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Abstract

The nonlinear parabolic equation (NPE) is a time-domain method

widely used in underwater sound propagation applications. It allows

to simulate weakly nonlinear sound propagation within an inhomoge-

neous medium. For this method to be suited for outdoor applications,

it must account for the effects of an absorbing ground surface. The

NPE being formulated in the time domain, complex impedances can-

not be used. The ground layer is thus included in the computational

system with the help of a second NPE model based on the Zwikker-

Kosten model. A two-way coupling between these two layers (air and

ground) is required for the whole system to behave correctly. Cou-

pling equations are derived from linearized Euler’s equations. In the

frame of a parabolic model, this two-way coupling only involves spa-

tial derivatives, making its implementation straightforward. Several

propagation examples, both linear and nonlinear, are then presented

and the method is shown to give satisfactory results for a wide range of

ground characteristics. Finally, the problem of including Forchheimer’s

nonlinearities in the two-way coupling is addressed and an approximate

solution is proposed.

PACS numbers: 43.25-x, 43.28.-g

Keywords: nonlinear propagation, porous ground, FDTD, parabolic
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I. INTRODUCTION

High-amplitudes waves propagate over large distances. The need to develop numerical

models that can handle main features of finite-amplitude sound propagation outdoors is

obvious. Specifically, in addition to nonlinearities, numerical models must take into account

meteorological and ground effects (refraction, dissipation, hilly terrain, ground impedance).

In this work a nonlinear parabolic equation (NPE) model is used to simulate finite-

amplitude sound propagation. This method has first been developed by McDonald and

Kuperman in 19871 and has been successfully used for underwater acoustics simulations2.

It has also been used together with other methods to simulate blast wave propagation in

air3–6.

The principle of the NPE is the resolution of a nonlinear wave equation over a moving

window that surrounds the wavefront. While reducing domain size (and thus computational

cost), the moving window principle prevents backward propagation to be accounted for. For

the derivation of the original NPE model, the reader may refer to articles by McDonald7,8 or

Caine and West9. The NPE model for a 2D domain with cartesian coordinates (x, z) writes:

DtR = −∂x

(

c1R + c0
β

2
R2

)

− c0

2

∫

∂2
zR dx (1)

where ∂i means partial derivation with respect to the variable i, x is the main propagation

direction, z is the transverse propagation direction and t is the time variable. The ambient

sound speed is c0 while c1 is the sound speed perturbation in the window, i.e. c1 = c (x, z)−

c0, where c (x, z) is the spatially-dependent sound speed. R = ρ′/ρ0 is a dimensionless

overdensity variable, with ρ′ the acoustic density perturbation and ρ0 the ambient medium

density. For air, the coefficient of nonlinearity β is calculated with the help of the ratio of

specific heat capacities at constant volume and pressure γ, i.e. β = (γ + 1) /2. The first

term on the right hand side of Eq. (1) simulates refraction and nonlinear effects; the second

term accounts for propagation in the transverse direction. Dt is a moving window operator

a)Corresponding author; Electronic address: thomas.leissing@cstb.fr
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and is defined by:

Dt = ∂t + c0∂x (2)

Note that in Eq. (1), the azimuthal spreading term c0R/(2r) has been dropped from the

original NPE1. The assumptions used to derive this model are: (i) weak nonlinearities; (ii)

weak sound speed perturbations, i.e. c1 ≪ c0; (iii) propagation along a main direction. Eq.

(1) can thus be used to propagate weak shocks over moderate distances within a domain with

spatially-varying sound speed. Various modifications and additions to this original model

were made during the past two decades: spherical and cylindrical formulations10, thermovis-

cous effects11, high-angle formulation12. Propagation in multiple media13 and propagation

through atmospheric turbulences14 were successfully studied using this model.

Euler’s equations methods can provide complete solutions to nonlinear sound propaga-

tion problems15: realistic absorption models16, meteorological effects17,18, hilly terrain19 and

ground impedances20–23 can be accounted for in a very accurate way. Moreover, it does not

suffer from the parabolic approximation inherent to NPE models. However, for long-range

wave propagation problems, computational times will often be on the order of days for 3D

domains. Despite increasing computational resources and the existence of modern numer-

ical techniques, such as the use of efficient absorbing layers24 or adaptive mesh refinement

methods25, Euler’s equations-based models cannot vie in calculation time with NPE-based

methods. Indeed, the use of a one-variable wave equation makes the NPE an efficient tool

for studying long-range sound propagation. The main motivation for the development of

the NPE model presented here is its use to study finite-amplitude wave propagation over

urban environments. Reduced computational times will allow this model to be used several

hundred times to obtain statistical information on the wave fields.

