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Abstract

This paper is devoted to the identification of stochastic loads applied to

fuel assemblies using an uncertain computational model and experimental

measurements of responses. The stochastic loads applied to the structure are

induced by a turbulent flow. The structure is made up of a nonlinear complex

dynamical system. The experimental responses of the structure are obtained

from strain sensors located on the structure. There are several sources of

uncertainties in this experimental identification problem of the stochastic

loads: uncertainties on the nonlinear dynamical computational model of the

structure (fuel assemblies), uncertainties on parameters of the mathematical

model of the stochastic loads themselves and finally, measurements errors.

All these sources of uncertainties are identified and taken into account in the
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identification process of the stochastic loads. Then, the stochastic nonlinear

dynamical computational model of fuel assemblies on which the identified

stochastic loads are applied yield interesting results concerning the robustness

of the estimation of the fretting wear of the fuel rods.

Key words: identification, uncertain stochastic loads, uncertain nonlinear

dynamical system, fuel assemblies.

1. Introduction

A fuel assembly is made up of thousands of fuel rods and tubes which

are held in position by grids. This dynamical system bathes in a flow of a

liquid (water)which induces turbulent forces that are likely to induce fretting-

wear of the fuel rods. A fuel assembly is a very complex nonlinear dynami-

cal system for which an accurate computational model (called the reference

computational model) would be time consuming and generally, would induce

many numerical problems due to the high modal density of such a structure.

Therefore, the computational model must be simplified from an engineering

design point of view. The model uncertainties are thus due to the simpli-

fication introduced by the mathematical-mechanical modeling process. The

measurements are realized with an experimental setup which is constituted

of a half fuel assembly which bathes in a turbulent fluid. This experimen-

tal setup has been designed in order to improve the understanding of the

dynamical behavior of fuel assemblies. The objectives of this paper are to

identify the parameters of the mathematical model of the stochastic forces

induced by the turbulent fluid which are applied to the experimental setup,

using an uncertain stochastic simplified computational model and experimen-
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tal responses. The general methodology used to solve this problem has been

presented in [2] and validated on a very simple academic example. In the

present paper, we applied this methodology to a complex industrial structure

and the identification of the stochastic model is carried out using measure-

ments on an experimental setup. The identified stochastic model is then used

to analyze the robustness of the predictions and allows the fretting-wear of

the rods to be estimated. It should be noted that such an estimation cannot

easily be performed by experiments because a very large number of cycles are

required. The use of a validate stochastic model allows such an estimation

to be carried out in a probabilistic context which is adapted to a reliability

analysis. The uncertainties introduced in this methodology are summarized

on Figure 1. In the problem under consideration, there are four sources of

uncertainties:

(1) The model uncertainties induced by the introduction of simplifications

in the model. This type model uncertainties are taken into account using the

nonparametric probabilistic approach (see [9, 10]) which consists in modeling

the reduced mass and stiffness matrices by full random matrices defined on

a probability space (Θ, T ,P). The dispersion parameters introduced by this

approach will be identified using the maximum likelihood method and a

reference computational model made up of an accurate finite element model.

(2) The mean model of the stochastic loads (induced by the statistical

fluctuations of the turbulent pressure applied to the structure) is a vector-

valued Gaussian centered second-order stationary stochastic process defined

on a probability space (Θ′, T ′,P ′). Consequently, the mean model of the

stochastic loads is completely defined by the nominal value of the matrix-
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Figure 1: Designed system, experimental setup, uncertain computational model

valued spectral density function of the stochastic process. This nominal value

is identified by minimizing its distance to the corresponding experimental

value.

(3) The uncertainties concerning the stochastic loads are taken into ac-

count by replacing the nominal value of the matrix-valued spectral density

function (defined above) by a random matrix-valued spectral density func-

tion defined on a probability space (Θ′′, T ,′′ P ′′). By construction, the mean

value of this random matrix-valued spectral density function is equal to the

nominal value of the matrix-valued spectral density function. The probabil-

ity distribution of this random matrix-valued spectral density function de-
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pends on a dispersion parameter which controls the level of uncertainties and

which is identified using the maximum likelihood method and experimental

responses.

