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ON THE COMMUTING VARIETY OF A REDUCTIVE LIE ALGEBRA AND OTHER RELATED
VARIETIES.

JEAN-YVES CHARBONNEL AND MOUCHIRA ZAITER

AssTrACT. In this note, one discusses about some varieties which are constructed analogously to the isospectral com-
muting varieties. These varieties are subvarieties of varieties having very simple desingularizations. For instance, this is
the case of the nullcone of any cartesian power of a reductive Lie algebra and one proves that it has rational singulari-
ties. Moreover, as a byproduct of these investigations and the Ginzburg’s results, one gets that the normalizations of the
isospectral commuting variety and the commuting variety have rational singularities.
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1. INTRODUCTION.

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra of
finite dimension, ¢ is its rank, dimg = ¢ + 2n and G is its adjoint group. The neutral element of G is
denoted by 1.

Date: April 1,2012.

1991 Mathematics Subject Classification. 14A10, 14L.17, 22E20, 22E46 .

Key words and phrases. polynomial algebra, complex, commuting variety, desingularization, Gorenstein, Cohen-Macaulay,rational
singularities,cohomology.



2 J-Y CHARBONNEL AND M. ZAITER

1.1. Notations. e For V a vector space, its dual is denoted by V* and the augmentation ideal of its
symmetric algebra S(V) is denoted by S, (V).

o All topological terms refer to the Zariski topology. If Y is a subset of a topological space X, let denote
by Y the closure of Y in X. For ¥ an open subset of the algebraic variety X, Y is called a big open subset
if the codimension of X \ Y in X is bigger than 2. For Y a closed subset of an algebraic variety X, its
dimension is the biggest dimension of its irreducible components and its codimension in X is the smallest
codimension in X of its irreducible components. For X an algebraic variety, Oy is its structural sheaf,
k[X] is the algebra of regular functions on X and k(X) is the field of rational functions on X when X is
irreducible. When X is smooth, the sheaf of regular differential forms of top degree on X is denoted by
Qx.

e For X an algebraic variety and for M a sheaf on X, I'(V, M) is the space of local sections of M over
the open subset V of X. For i a nonnegative integer, H'(X, M) is the i-th group of cohomology of M. For
example, HO(X, M) = T'(X, M).

Lemma 1.1. Let X be an irreducible affine algebraic variety and let Y be a desingularization of X. Then
HO(Y, Oy) is the integral closure of k[X] in its fraction field.

Proof. Let X, be the normalization of X. According to [H77, Ch. II, Exercise 3.8], the desingularization
morphism factorizes through X, so that Y is a desingularization of X;. So one can suppose X = X;,. Then
k[X] is a subalgebra of HO(Y, Oy). Moreover, H(Y, Oy) is a subalgebra of k(X) since Y is a desingulariza-
tion of X. According to [H77, Ch. II, Proposition 4.1], a morphism of affine varieties is separated. Then,
according to [EGAII, Corollaire 5.4.3], HO(Y, Oy) is a finite extension of k[X] since it is finitely generated
and since the desingularization morphism is projective by definition, whence the lemma. O

e For K a group and for E a set with a group action of K, EX is the set of invariant elements of E under
K.

Lemma 1.2. Let A be an algebra generated by the subalgebras A and A,. Let K be a group with a group
action of K on A,. Let suppose that the following conditions are verified:

(1) A} N As is contained in AKX,

(2) A is a free Ay-module having a basis contained in Ay,

) Ay isafree A| N Ay-module having the same basis.

Then there exists a unique group action of K on the algebra A extending the action of K on A, and fixing
all the elements of A1. Moreover, if Aj N Ay = A§ then AX = A;.

Proof. Let m;,[ € L be a basis of the Ay-module A, contained in A;, and let M be the subspace of A
generated by the m;’s so that the canonical morphisms

M@ Ay — A M& (Al NA) — Ay

are isomorphisms by Conditions (2) and (3). Hence there exists a unique group action of K on the space
A fixing all the elements of M and extending the action of K on A,. For (i, j) in L?, let denote by a; ik
the coordinate of m;m; at my in the basis m;,l € L. According to Conditions (1) and (3), the ag; j;’s are
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invariant under K. Let a,a’ be in A. Denoting by a; and a; the coordinates of @ and a’ at m; in the basis
my, | € L respectively, for all g in K, one has

8 ad = 8 -(Z(i, j)eL? mimjaia;.)

8-(Lker ML per2 @i, jxdid’))
ke Mi( X per2 @i jx(8-ai)(g.a’))
= Z(,',j)eLZ m,»mj(g.a,-)(g.a;.)
= (g.a)(g.a")

so that the action of K is an action on the algebra A, fixing all element of A;. Furthermore, a is in AX if
and only if the a;’s are in A since the m/’s are invariant under K. Hence AX = A if Ay nA; =AY, O

e For E a set and k a positive integer, EX denotes its k-th cartesian power. If E is finite, its cardinality
is denoted by |E|. If E is a vector space, for x = (x1,...,x;) in EX, P, is the subspace of E generated by
X1, ..., Xx. Moreover, there is a canonical action of GLy (k) in EX given by:

k
(@i 1 <0y j <KX, oxp) = (Z aijxpi=1,...,k)
j=1
In particular, the diagonal action of G in g¢ commutes with the action of GLy(k).

e For a reductive Lie algebra, its rank is denoted by £, and the dimension of its Borel subalgebras is
denoted by b,. In particular, dima = 2b, — ¢,.

o If E is a subset of a vector space V, let denote by span(E) the vector subspace of V generated by E.
The grassmanian of all d-dimensional subspaces of V is denoted by Gr,(V). By definition, a cone of V is
a subset of V invariant under the natural action of k* := k \ {0} and a multicone of V* is a subset of V¥
invariant under the natural action of (k*)* on V*.

Lemma 1.3. Let X be an open cone of V and let S be a closed multicone of X x V=1 Denoting by S | the
image of S by the first projection, S1 X {0} =S N (X X {0}). In particular, S is closed in X.

Proof. For x in X, x is in S if and only if for some (v5,...,v;) in VKL (x,tvy, ... tvg) isin S for all 7 in
k since S is a closed multicone of X x V¥~!, whence the lemma. O

e The dual of g is denoted by g* and it identifies with g by a given non degenerate, invariant, symmetric
bilinear form (.,.) on g X g extending the Killing form of [g, g].

e Let b be a Borel subalgebra of g and let f) be a Cartan subalgebra of g contained in b. Let denote by R
the root system of b in g and let denote by R, the positive root system of R defined by b. The Weyl group
of R is denoted by W(R) and the basis of R, is denoted by I1. The neutral element of W(R) is denoted
by 1y. For @ in R, the corresponding root subspace is denoted by g* and a generator x, of g* is chosen so
that (x,, x_,) = 1 for all @ in R.

e The normalizers of b and [ in G are denoted by B and Ng(h) respectively. For x in b, x is the element
of b such that x — X is in the nilpotent radical u of b.

e For X an algebraic B-variety, let denote by G Xp X the quotient of G X X under the right action of B
given by (g, x).b := (gb,b'.x). More generally, for k positive integer and for X an algebraic B*-variety,
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let denote by G* Xz X the quotient of G* x X under the right action of B* given by (g, x).b := (gb, b~ .x)
with g and b in G* and B respectively.

Lemma 1.4. Let P and Q be parabolic subgroups of G such that P is contained in Q. Let X be a Q-variety
and let Y be a closed subset of X, invariant under P. Then Q.Y is a closed subset of X. Moreover, the
canonical map from Q Xp Y to Q.Y is a projective morphism.

Proof. Since P and Q are parabolic subgroups of G and since P is contained in Q, Q/P is a projective
variety. Let denote by Q Xp X and Q Xp Y the quotients of Q X X and Q X Y under the right action of P
given by (g, x).p := (gp, p~'.x). Let g — g be the quotient map from Q to Q/P. Since X is a Q-variety,
the map
OxX— Q/PXX  (8x)+— (g 8x)

defines through the quotient an isomorphism from Q Xp X to Q/P X X. Since Y is a P-invariant closed
subset of X, OxpY is a closed subset of OxpX and its image by the above isomorphism equals Q/PxQ.Y.
Hence Q.Y is a closed subset of X since Q/P is a projective variety. From the commutative diagram

OxpY —Q/PxXQY

]

0.Y

one deduces that the map Q Xp ¥ — Q.Y is a projective morphism. O

e For k > 1 and for the diagonal action of B in b¥, b is a B-variety. The canonical map from G x b*
to G xp bX is denoted by (g, x1,...,x¢) — (g, x1,...,x). Let B® and N® be the images of G x b* and
G xuk respectively by the map (g, x1,....,xx) — (g(x1),...,8(xx)) so that BH and N® are closed subsets
of g* by Lemma 1.4. Let BY be the normalization of B* and let 5 be the normalization morphism. One
has a commutative diagram:

G xp bk B

Yn
X /
)

Let Nflk) be the normalization of N® and let % be the normalization morphism. One has a commutative
diagram:

k
GXBllk 51)

\ -

N®

with v the restriction of y to G xp u.

e Let i be the injection (x1,...,x¢) = (14, x1,...,x) from b¥ to G xg bk, Then := yoi and ¢, := yyoi are
closed embeddings of b* into B® and B® respectively. In particular, B® = G.i(6%) and B = G.1,(0%).
e Let e be the sum of the xg’s, 8 in I, and let 4 be the element of ) N [g, g] such that S(h) = 2 for all B
in I1. Then there exists a unique f in [g, g] such that (e, A, f) is a principal sl,-triple. The one parameter
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subgroup of G generated by ad/ is denoted by ¢ — /(). The Borel subalgebra containing f is denoted by
b_ and its nilpotent radical is denoted by u_. Let B_ be the normalizer of b_ in G and let U and U_ be the
unipotent radicals of B and B_ respectively.

Lemma 1.5. Let k > 2 be an integer. Let X be an affine variety and let set Y := W*xX. Let Z be a closed B-
invariant subset of Y for the group action given by g.(vy,...,v, x) = (g(v1),...,g(), x) with (g, V1, ... ,Vk)
in BX bW and x in X. Then Z N b* x X is the image of Z by the projection (vi,...,vi, x) = (V1,..., Vg, X).

Proof. For all vin b,
v = lim A(£)(v)
t—0

whence the lemma since Z is closed and B-invariant. O

e For x € g, let x; and x, be the semisimple and nilpotent components of x in g. Let denote by g* and
G* the centralizers of x in g and G respectively. For a a subalgebra of g and for A a subgroup of G, let set:

a*:=ang”* A*Y =ANG*
The set of regular elements of g is
Oreg = {xeg|dimg® = ¢}

and let denote by greg ss the set of regular semisimple elements of g. Both gres and greg 55 are G-invariant
dense open subsets of g. Setting Dreg := D N Greg, Dreg 1= D N Gregs Ureg = U N Gregs Gregss = G(Dreg)s
Oreg = G(breg) and G(ueg) is the set of regular elements in the nilpotent cone M, of g.