In the present work, a parabolic model that takes into account the effects of a soft ground

layer on propagation is proposed. It is not the objective here to study the propagation within

the ground layer but rather to capture the effects of the non-rigid interface on the air acoustic

fields. The derivation of the NPE model for porous ground layers is described in section

II. Combined with two-way coupling equations, presented in section III, and a NPE model
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for atmospheric media, it allows to simulate finite-amplitude sound propagation over an

impedant ground surface. Several propagation examples are then shown and finally, an

approximate solution to include Forchheimer’s nonlinearities26,27 in the two-way coupling is

presented.

II. NPE MODEL FOR RIGIDLY-FRAMED POROUS MEDIA

The domain considered is two-dimensional with main axes x (horizontal direction) and

z (vertical direction). Total density ρ
T

and total pressure p
T

variables are noted as follows:

ρ
T

= ρ0 + ρ′ p
T

= p0 + p′ (3)

where ρ0 and p0 are ambient air density and ambient air pressure, respectively, and ρ′ and

p′ are acoustic perturbations of these quantities. Components of the flow velocity vector V

are u and w, which are the flow velocities in the x- and z-directions, respectively.

It is reminded that the effects of a soft ground on sound propagation in the air layer

is under interest. Moreover, including the porous medium into the computational system

must not dramatically increase computational times, otherwise one of the most interesting

feature of NPE models, fast calculations, will be lost. It is thus proposed to derive a

parabolic model similar to Eq. (1), which uses a minimal parameterization: the layer is

assumed to be equivalent to a continuous fluid for sound waves. A wave causes a vibration

of air particles contained in the ground pores, while the ground frame does not vibrate.

The nonlinear parabolic equation model for sound propagation in porous ground media is

based on a nonlinear extension of the Zwikker–Kosten (ZK) model28, characterized by a

set of 4 parameters: the DC flow resistivity σ0, the porosity Ω0, the tortuosity Φ and the

Forchheimer’s nonlinearity parameter ξ. The tortuosity Φ is defined as the ratio of a curved

path length to the distance between its end points. These quantities are assumed fixed in

space and time. In this context, equations of continuity and conservation of momentum
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are29–31:

∂tρT
+ ∂x (ρ

T
u) + ∂z (ρ

T
w) = 0 (4a)

Φ∂t (ρ
T
u) + ∂x

(

p
T

+ Φρ
T
u2
)

+ ∂z (Φρ
T
uw)

+ σ0Ω0 (1 + ξ |u|) u = 0 (4b)

Φ∂t (ρ
T
w) + ∂z

(

p
T

+ Φρ
T
w2
)

+ ∂x (Φρ
T
uw)

+ σ0Ω0 (1 + ξ |w|) w = 0 (4c)

As one can see in Eqs. (4), the tortuosity Φ reduces the pressure gradients and flow resistive

terms. Combining Eqs. (4) gives:

Φ∂2
t ρT

= ∂2
x

(

p
T

+ Φρ
T
u2
)

+ ∂2
z

(

p
T

+ Φρ
T
w2
)

+ 2∂x∂z (Φρ
T
uw)

+ σ0Ω0∂x [(1 + ξ |u|) u] + σ0Ω0∂z [(1 + ξ |w|) w] (5)

Since the propagation is mainly along the x−direction, only linear terms in z−derivatives are

kept in Eq. (5): terms ∂x∂z (ΦρT uw), ∂2
z (Φρ

T
w2) and σ0Ω0∂z (ξ |w|w) are neglected. More-

over, only terms of order up to two in x−derivatives are retained: the quantity ∂2
x (Φρ′u2)

is discarded; this leads to:

Φ∂2
t ρT

= ∂2
x

(

p
T

+ Φρ0u
2
)

+ ∂2
zpT

+ σ0Ω0∂x [(1 + ξ |u|) u] + σ0Ω0∂zw (6)

To find an expression for the flow velocities u and w we use the perturbation expansions

method. The same scalings and expansions as in references1,7 are used (however, note that

the window speed in the ground layer is set to c0/
√

Φ):

x −→ x − c0√
Φ

t z −→ ǫ1/2z t −→ ǫt (7)

The scaling of z by a factor of ǫ1/2 emphasizes the predominance of the propagation in the

x-direction. The partial derivatives associated with Eqs. (7) are:

∂x −→ ∂x ∂z −→ ǫ1/2∂z ∂t −→ ǫ∂t −
c0√
Φ

∂x (8)
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The dependent variables are expanded as follows:

ρ
T
−→ ρ0 + ǫρ1 + ǫ2ρ2 + ǫ3ρ3 + · · · (9a)

u −→ ǫu1 + ǫ3/2u2 + ǫ2u3 + · · · (9b)

w −→ ǫw1 + ǫ3/2w2 + ǫ2w3 + · · · (9c)

Eq. (4a) can then be rewritten:

(

ǫ∂t −
c0√
Φ

∂x

)

(

ρ0 + ǫρ′

1 + ǫ2ρ′

2 + · · ·
)

= −∂x

[(

ρ0 + ǫρ1 + ǫ2ρ2 + · · ·
) (

ǫu1 + ǫ3/2u2 + · · ·
)]

−ǫ1/2∂z

[(

ρ0 + ǫρ1 + ǫ2ρ2 + · · ·
) (

ǫw1 + ǫ3/2w2 + · · ·
)]

(10)

Equating terms of order ǫ and ǫ3/2 gives:

u1 =
c0√
Φ

ρ1

ρ0

w1 = 0 (11)

Note that ρ′ = ρ1 + O (ǫ2), u = u1 + O
(

ǫ3/2
)

and w = w1 + O
(

ǫ3/2
)

. Substitution of u and

w by u1 and w1 in Eq. (6) leads to an error consistent with the accuracy sought.