(4) The uncertainties induced by measurement errors are taken into ac-

count in introducing an additive random variable for the experimental obser-

vation. This random noise (modeling the effects of the measurement errors)

is defined as a Gaussian centered random variable on a probability space

(Θ′′′, T ′′′,P ′′′).

Section 2 deals with the experimental modal analysis carried out on the

experimental setup. Section 3 presents the reference computational model

which will be used as an observation for the stochastic simplified computa-

tional model constructed in Section 4. The uncertain stochastic loads applied

on the stochastic simplified computational model are identified in Section 5.

In Section 6, the identified stochastic loads and the stochastic simplified com-

putational model are used to construct statistics on quantities of interest, in

particular the fretting-wear on the rods.

2. Experimental measurements and modal analysis

2.1. Description of the experimental setup

The experimental setup (see Figure 2) is composed of a half fuel assembly

(4 grids instead of 8 grids). Each grid is composed of 17×17 cells (see Figure

4). The 25 guide tubes are clamped at theirs ends and soldered to the grids

(see Figure 3). The 264 fuel rods are free at their ends and are held in

position by bumps and springs (see Figure 3). The transversal directions are

the x direction and the z direction. So the the longitudinal direction is the y
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direction. One of the fuel rod, which is lighter than the others is located at

the position J-10 on Figure 4 and is equipped with 12 strain sensors located

in the two transverse directions at 0.06 m, 0.43 m, 0.69 m, 1.0 m, 1.37 m

and 1.62 m from the low end of this rod. The 12 strain sensors are named

J1x, J2x, J3x, J4x, J5x and J6x for x direction and J1z, J2z, J3z, J4z,

J5z and J6z for z direction. All the structure bathes in a flow of a liquid

(water) whose velocity is approximatively 1m/s.

Figure 2: Experimental setup.

2.2. Spectral density function for the measured strain.

Only the following seven sensors are measured: J1x, J5x, J6x, J1z,

J2z, J4z and J6z. The frequency band of analysis is B =]0 , 100] Hz. The

maximal frequency fmax considered for the signal sampling is equal to 640 Hz

for which the energy in the signals is negligible. Due to the Shannon theorem,

the time step sampling is Δt = 0.78 × 10−3 s and the number of acquisition
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Figure 3: Grid and holding system.

Figure 4: Grid.

points is chosen as 4096. The acquisition time is then tmax = 3.2 s. The

frequency resolution is then 0.3125 Hz. The matrix-valued spectral density

function of the vector-valued measured random signal is estimated by the

periodogram method (see [6]). The power spectral density functions (PSD)

for sensors J1x and J5x are represented on Figure 5 for the frequency band

of analysis.
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Figure 5: PSD for the strain measured by sensors J1x (red line) and J5x (black line).

2.3. Experimental modal analysis

All the eigenmodes are double eigenmodes due to the symmetries of the

structure. So, the experimental modal analysis for x and z directions are car-

ried out separately. It should be noted that the experimental modal masses

cannot be identified because the loads induced by the fluid flow are unknown.

The four first eigenfrequencies and the associated damping rates (see Table

1) correspond to the eigenmodes for which all the tubes and the rods are in

phase. Note that the first eigenmode has a high damping rate.

eigenmode 1 2 3 4
eigenfrequency (Hz) 4.4 11,3 17.8 22.9
damping rate (%) 10.1 5.3 5.3 3.9

Table 1: Experimental eigenmodes on the frequency range [0, 30] Hz.
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3. Reference computational model

The reference computational model is developed in order to construct

an observation which will be useful in Section 4 for the identification of the

dispersion parameters δA
M and δA

K controlling the level of uncertainties in the

linear subsystem of the simplified computational model. In the reference

model, all the guide tubes, the fuel rods and the grids are modeled by Tim-

oshenko’s beams. The bumps and springs are modeled by springs elements.

