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Abstract

In this paper, an energy-density field approach applied to the vibroacoustic analysis
of complex industrial structures in the low- and medium-frequency ranges is pre-
sented. This approach uses a statistical computational model. The analyzed system
consists of an automotive vehicle structure coupled with its internal acoustic cavity.
The objective of this paper is to make use of the statistical properties of the frequency
response functions of the vibroacoustic system observed from previous experimental
and numerical work. The frequency response functions are expressed in terms of a
dimensionless matrix which is estimated using the proposed energy approach. Using
this dimensionless matrix, a simplified vibroacoustic model is proposed.

Key words: Vibroacoustics, Energy Analysis, Stochastic computational Model,
Uncertainties.

1 Introduction

Industrial computational models developed for the vibroacoustic analysis of
complex structures in the low- and medium-frequency ranges, are mainly con-
structed using the finite element method which enables complex systems to
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be analyzed. However, even if the predictability of these models is quite ac-
ceptable for general conception purposes, there still exists a gap between ex-
perimental analysis and numerical analysis. This gap is due to uncertainties
existing not only in the parameters of the physical system and their measur-
ing procedures, but also in the numerical model itself. This is why applying
statistical methods becomes necessary to compensate for those uncertainties.
One well known statistical approach is the parametric probabilistic approach.
This approach takes into account uncertainties in the physical system parame-
ters but does not take into account the computational model uncertainties. To
take into account these model uncertainties, the non-parametric probabilistic
approach of model uncertainties presented in [1] [2] [3] is used in this work to
construct a statistical computational model.

Statistical methods based on energy analysis like the well known Statistical
Energy Analysis (SEA) [4]|5] are devoted to the high-frequency range where
the number of modes is very high and the statistical properties are quite
evident. On the other hand in the low- and medium-frequency ranges, global
modes and local modes are present simultaneously in a same narrow frequency
band. The SEA and its derivations have been developed and implemented
in a lot of previous research works such as those presented in [6][7][8][9][10]
[11][12][13]. The efficiency of those methods in the high-frequency range is
due to the small statistical fluctuations with respect to the mean values ob-
tained using frequency averaging. This is not the case in the low- and medium-
frequency ranges where the mean values are no more representative of the re-
sponse due to very high statistical fluctuations. In addition, in these frequency
ranges, we need to keep the mean phases of the responses which are not lin-
early decreasing. It is well understood today that only a computational model
derived from the complete boundary value problem is necessary. Another rea-
son why statistical methods using frequency averaging are not adapted to
low- and medium- frequency ranges is that such averaging induces a loss of
the frequency resolution which is not compatible with the frequency responses
in these frequency ranges for lightly damped systems. For this last reason
frequency averaging is sometimes replaced by spatial averaging. This type of
averaging is very difficult to implement on complex structures like automotive
vehicles structures and may be problematic in these cases. Consequently, the
most appropriate strategy is to use an ensemble averaging applied to a fam-
ily of random systems requiring the explicit construction of the probability
model. This strategy is adopted in the present work by using a probabilistic
computational model constructed using the non-parametric probabilistic ap-
proach. Using the ensemble averaging, statistical properties of the response
that have been observed in previous work [14] [15] in the low- and medium
frequency ranges in a stochastic context can be exploited.

It should be noted that references [14] and [15] deal with the prediction and



experimental validation in the low- and medium-frequency ranges of the com-
plex vibroacoustic systems, such as an automotive vehicle, using an uncertain
computational computational model. In this work, the random Frequency Re-
sponse Functions (FRF) are predicted for all the frequencies in the band of
interest and with a spatial resolution corresponding to the used finite element
mesh. Such complex systems can have several millions of degrees of freedom,
and consequently, several millions of FRF. The objective of the present work
is to significantly reduce the number of FRF, constructed by the method pro-
posed in references [14] and [15], through replacing several millions of FRF by
only a few hundred FRF while keeping a reasonable accuracy of the vibroa-
coustic responses.

A simplified vibroacoustic model for low- and medium-frequency bands is pro-
posed based on an energy-density field approach which uses the statistical
computational model. This approach requires a full stochastic vibroacoustic
analysis using the non-parametric probabilistic approach of uncertainties for
which the CPU time is denoted by 7y,;;. A post-treatment of the results of this
full stochastic analysis is then needed to construct the simplified vibroacoustic
model. The CPU time required for this post-treatment is denoted as A Tgjppi-
For a very large computational vibroacoustic model, A 7y, is not significant
with respect to 7y, which means that the total CPU time is equivalent to
Trui- Consequently, there is no additional CPU time with respect to the full
stochastic vibroacoustic computation. It should be noted that the introduc-
tion of such simplified vibroacoustic model is not carried out to decrease the
CPU time, but is rather developed to help save time in the phase of the design
process by engineers. Compared to CPU time, this gaining of time is much
more significant.