The total pressure p
T

is then substituted by a second-order expansion in ρ′ from an

assumed adiabatic equation of state:

p
T

= p0 + c2
0ρ

′ + c2
0

(

γ − 1

2ρ0

)

ρ′2 (12)

where γ is the ratio of specific heats. Inserting Eq. (12) in Eq. (6) yields:

Φ∂2
t ρ

′ = c2
0∂

2
x

[

ρ′ +

(

γ + 1

2ρ0

)

ρ′2

]

+ c2
0∂

2
zρ

′

+
σ0Ω0c0

ρ0

√
Φ

∂x

[(

1 +
ξc0√

Φ

∣

∣

∣

∣

ρ′

ρ0

∣

∣

∣

∣

)

ρ′

] (13)

A moving-frame operator D⋆
t is introduced:

D⋆
t = ∂t +

c0√
Φ

∂x (14)

The first-order parabolic approximation gives9:

∂2
t −→ −2

c0√
Φ

D⋆
t ∂x +

c2
0

Φ
∂2

x (15)
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Replacing the second time derivative in Eq. (13) and rearranging gives a NPE model for

propagation in porous media:

D⋆
t R = − c0√

Φ
∂x

(

β

2
R2

)

− c0

2
√

Φ

∫

∂2
zR dx

− σΩ

2Φρ0

(

1 +
ξc0√

Φ
|R|
)

R

(16)

Eq. (16) can be used to simulate sound propagation within a porous ground layer. However,

if one wants to couple air/ground models, a last modification must be done. Indeed, both

models use different moving-window speeds: c0 and c0/
√

Φ. Correcting for the frame-speed

difference leads to the following substitution:

D⋆
t −→ Dt +

c0√
Φ

(

1 −
√

Φ
)

∂x (17)

Eq. (16) becomes:

DtR = − c0√
Φ

∂x

[

(

1 −
√

Φ
)

R +
β

2
R2

]

− c0

2
√

Φ

∫

∂2
zR dx − σ0Ω0

2Φρ0

(

1 +
ξc0√

Φ
|R|
)

R (18)

The NPE model described by Eq. (18) is able to simulate finite amplitude sound propagation

within a rigidly-framed porous material described by a set of 4 parameters. Note that if one

sets Φ = 1 and neglects losses in the layer, i.e. σ0 = 0, the model exactly reduces to the

usual NPE model for atmospheric propagation Eq. (1). Looking at Eq. (18) allows to draw

some conclusions about finite-amplitude sound propagation in porous media: (i) the sound

speed in the medium is inversely proportional to the square root of the material tortuosity,

i.e. c = c0/
√

Φ; (ii) the attenuation in the ground layer is composed of a linear term plus

a nonlinear term; (iii) in the frame of this model, the material resistivity is proportional to

the overdensity R.

III. DERIVATION OF TWO-WAY COUPLING EQUATIONS

As both models use the same moving-frame speed, they can be combined to simulate

finite-amplitude sound propagation over a rigidly-framed porous ground layer. This section
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aims at establishing first-order coupling equations to link these two propagation models. In

the following we assume that the deformation of the interface by the wave is small13.

A. Derivation

An air layer, which fields are noted p′a, ua and wa, is considered. To construct the

air-ground interfacial condition, a rigidly-framed porous ground layer is introduced. Its

fields are noted p′g, ug and wg. With these notations, interfacial boundary conditions are

continuity of pressure and normal flow velocity:

[p′a] = [p′g] [wa] = [wg] (19)

where the square brackets denote the field quantity on the air-ground interface. Expressions

of wa and wg involving the pressure disturbance p′ to the first order are sought. As a first

order boundary interface condition is sought, linearized equations are used; for the air layer

we use the linearized Euler’s equation:

ρ0∂t (wa) = −∂zp
a
T

(20)

The perturbation expansion method is used and the same scalings as in section II and in

references1,7 are used. Rewriting Eq. (20) and equating terms of order 1 and 3/2 gives:

wa
1 = 0 wa

2 = (ρ0c0∂x)
−1 ∂zp

′a
1 (21)

Note that wa = wa
1 + wa

2 + O
(

ǫ5/2
)