For the fuel rod equipped with sensors for measurements, the bumps and

springs are modeled accurately by elastic stops (see Figure 6). The reference

computational model is composed of two subsystems. The first one is linear

and composed of all the guide tubes, the non-equipped fuel rods and the

grids. The second one is the nonlinear fuel rod which is equipped with the

sensors for measurements. The linear subsystem with free interface is ana-

lyzed and updated in the frequency band of analysis B. In this band, there

are 2502 eigenmodes. The first four eigenmodes are represented in Figure

7 and compared with the experimental values in Table 2. Those modes are

ensemble modes (all the rods and tubes are in phase). The MAC criterion

(see [4]) compares the experimental modal shapes and the mode shapes cal-

culated with the reference computational model. Since there is absolutely no

ambiguity to identify the four first experimental modes taking into account

the separation of their eigenfrequencies, the AUTOMAC has not been used

before constructing the MAC. Note that the MAC is not introduced to per-

form the association of experimental modes with the computed modes, but is

only introduced to quantify the quality of the four first computational mode

shapes with respect to the experiments. The modal density is represented
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on Figure 8 in the frequency band of analysis. It can be seen that the modal

density is not homogeneous at all in the frequency band of analysis and have

locally high values. This behavior of the modal density is due to the mixing

of global elastic modes with a large number of local elastic modes. Such a sit-

uation induces many numerical problem for the calculation of the stationary

response of the stochastic nonlinear dynamical system with random param-

eters and random excitation. For this reason, the reference model must be

simplified from the engineering design point of view.

Figure 6: Elastic stops modeling.

Figure 7: First four elastic modes for the reference computational model.
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Figure 8: Modal density for the reference computational model.

4. Simplified computational model

4.1. Mean simplified computational model

The mean simplified computational model is derived from the reference

computational model. Indeed, the linear subsystem of the reference com-

putational model is replaced by an equivalent linear subsystem composed of

two Timoshenko beams. The first one is equivalent to the 25 guide tubes and

the other one is equivalent to the 263 non-equipped fuel rods. The nonlinear

subsystem of the simplified computational model is the same as the nonlinear

subsystem of the reference computational model. The simplified computa-

tional model is schematically represented on Figure 9. In the frequency band

of analysis B, there are 27 eigenfrequencies for the linear subsystem with

free interface. The first four eigenmodes are represented on Figure 10 and

compared with the experimental values in Table 2. The linear subsystem

and the linear part of the nonlinear subsytem are reduced using the Craig &
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Bampton method (see [3]).

Figure 9: Simplified computational model.

Figure 10: First four elastic modes for the simplified computational model.

4.2. Stochastic simplified computational model

The simplifications introduced in the simplified computational model in-

duce model uncertainties which have to be taken into account. In [2], the

model uncertainties on the linear subsystem of the reference computational

model are taken into account using the nonparametric probabilistic approach.

For the linear subsystem, this method consists in replacing the reduced mass
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eigenmode 1 2 3 4
experimental eigenfrequency (Hz) 4.4 11.3 17.8 22.9
reference m. eigenfrequency (Hz) 4.35 10.9 15.8 22.3

MAC ref/exp (%) 0.96 0.74 0.95 0.91
simplified m. eigenfrequency (Hz) 4.34 10.5 16.3 23.7

MAC simpl/exp (%) 0.95 0.62 0.82 0.81

Table 2: Comparison of the reference, the simplified and the experimental models.

and the reduced stiffness matrices of the mean reduced simplified computa-

tional model by random matrices defined on the probability space (Θ, T ,P).

The probability density functions of these full random matrices depend on

the dispersion parameters δA
M and δA

K (the superscript A is relative to the

linear subsystem). The vector δ = (δA
M , δA

K) is identified introducing the

random variable J(δ) defined by (see [2])

J(δ) =

∫
B
‖[ZA(ω)]−1‖2

Fdω , (1)

where ‖.‖F is the Frobenius norm such that ‖A‖2
F = tr{[A]∗[A]}, with

[A]∗ = [A]T , [A] is the conjugate of [A] and tr is the trace for matrices.

The matrix [ZA(ω)] corresponds to the condensation of the random dynam-

ical stiffness matrix of the linear subsystem on the interface between the

linear subsystem and the nonlinear one. This random variable quantifies the

dynamical effects of the linear subsystem on the nonlinear one. The deter-

ministic variable Jref is constructed using the reference computational model.