The stochastic reduced computational model of the vibroacoustic system is ob-
tained from the mean reduced computational model using the non-parametric
probabilistic approach of both model uncertainties and system parameters un-
certainties. The stochastic reduced matrix equation is then solved using the
Monte Carlo method. The main idea of the proposed energy approach is based
on a normalization of the FRF using both the input and the output mobilities
of the system. The vibroacoustic energy analysis is performed in a local co-
ordinate system to ensure better analysis of the structural deformations. The
reason of using these local coordinates will be explained in details later.

It should be noted that, the normalization of the FRF with respect to the
input and output mobilities has been presented in previous works dedicated
to energy methods. However, the mobilities used in these works are not the
same as those used in the present work. For example reference [16] uses what
is called the energy mobility. Moreover, those methods use either frequency or
spatial averaging.



For shortness the mean vibroacoustic model is not presented in this paper.
The mean reduced model and the stochastic vibroacoustic model are briefly
summarized. The reader is referred to [17] for the general formulation of the
mean model and to [14] and [15] for the stochastic formulation in the context
of automotive structures.

The general structure of this paper is then presented as follows: First, we
present the mean reduced computational model of the vibroacoustic system.
Second, the application of the non-parametric probabilistic approach of un-
certainties on the mean reduced model is presented. The Energy density field
approach and the transformation from the global coordinate system to the lo-
cal one are then explained. Then, we present the construction of the simplified
vibroacoustic model. Finally, the results and the conclusion are presented in
the last two sections.

2 Notation

The following notations are used in this paper:

- Lower case bold letters stand for deterministic vectors (e.g. u).

- Curved capital letters stand for the mean reduced model deterministic ma-
trices (e.g. A).

- [ is the force vector of the mean reduced model.

- Bold upper case letters stand for random matrices of the stochastic compu-
tational model (e.g. A).

- Any underlined quantity means that this is the mean statistical value of this
quantity (e.g. T).

- The superscripts "s" stands for the structure and " f" stands for the acoustic
cavity (e.g. q° and qf).

- The superscript "loc" stands for a quantity in the local coordinates (e.g.
gloc).

- The superscript £ indicates directions of the local coordinates system (X*, Y,
AR

3 Reduced mean computational vibroacoustic model

For all angular frequencies w belonging to the frequency band of analysis B =
[Winin, Wmaz] With Wi, > 0, the reduced mean computational vibroacoustic



model is written as
w(w) =¥q'(w) , pl(w) =209 (w) , (1)

in which q*(w) is the vector of the generalized structural coordinates, with
values belonging to C", associated with the n first structural elastic modes
constituting the matrix ¥ and in which qf(w) is the vector of the generalized
acoustical coordinates, with values belonging to C"™, associated with the m first
acoustic modes constituting the matrix ® which includes the constant pressure
mode at zero eigenfrequency. q*(w) and q/ (w) verify the matrix equation

aw ¢ |ow] _[re)] o
wrC" AM(w)| |df (W) M (w)

In Eq. (1), u*(w) and pf(w) are, the vector of the structural DOF’s with
values belonging to C"*, and the vector of the acoustical DOF’s with values
belonging to C™, respectively. In Eq. (2), A*(w) and A7 (w) are, respectively,
the generalized dynamical stiffness matrix of the structure and the generalized
dynamical stiffness matrix of the acoustic cavity which are defined by

A (w) = —w’ M +iwD?: + K5, (3)
AN (W) = —w* M/ +iwD! + K. (4)

In Eq. (3), M}, D; and KC; are positive-definite symmetric real (nxn) matrices
corresponding to the generalized mass, damping and stiffness matrices. In
Eq. (4) devoted to the acoustic cavity, M/ is a positive-definite symmetric
real (m x m) matrix corresponding to the generalized "mass" matrix and, D/,
and K/ are the positive symmetric real (m x m) matrices corresponding to the
generalized "damping" and "stiffness" matrices. Finally, in Eq. (2), C is the
real (n X m) matrix corresponding to the generalized vibroacoustic coupling
matrix and where F*(w) and 0/ (w) are the generalized structural forces and
the generalized acoustical sources applied to the vibroacoustic system.