. To the order of accuracy sought in this work it can be

written:

wa = (ρ0c0∂x)
−1 ∂zp

′a
1 (22)

To find an expression for wg we start from the following equation20:

Φρ0∂tw
g = −Ω0∂zp

g
T
− σ0Ω0w

g (23)

The same procedure is applied; one can find:

wg =
(√

Φρ0c0∂x − σ0Ω0

)

−1

Ω0∂zp
′g
1 (24)

9



The interfacial condition for the continuity of vertical velocities wa and wg can now be

written:
[

(ρ0c0∂x)
−1 ∂zp

′a
]

=

[

(√
Φρ0c0∂x − σ0Ω0

)

−1

Ω0∂zp
′g

]

(25)

Rearranging Eq. (25) leads to:

[√
Φ∂zp

′a − σ0Ω0

ρ0c0

∫

∂zp
′a dx

]

=
[

Ω0∂zp
′g
]

(26)

B. Discretization

The variables p
′a
i,j and p

′g
i,j are introduced to denote pressure values in layer a (air layer)

and layer g (porous ground layer), respectively, at range i∆x in the moving window and

altitude j∆z. The air-ground interface is taken to be midway between two vertical grid

points with indexes j = 0 and j = 1. Auxiliary virtual points with pressure values p
′a
i,0 and

p
′g
i,1 are created. Fig. 1 shows a sketch of the configuration.

FIG. 1. The air-ground interface is taken to be midway between two vertical grid points

with indexes j = 0 and j = 1. Auxiliary virtual points (black circles) with pressure values

p
′a
i,0 and p

′g
i,1 are created.

A trapezöıdal law and finite-differences expressions for p
′a and p

′g and their derivatives

are used to discretize Eq. (26). For a layer l we use:

[

p
′l
]

=
p
′l
i,1 + p

′l
i,0

2
(27a)

[

∂zp
′l
]

=
(

p
′l
i,1 − p

′l
i,0

)

∆z−1 (27b)
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Replacing these approximations into Eq. (26) and using the condition of pressure equality

across the interface finally gives expressions for unknown quantities p
′a
i,0 and p

′g
i,1:

(A + G) p
′a
i,0 = (A − G) p

′a
i,1 + 2Gp

′g
i,0 + S

i+1
∑

m=Nx

(

p
′a
m,1 − p

′a
m,0

)

(28a)

(A + G) p
′g
i,1 = (G − A) p

′g
i,0 + 2Ap

′a
i,1 + S

i+1
∑

m=Nx

(

p
′a
m,1 − p

′a
m,0

)

(28b)

where Nx is the number of points in the moving window in the x-direction and:

A =
√

Φ +
1

2
S (29a)

G = Ω0 (29b)

S =
σ0Ω0∆x

c0ρ0

(29c)

Eqs. (28) and (29) give expressions for the unknown pressures pa
i,0 and pg

i,1, and thus allow,

used together with the atmospheric and porous ground NPE models, to simulate weakly

nonlinear sound propagation over an impedant ground.

C. Properties

In this section, fundamental properties of the boundary conditions are described and

some notes about its numerical implementation are given.

Limitations: first-order formulations of the constitutive equations have been used to derive

the boundary interface condition. This implies that nonlinearities can’t be taken into account

in the two-way coupling.

Causality: the x-integral present in NPE models (see for example Eq. (1)) is calculated

from the right to the left of the calculation grid, and the same method is used for coupling

(note the reversed sum indexes in Eqs. (28)). This ensures that no perturbation is introduced

ahead of the point where the wave hits the ground, and thus implies that the interfacial

condition is causal.
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Consistency to classical boundary conditions: if one sets Φ = +∞ we obtain from Eqs.

(28): p
′a
i,0 = p

′a
i,1 which is, with the discretization used, the condition for a totally rigid

interface. A transparent interface condition can be obtained by setting σ0 = 0, Ω0 = 1 and

Φ = 1 (parameters for an air layer). This leads to: A = 1 and G = 1 and thus p
′a
i,0 = p

′g
i,0

and p
′g
i,1 = p

′a
i,1 which is the condition for perfect transmission. If one sets σ = 0 and Ω0 = 1,

Eqs. (28) become:

p
′a
i,0 =

√
Φ − 1√
Φ + 1

p
′a
i,1 +

2√
Φ + 1

p
′g
i,0 (30a)

p
′g
i,1 =

1 −
√

Φ√
Φ + 1

p
′g
i,0 +

2
√

Φ√
Φ + 1

p
′a
i,1 (30b)

which is the interface condition for two fluid layers with densities ρ0 and
√

Φρ0
13.

Numerical implementation: a common way for solving for the diffraction operator is to

use first-order finite-differences approximation for spatial discretization and Crank-Nicolson

method for time marching. This leads to a tridiagonal system of equations that is solved

columnwise, from the right to the left of the calculation grid. The boundary interface

condition can thus be naturally included in the diffraction solver by imposing values on

corresponding points without any additional solver modifications.

