Vk, j) is injective. Then, by Zariski Main Theorem [Mu88, §9],

the restriction of ρk to ρ−1
k

(Vk, j) is an isomorphism onto Vk, j since Vk, j is smooth.

(ii) Since X is a projective, ρk is a projective morphism. It is birational by (i). Then, by Proposi-

tion 7.2,(iii), Vk, j is a big open subset of X0,k. �

7.2. By definition, the restriction of πn to π−1
n (X′) is an isomorphism onto X′. Identify π−1

n (X′)

and X′ by πn.

Lemma 7.4. Set En := θ∗0(E) and denote by νn the canonical morphism from En to E.

(i) There exists a well defined projective birational morphism τn from π∗(E) to En such that

ν = νn◦τn. Moreover, En is normal.

(ii) The Oπ∗(E)-module Ωπ∗(E) is free.

(iii) The variety En is Gorenstein and has rational singularities.

Proof. (i) Since En is a vectore bundle over Xn, En is a normal variety. Moreover, it is the normal-

ization of E and νn is the normalization morphism, whence the assertion by Lemma 6.1,(ii).

(ii) Let ω be a volume form on b. According to Lemma 6.1,(ii), τ∗(ω) is a global section of

Ωπ∗(E), without zero, whence the assertion since Ωπ∗(E) is locally free of rank 1.

(iii) According to (ii), Oπ∗(E) is isomorphic to Ωπ∗(E). So, by Grauert-Riemenschneider Theorem

[GR70], Ri(τn)∗(Oπ∗(E)) = 0 for i > 0. Hence En has rational singularities by (i). As a result,

(τn)∗(Ωπ∗(E)) is free of rank 1 by (ii). Then, according to Lemma A.2, a canonical module of En is

isomorphic to OEn
, that is En is Gorenstein. �

Let E
(k)
n be the following fiber product:

E
(k)
n

//

ρn,k

��

E(k)

ρk

��

Xn
// X

Then E
(k)
n is the normalization of E(k) since E(k) is a vector bundle over X.

Proposition 7.5. (i) The variety E
(k)
s is a B-equivariant desingularization of E

(k)
n .

(ii) The variety E
(k)
n is Gorenstein and has rational singularities.

Proof. (i) The variety E
(k)
n is the normalization of E(k), whence a commutative diagram

E
(k)
s

//

!!C
CC

CC
CC

C
E

(k)
n

��

E(k)

According to Lemma 6.2,(ii), the diagonal arrow is a B-equivariant birational projective morphism.

Hence the horizontal arrow is B-equivariant, birational and projective.

(ii) The variety E
(k)
n is a vector bundle over En. So, by Lemma 7.4,(iii), E

(k)
n is Gorenstein and

has rational singularities. �
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7.3. According to Lemma 2.2,(i) and Theorem 2.13,(i), ιk is an embedding of bk into B
(k)
n . More-

over, ιk(X0,k) is contained in C
(k)
n . Since En,k and X0,k are B-varieties, we have a commutative

diagram

G ×B E
(k)
n

//

κn,k

((RR
RR

RR
RR

RR
RR

RR
RR

R
G ×B X0,k

//

��

G ×B b
k

γn

��

C
(k)
n

// B
(k)
n

According to Proposition 7.2 and Corollary 7.3, Vk,1 identifies with a smooth big open subset of

E
(k)
n .

Lemma 7.6. (i) The set G ×B Vk,1 is a smooth big open subset of G ×B E
(k)
n .

(ii) The set G.ιk(Vk,1) is a smooth big open subset of C
(k)
n and the restriction of κn,k to G ×B Vk,1 is

an isomorphism onto G.ιk(Vk,1).

(iii) A global section of ΩG.ιk(Vk,1) has a regular extension to the smooth locus of G ×B E
(k)
n .

Proof. (i) According to Proposition 7.2,(iii), Vk,1 is a smooth big open subset of E
(k)
n , invariant

under B. Then G ×B Vk,1 is a smooth big open subset of G ×B E
(k)
n since G/B is smooth.

(ii) Since γ−1
n (G.ιk(Vk,1)) equals G ×B Vk,1 and since γn is projective and birational, G.ιk(Vk,1) is

an open subset of C
(k)
n . Moreover, G ×B Vk,1 is contained in the open subset γ−1

n (Wk) of G ×B b
k and

the restriction of γn to γ−1
n (Wk) is an isomorphism onto Wk by Corollary 2.15, so that the restriction

of γn to G ×B Vk,1 is an isomorphism onto G.ιk(Vk,1), whence the assertion by (i).

(iii) The assertion results from (i), (ii) and Lemma A.1,(v). �

Denote by C̃
(k)
n and C̃(k) the normalizations of C

(k)
n and C(k) respectively.

Theorem 7.7. The varieties C̃
(2)
n and C̃(2) have rational singularities.