4 Stochastic computational vibroacoustic model

In this work, the non-parametric probabilistic approach [1][2][3] is used to
construct the statistical computational vibroacoustic model in order to take
into account both parameter and model uncertainties. One refers the reader to
[14] for the details of this implementation. In such an approach, the matrices of
the reduced mean computational vibroacoustic model are replaced by random
matrices whose mean values are equal, by construction, to the matrices of the
reduced mean computational vibroacoustic model. Consequently, Eqgs. (1) and



(2) are replaced by the following random equations
Us(w) =0Q°(w) , PHw)=oQ (w) |, (5)

in which, the random vector Q*(w) with values belonging to C" and the ran-
dom vector Q/(w) with values belonging to C™, verify the random matrix
equation

A*(w) C | |Q(w) F(w)

= ) (6)
w?CT Al (w)| |Qf (w) M (w)

where the random matrices A®(w) and A/ (w) are written as

A’(w) = —w’M; +iwD; + K, (7)
Al (W) = —w’M/ +iwD! + K/ . (8)

In Eq. (7), M:,D? and K? are random matrices with values in the set of
all the positive-definite symmetric real (n x n) matrices. In Eq. (8), M/, is
a random matrix with values in the set of all the positive-definite symmetric
real (m x m) matrices and, D/ and K/ are random matrices with values in
the set of all the positive symmetric real (m x m) matrices. Finally, in Eq. (6),
C is a random matrix with values in the set of all the real (n x m) matrices.
The probability distributions of these seven random matrices are completely
defined in the nonparametric probabilistic approach and a numerical procedure
for generating independent realizations of these random matrices is explicitly
known (see [1][2][3]). It should be noted that, in this random matrix theory, the
statistical fluctuation level of each random matrix is controlled by a dispersion
parameter 0 > 0. If 6 = 0 (deterministic case) the random matrix is equal to
its mean value. The higher the value of ¢, the higher is the uncertainty level.

5 Implementation of the energy density field approach

Let n*/ = n* +n/ be the total number of DOF’s. One will only use the subset
{j1,--,Jay---,jr} of the r observed DOF’s which is equal to the number of
excited DOF’s for the vibroacoustic system. In general, r < n®/. Note that
the excited DOF’s are the same as the observed DOF’s. The excitations are
represented by external mechanical forces applied to the structure and/or by
external acoustic sources in the acoustic cavity. For « fixed in {1,...,r}, let
t — f*(t) be the function from R into R" representing the excitation vec-
tor relative to the DOF’s j, which is written as f*(t) = {0,..., f&(¢),...,0}
and which is such that f*(—t) = f*(¢). It is assumed that f* is square in-
tegrable on R. Let f*(w) = [re ™'f*(t)dt be its Fourier transform which
is real function such that f*(—w) = f*(w). Consequently, we have f*(w) =
{0,..., f¥(w),...,0}. Finally, it is assumed that the support of w — f*(w) is



the bounded interval B U B in which B = [~Wpnaz; —Wmin]- Let Z(w) be the
(n*f x n*7) complex random matrix such that
-1
0| |Aw) C T 0

w) = ) (9)
0 @ |w?CT Af(w) 0 of

which exists for all w in B. Let Z(w) be the (r x r) complex random matrix
such that, for all @ and 3 in {1,...,r}, one has

Zap(W) = Zjoj5(w) - (10)

For all w fixed in B, let T(w) be the (r x r) complex random matrix defined
by

T(w) = wZ(w) . (11)
The function w +— T(w) is called the matrix-valued random FRF related to the
excited and to the observed DOF’s. It should be noted that T(—w) = T(w).
For « fixed in {1,...r}, let V¥(w) be the complex random vector of the
velocity responses for the observed DOF’s {ji, ..., j.}. One then has

VYw) = T(w)f*(w) . (12)

We now introduce the (r x r) random mobility matrix Y (w) of the vibroa-
coustic system for the excited and for the observed DOF’s. Below one uses the
terminology introduced in references [18| [19] concerning the driving point mo-
bility functions and the coupling mobility functions. . In the present work we
are only interested in the driving point mobility functions and not in the cou-
pling mobility functions, the random mobility matrix is a (r x r) real diagonal
random matrix defined by

Yorlo) - { Re(Ton(w)) ifa=0 "

0 ifa#p

It should be noted that, for all w € B, Yaa(w) is positive-valued random
variable which is such that Y, (—w) = Yaa(w).