The parameter δ is identified using the maximum likelihood method (see [8])

for the random variable J(δ) for which the value Jref = 1.53 × 10−9 is one

realization. The graph of function (δA
M , δA

K) �→ pJ(Jref ; (δA
M , δA

K)) is plotted
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on Figure 11. The maximum is reached for δopt = (0.13, 0.4). The stationary

stochastic response U(t) of the stochastic simplified computational model

(for the complete uncertain nonlinear dynamical system excited with an un-

certain stochastic loads) is such that U(t) = [H ]Q(t) where the projection

matrix [H ] is constructed using the Craig & Bampton substructuring tech-

nique for the two subsystems. The stationary stochastic process Q(t) is a

vector whose components are the physical DOF at the coupling interface and

are the generalized DOF for the two subsystems with fixed coupling inter-

face. For all fixed t, the random variable Q(t) satisfies the random differential

equation

[M]Q̈(t) + [D]Q̇(t) + [K]Q(t) + FNL(Q(t), Q̇(t)) = F(t) , (2)

in which Q̇(t) and Q̈(t) are the velocity and the acceleration. In this equation,

[D] is a deterministic matrix and [M] and [K] are random matrices. Vector

F(t) is the generalized uncertain stochastic loads due to the turbulent flow.

Vector FNL(Q(t), Q̇(t)) is the generalized localized nonlinear forces due to

the elastic stops. The detailed construction of the different terms in Eq. (2)

can be found in [2].The stochastic equation (2) is solved using the Monte

Carlo simulation method (see [7]).

5. Identification of the uncertain stochastic loads

The uncertain stochastic loads induced by the turbulent flow are applied

to the four grids in x and z directions. So there are 8 stochastic forces which

are modeled by a vector-valued stochastic process {F̃unc
(t), t ∈ R}. For the

construction of stochastic process F̃
unc

, first we introduce a stochastic pro-
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Figure 11: Graph of the function {(δA
M , δA

K) �→ pJ(Jref ; (δA
M , δA

K))}.

cess {F̃(t), t ∈ R} of the stochastic loads without uncertainties. It is then

assumed that stochastic process F̃ is a Gaussian stationary centered second-

order stochastic process defined on a probability space (Θ′, T ′,P ′) for which

the matrix-valued spectral density function is {[SF̃(ω)], ω ∈ R}. The uncer-

tain stochastic process F̃
unc

is then constructed as the stochastic process F̃

for which the deterministic function {[SF̃(ω)], ω ∈ R} is replaced by a random

function {[SF̃(ω)], ω ∈ R} defined on a probability space (Θ′′, T ′′,P ′′). The

probability distribution of random function {[SF̃(ω)], ω ∈ R} is constructed

using the maximum entropy principle and depends on a dispersion parameter

δF . It is proven in [2] that such a stochastic process is stationary, centered,

second-order but not Gaussian. It is also proven that the matrix-valued spec-

tral density function {[SF̃
unc(ω)], ω ∈ R} of the uncertain stochastic process

F̃
unc

is in fact equal to the function {[SF̃(ω)], ω ∈ R}. Such a stochastic

process and its generator of independent realizations are completely defined
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by (1) the spectral density function [SF̃
unc] and (2) its dispersion parameter

δF . So the identification of the stochastic loads consists in identifying these

two quantities.

5.1. Identification of the matrix-valued spectral density function of the un-

certain stochastic loads

The first step consists in identifying a rough approximation of [SF̃
unc] in

order to construct a simplified algebraic representation of [SF̃
unc]. For that,

the inverse method proposed by Granger in [5] is applied in order to con-

struct such a rough approximation of the matrix-valued function [SF̃
unc(ω)].

Figure 12 shows the rough approximation obtained for the PSD of the four

forces following z direction. As it can be seen in this figure (in log-log rep-

resentation), the simplified algebraic representation of the PSD can be con-

structed in choosing a constant part of a given amplitude A in the frequency

band [0, ω0] with ω0 = 2πf0, f0 = 28 Hz and a linearly decreasing part for

ω > ω0 for which the angle is α. Therefore, each PSD Si(ω), i = 1, . . . , 8,

can be parameterized as follow: (1) for ω ≤ ω0, Si(ω) = Ai, (2) for ω > ω0,

S(ω) = Ai(ω/ω0)
α with α = 1.4 (in this simplified algebraic model, it is

assumed that angle α is a fixed constant). Moreover, we suppose that the

amplitudes Ai, i = 1, . . . , 8 are constant following y direction. Consequently,

the simplified algebraic representation of the spectral density function of the

uncertain stochastic loads depends only on the two parameters AG
X and AG

Z

which are the amplitudes of the PSD in each transversal direction. The iden-

tification of the spectral density function of the uncertain stochastic loads

then consists in identifying the vector r = (AG
X , AG

Z). We introduce the

vector-valued stochastic process {Ξexp(t), t ∈ R} whose components are the
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7 measured strains for which the matrix-valued spectral density function