Proof. According to Lemma 7.6,(ii), κn,k is a birational morphism. It is projective since so are ρk

and γn and G/B is projective. As a result, we have a commutative diagram

G ×B E
(2)
n

κ̃n,2
//

κn,2
##G

GG
GG

GG
GG

G
C̃

(2)
n

µ
~~~~
~~
~~
~~

C
(2)
n

with µ the normalization morphism. Moreover, κ̃n,2 is a projective and birational morphism. By

Lemma 7.6,(ii), µ−1(G.ι2(V2,1)) is a smooth big open subset of C̃
(2)
n and the restriction of µ to

µ−1(G.ι2(V2,1)) is an isomorphism onto G.ι2(V2,1). So, by Lemma 7.6,(iii), all global section of

Ωµ−1(G.ι2(V2,1)) has a regular extension to the smooth locus of G ×B E
(2)
n , denoted by Y .

According to Proposition 6.3,(ii), G ×B E
(2)
s is a desingularization of C

(2)
n and by Proposi-

tion 7.5,(i), E
(2)
s is a desingularization of E

(2)
n with a B-equivariant desingularization morphism.

Hence G ×B E
(2)
s is a desingularization of C̃

(2)
n and G ×B E

(2)
n . By Proposition 7.5,(ii), E

(2)
n has ratio-

nal singularities. Hence G ×B E
(2)
n has rational singularities as fiber bundle over a smooth variety

with fibers having rational singularities. So, all global section of ΩY has a regular extension to

G ×B E
(2)
s by [KK73, p.50]. As a result, all global section of Ωµ−1(G.ι2(V2,1)) has a regular extension
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to G ×B E
(2)
s . According to Proposition 5.6, C̃

(2)
n is the normalization of the isospectral commuting

variety and according to [Gi12, Theorem 1.3.4], C̃
(2)
n is Gorenstein. Hence by [KK73, p.50], C̃

(2)
n

has rational singularities. By Proposition 5.8,(ii), C̃(2) is the categorical quotient of C̃
(2)
n under the

action of W(R). So, by [El81, Lemme 1], C̃(2) has rational singularities. �

Appendix A. Rational Singularities

Let X and Y be irreducible varieties. Denote by Y ′ the smooth locus of Y .

Lemma A.1. Suppose that π is a projective birational morphism from Y to X verifying the follow-

ing conditions for some smooth big open subset X′ of X:

(1) the open subset π−1(X′) of Y is big,

(2) the restriction of π to π−1(X′) is an isomorphism onto X′.

Then all regular form of top degree on X′ has a unique regular extension to Y ′.

Proof. According to Condition (2), π−1(X′) is a dense open subset of Y ′. Moreover, π−1(X′) identi-

fies with X′. Let ω be a differential form of top degree on X′. Since ΩY′ is a locally free module of

rank one, there is an affine open cover O1, . . . ,Ok of Y ′ such that restriction of ΩY′ to Oi is a free

OOi
-module generated by some section ωi. For i = 1, . . . , k, set O′

i
:= Oi ∩ X′. Let ω be a regular

form of top degree on X′. For i = 1, . . . , k, for some regular function ai on O′i , aiωi is the restriction

of ω to O′
i
. According to Condition (1), O′

i
is a big open subset of Oi. Hence ai has a regular

extension to Oi since Oi is normal. Denoting again by ai this extension, for 1 ≤ i, j ≤ k, aiωi and

a jω j have the same restriction to O′
i
∩ O′

j
and Oi ∩ O j since ΩY′ is torsion free as a locally free

module. Let ω′ be the global section of ΩY′ extending the aiωi’s. Then ω′ is a regular extension of

ω to Y ′ and this extension is unique since X′ is dense in Y ′ and ΩY′ is torsion free. �

Lemma A.2. Suppose that Y has rational singularities. Let Z be a desingularization of Y of

morphism τ such that the restriction of τ to τ−1(Y ′) is an isomorphism onto Y ′. Then τ∗(ΩZ) is a

canonical module of Y. In particular, its restriction to Y ′ equals ΩY′ .

Proof. Since Z and Y are varieties over k, we have the commutative diagram

Z
τ

//

p
##G

GG
GG

GG
GG

Y

q
{{ww
ww
ww
ww
w

Spec(k)

According to [H66, V. §10.2], p!(k) and q!(k) are dualizing complexes over Z and Y respectively.

Furthermore, by [H66, VII, 3.4] or [Hi91, 4.3,(ii)], p!(k)[−dimZ] equals ΩZ . Since Y has rational

singularities, it is Cohen-Macaulay by [KK73, p.50]. Hence the cohomology of q!(k)[−dimZ] is

concentrated in degree 0 and equals a canonical module K of Y . Let set D := q!(k)[−dim Z] so that

τ!(D) = ΩZ by [H66, VII, 3.4] or [Hi91, 4.3,(iv)]. Since τ is a projective morphism, we have the

isomorphism

Rτ∗(RH omZ(ΩZ ,ΩZ)) −→ RH omY(Rτ∗(ΩZ),K)

by [H66, VII, 3.4] or [Hi91, 4.3,(iii)]. Since Y has rational singularities, Rτ∗(OX) = OY so that the

left hand sides equals OY , whence an isomorphism

OY −→ RH omY(Rτ∗(ΩZ),K).
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According to Grauert-Riemenschneider Theorem [GR70], Rτ∗(ΩZ) has only cohomology in degree

0, whence an isomorphism

OY −→H omY(τ∗(ΩZ),K).

Denoting by ϕ the image of 1, ϕ is an isomorphism from τ∗(ΩZ) onto K by [Bru, Lemma 3.3.2 and

Proposition 3.3.3,(a)]. Moreover, the restriction of τ∗(ΩZ) to Y ′ equals ΩY′ since τ is an isomor-

phism from τ−1(Y ′) onto Y ′. �
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[Boutot87] J-François. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Inventiones Mathematicae 88
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