The random input power of the vibroacoustic system induced by the excitation
f is defined by

e = /[R F T Vet dt (14)

Since f*(—w) = f*(w) and since V¥(—w) = V¥(w), one can write
1
I, = — [ £2(0)" Re{V®(@)}dw . (15)
T /B
Substituting Eq. (12) into Eq. (15) yields

e — % [ @) RAT(@)} () do (16)



which can be rewritten as

ngn:/ngL(w) dw (17)
T () = ()7 Re{T(@)} () = ~Re{Taa(@)} 3w . (18)

One introduces the vector-valued spectral density function s/ (w) = (sf (w), . ..
s (w)) belonging to (R*)" relative to all the excited DOF’s such that

sh(w) = (1/2m) fa(w)* . (19)

Y

Similarly, one introduces the random input power density function m;, with
values belonging to (R*)” such that

Tin = (Thy T T0) (20)

which can then be written, using the diagonal matrix Y (w), as
Tin(w) = 2Y (w)s’ (w) . (21)

From Eq. (21), it can be deduced that
/ Ly ()
s/ (w) = iY(w) Tin(w). (22)

On the other hand, the total energy of the response signal V* = (Vj#, ..., V%)
is defined by the equation

By = IVt = [ ] Vo) P do (23)

Introducing the random total spectral density function s of the random re-
sponse velocity V@ such that

@ =2 V@ 2 (24)

One then introduces the random spectral density function s¥ of the random
velocity responses V! ... V7 with values belonging to (R*)" such that

s'(w) = (s](w), -, 87(w)) (25)

Finally, one introduces the (r x r) real random matrix H(w) which can be
define by

Hgo(w) = [Tga(w)* (26)
From Eq. (12), it can then be deduced that Vi*(w) = Tga(w) f5(w) without
summation over . Thus, Eq. (24) yields s3(w) = £ 35 | Tga(w)[*f3(w)?. Us-

ing Eqs. (19) and (26) one can obtain the equation s3(w) = 235, Hga(w)s]



which can be rewritten as
s'(w) = 2H(w) s/ (w) . (27)

Introducing the random local response power density function 7% with values
belonging to (R*)" such that

s'(w) = Y(w)mf(w) (28)
and substituting Eqgs. (27) and (22) into Eq. (28), yields
7 (w) = Y(0) T H(W)Y (w) i (w) . (29)

From the right hand side of Eq. (29) one can define the (r x r) real full random
matrix &(w) such as

Ew) =Y () Hw)Y(w)™" , (30)
it can easily be seen that Eq. (29) can be rewritten as
mh(w) = Ew) min(w) . (31)

The two fundamental Eqgs. (28) and (31) enable the calculation of s¥(w) as a
function of m;,(w) and using 7w (w). Consequently, the random matrix &(w)
can be considered as a random dimensionless operator allowing the random
local response power density function to be calculated as a function of the
random input power density function. On the other hand, from Eqs. (27) and
(30), the following fundamental equation can be deduced

s'(w) = 2Y (W)Ew)Y (w) s/ (w) . (32)

6 Representation of the matrix-valued random FRF in the princi-
pal directions of the mean local mobility

It should be noted that the random equations defined by Egs. (5) and (6)
are expressed in the global coordinates system. In this section, one shows the
representation of the FRF in a local coordinates system defined by the prin-
cipal directions of the mean local mobility. Such a representation enables the
type of dominant deformations to be analyzed with respect to the geometry.
For instance, at a local point located in a thin shell of the structure, if the
most important principal direction is perpendicular to the tangent plane of
the shell, then the largest part of the energy of the response will be mainly
associated with flexural deformations while if the most important principal
direction belongs to the tangent plane, then the largest part of the energy
will be mainly associated with membrane deformations. This is illustrated in



Fig. 1 which shows two examples relative to the mobilities of the vibroacous-
tic system in the principal directions of the mean local mobility (in semi-log
scale). One can notice that for some types of elements (flexible structural el-
ements), the value of the mobility in the first principal direction of the mean
local mobility is much higher than that in the two other principal directions
over the frequency band of analysis. This is not the case for stiff structural
elements where the values of the mobility in the three directions are similar.
Thus, using the mobility analysis in the principal directions of the mean local
mobility can also permit the different structural components to be classified.
Moreover, one can notice that for Eq. (32) to be considered as a simplification
of the spectral density function of the response, the mobility matrix should
not be a full matrix. In the local coordinates defined by the principal direc-
tions of the mean local mobilities, the mobility matrix is a diagonal matrix by
definition.