IV. NUMERICAL EXAMPLES

In this section numerical examples of sound propagation over porous ground layers are

presented to illustrate the coupling method and evaluate its performances.

A. Linear propagation

1. Reference solutions

Solutions of the two-dimensional Helmoltz equation are used as references. The solution

for the propagation in an homogeneous atmosphere over an impedant ground surface is (for

12



2-dimensional waves):

pr = iπH
(1)
0 (kR1) + QiπH

(1)
0 (kR2) (31)

where pr is the complex pressure at the receiver, k is the wavenumber, R1 and R2 are the

source–receiver and image source–receiver distances, respectively, and H
(1)
0 is the Hankel

function of the first kind and order zero. Q is the cylindrical reflection coefficient and can

be calculated with the help of Laplace transforms20,32. The normalized impedance used to

calculate the reflection coefficient is20:

Z =

√

Φ

Ω2
0

+ i
σ0

ρ0Ω0ω
(32)

2. Configuration

The sound speed is constant within the domain (c0 = 340 m.s−1), and there is no

absorption from air included. Waves decay at a cylindrical rate. The source is positioned

at (xs, zs) = (0.0, 1.4) m and the signal used is a sine pulse with wavelength λ = 0.27

m (f = 1259.25 Hz) and peak amplitude low enough for the propagation to be considered

linear. A virtual receiver is placed 10 m away from the source and at altitude z = 1.4 m. The

receiver position ensures that we are within the parabolic equation angular validity domain

(the angle from source to image–receiver is θ ≈ 15◦). Spatial steps are equal to 7.5 10−3 m

in both directions, thus giving a spatial resolution of about 36 points/λ, ensuring sufficient

resolution at higher frequencies and near the air/ground boundary. The time step is ∆x/c0,

so that for each time step the window advances one spatial step. Since semi-implicit schemes

are used (Crank-Nicolson method) the numerical scheme is stable. Three different ground

layers of thickness 1 meter are considered. The first ground layer is a perfectly rigid surface

(Φ ≫ 1). The second and third layers have identical tortuosity (Φ = 3) and porosity

(Ω0 = 0.3), but different flow resistivities (σ0 = 500 kPa.s.m−2 and σ0 = 100 kPa.s.m−2).

The NPE window including the ground layer is 3 meters wide and 4.125 meters high (400

by 550 points).
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3. Results

Time signals are recorded at the virtual receiver (xr = 10 m, zr = 1.4 m); two modifica-

tions are done on raw signals: first, in order to obtain a free field reference, time histories are

cropped after the direct wave. Low-amplitude numerical oscillations appear on the trailing

part of time signals: for propagation on the perfectly rigid layer, these oscillations prevents

obtaining complete destructive interferences (∆L 7→ −∞); cropping original signals after the

reflected wave allows to eliminate this unwanted numerical noise. Relative sound pressure

levels (SPLs) ∆L are then calculated with:

∆L = 10 log

(

p2
r

p2
free

)

(33)

where pr and pfree are the Fourier-transformed receiver and free field signals. Note that

in19, it has been found that the difference on relative SPLs is very small when comparing

sources with different decay rates. Analytical solutions for cylindrical line sources are thus

valid references for comparison with the NPE model used in this work.

Relative SPLs at the receiver are shown in Fig. 2, for both analytical and NPE cal-

culations. Very good agreement can be observed, independantly of the ground properties:

even for the softest layer (σ0 = 100 kPa.s.m−2) the difference between analytical and NPE

calculations is at most 1 dB. The frequencies where negative interference occurs are 1325

Hz, 1273 Hz and 1246 Hz for the rigid case, ground layer with σ0 = 500 kPa.s.m−2 and

ground layer with σ0 = 100 kPa.s.m−2, respectively. As one can see on Fig. 2 the NPE

model presented does not only accurately recreate reflected wave amplitude decrease, but

does acccount for the change of least reflective frequencies due to the additional delay given

during reflection.
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FIG. 2. SPLs relative to free field at the receiver for the three different ground layers, for

NPE and analytical solutions. The source and receiver are placed at altitude zs = 1.4 m;

the receiver is 10 m away from the source.