Lemma 1.6. Let k > 2 be an integer and let x be in g*. For O open subset of Greg, Px N O is not empty if
and only if for some g in GLy(k), the first component of g.x is in O.

Proof. Since the components of g.x are in P, for all g in GL;(k), the condition is sufficient. Let suppose
that P, N O is not empty and let denote by x1, . ..,x; the components of x. For some (ay,...,ar) in Kk \ {0},

ayx;+---+agx; € 0O

Let i be such that a; # 0 and let 7 be the transposition of & such that 7(1) = i. Denoting by g the element
of GLi(k) such that g1 ; = ar;) for j=1,...,k, g;j;=1for j=2,...,kand g;; = Ofor j >2and j # [,
the first component of g7.x is in O. O

e Let denote by S(g)® the algebra of g-invariant elements of S(g). Let py, ..., p, be homogeneous gener-
ators of S(g)® of degree dj, ... ,dp respectively. Let choose the polynomials py,...,ps so that d| < --- <d.
Fori=1,...,dyand (x,y) € g X g, let consider a shift of p; in direction y: p;(x+ty) with ¢ € k. Expanding
pi(x + ty) as a polynomial in ¢, one obtains

d;
(1 pitx+1y) = > p" ey V(e xy) ekxgxg

m=0
where y — (m!) pl(.'")(x, y) is the derivate at x of p; at the order m in the direction y. The elements pgm)
defined by (1) are invariant elements of S(g) ® S(g) under the diagonal action of G in g X g. Let remark
that pﬁo)(x, y) = pi(x) while p,(-d")(x, y) = pi(y) for all (x,y) € g X g.
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Remark 1.7. The family P, := {pgm)(x, D), 1 <i<f£,1 <m<d}forx e g,is a Poisson-commutative
family of S(g) by Mishchenko-Fomenko [MF78]. One says that the family P, is constructed by the
argument shift method.

eletie{l,...,¢} be. For xin g, let denote by &£;(x) the element of g given by

d
(&i(x),y) = Epi(x + 1) li=0

for all y in g. Thereby, &; is an invariant element of S(g) ® g under the canonical action of G. According
to [Ko63, Theorem 9], for x in g, x is in gre, if and only if £1(x), ... ,&¢(x) are linearly independent. In this
case, £1(x), ...,&¢(x) is a basis of g*.

Let denote by sl(.m), for 0 < m < d; — 1, the elements of S(g X g) ® g defined by the equality:

di-1
@) sx+n) = ) &, Yt xy) ekxgxg
m=0
and let set:
Viy i= span({sl(.o)(x,y), e ,sl(.di_l)(x,y), i=1,...,8)

for (x,y) in g X g. According to [Bol91, Corollary 2], V,, has dimension b, if and only if P, \ {0} is
contained in Grep.

1.2. Main result. By definition, B® is the subset of elements (xi,...,x) of g* such that x;, ... x; are
in a same Borel subalgebra of g. This subset of g* is closed and contains two interesting subsets: the
generalized commuting variety of g, denoted by C® and the nullcone of g* denoted by N®. According
to [Mu88, Ch.2, §1, Theorem], for (xi,...,x;) in B®, (x1,...,xp) is in N® if and only if x;,...,x; are
nilpotent. By definition, €% is the closure in g* of the set of elements whose all components are in a same
Cartan subalgebra. According to a Richardson Theorem [Ri79], C? is the commuting variety of g.

There is a natural projective morphism G xp b* — B®. For k = 1, this morphism is not birational
but for k > 2, it is birational. Furthermore, denoting by X the subvariety of elements (x,y) of g X b such
that y is in the closure of the orbit of x under G, the canonical morphism G Xg b — X is projective and
birational and g is the categorical quotient of X under the action of W(R) on the factor . For k > 2, the
inverse image of B® by the canonical projection from X* to ¥ is not irreducible but the canonical action
of W(R)* on X* induces a simply transitive action on the set of its irreducible components. Denoting by
Bg]g) one of these components, one has a commutative diagram

G Xp bk ‘Bg]g)

S s

B®

with @ the restriction to Bg]g) of the canonical projection from X* to g*. The first main theorem of this
note is the following theorem:
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Theorem 1.8. (i) The variety N® has rational singularities.

(1) The variety Bg{) has rational singularities. Moreover; for k > 2, Bg? is the normalization of B®
and @ is the normalization morphism.

(iii) The restriction of  to n~ "\ (N®) is an isomorphism onto N® and the ideal of definition of n~'(N®)
in k[Bl(qk)] is generated by the homogeneous elements of positive degree of k[Bl(qk)]G.

From Theorem 1.8, one deduces that for k > 2, the ideal of definition of N® in k[B®] is not gen-
erated by the homogeneous elements of positive degree of k[B®1¢. Moreover, according to a Joseph’s
result [JO7], k[BX1C is isomorphic to S(I)k)w(y) for the diagonal action of W(R) in Bk,

In the study of the generalized commuting variety, the closure in Grg(g) of the orbit of Iy under the
action of G plays an important role. Denoting by X the closure in Gry(b) of the orbit of h under B, G.X is
the closure of the orbit of G.}) and one has the following result:

Theorem 1.9. Let X’ be the set of centralizers of regular elements of § whose semisimple components is
regular or subregular. Let X, and (G.X), be the normalizations of X and G.X respectively. Let denote by
09 and O the normalization morphisms X, — X and (G.X), — G.X respectively.

(1) All element of X is a commutative algebraic subalgebra of g.

(ii) For x in g and for V' a regular linear form on g%, the stabilizer of V', with respect to the coadjoint
action of g%, is in G.X.

(iii) For x in g, the set of elements of G.X containing x has dimension at most dimg* — €.

(iv) The set X’ is an open subset of X and X \ X’ has codimension at least 2 in X.

(v) All irreducible component of X \ B.) has a nonempty intersection with X'.

(vi) The set G.X' is an open subset of G.X and G.X \ G.X’ has codimension at least 2 in G .X.

(vii) All irreducible component of G.X \ G.b has a nonempty intersection with G.X'.

(viii) The restriction of © to 0~'(G.X") is a homeomorphism onto G.X" and 0~ (G.X") is a smooth open
subset of G.X,,.

(ix) The restriction of 6 to 6 Y(X") is a homeomorphism onto X' and 0, Y(X") is a smooth open subset
of Xq.

Let Xo be the closure in b* of B.b* and let T be a desingularization of X in the category of B-varieties.
Let E® be the inverse image of the canonical vector bundle over X. Then E® is a desingularization of
Xox. Let set: G;k) = 17‘1 (€M), The following theorem is the second main result of this note:

Theorem 1.10. (i) The variety Xy has rational singularities.
@ii) The variety Cl(qk) is irreducible and G xg EW is a desingularization of @g‘).
(iii) The normalization morphisms of quk) and C® are homeomorphisms.
(iv) For k = 2, the normalizations of C;k) and C® have rational singularities.

The proof of Assertion (iv) is an easy consequence of the proof of Assertion (i), and the deep result of
Ginzburg [Gil1] which asserts that the normalization of G,(]z) is Gorenstein.
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2. COHOMOLOGICAL RESULTS

Let k > 2 be an integer. According to the above notations, one has the commutative diagrams:

Tn Up

G xp bt B0 G xp uk N

A N A

R K) N

2.1. Since the Borel subalgebras of g are conjugate under G, B%¥ is the subset of elements of g* whose
components are in a same Borel subalgebra and N® are the elements of B*) whose all the components
are nilpotent.

Lemma 2.1. (i) The morphism y from G x b* to B® is projective and birational. In particular, G X b*
is a desingularization of B® and B® has dimension kb, + n.
(ii) The morphism v from G xg u* to N® is projective and birational. In particular, G xg u* is a

desingularization of N® and N® has dimension (k + 1)n.

Proof. (i) According to Lemma 1.4, y is a projective morphism. For 1 <i < j <k, let Ql(k}) be the inverse
image of €, by the projection

(x1, - ox) = (X6, Xj)
Then Ql(."? is an open subset of g* whose intersection with B® is not empty. Let QL be the union of the
Ql(kj) According to [Bol91, Corollary 2] and [Ko63, Theorem 9], for (x,y) in Q4 N B, V,, is the unique

Borel subalgebra of g containing x and y so that the restriction of y to y‘l(Q(gk)) is a bijection onto Q(gk).
Hence 1 is birational. Moreover, G xp b* is a smooth variety as a vector bundle over the smooth variety
G/B, whence the assertion since G X b¥ has dimension kbg + n.

(i1) According to Lemma 1.4, v is a projective morphism. Let Ny% be the subset of elements of N®
whose at least one component is a regular element of g. Then :Nﬁ’g; is an open subset of N®. Since a
regular nilpotent element is contained in one and only one Borel subalgebra of g, the restriction of v to
v‘l(Nye?;) is a bijection onto Nﬁ’g;. Hence v is birational. Moreover, G x g 1i* is a smooth variety as a vector
bundle over the smooth variety G/B, whence the assertion since G Xp u* has dimension (k + 1)n. m|

Let « be the map

U_Xureg _)ing (g’x) '_>g(x)

Lemma 2.2. Let V be the set of elements of N® whose first component is in U_(weg) and let Vi be the
set of elements x of N® such that P, N Greg IS nOt empty.

(i) The image of k is a smooth open subset of Wy and k is an ismorphism onto U_(lg).

(ii) The subset V of N® is open.

(iii) The open subset V of N® is smooth.

(iv) The set Vi is a smooth open subset of N®,

Proof. (i) Since N, is the nullvariety of py,...,pe in g, Ny N greg is a smooth open susbet of N, by [Ko63,
Theorem 9]. For (g, x) in U_ X 1ty such that g(x) is in u, b‘lg is in G* for some b in B since B(x) = .
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Hence g = 1, since G* is contained in B and since U_ N B = {14}. As aresult, « is an injective morphism
from the smooth variety U_ X 1eg to the smooth variety 9ty N gree. Hence « is an open immersion by
Zariski Main Theorem [Mu88, §9].