10 @ 10° ©
10 ] -
M\///\ 107"
210 2
r— _ -2
8 e
= 10" =
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- 10
107
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Figure 1. Mobility in the three principal local directions (first direction X*(thick
line), second direction Y* (medium line), third direction Z* (thin line) at a point
located in a flexible structural element (a) and at a point located in a stiff structural
element (b).

6.1 Introduction of local coordinates system defined by the principal directions
of the mean local mobility

Let T),(w) be the random matrix with values in the set of all the symmetric
complex (3 x 3) matrices and corresponding to the translational DOF’s of the
random FRF matrix T(w) at a given point p of the structure (note that the
rotational DOF’s are not considered here). Since the structure is dissipative,
it can be proven that Re{T,(w)} is a positive definite symmetric real random
matrix. One then introduces the mean value E{T,(w)} of the random matrix
T,(w) in which E denotes the mathematical expectation. Let T,(w) be the
symmetric real (3 x 3) matrix such that T,(w) = Re{E{T,(w)}}. So, the
symmetric real matrix T,(w) is positive definite and can then be written as

10



Ty(w) = X (w)A(w)X,(w)T in which X,(w) is an orthogonal real (3 x 3) matrix
(matrix of rotation in the three dimensional Euclidean space) made up of
the eigenvectors of T,(w) and where A(w) is a diagonal matrix containing the
positive eigenvalues associated to these eigenvectors. The local coordinates at
this given point, defined by the principal directions of the mean local mobility,
are such that X,(w) maps the local coordinates into the global coordinates.

6.2 Representation of the local random FRF in the local coordinates system

The representation of the random matrix T,(w) in the local coordinates at-
tached to the given point p and defined by the principal direction of the mean
local mobility, is the random matrix denoted by Ti*(w) and defined by

T;OC(W) = XP(W)TTP<W)XP<W) : (33)

One can then define HIY(w) = |TW;(w)|* while Y}“(w) is constructed as in
Eq. (13). Let H*¢(w), Tl]"c(w) and Y'*°(w) be the matrices corresponding to
the assemblage of these local matrices for all the local DOF’s of the structure
at points p and for all the global DOF’s of the acoustic cavity. One then

obtains the following equation for the vibroacoustic system
gloc(w) — Yloc(w)—l Hloc<w) Yloc(w)—l ) (34)

All other equations of Section 5 still hold true in the local coordinates of the
structure. Thus, these equations are going to be used in what follows with a
subscript or a superscript loc to refer to values in these coordinates.

7 Simplified statistical averaging model of the random matrix-
valued FRF

The complexity of the problem of the vibroacoustic analysis of industrial struc-
tures is induced by the large number of configurations which have to be stud-
ied. Consequently, simplified computational models have to be constructed
from the full computational vibroacoustic model. In this Section, a simplified
vibroacoustic model based on the energetic approach introduced in 5 and using
statistical ensemble averaging, is presented.

11



7.1 Statistical averaging of the model parameters

The mean matrix-valued FRF is calculated using all the realizations of the
random matrix-valued FRF which is estimated using the Monte Carlo method
after projection on the local coordinates (for the structure). The mean values
are such that

T (w) = E{T"(v)} . (35)
and

£%(w) = E{&(w)} . (36)
In this case, the mean local mobility is such that
Re(T%(w)) ifa=
oy = [ R i -
0 ifa#p

One can now define (s? .(w))"/ as the exact value of the mathematical expec-
tation of the random vector s¥(w) defined by Eq. (32) in the local coordinates
and which is written as

Ste(@)™ = 2 E{Y"*(w)£°(w) Y (w)sfe(w)} (38)

which is estimated using the Monte Carlo method.

7.2 Construction of the simplified vibroacoustic model

Let J and O be the set of excitation and observation DOF’s respectively, such
that J = {k,,¢ =1,...,u} and O = {j,,p = 1, ...,v}, where p and v are the
number of excitation and the number of observation DOF’s respectively as
illustrated in Fig. 2

Figure 2. Schematic presentation of the sets of excitation and observation DOF’s.
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Assuming that the excitation and observation DOF’s J and O are sufficiently
distant from each other, let e, ;(w) be the positive real number, such that for
each w in the frequency band B, one can write,

E°°(W)jpk, = 0s(w) - (39)

Using Eq. (39) and from Eq. (38), the following reasonable approximation can
be deduced,