B. Nonlinear propagation

1. Reference solution

To obtain reference results to compare to the NPE model, solutions of the Euler’s equa-

tions are used. The computational domain is composed of an air and a ground layer. In

a two-dimensional Cartesian coordinate system the constitutive equations for the air layer

are:

∂tρT
+ ∂x (ρ

T
u) + ∂z (ρ

T
w) = 0 (34a)

∂t (ρ
T
u) + ∂x

(

ρ
T
u2
)

+ ∂z (ρ
T
uw) = −∂xpT

(34b)

∂t (ρ
T
w) + ∂x (ρ

T
uw) + ∂z

(

ρ
T
w2
)

= −∂zpT
(34c)

∂t (ρ
T
e0) + ∂x (ρ

T
ue0) + ∂z (ρ

T
we0) =

− ∂x (p
T
u) − ∂z (p

T
w) (34d)
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where e0 is the energy per unit mass. Within the ground layer momentum conservation

equations write:

Φ∂t (ρ
T
u) + ∂x

(

p
T

+ Φρ
T
u2
)

+ ∂z (Φρ
T
uw)

+ σ0Ω0 (1 + ξ |u|) u = 0 (35a)

Φ∂t (ρ
T
w) + ∂z

(

p
T

+ Φρ
T
w2
)

+ ∂x (Φρ
T
uw)

+ σ0Ω0 (1 + ξ |w|) w = 0 (35b)

The energy equation Eq. (36) and the ideal gas law Eq. (37) close the equation system:

ρ
T
e0 = ρ

T
CvT +

ρ
T
|V|2
2

(36)

p
T

= ρ
T
RT (37)

where T is the gas temperature, Cv is the specific heat capacity at constant volume and

R is the gas constant. To solve this equation system a weighted essentially non-oscillatory

(WENO) algorithm33 for space discretization and a third-order total variation diminish-

ing (TVD) scheme34 for time marching are used. These numerical algorithms are briefly

presented in Appendix A.

2. Configuration

In this example standard atmospheric conditions are used (T = 293 K, ρ0 = 1.2 kg.m−3,

p0 = 1.03 105 Pa). The source is positioned 3 m high; the receiver is 12 m away from the

source at the same altitude.

In order to start the reference calculation, the pressure, velocity, density and energy need

to be specified. A Gaussian pulse is propagated using a one-dimensional version of the code

presented in Appendix A. By adjusting the pulse amplitude and width, one can obtain a

one dimensional signal at a given distance. In this example, an amplitude and signal length

of approximately 4 kPa and 1.5 m, respectively, were aimed for at a distance of 3 m from

the source. Spatial steps are equal to 0.015 m in both directions, leading to a resolution

16



FIG. 3. Left: pressure waveform at altitude z = 3 m. Right: initial pressure waveform used

to start the reference and NPE calculations.

of approximately 100 points per wavelength. This signal is then spherically extrapolated to

obtain a 2D array. Fig. 3 shows the one dimensional signal and its 2D extension used to

start both reference and NPE calculations.

A simulation on a perfectly rigid ground was performed together with two calculations

on different ground layers. Both have identical tortuosity (Φ = 3) and porosity (Ω0 = 0.3)

but have different flow resistivity values (σ0 = 100 kPa.s.m−2 and σ0 = 10 kPa.s.m−2).

These flow resistivity values have been chosen to test the model limitations rather than to

represent a real situation. Chosen flow resitivities would correspond to grass (σ0 = 100

kPa.s.m−2) and light, dry snow (σ0 = 10 kPa.s.m−2). The ground layer is 75 cm thick (50

points) and for NPE calculations the moving-window is 4.5 m wide and 6 m high (300 by

400 points).

3. Results

Fig. 4 shows snapshots of the propagation for non-rigid ground layers at time t = 33 ms

for both models. Colormaps represent results for NPE model while contour lines are results

from Euler’s equations. Time signals are recorded at the virtual receivers; Fig. 5 shows these

signals for NPE and reference calculations for the three ground layers considered. Although

the Euler’s equations model seems to smear out reflected waves more than the NPE model,

the parabolic model produces time waveforms comparable to the references.

17



FIG. 4. Snapshots at time t=33 ms. Left: σ0 = 100 kPa.s.m−2; Right: σ0 = 10 kPa.s.m−2;

Colormap: solution from NPE model; Contour lines: solution from Euler’s equations.

Ten contour lines equally spaced from -800 to 800 Pa are shown. Contours corresponding

to negative values are represented by dashed lines, positive ones by solid lines.

FIG. 5. Time signals at the receiver for NPE and reference calculations for the three ground

layers considered (from top to bottom: perfectly rigid, σ0 = 100 kPa.s.m−2 and σ0 = 10

kPa.s.m−2). Solid line: Euler; Dotted line: NPE.

To evaluate the accuracy of the NPE model, some characteristics of the reflected wave

are studied. Namely, these are the maximum positive and negative peak pressures and their

arrival times (noted respectively p+ and p−, ta+ and ta−), and the positive phase duration

(noted td). These characteristics are sumarized in Table I. Since for the softest ground layer

the negative peak on the reflected wave almost does not exist, values of p− and ta− for this
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layer are irrelevant.