(i) By definition, V is the intersection of N® and U_(ureg) X %571, So, by (i), it is an open subset of
NK

(iii) Let (x1, . ..,xz) be in u* and let g be in G such that (g(xy), ....,g(xx)) is in V. Then x; is in g and
for some (g’, b) in U_ X B, g’b(x1) = g(x1). Hence g~'¢’b is in G*' and g is in U_B since G"' is contained
in B. As a result, the map

1

U X eg X W1 — Vo (goxy, . x0) +— (g(x), - .. .g(x)

is an isomorphism whose inverse is given by

V — U_ X g X 17! Xty e o) — &)L T D)),k o) ()
with k7! the inverse of «x and ! (x;), the component of «~'(x1) on U_, whence the assertion since U_ x
Ureg X 171 is smooth.
(iv) According to Lemma 1.6, V;, = GL(k).V, whence the assertion by (iii). O

Corollary 2.3. (i) The subvariety N® \ V. has codimension k + 1.
(i) The restriction of v to v~'(V}) is an isomorphism onto V.
(iii) The subset v='(V}) is a big open subset of G x g *.

Proof. (i) By definition, N® \ v, is the subset of elements x of N® such that P, is contained in g \ Oreg-
Hence N® \ Vj is contained in the image of G Xp (11 \ i) by v. Let (x1,...,x) be in uk 0 (N® \ V).
Then, for all (ay, . ..,a) in k¥,

(x_g,arxy +---agx;) =0
for some g in I1. Since I is finite, P, is orthogonal to x_g for some g in II. As a result, the subvariety of
Borel subalgebras of g containing xi, .. .,x; has positive dimension. Hence

dim N® \ Vi) < dimG xp (1 \ treg)* = 1+ k(n — 1)

Moreover, for 8 in I1, denoting by 1z the orthogonal complement of g B inu, (G xp (uﬁ)k) is contained
in N® \ v and its dimension equal (k + 1)(n — 1) since the variety of Borel subalgebras containing ug has
dimension 1, whence the assertion.

(ii) For x in N®_ P, is contained in all Borel subalgebra of g, containing the components of x. Then
the restriction of v to v~!(V}) is injective since all regular nilpotent element of g is contained in a single
Borel subalgebra of g, whence the assertion by Zariski Main Theorem [Mu88, §9] since Vj is a smooth
open subset of N® by Lemma 2.2,(iv).

(iii) Let identify U_ with the open subset U_B/B of G/B and let denote by ¥ the canonical projection
from G x u* to G/B. Since v~!(V}) is G-invariant, it suffices to prove that v™' (V) Ny~ (U_) is a big
open subset of ¢~ (U_).

The open subset YN (U-) of G xg uf identifies with U_ x u¥ and v~ (V) Ny~ 1(U_) identifies with the
set of (g, x) such that P, N g is not empty. Let denote by V() the subset of elements x of u* such that
P, N greg is not empty. Then 1wk \ V is contained in (u \ ureg)k and has codimension at least 2 in u
k> 2. As aresult, U_ x Vj is a big open subset of U_ x ¥, wence the assertion. O

since
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Theorem 2.4. Let k > 2 be an integer and let Nl(qk) be the normalization of N®. Then Nf]k) has rational
singularities.

Proof. Since G xp ¥ is a desingularization of N®) by Lemma 2.1,(ii), one has a commutative diagram

GXBllk

NG

with % the normalization morphism. Moreover, v, is a projective birational morphism. According to
Corollary 2.3, x~!(V;) is a smooth big open subset of Nflk), v~(V}) is a big open subset of G x 3 u* and the
restriction of vy, to v~ (V}) is an isomorphism onto %~ !(Vy). Hence, by Proposition C.2, with Y = G x g,
Nflk) has rational singularities. m]

Y

2.2. For E a finite dimensional B-module, let denote by Lo(E) the sheaf of local sections of the vector
bundle G xp E over G/B. For (k,) in N2, let set:

Ep:= (9% Egp = (09)% @ u®

so that Ey and Ey; are B-modules. According to the identification of g and g* by (.,.), the dual of u
identifies with u_ so that u_ is a B-module.

Proposition 2.5. Let k, [ be nonnegative integers.
(i) For all positive integer i, H(G /B, Lo(1®)) = 0.
(ii) For all positive integer i, H(G /B, Lo(Ey)) = 0.
(iii) For all positive integer i, H*(G/B, Lo(Erp)) = 0.

Proof. (i) First of all, since H/(G/B, Og,p) = 0 for all positive integer by Borel-Weil-Bott’s Theorem
[Dem68], one can suppose k > 0. According to the identification of u* and u_, S(ut*) is the algebra of
polynomial functions on uf. Then, since G xp u* is a vector bundle over G/B, for all nonnegative integer
L
H'(G x5 1K, Ogy,0) = H(G/B, Lo(S(u)) = EDHIG/B, Lo(7(h)))
geN
According to Theorem 2.4, for i > 0, the left hand side equals 0 since G xp 1t

N® by Lemma 2.1,(ii). As a result, for i > 0,
H'(G/B, Lo(S*(u*)) = 0

is a desingularization of

The decomposition of u* as a direct sum of k copies of 1u_ induces a multigradation of S(u_) such that

each subspace of multidegree (ji, ... ,ji) is a B-submodule. Denoting this subspace by S j, . ;,, one has
sy = B sj..gandSy g =u*
(e )ENK

J1tetig=k

Hence fori > 0,

(1 e ENK
jl +...+jk=k
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whence the assertion.
(i1) Let i be a positive integer. Let prove by induction on j that for k > j,

3) H/(G/B, Lo(E; & °% 7)) = 0

By (i), it is true for j = 0. Let suppose j > 0 and (3) true for j — 1 and for all kK > j — 1. From the exact
sequence of B-modules

0—h—Db —u —0
one deduces the exact sequence of B-modules

&k—))

0 — E; 1 ®h@u_ —>Ej®ku®(k_j)

— Ej | ® TR AR N |

whence the exact sequence of Og/p-modules
00— ﬁ()(Ej_1 ®r b & u?(k_j)) — ﬁ()(Ej Rk uéi(k_j)) —> L()(Ej_1 Rk u%(k_jﬂ)) — 0

since L is an exact functor. From the cohomology long exact sequence deduced from this short exact
sequence, one has the exact sequence

H/(G/B, Lo(Ej-1 & h &, w* 7)) — HI(G/B, Lo(E; &, u®* 7))
— HI(G/B, Lo(Ej-1 @ 12"y
By induction hypothesis, the last term equals 0. Since }) is a trivial B-module,
Lo(Ej & hop u?t ) = by Lo(E; @ u?h7)
H'(G/B, Lo(Ej-1 @ h & 1*“ ) = he&y H(G/B. Lo(Ej @ u™" 7))

Then, by induction hypothesis again, the first term of the last exact sequence equals 0, whence Equality
(3) and whence the assertion since it is true for k£ = 0 by Borel-Weil-Bott’s Theorem.
(iii) Let k be a nonnegative integer. Let prove by induction on j that for i > 0 and for [ > j,

(4) H™"(G/B, Lo(Exs1-jj)) = 0

By (ii) it is true for j = 0. Let suppose j > 0 and (4) true for j — 1 and for all / > j — 1. From the short
exact sequence of B-modules

0—u—g—>b —50
one deduces the short exact sequence of B-modules
0— Exyi—jj — 8®x Exyi-jj1 — Erri—jr1,j-1 — 0
whence the exact sequence of Og,g-modules
0 — Lo(Ers1-jj) — Lo(@®k Exgi—jj-1) — Lo(Eksi—js1,j-1) — 0

since L is an exact functor. From the cohomology long exact sequence deduced from this short exact
sequence, one has the exact sequence

H*"YG/B, Lo(Egsi-jr1,j-1)) — HY(G/B, Lo(Egsi-j,)))
— H™"(G/B, Lo(8 ® Eysi-jj-1))
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for all positive integer i. By induction hypothesis, the first term equals O for all i > 0. Since g is a
G-module,

Lo(8 ®x Egri-jj-1) = 8 8 Lo(Erei-jj-1)
H™/(G/B, Lo(3 ® Exs1-jj-1)) = 9@ HY(G/B, Lo(Esr-jj1))

Then by induction hypothesis again, the last term of the last exact sequence equals 0, whence Equality (4)
and whence the assertion for j = L. O

Corollary 2.6. Let V be a subspace of b containining v and let i be a positive integer.
(i) For all nonnegative integers k,1, H*'(G/B, Lo((0*)% &, V®)) = 0.
(i) For all nonnegative integer m and for all positive integer k,

H™™(G/B, Lo(A\"(V¥)) = 0
Proof. (i) Let prove by induction on j that for [ > j,
) H*(G/B, Lo(0)™ @, V¥ @ 1)) = 0

According to Proposition 2.5,(iii), it is true for j = 0. Let suppose that it is true for j — 1. From the exact
sequence of B-modules

0—u—0DV—5>Vu—20
one deduces the exact sequence of B-modules
0 — (0% @, VD @ u=+D 5 (5" @, V¥ @ 10~
— V/uey (0% & VUV g u®) — 0
whence the exact sequence of Og,p-modules
— Lo(V/u @y (0% & VOV @ u?)) — 0

From the cohomology long exact sequence deduced from this short exact sequence, one has the exact
sequence

H™(G/B, Lo((v)™ @ V™D @ u™ 1)) — H*(G/B, Lo((0)™ @ V @ 1™
— H(G/B, Lo(V/u @y (06" @ VOU™D @ u0-0))

By induction hypothesis, the first term equals 0. Since V/u is a trivial B-module,
Lo(V/u @ (b*)®k ®xk yeU=h Rk 11®(l_j)) = V/u®y ﬁo((b*)(@k R yeU=h R u®(l_j))
H™(G/B, Lo(V/u ey (09 @ VU g u®7)) =
V/uey, H(G/B, Lo((0")* @ VU™ @, u®!))

Then, by induction hypothesis again, the last term of the last exact sequence equals 0, whence Equality
(5) and whence the assertion for j = /.
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(i1) Since
A"V = D M) e AV
(.fl ,,,,,jk.)eNk
J1+eti=m
(ii) results from (i) and Proposition B.2. i

3. ON THE VARIETIES B®),

Let X be the closed subvariety of g X I) such that k[X] = S(g) ®g,w S(b). Let k > 2 be an integer and
let Bl(qk) be the normalization of B®. The goal of the section is to prove that Bl(qk) is a closed subvariety of
X* and to give some consequences of this fact.

3.1. According to the notations of Subsection 1.1, vy is the morphism from G X b to g defined by the map
(g, x) — g(x) through the quotient map.

Lemma 3.1. (i) The subvariety X of ¢ X b is invariant under the G-action on the first factor and the
W(R)-action on the second factor. Furthermore, these actions commute.

(i) There exists a well defined G-equivariant morphism y, from GXgb to X such that y is the compound
of 'yn and the canonical projection from X to g.

(iii) The variety X is irreducible and the morphism yy, is projective and birational.

(iv) The variety X is normal. Moreover, all element of greg X b N X is a smooth point of X.