! !
§;}oc<w)?:p = QOJ<W) X o (w)jpjp Ei?lc,J ) (40)
where ﬂé‘,’f 7 i1s the mean value of the random total input power relative to set

J, which is defined by 7%, = Y8, 7%% in which 7/° is defined by Egs. (20)
and (21) expressed in the local coordinates system defined by the principal
directions of the mean local mobility (for the structure). Clearly, the objective
of this paper is to prove that such an approximation exists for complex vi-
broacoustic systems. It is however important to note that the spectral density
function defined by Eq. (40) is an approximated value which is used to ob-
tain an expression to calculate the positive real value e ;(w). To calculate the
value of ep;(w) the reference value s?,.(w)™ calculated using Eq. (38), (i.e.
without any approximation) is used in the expression obtained from Eq. (40)
such that

v v ref
o p=1 Sioc (w)j
@OJ(W) - ﬂ-lOC v YZOC(Z)) o : (41)
Zin,J p=1— Jplp

The value of the approximated mean vector-valued spectral density function of
the output velocity can then be calculated by substituting e, ;(w), calculated
with Eq. (41) into Eq. (40).

The value of the approximated mean vector-valued spectral density function of
the output velocity can then be calculated by substituting ey ;(w) calculated
using Eq. (41) into Eq. (40) in order to estimate the error induced by the
approximation. The associated error due to the approximation can then be
evaluated using two error functions. For the observation DOF’s j, belonging
to O and for all w belonging to the frequency band of analysis B, the first
error function A(w);, is defined by
A<w)jp = |§;}oc(w)§§f - §;}oc<w)?:p ) (42)
which measures the accuracy of the calculation of sj,.(w)j*” Eq. (40) with
Eq. (41). The second error function is defined For all j, in J and &, in O, and
for all w in B, the second error function eg(w);,x, such that
ee(W)jph, = [dB(W)j,p, — dBW)FX [ (43)

Jpkq
dB(w);,k, = 101og,, §l"c(w)jpkq , dB(w)?f,fq = 10logyo Eos(w)iy  (44)
where Eo;(w)’r = eos(w). Eqs (43) and (44) measure the accuracy of the

calculation of Eo,(w)i7 .
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8 Application to a complex vibroacoustic system

The validation of the proposed energy method is performed on an automo-
tive vehicle model. The mean vibroacoustic model consists of a non-trimmed
vehicle structure and its internal acoustic cavity. The computational vibroa-
coustic model is made up of a finite element model of the structure and a
finite element model of the internal acoustic cavity (see Fig. 3). The two fi-
nite element models are compatible on the coupling interface between the
structure and the acoustic cavity. The finite element mesh of the structure is
constituted of 1042851 DOF’s and that of the acoustic cavity is constituted
of 9157 DOF’s. As mentioned earlier, only translational displacements of the
structure are taken into account. Unit excitations forces are placed at each
observation DOF’s of the structure, while unit acoustic sources are placed at
each observation DOF’s in the acoustic cavity. So, the number of observa-
tion and excitation DOF’s are equal. There are 12 excitation and observation
points chosen in different zones of the internal acoustic cavity, and 28 points
on the structure with a total of 96 DOF’s. The excitation points on the struc-
ture correspond to: the points at which loads induced by the engine and the
front suspension are applied; other points are chosen on the floor board, wind
shield, roof and trunk board. This set of points is used to define the sets O
and J in the following discussion. The vibroacoustic analysis is performed in
the low- and medium-frequency band B = [50, 350] H z.

In the reduced mean computational vibroacoustic model, the generalized struc-
tural damping matrix and the generalized acoustic damping matrix are gener-
ated as diagonal matrices whose diagonal terms are usually constructed with
the damping rates of the modes. It is assumed that the damping rates are
constant for all the elastic modes of the structure and are equal to 0.04 and
are also constant for all the acoustic modes of the internal acoustic cavity and
are equal to 0.1. For this reduced model and for the frequency band of anal-
ysis B, the structure is represented by 1955 elastic modes and 3 rigid body
translational modes (n = 1958), while the acoustic cavity is represented by
160 acoustic modes including the constant pressure acoustic mode (m = 160).
These values of n and m are sufficiently high to get a good convergence of the
deterministic and stochastic reduced models in the frequency band of analysis
under consideration as proven in a previous work (see [14] [15]) for a similar
computational vibroacoustic model. After constructing the matrices of the de-
terministic reduced mean computational vibroacoustic model as explained in
3, the random matrices of the stochastic computational vibroacoustic model
are constructed as explained in 4. Uncertainties are taken into account for the
mass, damping and stiffness matrices of the structure and of the acoustic cav-
ity as well as for the coupling matrix. The values of the dispersion parameters
for these random matrices are those identified in previous work for a simi-
lar computational vibroacoustic model [14] [15]. The stochastic vibroacoustic
equation is solved using the Monte Carlo method to obtain n” independent
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realizations.