{[SΞexp(ω)], ω ∈ R} is estimated using the periodogram method. The corre-

sponding stochastic process {Ξ(t; r), t ∈ R} is calculated with the stochastic

simplified computational model. The matrix-valued spectral density function

{[SΞ(ω; r)], ω ∈ R} of the stochastic process Ξ(t; r) is also estimated using

the periodogram method. The identification is then performed by minimizing

the distance between the experimental matrix-valued spectral density func-

tion [SΞexp(ω)] and the numerical matrix-valued spectral density function

[SΞ(ω; r)]. The optimal value ropt of the parameter r is then given by

ropt = arg min
r∈Cr

D(r) , D(r) =

∫
B
‖[SΞ(ω; r)] − [SΞexp(ω)]‖2

F dω , (3)
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in which Cr is the admissible set for the vector r. In Figure 12, it can be seen

that the initial value of r can be chosen as 1/(2π) × (103, 103) N2/(rad/s).

Function D(r) is represented in Figure 13. The minimal value of D is reached

for ropt = 1/(2π) × (2.8 × 103, 2.0 × 103) N2/(rad/s).
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Figure 13: Graph of function r �→ D(r).

5.2. Identification of the dispersion parameter δF .

The dispersion parameter δF is identified using the maximum likelihood

method for the random variable Js which is such that for all θ ∈ Θ and for

all θ′′ ∈ Θ′′,

Js(θ, θ
′′) =

∫
B
‖[SΞ(ω, θ, θ′′)]‖2

F dω , (4)

and for which the experimental value Jexp
s defined by

Jexp
s =

∫
B
‖[SΞexp(ω)]‖2

F dω , (5)
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is one realization. We then have the following optimization problem

δopt
F = arg max

δF∈CδF

pJs(J
exp
s ; δF ) , (6)

where δopt
F is the optimal value for δF . The function δF �→ pJs(J

exp
s ; δF ) is

represented on Figure 14. The maximum is reached for δopt
F = 0.40.
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Figure 14: Graph of function δF �→ pJs(Jexp
s ; δF ).

5.3. Measurements errors

The measurements errors on the variable Jexp
s defined by Eq. (5) are

modeled by an additive noise E , defined on a probability space (Θ′′′, T ′′′,P ′′′),

for which the probability density function is e �→ pE(e). We then have

Jexp = J true
s + E , (7)
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where the variable J true
s is the true experimental value of the variable Js

(without measurements errors). The random variable Jer
s corresponding to

the random variable Jexp and calculated by the stochastic simplified compu-

tational model is then such that

Jer
s = Js + E , (8)

where the random variable Js is defined by Eq. (4). Then, the probability

density function y �→ pJer
s

(y) of the random variable Jer
s is defined by

pJer
s

(y) =

∫ +∞

−∞
pJer

s |E=e(y|e)pE(e)de , (9)

where x �→ pJer
s |E=e(y|e) is the conditional probability density function Jer

s

given E = e which is, using Eq. (8), such that

pJer
s |E=e(y|e) = pJs(y − e) . (10)

The probability density function y �→ pJer
s

(y) of the random variable Jer
s

depends on δF and is rewritten as

pJer
s

(y; δF ) =

∫ +∞

−∞
pJs(y − e; δF )pE(e) de . (11)

It is assumed that the additive noise E is modeled by a centered Gaussian

random variable. For the experimental setup, the measurements errors on the

strain are about 10%. In this condition, the value of the standard deviation

of E is chosen as Jexp
s /10. Then the dispersion parameter δF is identified

20



using the maximum likelihood method and we then have

δopt
F = arg max

δF∈CδF

pJer
s

(Jexp
s ; δF ) , (12)

where δopt
F is the optimal value for δF . The integral in Eq. (11) is estimated

using the Monte Carlo simulation method. Generating νe independent re-

alizations e1, . . . , eνe of the random variable E with p.d.f pE(e), the value of

pJer
s

(Jexp
s ; δF ) is estimated by

pJer
s

(Jexp
s ; δF ) =

1

νe

νe∑
i=1

pJs(J
exp
s − ei ; δF ) . (13)