(v) The algebra k[X] is the space of global sections of Ogx,p and k[X]C¢ = S(b).

Proof. (i) By definition, for (x,y) in g X b, (x,y) is in X if and only if p(x) = p(y) for all p in S(g)¢. Hence
X is invariant under the G-action on the first factor and the W(R)-action on the second factor. Moreover,
these two actions commute.

(i1) Since the map (g, x) — (g(x),x) is constant on the B-orbits, there exists a uniquely defined mor-
phism y, from G Xp b to g X [ such that (g(x), x) is the image by 7, of the image of (g, x) in G Xg b. The
image of vy, is contained in X since for all p in S(g)°, p(¥) = p(x) = p(g(x)). Furthermore, v, verifies the
condition of the assertion.

(iii) According to Lemma 1.4, vy, is a projective morphism. Let (x,y) be in g X [) such that p(x) = p(y)
for all p in S(g)°. For some g in G, g(x) is in b and its semisimple component is y so that (x, y) is in the
image of y,. As a result, X is irreducible as the image of the irreducible variety G Xp b. Since for all
(x,¥) in X N hreg X Dreg, there exists a unique w in W(XR) such that y = w(x), the fiber of y, at any element
X N G.(hreg X breg) has one element. Hence 7, is birational, whence the assertion.

(iv) Let I be the ideal of k[g X bh] generated by the functions (x,y) — pi(x) — p;(y), i = 1,...,€ and
let X; be the subscheme of g X f defined by I. Then X is the nullvariety of I in g X h. Since X has
codimension ¢ in g X ), X; is a complete intersection. Let (x, y) be in X such that x is a regular element of
g and let 7', be the tangent space at (x,y) of X;. Fori = 1,...,¢, the differential at (x, y) of the function
(x,y) & pi(x) — pi(y) is

v, w) B (ei(x), v) — (&i(¥), w)
For w in b, if (v,w) and (', w) are in T, then v — V' is orthogonal to £{(x),...,&¢(x). Since x is regular,
£1(x),...,e¢(x) is a basis of g* by [Ko63, Theorem 9]. Hence

dimT,, < dimg - ¢+ dim}
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As a result, X N gree X b is contained in the subset of smooth points of X;. According to [V72], g \
dreg has codimension 3 in g. Hence X; is regular in codimension 1 and according to Serre’s normality
criterion [Bou98, §1, no 10, Théoréeme 4], X; is normal. In particular, 7 is prime and X = X;, whence the
assertion.

(v) According to (iii), (iv) and Lemma 1.1, k[X] = HO(G xp b, Ogxzp). Under the action of G in g X b,
k[g % 5]¢ = S(a)° @ S(h) and its image in k[X] by the quotient morphism equals S(b). Moreover, since G
is reductive, k[X]¢ is the image of k[g x b]® by the quotient morphism, whence the assertion. O

The following proposition is given by [He76, Theorem B and Corollary].

Proposition 3.2. (i) For i > 0, H(G/B, Lo(S(b")) equals 0.
(ii) The variety X has rational singularities.

Corollary 3.3. (i) Let x and x’ be in by such that (x', X' is in G.(x,X). Then X' is in B(x).
(ii) For all w in W(R), the map

U_XDbreg — X (g, x) — (g(x), w(x))
is an isomorphism onto a smooth open subset of X.

Proof. (i) The semisimple components of x and x’ are conjugate under B since they are conjugate to
x under B. Let b and b’ be in B such that x is the semisimple component of b(x) and »’(x"). Then
the nilpotent components of b(x) and b’(x’) are regular nilpotent elements of g*, belonging to the Borel
subalgebra b N g* of g*. Hence x’ is in B(x).

(ii) Since the action of G and W(R) on X commute, it suffices to prove the corollary for w = 1. Let
denote by 6 the map

U_XDbeg — X (g,%) — (g(x),%)

Let (g, x) and (g’, x’) be in U_ X by, such that 6(g, x) = 6(g’, x’). By (i), x’ = b(x) for some b in B. Hence
g 'g’bis in G*. Since x is in byee, G* is contained in B and g~'g’ is in U_ N B, whence (g, x) = (g’, x')
since U- N B = {13}. As aresult, 6 is a dominant injective map from U_ X by, to the normal variety X.
Hence 6 is an isomorphism onto a smooth open subset of X, by Zariski Main Theorem [Mu88, §9]. O

3.2. Let A be the diagonal of (G/ B)¥ and let JA be its ideal of definition in Oy~ The variety G/B
identifies with A so that Og/py/da is isomorphic to Og/p. For E a B*-module, let denote by L(E) the
sheaf of local sections of the vector bundle G* x g E over (G/ B)~.

Lemma 3.4. Let E be a finite dimensional B*-module and let E, be an acyclic complex of finite dimen-
sional B¥-modules. Let denote by E the B-module defined by the diagonal action of B on E.
(i) The short sequence of O gy -modules

0 — Ja @0y, LE) — L(E) — Lo(E) — 0
B

is exact.

(i1) The complex Ja ®¢ L(E,) is acyclic.

(G/BK
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Proof. (i) Since L(E) is a locally free O ¢/ py-module, the short sequence of O, py-modules
L(E) — L(E) — Op B0, ut L(E)— 0
Gk L(E) is isomorphic to Ly(E).

(ii) Since A is a smooth subvariety of the smooth variety (G/B), it is a locally complete intersection.
Hence locally, Ja has a free resolution by a Koszul complex

0— Ja ®O(G/B)k

is exact, whence the assertion since O ®¢

Ko—>3A—>0

Locally, one has a double complex C, . := K, ®O(G/B)k L(E,). Since L(E,) is an acyclic complex of locally
free modules, the complex C,; is acyclic for all i and the complex C;, is acyclic for all i > 0, whence the
assertion since the exactness of the complex of the assertion is a local property. O

Corollary 3.5. Let V be a subspace of b containining u and let i be a positive integer.
(1) For all nonnegative integer m,

H™™ 1 (G/B), da ®0, LIN"(VF))) =0

(G/BY
(ii) For all nonnegative integer m,
H* M (G/B), 3 ®0 ey £(S™((67))) = 0

Proof. The spaces (6*)% and V* are naturally B¥-modules. Then it is so for S”((b*)¥) and /\m(V"). Let
denote by E one of these two modules and let denote by E the B-module defined by the diagonal action
of Bon E. According to Lemma 3.4,(i), the short sequence of O, gx-modules

0— Ja® _ , L(E) — L(E) — Lo(E) — 0

G/Bk
is exact whence the cohomology long exact sequence

-+ — H/(G/B)', L(E)) — H/(G/B, L(E))

— H/'N(G/B) s ®0 ,,, L(E)) — H(G/B) L(E)) — -

Since

J1totig=m

H/((G/BY*, L(E)) = 0 for j > m and for E = A™(VX) by Corollary 2.6,(ii) and for j > 0 and for
E = S™((b*)*) by Proposition 2.5,(ii) and Proposition B.2. As a result, the sequence

0 — H/(G/B, Lo(E)) — H/"'((G/B),da ®0,,,, L(E)) — 0
is exact with j = i + m for E = A"™(V*) and with j = i for E = S™((b*)"), whence Assertion (i) by
Corollary 2.6,(ii) and Assertion (ii) by Proposition 2.5,(ii) and Proposition B.2. O

Let set 9 := G* xz b*. The map
G x b¥ — GK x pb¥ (@ V1o oV = (8o s & V- 5VE)

defines through the quotient a closed immersion from G Xpg b to 9). Let denote it by v.
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Corollary 3.6. Let J be the ideal of definition in Oy of (G xp b*). Then H'(Y,J) = 0 for all positive
integer 1.

Proof. Let denote by « the canonical projection from 9 to (G/B)*. Then
Ku(d) = da ®o g, £S())

(G/BF
so that
H'(9,9) = H(G/B),3a 0, £(S(©))
for all i. According to Corollary 3.5,(ii), the both sides equal O for i > 2.
Since (., .) identifies g* and its dual, one has a short exact sequence of Bf-modules:

0— ' — @) — ) —0
From this exact sequence, on deduces the exact Koszul complex
S Sk S K — S0 — 0
with
Kin = S((6M9) @ A"(0)

m
dasagA -+ - Aay, = Z(—l)iaiaeaao/\ ey N N ay
i=0

This complex K, is canonically graded by
Ko i= ) Kd with K = S77(g")) @ A"t
q

so that the sequence
o — KT — KT — K — S0 — 0
is exact. According to Lemma 3.4,(ii), the sequence of O ¢, py-modules:

i a8y LKD) — a®g LK) —

(G/B} (G/B)

— 38 ®0,,, LKG) — Ja®0,,, LSU®)) — 0

is exact. Since H*® is an exact §-functor, for i nonnegative integer,
H'(G/B),3a @0, £S(®))) = 0
if

H*"((G/B), s ®0 ., LK) =0

for all nonnegative integers ¢ and m. Since (g*)* is a G*-module, for all nonnegative integers ¢ and m,
L(K) is isomorphic to

ST7((@")") & LN (W)
As aresult,

H'(G/B),da®0 , LS((6"))) =0

(G/BK

if

H*"((G/BY,da®0__, LA™(wF) =0

(G/B
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for all nonnegative integer m. According to Corollary 3.5,(i),
H"(G/B), 32 ®0,,, LN"() = 0

for all positive integer m. From the cohomology long exact sequence deduced from the short exact se-
quence of Lemma 3.4,(i), with E the trivial module of dimension 1, the sequence

0 — H((G/B), dn) — H((G/B)", O(g5y) — H(G/B, Og/p)
— H'(G/B), 3a) — H'(G/B), O6/py)

(G/B}

is exact. According to Borel-Weil-Bott’s Theorem [Dem68],
H(G/B), Opp) =k HYG/B,Ogp) =k H'((G/B},0/py) =0

whence
H'(G/B),3n) = 0
As aresult,
H'(G/B)", 3a ®0,,,, L(S(©))) =0
whence the corollary. O

3.3. According to Lemma 2.1,(i), Gxgb* is a desingularization of B®*) and one has a commutative diagram

n

G Xp bk B;k)

A

BK)

Lemma 3.7. Let @ be the canonical projection from X* to g*. Let denote by 1, the map
bk_>xk (xla"'vxk)'_>(x19"'9xk7x_19"'9x_k)

(i) The map v, is a closed embedding of b* into X*.

(1) The subvariety | (6F) of X* is an irreducible component of @ 1 (h).

(iii) The subvariety @' (bX) of X* is invariant under the canonical action of W(R)X in X* and this
action induces a simply transitive action of W(R)* on the set of irreducible components of w™'(b%).