Figure 3. Finite element mesh of the structure (a) and of the acoustic cavity (b)

The mean-square convergence of the random solution is studied as a function
of n” using the following function

H ry _ i a H/ . 2
conw (n)_nr;/BHQ (w; 00)|2dw (45)

in which H stands for the letter s designating the structure and for the let-
ter f designating the acoustic fluid, and where Q¥(w;6,), ..., Q®¥(w;6,) are
the independent realizations of the vector-valued random variable Q (w) con-
structed with Eq. (6). Fig. 4 shows the graphs of conv®(n") and conv’(n"), for
the structure and for the acoustic fluid, respectively, as a function of n".
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Figure 4. Graphs of conv®(n") for the structure (a) and of conv/(n") for the acoustic
fluid (b) as a function of n".

Fig. 4 shows that convergence occurs at about 550 realizations for the struc-
ture and at about 400 realizations for the acoustic fluid. Thus, all the results
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presented have been computed using 600 realizations to ensure the conver-
gence for both the structure and the acoustic cavity. The local coordinates
systems defined by the principal directions of the mean local mobilities are
calculated as explained in Section 6.1. The local coordinates are then denoted
by (X Y* Z"). Each realization T\*(w,0) and £"(w, 0) are calculated us-
ing Eqs. (33) and (34). The mean values T"%(w) and £°“(w) are calculated
using Eqs. (35) and (36). The confidence regions of T(w) and £°¢(w) are
constructed using the quantiles method (see[20]) for a probability level of 0.95
. Figs. 5, 6 and 7 show the mean values T"“(w) and £°“(w) of T'*(w) and
£¢(w) for different excitation and observation points.
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Figure 5. Graphs of T'¢(w) (a) and of £°°(w) (b) for the structure input - structure
output FRF as a function of the frequency. The structure output is the structure
velocity in direction X*¢. The three structure inputs are the structural forces applied
in the three local principal directions X*(thin line),Y*(medium line),Z*(thick line).
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Figure 6. Graphs of T"¢(w) (a) and of £°°(w) (b) for three acoustic input - acoustic
output FRF as a function of the frequency. Each corresponds to a given excitation
point and a given observation point inside the acoustic cavity.
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Figure 7. Graphs of T"*(w) (a) and of £°°(w) (b) for the structure input - acoustic
output FRF as a function of the frequency. The acoustic output is the pressure at
a given point inside the acoustic cavity. The three structure inputs are the struc-
tural forces applied in the three local principal directions X*(thin line),Y*(medium
line), Z¢(thick line).

From 5 to 7, one can notice that the variation in magnitude, as a function of
frequency, of £°°(w) is less than that of T'"“(w). Moreover, from Figs. 5 and
7 it has been noticed that when fixing an observation point and changing the
direction of excitation among the three local principal directions or vice versa,
£°“(w) seems to undergo less changes than T'*(w). It can also be seen that
the three curves corresponding to the excitations in the three directions of the
normalized FRF tend towards an asymptotic value starting at about 300 Hz.
This illustrates the independency of the normalized FRF from the direction
of excitation. The independency of the normalized FRF from the direction of
observation was also verified. This considerably reduces the size of the problem
to be analyzed. Figs. 8 to 10 show the confidence regions for T"¢(w) and £°¢(w)
corresponding to different excitation-observation combinations.
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Figure 8. Confidence regions of T!¢(w) (a) and £°°(w) (b). Excitation is a force
applied to a given point on the structure in the X* direction. Observation is the
velocity in another point of the structure in the X* direction. Medium line is the
mean value. Upper and lower lines delimit the confidence region.
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Figure 9. Confidence regions of T'¢(w) (a) and £°¢(w) (b). Excitation is an acoustic
pressure applied to a given point in the acoustic cavity. Observation is the acoustic
pressure observed in another point of the acoustic cavity. Medium line is the mean
value. Upper and lower lines delimit the confidence region.
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Figure 10. Confidence regions of T/¢(w) (a) and £°(w) (b). Excitation is a force
applied to a given point on the structure in the X* direction. Observation is the
acoustic pressure observed in a point of the acoustic cavity. Medium line is the
mean value. Upper and lower lines delimit the confidence region.