The graph of function δF �→ pJer
s

(Jexp
s ; δF ) is plotted in Figure 15. The

optimal value for the dispersion parameter is δopt
F = 0.30. This value of δopt

F

is lower than the value estimated in Section 5.2.
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Figure 15: Graph of function δF �→ pJer
s

(Jexp
s ; δF ).
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6. Stochastic response of the stochastic simplified model submitted

to the identified uncertain stochastic loads

In this section, we present an experimental validation of the identified

stochastic simplified model submitted to the identified uncertain stochas-

tic loads. The confidence region of the random function ω �→ {(θ, θ′′) �→

[SΞ(ω, θ, θ′′)]jj} (random PSD) is calculated for a probability level Pc = 0.95

for sensors J1x, J5x and J6x corresponding to j = 1, 2 and 3 respectively.

The comparison of this computational prediction with the experimental re-

sponses is given in Figures 16 to 18.
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Figure 16: For sensor J1x, PSD for the stochastic strain: upper and lower envelopes and
mean response (solid lines); experimental strain (dashed line).

The convergence of the estimation is represented in Figure 19 which shows

the graph of function ν �→ 1
ν

∑ν
i=1 Js(θi, θ

′′
i ). The parameter ν represents

the number of independent realizations of the random mass and stiffness
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Figure 17: For sensor J5x, PSD for the stochastic strain: upper and lower envelopes and
mean response (solid lines); experimental strain (dashed line).
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Figure 18: For sensor J6x, PSD for the stochastic strain: upper and lower envelopes and
mean response (solid lines); experimental strain (dashed line).
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Figure 20: Graph of the dispersion of the random variable (θ, θ′′) �→ [SΞ(2πf, θ, θ′′)]11 for
sensor J1x as a function of the frequency f .

matrices and of the random function [SF̃]. The random variable Js is defined

by Eq. (4).

For each ω, the dispersion (ratio of the standard deviation with the mean

value) of the random variable (θ, θ′′) �→ [SΞ(ω, θ, θ′′)]11 for sensor J1x is

presented in Figure 20. The dispersion fluctuates around 70% but increases
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until 300% for some frequencies.

The random fretting-wear in the contacts rod/bump and rod/spring for

the uncertain system submitted to the uncertain stochastic excitation is

based on the use of the Archard power wear (see [1]) and is defined as the

random variable (θ, θ′′) �→ Pus(θ, θ
′′) such that

Pus(θ, θ
′′) =

∫
Θ′

FN (t, θ, θ′, θ′′) VT (t, θ, θ′, θ′′) dP(θ′) , (14)

where FN(t) is the random normal force and where VT (t) is the absolute

value of the random tangential velocity. It should be noted that Pus(θ, θ
′′)

is independent of t because the stochastic processes {FN(t), t ∈ R} and

{VT (t), t ∈ R} are stationary. The mean value, the dispersion (ratio of the

standard deviation with the mean value), and quantiles 5% and 95% of the

random fretting-wear for the first grid following x direction are reported in

Table 3. The estimated dispersions are lower than 61 %.

mean dispersion quantile 5 % quantile 95 %

low bump 0.024 60.1%̇ 0.014 0.035

spring 0.029 51.7%̇ 0.025 0.036

high bump 0.014 55.4%̇ 0.01 0.019

Table 3: Statistics for the random fretting-wear on the first grid following x direction.

7. Conclusions

We have presented a complete methodology for the identification of tur-

bulent fluid forces applied to fuel assemblies using an uncertain simplified

computational model and experimental strain responses. All the sources of
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uncertainties have been taken into account in the identification process. The

probabilistic model of model uncertainties in the simplified computational

model depends on dispersion parameters which have been identified using the

maximum likelihood method and a reference computational model. The un-

certainties concerning the parametric representation of the uncertain stochas-

tic loads have also been taken into account. The uncertain stochastic loads

have been identified taking into account measurements errors. The identified

stochastic loads have been applied to the stochastic simplified computational

model in order to construct the statistics on the random fretting-wear of the

fuel roads. The estimated dispersions of the random fretting-wear are about

60%̇ that induces a relatively robustness with respect to uncertainties for this

complex industrial problem.
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