Proof. (i) The map

b — GFx b (g, x) o (g ey Ty X150 0020)

defines through the quotient a closed embedding of b* in G¥ X b¥. Let denote it by ¢. Let yf]k) be the map

GF X bF — X5 (xp,. ;) = (X)), - Ya(x0)

Then ¢; = fl)oL’. Since vy, is a projective morphism, ¢; is a closed morphism. Moreover, it is injective

since o is the identity of b,

(i) According to Lemma 3.1,(ii) and Lemma 1.4, @ is a finite morphism. So @' (b%) and b* have the
same dimension. According to (i), ¢1(6%) is an irreducible subvariety of w1 (6%) of the same dimension,
whence the assertion.
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(iii) Since all the fibers of @ are invariant under the action of W(R)* on X*, @ 1(b%) is invariant
under this action and W(R)X permutes the irreducible components of @ 1(0). For w in W(R), let set
Zy = w.ay(b5). Then Z, is an irreducible component of @ 1(6F) for all w in W(R)K by (ii). For w
in W(R)* such that Z,, = ¢;(0%), for all (x,...,x) in bfeg, (X174 X wa(X1, - .o Xg)) is in ¢;(0%) so that
(x1,...,xt) is invariant under w and w is the identity.

Let Z be an irreducible component of @' (b*) and let Z be its image by the map

(X1s e e e s Xy Vo e o sVI) = (XL e e vy Xy V1o e -+ 5VE)

Since @ is Gk—equivariant and since b* is invariant under B¥, @w~!(b*) and Z are invariant under B*. Hence
by Lemma 1.5, Zj is closed. Moreover, since the image of the map

Zo XUk — X5 (1, X V1 e V) (UL o sU)) > (X + ULy X+ Uiy Vs Dk

is an irreducible subset of @~ !(b*) containing Z, Z is the image of this map. Since Z; is contained in X,
Zy is contained in the image of the map

BEX WRF — b xBF (g, X Wi e oWk = (X X0 WD), - Wk(30))

Then, since W(R) is finite and since Z; is irreducible, for some w in W(R)X, Z, is the image of ¥ by the
map
(X150 X8) = (X5 X0, WX, - - 5XE))

Then Z = Z,,, whence the assertion. O

Let consider the diagonal action of G on X* and let identify G xp b with »(G xp bX) by the closed
immersion v.

Corollary 3.8. Let set Bg? = Gy ().

(1) The subset Bg]g) is the image of G xg b* by yl(qk). Moreover, the restriction of yf]k) to G xgbtisa
projective birational morphism from G xg b* onto Bg]g).

(ii) The subset 'Bg? of X* is an irreducible component of @~ (B®).

(iii) The subvariety @~ (B®) of X* is invariant under W(R)* and this action induces a simply transitive
action of W(R)* on the set of irreducible components of w™ ' (B®).

(iv) The subalgebra k[B®] of k[~ (BP] equals k[w ™! (B(k))]W(R)k with respect to the action of W(R)¥
on w ' (BX).

Proof. (i) Let vy be the restriction of yflk) to G xb. Since (] = yflk)oL’, since G xzb* = G./(b®) and since
yl(qk) is G-equivariant, Bg]g) = yx(G xp b¥). Hence Bgé‘) is closed in X% and yy is a projective morphism
from G xp b* to Bg]g) since yl(qk) is a projective morphism. According to Lemma 2.1,(i), weyx is a birational
morphism onto B%®. Then vy is birational since m(Bgé‘) ) = B® whence the assertion.

(i1) Since w is a finite morphism, o L(BW), Bg]g) and B® have the same dimension, whence the
assertion since Bg]g) is irreducible as an image of an irreducible variety.

(iii) Since the fibers of @ are invariant under W(R)*, @~ 1(B®) is invariant under this action and W(R)¥
permutes the irreducible components of @~ !(B®). Let Z be an irreducible component of @w~!(B®).

Since @ is G*-equivariant, @' (B®) and Z are invariant under the diagonal action of G. Moreover,
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Z = G.(Z n @ ' (") since B® = G.b*. Hence for some irreducible component Zy of Z N @' (bX),
Z = G.Zy. According to Lemma 3.7,(iii), Zy is contained in w.c 1(6%) for some w in W(R)X. Hence Z is
contained W.‘B(Dlg) since the actions of GK and W(R)F on X¥ commute, whence Z = W.Bg? since Z is an
irreducible component of o H(BW).

Letw = (wy,...,w;) be in W(R)* such that W.Bg]g) = Bg]g). Let x be in byeg and let i be equal to 1,. .., k.
Let set
X if j=i

2= (X1 oo Xpy X1, 005 Xg) With x5 0= .
xj;=e otherwise

Then there exists (yvy,...,y) in b and g in G such that

w.z= (g(Yl),---,g(Yk),)’_l’---,y_k)

Then, for some b in B, b(y;) = y; since y; is a regular semisimple element, belonging to b. As a result,
gb™'() = x and wi(x) = y;. Hence gb~! is an element of Ng(b) representing wi‘l. Furthermore, since
g™ (b(y 7)) = efor j # i, b(y;) is a regular nilpotent element belonging to b. Then, since there is one and
only one Borel subalgebra containing a regular nilpotent element, gbh~!(b) = b. Hence w; = 1y, whence
the assertion.

(iv) Since the fibers of @ are invariant under W(R)X, k[B®] is contained in k[w 1 (B®) VR Let p
be in k[ L(B®) W Since W(R) is a finite group, p is the restriction to @ ! (B®) of an element ¢
of k[X]%*, invariant under W(R)*. Since k[X]"® = S(qg), ¢ is in S(3)* and p is in k[BX®], whence the
assertion. O

Let recall that 6 is the map
U-Xbeg — X (g,x) — (g(x),X)
and let denote by W, the inverse image of O(U- X byeg) by the projection
BY — X (1 X V10 > (L)

Lemma 3.9. Let Wy, be the subset of elements (x,y) of Bg]g) (x € o, yE b¥) such that P, N Greg IS nOt empty.
(i) The subset W, of Bg]g) is a smooth open subset. Moreover, the map

U— X breg X bk_l — W]; (g’xla . .,Xk) — (g(xl)a . -ag(xk)ax_la . ax_k)

is an isomorphism of varieties.
(i1) The subset Bg? of af x b* is invariant under the canonical action of GLy(k).

(iii) The subset Wy of Bg]g) is a smooth open subset. Moreover, Wy is the G X GLy(k)-invariant set
generated by W,.

(iv) The subvariety Bg]g) \ Wi has codimension at least 2k.

Proof. (i) According to Corollary 3.3,(ii), the image of 6 is an open subset of X. Hence W, is an open
subset of Bglg). Let (xq,...,x;) be in b* and let g be in G such that (g(xy), . ..,8(xx), X1,..., X¢) is in 148

Then x; is in by and for some g’ in U_ and for some x| in byeg, g.(x1, X1) = g’.(x], x}). Hence, according
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to Corollary 3.3,(i), for some b in B, x| = b(x). So, g '¢’bis in G* and g is in U_B since G is
contained in B. As a result, the map
U— X byeg X D1 — wy (g, X1, x1) — (g(x1), ..., 8(Xk), X1, - -+, Xk)
is an isomorphism whose inverse is given by
W, — U- X Dreg X b¥7!
(15 -) = (O 0o, X)L, 07 (e, XD, 07 o, X1 ()

with 67! the inverse of 6 and 6! (x;, x7); the component of 61 (x1, 1) on U_, whence the assertion since
U_ X breg X 0¥ is smooth.
(i) For (x1, .. .,x;) in b* and for (aij,1 <1, j < k) in GLi(k),

k k
DL = ) a%
=1

j=1
So, ¢1(b%) is invariant under the action of GL(k) in g* x h* defined by
k

k
(@ijs 1 < i, j < K).(X15 03Xk Y155 k) 1= (Zai,jxj,jz 1,...,k,Za,~,jyj,j: 1,...,k)
= =

whence the assertion since Bg]g) = G.1;(0%) and since the actions of G and GL(k) in g* x b* commute.
iii) According to (i), G.W/ is a smooth open subset o . Moreover, G.W/ is the subset of elements
(iii) According to (i), G.W i h open subset of BY). M G.W} is the subset of el
X,y) such that the first component of x 1s regular. So, by (1) and Lemma 1.6, W = (K).(G. ,
(x,y) such that the fi fxi lar. So, by (ii) and L 1.6, W, GL(k).(G.W))
whence the assertion.
(iv) According to Corollary 3.8,(i), Bg]g) is the image of G x g b* by the restriction yy of yflk) to G xp b¥.
en « is contained in the image of G Xp re y yx. As a result (see Lemma 8.1),
Then BY \ Wy i ined in the i f G x5 (b \ breg)* b A 1t (see L 8.1)
dim BL \ W < n+ k(bg - 2)
whence the assertion. O
Proposition 3.10. (i) The varieties Bl(qk) and Bg]g) are equal. Moreover, vy, = yx.
ii) The restriction to of the quotient morphism - is an embedding.
(ii) The restriction to S()* of the quoti hism k[X]?* — K[BY] i beddi

(iii) The algebra k['B,gk)] is generated by k[B®] and S(h)**. Moreover, n is the restriction of @ to 'Bg?.
(iv) The restriction of yx to yj_cl(Wk) is an isomorphism onto Wy.

Proof. (i) According to Corollary 3.6, from the short exact sequence
0—J— Ockakbk — Ogxyok — 0
one deduces the short exact sequence
0 — H(G* x i 0¥, ) — HYUG* X B, Ogis k) — HO(G x5 6", Ogy,p) — O
In particular, the restriction map

HO(G* Xt 0, Ot p6) — H(G X3 1, O ,0)
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is surjective. Since k[X] equals HO(G xpD, Ogx,zp) by Lemma 3.1,(v), the image of this map equals k[Bg?]
by Corollary 3.8,(i). Moreover, according to Lemma 1.1, k[Bg‘)] = H(G xp bk, Ogxot) since G Xp ¥ is
a desingularization of the normal variety Bl(qk) by Lemma 2.1,(i). Hence k[Bg‘)] = k[Bg]g)] and y, = yy.

(i1) According to (i), 1n(0%) is a closed subvariety of Bl(qk) and for p in S(b)**, the restriction to ¢,(0%) of
its image in k[Bflk)] is the function

(X153 Xh X1 o, Xp) > p(XL, - Xg)

Hence the restriction to S(§)* of the quotient map k[X]®* — k[B,(qk)] is an embedding.

(iii) The comorphism of the restriction of @ to Bg? is the embedding of to k[B®] into k[Bg]g)] so that
n is the restriction of @ to Bg]g) by (i). Since k[XCK] is generated by S(g)®* and S(h)** and since the image
of S(a)®* by the quotient morphism equals k[B®], k[Bgé‘)] is generated by k[B®] and S(p)**.