From From Figs. 8 to 10, it can be noted that the confidence region around
the mean value £°°(w) is smaller than that around the mean value T"¢(w). In
other words, using €l"c(w) as a representation of the FRF yields less disper-
sion in the results than using T'¢(w). This decrease in the dispersion values
increases the predictability of the model and makes it more robust regarding
uncertainties. So, the normalized FRF is a more reliable parameter than the
usual FRF'. The observations mentioned above regarding the response of the
vibroacoutic system made it interesting to observe the behavior of the matrix
of the normalized FRF for all degrees of freedom as a function of frequency.
This is illustrated in Fig. 11 which shows the color plots of the matrix &, .(w)
at frequencies 70 Hz, 170 Hz, 270 Hz and 350 Hz.
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Figure 11. Color plot of &,.(w) at 70 Hz (a), 170 Hz (b), 270 Hz (c¢) and 350 Hz (d).

From Fig. (11), it can be seen that starting at about 170Hz the color plot of
the matrix takes a block diagonal form. The blocks on the diagonal correspond
to different parts of the structure. Extra-diagonal blocks can also be observed.
These extra-diagonal blocks represent coupling between different parts of the
structure. At higher frequencies the color representation of the matrix gets
stable which confirms the results shown in Fig. Fig. 5(b) concerning the con-
vergence of the response towards an asymptotic value. Moreover, away from
the block diagonal terms, several zones (extra-diagonal blocks) have a uniform
color indicating constant values. This result also confirms the observations
made on Fig. Fig. 5(b) concerning the independency of the value of &,.(w)
from the excitation and observation directions. Moreover, these constant value
zones group several points belonging to different parts of the structure which
means that these zones have the same behavior regarding the imposed excita-
tion. Taking into account the previous comments, it is now important to show
the error matrix eg(w) to better understand the domain of validity of the ap-
proximation defined using the positive real value ep;(w). eps(w) is calculated
using Eq. (41). The (n, x n,) matrix eg(w) is then calculated using Fig. 12.
Fig. 12 shows the color plots of the (n, x n,) matrix eg(w) at frequencies 70
Hz, 170 Hz, 270 Hz and 350 Hz.
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Figure 12. Color plots of eg(w) at 70 Hz (a), 170 Hz (b), 270 Hz (c) and 350 Hz (d).

From Fig. 12, it can be seen that, at low frequency the error between Eq;(w)
and &,.(w) is high at most of the matrix elements. At higher frequencies
the error decreases away from the diagonal terms, that is to say when the
excitation and observation points are far enough from each others confirming
the starting hypothesis used for the construction of the simplified model. Such
a behavior seems to hold true for frequencies higher than 170Hz. Again each
block on the diagonal of the matrix corresponds to the DOF’s located on the
same part of the structure. We can then conclude that the positive real value
€os(w) can be used to approximate &,.(w);,k, see Eq. (39) between zones of
the structure for which the corresponding error function is small.

9 Conclusion

An energy density field approach for complex vibroacoustic systems has been
presented and validated in the low- and medium-frequency ranges. This method
is based on the introduction of a dimensionless energy density function and
its averaging over a set of random vibroacoustic systems, deduced from the
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deterministic nominal computational vibroacoustic model, obtained using a
probabilistic model of uncertainties. The energy density field enables an ap-
proximation of the FRF to be introduced. The concept of local coordinates
system defined by the principal directions of the mean local mobility was also
presented. This coordinates system enables the type of dominant deformations
to be analyzed and prevent the loss of information that may be associated with
the elimination of coupling terms of the mobility matrix (diagonal matrix).
A Simplified model is constructed based on this energy-density field approach
with the hypothesis that the excitation points and the observation points are
sufficiently distant from each others. The response of this simplified model is
shown to be less dispersed than the usual FRF and thus provides more reliable
and robust results. Two error functions are introduced in order to estimate the
error due to the presented approximation. These error functions also enable
the automatic identification of zones for which the approximation holds true.
The proposed method and the simplified model have been validated on a suffi-
ciently complex vibroacoustic system (Automotive vehicle). A straight forward
extension of this approach and the model simplification is an automatic sub-
structuring technique. This technique is particularly useful in the context of
concurrent engineering. It enables time reduction of the conception process by
providing the response of a complete zone rather than discrete DOF’s and by
providing a powerful tool for the predictions of low- and medium-frequency
vibroacoustic behavior of the complex structure.
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