As one can see, arrival times differ by at most 0.3 ms. The difference is larger for the

softest layer; this can be explained by the fact that the NPE model does not smear out

pulses as the reference model do, leading to erroneous positive peak position. One can thus

expect that as the flow resistivity decreases the error on arrival time increases. However,

in outdoor sound propagation applications the flow resitivity may rarely be lower than the

one used here (σ0 = 10 kPa.s.m−2), so the error on arrival time will remain weak for most

cases. These remarks are also applicable to the positive phase duration td. Positive peak

amplitudes differ by 6.2 % and 5.1 % for layers with σ0 = 100 kPa.s.m−2 and σ0 = 10

kPa.s.m−2, respectively. This difference does not seem to be dependant on flow resitivity

and as a comparison, the relative error for the perfectly rigid layer is 1%. Relative error

for negative peaks are comparable: these are 2.4% and 3.4% for rigid and the layer with

σ0 = 100 kPa.s.m−2, respectively.

As a mean of comparison, calculation times for Euler and NPE models were about 3.5

hours and 4 minutes, respectively (calculations were done on a modern desktop computer).

Although the Euler’s equations implementation could use more advanced numerical tech-

niques (adaptive mesh refinement methods25, moving window principle15), the NPE model,

thanks to the use of a one-variable one-way wave equation and a fast solver (Thomas algo-

rithm), is a very efficient tool for sound propagation simulations.

V. INCLUDING FORCHHEIMER’S NONLINEARITIES IN THE

TWO-WAY COUPLING

While the flow resistivity dependance on particle velocity (Forchheimer’s nonlinearities)

are accounted for in the NPE model for porous ground layers (last term in Eq. (18)),

the two-way coupling between both domains does not contain high-amplitude effects on

ground properties. This would lead to wrong solutions, since an additional attenuation

would be introduced in the ground layer, but the increased rigidity of the interface wouldn’t

19



be accounted for.

A solution is to artificially increase the flow resistivity appearing in the coupling param-

eters Eqs. (29) according to:

σ (x, t) = σ0

(

1 + ξwi
)

(38)

where wi is the vertical particle velocity at the interface. Note that the flow resistivity

is now dependant on (x, t); it is thus noted σ (x, t). We then use Eq. (21) to obtain an

approximation of wi:

wi = (ρ0c0)
−1

∫

∂zp
i
1 dx + O

(

ǫ5/2
)

(39)

where pi
1 is the first-order approximation of the pressure at the interface. The flow resistivity

σ0 in the coupling parameters Eqs. (29) is thus replaced by:

σ (x, t) = σ0

(

1 +
ξ

ρ0c0

∫

∂zp
i
1 dx

)

(40)

At the beginning of each time step, the flow resistivity is thus updated with the help of pres-

sure values at the interface at the previous time step. This method, although approximate,

allows to include Forchheimer’s nonlinearities in the two-way coupling.

A. Numerical example

To illustrate the effects of Forchheimer’s nonlinearities a simulation is performed with a

nonlinearity parameter ξ = 2.5 s.m−1. According to the conclusions of the previous section,

low flow resistivities lead to more error on positive phase duration and time of arrival of

positive peak pressure. A low flow resitivity has been chosen (σ0 = 10 kPa.m.s−2, with

φ = 3, Ω0 = 0.3), so that the method to include Forchheimer’s nonlinearities can be fully

evaluated.

Simulation parameters and initilizing array are identical to those used in section IV.B.

The source is positioned at (xs, zs) = (0, 3) m; the receiver is placed 12 meters away from

the source at the same altitude.

Fig. 6 shows time signals at the virtual receiver and Table II sumarizes their charac-

teristics for both reference and NPE calculations. One can see that compared to the same
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FIG. 6. Time signals at the receiver for a Forchheimer’s parameter ξ = 2.5 s.m−1. Solid

line: Euler; Dotted line: NPE.

ground layer with no Forchheimer’s nonlinearities (bottom subplot in Fig. 5), the obtained

reflected wave has a larger positive peak amplitude and a lower time of arrival. The relative

error for positive and negative peak pressures are 4.38 % and 4.34%, respectively, while the

error on positive phase duration is 0.4 ms. These values, in agreement with the ones found in

section IV.B, seem to indicate that the method used to include Forchheimer’s nonlinearities

in the two way-coupling does not introduce any additional source of error.

To confirm this statement, differences in signals characteristics for calculations with and

without nonlinearities are studied. Table III presents these figures for both models. The

positive peak amplitude is increased by 21.78% and 21.12%, and the time of arrival ta+ is

reduced by 0.7 and 0.6 ms for Euler and NPE simulations, respectively, while the positive

phase duration is reduced by 0.3 ms for both models. The signals modifications due to

the addition of Forchheimer’s nonlinearities are nearly identical for both models, confirming

that the method presented to take into account the flow resistivity dependance on particle

velocity is accurate.