(iv) Since the subset of Borel subalgebras containing a regular element is finite, the fibers of yy over
the elements of W, are finite. Indeed, according to Zariski Main Theorem [Mu88, §9], they have only one
element since Bg]g) is normal by (i) and since ‘yy is projective and birational. So, the restriction of yy to
73_61 (W) is a bijection onto the open subset Wj, whence the assertion by Zariski Main Theorem [Mu88,
§9]. O

Remark 3.11. By Proposition 3.10,(i) and (iii), BY.’ identifies with BY’ and 1 identifies with the restriction
of w to Bg]g) so that y, = yx and ¢, = (3.

Let consider on h* the diagonal action of W(R).

Corollary 3.12. (i) The subalgebra S(5)* of k[BX equals k[ BX1°.
(ii) The subalgebras k[B®1C and (SH)Z)WR of k[Bl(qk)]G are equal.

Proof. (i) Let p be in k[quk)]G such that its restriction to ¢, (%) equals 0. Since

lim A(0).(x1, - .20 = (1, X)

for all (xy, . ..,x) in b, the restriction of pto 1 (6%) equals 0 and p = 0 since B,(qk) = G.1,(05).

According to Lemma 3.1,(v), S()®* = (k[X]®)C". Hence S(h)** is a subalgebra of X[BXC since
k[Bl(,k)] is a G-equivariant quotient of k[X]%%. For p in k[B,(]k)], let denote by p the element of S(5)®* such
that

ﬁ(xl"“’xk) :: p(xl""’xk’xl""’xk)

Then the restriction of p — P to t,(H) equals 0. Moreover, if p is in k[B,ﬁk)]G, p — p is G-invariant. Hence
KB 19 = S(h)**.

(i1) According to (i), the restriction from B® to p* induces an embedding of k[B®1Y into (S(h)*)W ),
Moreover, since G is reductive, k[B®1 is the image of (S(a)®)C by the restriction morphism. According
to [JO7, Theorem 2.9 and some remark], the restriction morphism (S(g)*)¢ — (S(H)®)W ™ is surjective.
Hence the restriction morphism k[B®1G - (S(b)@’k)w(y) is surjective. Then the injection k[B®G -
(S s bijective since k[BX] and S(h)®* are graded quotients of S(g)®*. |
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3.4. The natural action of k* in g¥ induces an action of k* on b¥, b¥, B®), Bg‘) and G* x B bk, In particular,
k[B®] is a graded subalgebra of the graded algebra k[BX].

Proposition 3.13. The variety Bl(qk) has rational singularities.
Proof. From the short exact sequence of (‘)kaBkbk -modules
0—J— Ockakbk — Ogxyok — 0
one deduces the cohomology long exact sequence
oo — HI(G* xp B, Ogix,0) — HI(G xp 0, Ogyp) — HHH(GF xp 05, 9) — -
By Borel-Weil-Bott’s Theorem [Dem68], for i > 0, the first term equals 0 and by Corollary 3.6, the third

term equals 0. Hence H/(G xp b*, Oy wok) = 0 for all i > 0, whence the proposition since (G Xp bk, y,) is
a desingularization of Bflk) by Lemma 2.1,(i). O

Corollary 3.14. Let M be a graded complement of k[B(k)]fk['B(k)] in k[B®].
(1) The algebra k['B,gk)] is a free extension of SH)®X. Moreover, M contains a basis of k['Bfk] over

S(h)*.
(i1) The intersection of M and S+(bk)k[31(1k)] is different from Q.

Proof. (i) Let recall that N is the subset of elements (x1, ... ,x;) of B® such that xy,...,x; are nilpotent
and let recall that 7 is the canonical morphism from Bl(qk) to BX. Let denote by 7 the morphism from
BY to h® whose comorphism is the injection of S(5)* in k[BX]. First of all, BY, 5% and N® have
dimension kby + n, k€, (k + 1)n respectively. Moreover, n‘l(N(k)) is the nullvariety of S, () in Bflk).
In particular, the fiber at (0,...,0) of 7 has minimal dimension. Since 7 is an equivariant morphism
with respect to the actions of k* and since (0,...,0) is in the closure of all orbit of k* in b*, 7 is an
equidimensional morphism of dimension dim Bl(qk) — dimb®. According to Proposition 3.13 and [E178],
quk) is Cohen-Macaulay. Then, by [MA86, Theorem 23.1], k[quk)] is a flat extension of S(b)®*.

The action of k* on Bg‘) induces a N-gradation of the algebra k[ng)] compatible with the gradations of
k[B®] and S(H)®* since 7 is equivariant. Since M is a graded complement of k[B(k)]fk[B(k)] in k[BW],
by induction on /,

K[BO] = MK[BO% + ([ BY17)K[BY]
Hence k[B®] = MK[B®1C since k[B®]is graded. Then, by Proposition 3.10,(iii) and Corollary 3.12,(ii),
k[B;k)] = MS(b)®. In particular,
KIBY] = M+ S, (0K BY]
Then M contains a graded complement M’ of S+(bk)k[Bf1k)] in k[quk)]. Arguing as before, k[B,(qk)] =
M’S(b)® since k[Bl(,k)] is graded. By flatness, from the short exact sequence

0— S4(H) — SO —k —0
one deduces the short exact sequence

0 — K[BY] ®ger S+ () — K[BP] — K[BP] @gger k — 0

As a result, the canonical map M’ ® S(H%* — k[Bflk) ] is injective. Hence all basis of M’ is a basis of
the S(H)®*-module k[quk)], whence the assertion.
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(ii) Let suppose that M’ = M. One expects a contradiction. According to (i), the canonical maps
M, SO)* — KBl Me kBN — KB®)

are isomorphisms. Then, according to Lemma 1.2, there exists a group action of W(R) on k[Bg‘)] extend-
ing the diagonal action of W(R) in S(b)* and such that k[Bg‘)]W(% = k[B®] since k[B®] N S(h)®* =
(SR by Corollary 3.12,(ii). Moreover, since W(R) is finite, the subfield of invariant elements of
the fraction field of k[B®] is the fraction field of k[BXP]W® . Hence the action of W(R) in k[BX] is
trivial since k[Bg‘)] and k[B®] have the same fraction field, whence the contradiction since (S(I))®k)w(y)
is strictly contained in S(b)®*. o

4. ON THE NULLCONE.

Let £ > 2 be an integer. Let I be the ideal of k[Bg‘)] generated by S.(5%) and let N be the subscheme of
Bl(qk) defined by 1.

Lemma 4.1. Let set Ng? = LONW),
(1) The variety Ng?) equals y,(G x g k).
(i) The nullvariety of I in quk) equals Ng?.
(ii1) The scheme N is smooth in codimension 1.

Proof. (i) By definition, y~'(N®W) = G x u¥. Then, since y = y,°n, Ng? = ¥u(G xp ub).

(ii) Let V; be the nullvariety of / in Bflk). According to Proposition 3.10,(ii), for (g, x1,...,xx) in G X b,
Yn((g, X1, . ..,x¢)) is a zero of [ if and only if xy,...,x; are nilpotent, whence the assertion.

(iii) According to Lemma 3.9,(i), one has an isomorphism of varieties

U— X breg X b(k_l) - W]; (gv Xlyee- axk) — (8(351), e ag(xk)a x_la e ax_k)

Let J be the ideal of k[beg X b= generated by the functions (x,...,.xx) — (v, xp),i=1,...,k,velb
and let Ny be the subscheme of by X %=1 defined by the ideal J. Then the above map induces an
isomorphism of U_ x Ny onto the open subset W, N N of N. For all x in e X u*~, the tangent space
of Ny at x equals u¥. Hence Ny is smooth and W, N N is smooth. Then, since N is a subscheme of quk)
invariant under the actions of G and GL(k), the open subset Wy N N of N is smooth by Lemma 3.9,(ii).
By definition, Wy NN = n~'(Vi), whence the assertion by Corollary 2.3,(i) since 7 is finite. O

Proposition 4.2. The variety Ng?) is a normal variety and 1 is its ideal of definition in k[’ng)]. In partic-
ular, 1 is prime.

Proof. According to Corollary 3.14.,(i), k[Bflk)] is a flat extension of S(b)®*. Since B;k) is Cohen Macaulay,
N is Cohen Macaulay by [MAS86, Corollary of Theorem 23.2]. According to Lemma 4.1,(iii), N is
smooth in codimension 1. Hence N is a normal scheme by Serre’s normality criterion [Bou98, §1, no
10, Théoréeme 4]. According to Lemma 4.1,(ii), Ngé‘) is the nullvariety of [ in B;k). Moreover, Ng? is
irreducible as image of the irreducible variety G X u¥ by Lemma 4.1,(i). Hence I is prime and Ng? isa
normal variety. O
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Theorem 4.3. Let Iy be the ideal of k[B®] generated by k[B(k)]f.
(i) The ideal Iy is strictly contained in the ideal of definition of N® in k[B®].
(ii) The nullcone N® has rational singularities.

Proof. (i) Since k[B(k)]f is contained in S..(H%), I is contained in INk[BX)]. According to Lemma 4.1,(i1)
and Proposition 4.2, I Nk[B®] is the ideal of definition of N® in k[B®]. Let M be a graded complement
of k[B(k)]fk[B(k)] in k[B®1]. According to Corollary 3.14,(ii), I N M is different from 0. Hence I is
strictly contained in I N k[B®], whence the assertion.

(ii) According to Proposition 3.10,(iii) and Proposition 4.2, the restriction to k[B®] of the quotient
map from k[Bg‘)] to k[ng?] is surjective. Furthermore, the image of k[B*X] by this morphism equals
k[N®] since Ng? = 77 }(NW), whence k[N®] = k[Ngé‘)]. As a result, N® has rational singularities since

Ng? is normal and since the normalization of N®) has rational singularities by Theorem 2.4. O

5. MAIN VARIETIES.

Let denote by X the closure in Gry(g) of the orbit of ) under B. According to Lemma 1.4, G.X is the
closure in Gry(g) of the orbit of §) under G.

5.1. For a in R, let denote by b, the kernel of a. Let set V,, := b, @ g* and let denote by X, the closure
in Gry(g) of the orbit of V,, under B.

Lemma 5.1. Let a be in R,. Let p be a parabolic subalgebra containing b and let P be its normalizer in
G.

(1) The subset P.X of Grg(g) is the closure in Gr(g) of the orbit of ) under P.

(i1) The closed set X, of Gre(g) is an irreducible component of X \ B.}.

(iii) The set P.X, is an irreducible component of P.X \ P.}.

(iv) The varieties X \ B.hy and P.X \ P.Y) are equidimenional of codimension 1 in X and P.X respectively.

Proof. (i) Since X is a B-invariant closed subset of Gry(g), P.X is a closed subset of Gr,(g) by Lemma 1.4.
Hence P_b is contained in P.X since b is in X, whence the assertion since P_b is a P-invariant subset
containing X.

(i1) Denoting by H,, the coroot of «,

lim exprad x,)(5, Ho) = %o
So V, is in the closure of the orbit of f) under the one parameter subgroup of G generated by ad x,. As a
result, X, is a closed subset of X \ B.h since V,, is not a Cartan subalgebra. Moreover, X, has dimension
n — 1 since the normalizer of V, in g is b + g“. Hence X, is an irreducible component of X \ B.} since X
has dimension 7.

(iii) Since X, is a B-invariant closed subset of Gry(g), P.X, is a closed subset of Gry(g) by Lemma 1.4.
According to (ii), P.X, is contained in P.X \ P.J) and it has dimension dimp — £ — 1, whence the assertion
since P.X has dimension dimp — £.

(iv) Let Py be the unipotent radical of P and let L be the reductive factor of P whose Lie algebra
contains adf. Let denote by Ny (b)) the normalizer of f) in L. Since B.h and P.h are isomorphic to U and
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L/Np(b) x Py respectively, they are affine open subsets of X and P.X respectively, whence the assertion by
[EGALV, Corollaire 21.12.7]. O

For x in V, let set:
V, = span({e1(x), . ...e¢(x)})

Lemma 5.2. Let A be the set of elements (x, V) of a X G.X such that xisin V.
(i) For (x,V) inb X X, (x,V) is in the closure of B.(reg X {b}) in b X Gry(b) if and only if x is in V.
(ii) The set A is the closure in g X Grg(g) of G.(Dreg X {b}).
(ii1) For (x, V) in A, V is contained in V.

Proof. (i) Let A’ be the subset of elements (x, V) of b X X such that x is in V and let Aj be the closure of
B.(hreg X {b}) in b X Gre(b). Then A’ is a closed subset of b x Gr,(b) containing Aj. Let (x, V) be in A”.
Let E be a complement of V in b and let Qf be the set of complements of E in g. Then Qg is an open
neighborhood of V in Gr,(b). Moreover, the map

Homy(V, E) LN Qp @ — K(p) :=span({v + p(v) | v € V})

is an isomorphism of varieties. Let Q. be the inverse image of the set of Cartan subalgebras. Then 0 is in
the closure of Qf, in Homg(V, E) since V is in X. For all ¢ in Qf, (x + ¢(x), k(¢)) is in AE). Hence (x, V) is
in Aj.

(i) Let (x, V) be in A. For some g in G, g(V) is in X. So by (i), (g(x), g(V)) is in Aj and (x, V) is in the
closure of G.(breg X {h}) in g X Gr(g), whence the assertion.

(i) Fori=1,...,¢, let A; be the set of elements (x, V) of A such that g;(x) is in V. Then A; is a closed
subset of g X G.X, invariant under the action of G in g X Gr/(g) since ¢; is a G-equivariant map. For all
(&, X) in G X breg, (g(x), g(b)) is in A; since &;(g(x)) centralizes g(x). Hence A; = A since G.(hreg X {b}) is
dense in A by (ii). As a result, for all V in G.X and for all xin V, &1(x), ... ,e¢(x) are in V. O

Corollary 5.3. Let (x, V) be in A and let 3 be the centre of g.
(1) The subspace 3 is contained in Vy_ and V.
(i) The space V is an algebraic, commutative subalgebra of g.

Proof. (i) If x is regular semisimple, V is a Cartan subalgebra of g. Let suppose that x is not regular
semisimple. Let denote by 3 be the centre of g*. Let 9y« be the nilpotent cone of g™ and let g be the
regular nilpotent orbit of g*. For all y in Qyeg, x5 + ¥ i8S in greg and &1(xs + ), ... ,&¢(xs + y) is a basis of
a**Y by [Ko63, Theorem 9]. Then for all z in 3, there exist regular functions on Qregs A1z, - - - 5A7,z, SUCh
that

zZ= al,z()/)gl(xs +y)+eee+ at’,z()/)gt’(xs +y)
for all y in Qe,. Furthermore, these functions are uniquely defined by this equality. Since N is a normal
variety and since N \ Qe has codimension 2 in N, the functions ay 4, . . . ,ar,; have regular extensions
to N . Denoting again by a; , the regular extension of a;, fori =1,...,¢,

zZ= al,z()/)gl(xs +y)+eee+ at’,z()/)gt’(xs +y)

for all y in 9ty. As aresult, 3 is contained in V. Hence 3 is contained in V by Lemma 5.2,(iii).
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(i1) Since the set of commutative subalgebras of dimension ¢ is closed in Gry(g), V is a commutative
subalgebra of g. According to (i), the semisimple and nilpotent components of the elements of V are
contained in V. For x in V' \ 9, all the replica of x, are contained in 3. Hence V is an algebraic subalgebra
of g by (i). O

5.2. For sin b, let denote by X*° the subset of elements of X, contained in g°.
Lemma 5.4. Let s be in 'ty and let 3 be the centre of g°.

(1) The set X* is the closure in Gre(g°) of the orbit of ) under B®.
(i) The set of elements of G.X containing 3 is the closure in Gry(g) of the orbit of ) under G°.

Proof. (i) Let set p := g° + b, let P be the normalizer of p in G and let p, be the nilpotent radical of p.
For g in P, let denote by g its image by the canonical projection from P to G*. Let Z be the closure in
Gry(g) X Gr(g) of the image of the map

B — Gr¢(b) X Grg(b) g+ (g(h), g(h))
and let Z’ be the subset of elements (V, V) of Grg(b) X Grg(b) such that
VcgdnbandVc V' @p,

Then Z’ is a closed subset of Gry(b) X Gry(b) and Z is contained in Z’ since (g(), g(b)) is in Z’ for all g in
B. Since Gry(b) is a projective variety, the images of Z by the projections (V, V’) — V and (V, V') - V’
are closed in Gry(b) and they equal X and B*.h respectively. Furthermore, BS.) is contained in X*.

Let V be in X*. For some V' in Grg(b), (V, V') is in Z. Since

Vcg, Vicg’, VeV @p,

V =V’ so that V is in BT.b, whence the assertion.

(ii) Since 3 is contained in b, all element of G.) is an element of G.X containing 3. Let V be in G.X,
containing 3. Since V is a commutative subalgebra of g° and since g° N b is a Borel subalgebra of g°, for
some g in G°, g(V) is contained in b N g°. So, one can suppose that V is contained in b. According to
the Bruhat decomposition of G, since X is B-invariant, for some b in U and for some w in W(R), V is in
bw.X. Let set:

Riw i={a e Ry |wla) € Ry} R;,w =lae Ry [wl) ¢ Ry}

= @aef}hw gW(Q) U 1= @ae—fk’ gW(a) uz = @aeﬂ%’ gw(a)

B" := wBw™! W i=hd1u Dy
so that adb" is the Lie algebra of B and w.X is the closure in Gr(g) of the orbit of h under B*. Moreover,
u is the direct sum of 11 and 115. For i = 1,2, let denote by U; the closed subgroup of U whose Lie algebra
is adu;. Then U = U,U, and b = byb; with b; in U; for i = 1,2. Since w™! (1) is contained in 1t and since
X is invariant under B, b,byw.X = byw.X. Since b, (V) is in w.X and since V is contained in b,

b'(Vycbnb” =pheu

Let set:
wp:i=uNg’ U =1 NPy
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and for i = 1,2, let denote by U, the closed subgroup of U, whose Lie algebra is adu, ;. Then u; is the
direct sum of 15 1 and up 5 and U, = U 1 Uz so that by = by 1by 5 with by ;in Uy fori = 1,2. As aresult,
3 is contained in bill(V) and bilz(g) is contained b @ 1;. Hence bilz(g) = 3 since 1; N1y, = {0}

Let suppose b2 # 1. One expects a contradiction. For some x in 1,2, b2 2 = exp(adx). The space 1172
is a direct sum of root spaces since 1, and p, are too. Let a1, ... ,a, be the positive roots such that the
corresponding root spaces are contained in uy>. They are ordered so that for i < j, a; — a; is a positive
root if it is a root. Fori = 1,...,m, let ¢; be the coordinate of x at x,, and let iy be the smallest integer
such that ¢;, # 0. For all z in 3,

bilz(z) — 2= Gy @iy (2)Xa;, € @ g
J>io
whence the contradiction since for some zin 3, @;,(z) # 0. As aresult, b; 11 (V) is an element of w.X = B".}),
contained in g¢°. So, by (i), b; 11 (V) and V are in G*.1, whence the assertion. O

5.3. For xin g, let denote by R, the subset of stabilizers of regular linear forms on g* under the coadjoint
action. According to [Y06a] and [deGO08], all element of R, is a commutative subalgebra of dimension
¢ of g. For x and v in g, the stabilizer of the linear form w — (v, w) on g* under the coadjoint action is
denoted by (g¥)".

Lemma 5.5. Let x be in g.

(i) For all v in g, there exists a positive integer d and a regular map f3, from P' (k) to Gry(g) such that
B(t) = ¢™*Y for all t in a dense open subset of k. Moreover, 3,(0) is contained in (g*)".

(i) For all v in a dense open subset Q of 8, x + v is regular semisimple and the linear form w +— (v, w)
on g~ is regular.

Proof. (i) Let d be the minimal dimension of the g"**"’s, ¢ € k. Then for all ¢ in a dense open subset Q, of
k, the map

tx+v

Q, — Gry(g) I—g

is regular, whence the assertion by [Sh94, Ch. VI, Theorem 1].
Let E be a complement of §,(c0) in g and let Qf be the set of complements of E in g. Then QF is an
open neighborhood of 8, (c0) in Gry(g) and the map

Homg(B,(c0), E) — Qp ¢+ span({w + ¢(w) | v € B,,(c0)})

is an isomorphism. Let denote by y this isomorphism. For all # in a nonempty open subset T of k*, there
exists a unique ¢, in Homy (8,(c0), E) such that y(¢,) = ¢"*V. Then
tllm ©r = 0

and for all (w, t) in 8,(c0) X T, one has
1
0=[w+ew),tx+v] =[w+¢Ww),x+ 7\/]
whence 8,(c0) C g*. Moreover, for all all w’ in g*,

0= W, [w+ew),tx+v]) = =(w+ @ (w), W, v])



28 J-Y CHARBONNEL AND M. ZAITER

whence 8,(c0) C (g%)".
(ii) Since greg 55 15 a dense open subset of g, for all v in a dense open subset, x + v is regular semisimple.
Since the map

g— ()" v (we (v,w)
is a dominant morphism, for all v in a dense open subset of g, the linear form w — (v, w) on g* is regular,
whence the assertion. |

Corollary 5.6. For x in g, R, is contained in G.X.