VI. CONCLUSION & PERSPECTIVES

A NPE model based on a nonlinear extension of the Zwikker-Kosten model has been

derived; it allows to simulate weakly nonlinear propagation within a porous ground layer.
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Next, two-way coupling equations have been derived from linearized Euler’s equations. This

interfacial boundary condition couples air and ground NPE models and enables the NPE to

account for the effects of soft ground layers on sound propagation. For linear propagation,

this method has been shown to give very good agreement with analytical solutions for a

wide range of ground properties. For high-amplitudes waves, the NPE model produces time

signals comparable to those obtained by Euler’s equations model. Relative error on peak

pressures has been shown to be independant on material properties while differences on

positive phase duration and time of arrival increases with decreasing ground flow resitivity.

However, the presented model still gives good agreement even for very low flow resitivities

and provides a simple but efficient way of taking into account ground impedances. Finally,

an approximate method to include Forchheimer’s nonlinearities in the two-way coupling

is presented: it consists of artificially increasing the flow resistivity value in the coupling

parameters. This method has been proven to give satisfactory results and does not introduce

any additional source of error in the two-way coupling.

To construct the NPE model, the assumption that the ground layer is equivalent to

a continuous fluid has been made. This simplified modeling allows to derive a ground

model that is of the same form of the NPE model for atmospheric layer. Two-way coupling

equations involving only spatial derivatives and integrals, the complete NPE model is able

to perform simulations in very short times (about 50 times faster than the Euler’s equations

implementation). This enables the model to be later used to study finite-amplitude sound

propagation over urban environments, by performing a large number of simulations to get

wave field statistics in the air layer. However, note that for realistic simulations, a spherical

spreading term should be added to the NPE used in this work.

The relative simplicity of the nonlinear parabolic equation model and its coupling

method makes it a good candidate for extensions and modifications. In a previous work35,

the NPE model for porous ground layers and two-way coupling equations have been adapted

to handle non-flat topographies, through the use of terrain-following coordinates19. Two-way

coupling equations could also be derived for multilayered ground surfaces without much ad-
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ditional work. With atmospheric refraction and dissipation included, it provides a complete

NPE model for weakly nonlinear wave propagation including most of the features of sound

propagation outdoors (refraction, dissipation, topography and ground impedance effects).

This tool can be used for instance for propagating waves from explosions using a three stages

procedure: first, a method based on Euler’s equations is used in the near field, where the

propagation is highly nonlinear. Next, NPE models can propagate weakly nonlinear waves

over moderate distances and finally, when the wave amplitude is low enough, frequency-

domain method like the PE can be used. This hybrid method allows to propagate waves

from explosions over distances up to several kilometers3.
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APPENDIX A: NUMERICAL SOLUTION OF EULER’S EQUATIONS

The WENO scheme has fifth-order accuracy. The main principle of the WENO scheme

is the use of multiple stencils to evaluate the derivative at a given point. The algorithm

first determines where there is a discontinuity and then weights stencils accordingly to

avoid spurious numerical oscillations. This features make the WENO scheme accurate for

propagating shock waves. For the sake of brevity computation details are omitted here, but

the reader may refer to the work of Shu33 or Wochner16,36.

The time discretization scheme is of the form:

w(1) = wn + ∆tKn, (A1a)

w(2) =
3

4
wn +

1

4
w(1) +

1

4
∆tK(1), (A1b)

wn+1 =
1

3
wn +

2

3
w(2) +

2

3
∆tK(2) (A1c)
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where, for the air layer, wn is the solution vector at time iteration n, i.e.:

wn =


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
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(A2)

and K(i) is the right hand side of the equation system, i.e.:

K(i) = − ∂x
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(A3)

Note that for the ground layer, wn and K(i) have to be modified according to Eqs. (35).

Although the combination of WENO and Runge-Kutta schemes allow to stably propa-

gate discontinuities, it is unable to propagate waves of infinite slope: a shock smearing will

occur where the slope is too steep, resulting in small deviations from physical solutions for

very high amplitude waves.
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TABLE I. Reflected wave characteristics for reference and NPE calculations.

Model ta+ p+ td ta− p−

[ms] [Pa] [ms] [ms] [Pa]

Rigid layer:

Euler 37.9 756 1.4 40.2 -449

NPE 38.0 749 1.3 40.0 -438

σ0 = 100 kPa.s.m−2:

Euler 38.1 387 1.8 40.3 -265

NPE 38.2 411 1.6 40.2 -274

σ0 = 10 kPa.s.m−2:

Euler 39.3 202 2.4 – –

NPE 39 213 2.0 – –
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TABLE II. Reflected wave characteristics for reference and NPE calculations with Forch-

heimer’s nonlinearities.

Model ta+ p+ td ta− p−

[ms] [Pa] [ms] [ms] [Pa]

Euler 38.6 246 2.1 40.4 115

NPE 38.4 258 1.7 40.5 120
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TABLE III. Differences in reflected waves characteristics with and without Forchheimer’s

nonlinearities. Results are shown for both NPE and reference calculations.

Model ta+ p+ td

[ms] [Pa] [ms]

Euler -0.7 +21.78% -0.3

NPE -0.6 +21.12% -0.3
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