Proof. Let v be in the open subset Q of Lemma 5.5,(ii). Then g™*” is a Cartan subalgebra of g for all 7 in
a dense open subset of k. So 8,(c0) is in G.X and by Lemma 5.5,(i), 8,(c0) = (g*)" since the index of g*

*

equals £. Denoting by (g%)r., the set of regular linear forms on g*, the map

(0)reg — Gre(g)  vi— (g%

is regular. Hence R, is contained in G.X since the projection of Q to (g*)* is dense in (gx);keg and since

G.X is closed in Grg(g). O
For E a subspace of g of even dimension 2m and for e = ey, . ..,ez, a basis of E, let set:
ler,er] -+ ler, el
DE, := det . :
leam,e1]l -+ [eam, eam]

The element pg, of S(g), up to a multiplicative scalar, does not depend on the basis e. So, when pg, is
different from zero, one will say that pg is different from zero. Otherwise, one will say pg = 0.

Lemma 5.7. Let x be in g.
(i) For V in Gre(gY), V is in Ry if and only if for all complement E of V in o*, p is different from zero.
(1) For V in Gre(g), V is in G.X if and only if for all complement E of V in o, pg is different from zero.
(iii) For E in Grgim g—¢(9") such that pg # 0, peer # 0 for all complement F of g* in g.

Proof. (i) and (ii) Let denote by a the Lie algebra g or g*. For v in g, let denote by a” the stabilizer of the
linear form w + (v, w) on a and let set:

Z()ZI{(E( if =g

R, if a=g¢g*

Let V be in Grg(a). For all complement E of V in a, E has even dimension. Let suppose pg # 0 for

all complement E of V in a. Let Ey,...,E, be some complements of V in a. Then for all v in a dense
open subset of g, v is not a zero of pg,,...,pE, and the linear form w +— (v, w) on a is regular. Hence for
i=1,...,m,a"is a complement of E; in a. As a result, V is in Zy. Conversely, let suppose that V is in Z

and let E be a complement of V in a. Then for some v in g, a” is a complement of E in a so that v is not a
zero of pg.

(iii) Let v be in g such that pg(v) # 0 and such that the linear form w +— (v, w) on g* is regular. Then
(¢%)¥ is a complement of E in g*. According to Lemma 5.5,(iii), (¢¥)" is in G.X. For all complement F of
g*in g, E @ F is a complement of (g*)" in g, whence the assertion by (ii). O
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5.4. Let call a torus of g a commutative algebraic subalgebra of g whose all elements are semisimple. For
x in g, let denote by Z, the subset of elements of G.X containing x and let denote by (G*)¢ the identity
component of G*.

Lemma 5.8. Let x be in N, and let Z be an irreducible component of Zy. Let suppose that some element
of Z is not contained in N,.
(i) For some torus s of o, all element of a dense open subset of Z contains a conjugate of s under (G*)g.
(ii) For some s in s and for some irreducible component Z of Zs.x, Z is the closure in Gre(g) of
(G)o-Z1.

(iii) If Z; has dimension smaller than dim g***

— ¢, then Z has dimension smaller than dim g* — €.

Proof. (i) After some conjugation by an element of G, one can suppose that g* N b and g* N'H are a Borel
subalgebra and a maximal torus of g* respectively. Let Zj be the subset of elements of Z contained in b and
let (B)o be the identity component of B*. Since Z is an irreducible component of Z,, Z is invariant under
(G*)o and Z = (G*)g.Zy. Since (G*)g/(B")g is a projective variety, according to the proof of Lemma 1.4,
(G*)o.Z, is a closed subset of Z for all closed subset Z, of Z. Hence for some irreducible component Z, of
2y, Z = (G*)g.Z.. According to Corollary 5.3,(ii), for all V in Z,, there exists a torus s, contained in g* N
and verifying the following two conditions:

(1) Vis contained in s + (g* N u),
(2) V contains a conjugate of s under (B*)y.

Let s be a torus of maximal dimension verifying Conditions (1) and (2) for some V in Z.. By hypothesis,
s has positive dimension. Let Z; be the subset of elements of Z, verifying Conditions (1) and (2) with
respect to s. By maximality of dims, for Vin Z, \ Z,,dimV Nu > ¢ —dimsordimV Nnu = ¢ — dims and
V is contained in s’ + u for some torus of dimension dim s, different from s. By rigidity of tori, s is not in
the closure in Grgim, 5(b) of the set of tori different from s. Hence Z, \ Z; is a closed subset of Z, since for
all Vin Z, \ Z;, dimV N u has dimension at least £ — dims. As a result, (G*)y.Z; contains a dense open
subset whose all elements contain a conjugate of s under (G*)y.

(i1) For some s in s, g° is the centralizer of s in g. Let Z° be the subset of elements of Z containing
s. Then Z* is contained in Z,,, and according to Corollary 5.3,(i), Z° is the subset of elements of Z,
containing s. By (i), for some irreducible component Z; of Z*, (G")9.Z] is dense in Z. Let Z; be an
irreducible component of Zj,, containing Z{. According to Corollary 5.3,(ii), Z; is contained in Z, since
x is the nilpotent component of s + x. So Z; = Z] and (G*)o.Z, is dense in Z.

(iii) Since Z; is an irreducible component of Zj., ,, Z; is invariant under the identity component of G***.
Moreover, G*** is contained in G* since x is the nilpotent component of s + x. As a result, by (ii),

dimZ < dimg* - dimg¢*™* + dim Z;
whence the assertion. o
Let denote by Cj, the G-invariant closed cone generated by 4.

Lemma 5.9. Let suppose g semisimple. Let I be the closure in g X Grg(g) of the image of the map

k"X G — gxGri(g) (2,8 — (tg(h), g(h))



30 J-Y CHARBONNEL AND M. ZAITER

and let Ty be the inverse image of the nilpotent cone by the first projection.

(1) The subvariety T of ¢ X Gre(g) has dimension 2n + 1. Moreover, 1 is contained in A.

(i) The varieties Cj, and G.X are the images of I by the first and second projections respectively.

(iii) The subvariety T'g of T is equidimensional of codimension 1.

(iv) For x nilpotent in g, the subvariety of elements V of G.X, containing x and contained in G(x), has
dimension at most dimg* — £.

Proof. (i) Since the stabilizer of (h,0) in k* X G equals {1} X H, I" has dimension 2n + 1. Since rg(h) is in
g(b) for all (¢, g) in k* X G and since A is a closed subset of g X Gr(g), I is contained in A.

(i1) Since Gr(g) is a projective variety, the image of I" by the first projection is closed in g. So, it equals
C), since it is contained in Cj and since it contains the cone generated by G.h. Let @ be the canonical
map from g \ {0} to the projective space P(g) and let T be the image of I' N (g \ {0}) X Gr(g) by the map
(x, V) > (w(x), V). Since Cj, is a closed cone, T is a closed subset of P(g) X Gr¢(g). Hence the image of
I by the second projection is a closed subset of Gr/(g). So, it equals G.b since it is contained in G.h and
since it contains G.D. As a result, the image of I by the second projection equals G.} since it is contained
in G.} and since it contains the image of r by the second projection.

(iii) The subvariety Cj, of g has dimension 2n + 1 and the nullvariety of p; in Cj, is contained in I,
since it is the nullvariety in g of the polynomials p;,...,p,. Hence N, is the nullvariety of p; in Cj, and
[y is the nullvariety in I" of the function (x, V) — p;(x). So I'y is equidimensional of codimension 1 in I'.

(iv) Let T be the subset of elements V of G.X, containing x and contained in G(x). Let denote by I'y
the inverse image of G.T by the projection from I' to G.X. Then I'y is contained in T'y. Since x is in all
element of T and since 'z is invariant under G, the image of I'; by the first projection equals G(x). Hence

dimI'y = dimT + dimg — dimg*
Since I'r is contained in Iy, I'r has dimension at most dim g — £, whence the assertion. O
When g is semisimple, let denote by (G.X), the subset of elements of G.X contained in %N,,.

Corollary 5.10. Let suppose g semisimple. Let x be in N,.
(1) The variety (G.X)y has dimension at most 2n — £.
(1) The variety Z, N (G.X)y has dimension at most dim g* — £.

Proof. (i) Let T be an irreducible component of (G.X), and let A7 be its inverse image by the canonical
projection from A to G.X. Then Ay is a vector bundle of rank £ over 7. So it has dimension dim 7 + £. Let
Y be the projection of Ay onto g. Since T is an irreducible projective variety, Y is an irreducible closed
subvariety of g contained in 9N,. The subvariety (G.X), of G.X is invariant under G since it is so for 9.
Hence A7 and Y are G-invariant and for some y in 9, ¥ = G(y). Denoting by F, the fiber at y of the
projection Ay — Y, V is contained in G_(y) and contains y for all V in Fy. So, by Lemma 5.9,(iv),

dimF, < dimg” - ¢
Since the projection is G-equivariant, this inequality holds for the fibers at the elements of G(y). Hence,

dimAr <dimg-¢anddimT <2n—+¢
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(i1) Let Z be an irreducible component of Z, N (G.X), and let T be an irreducible component of (G.X),,
containing Z. Let Ay and Y be as in (i). Then G(x) is contained in Y and the inverse image of G(x) in Ar
has dimension at least dim G(x) + dim Z. So, by (i),

dimG(x) + dimZ < dimg - ¢
whence the assertion. O
Theorem 5.11. For x in g, the variety of elements of G.X, containing x, has dimension at most dim g* — ¢.

Proof. Let prove the theorem by induction on dimg. If g is commutative, G.X = {g}. If the derived
Lie algebra of g is simple of dimension 3, G.X has dimension 2 and for x not in the centre of g, g* has
dimension £. Let suppose the theorem true for all reductive Lie algebra of dimension strictly smaller than
dimg. Let x be in g. Since G.X has dimension dimg — £, one can suppose x not in the centre of g. If
x is not nilpotent, g* has dimension strictly smaller than dimg and all element of G.X containing x is
contained in g™ by Corollary 5.3,(i), whence the theorem in this case by induction hypothesis. As a result,
by Lemma 5.8, for all x in g, all irreducible component of Z,, containing an element not contained in 9,
has dimension at most dimg* — ¢.

Let 3, be the centre of g and let x be a nilpotent element of g. Denoting by Z; the subset of elements
of G.(h N [g,q]) containing x, Z, is the image of Z; by the map V — V + 34, whence the theorem by
Corollary 5.10. O

5.5. Let sbein ) \ {0}. Let set p := ¢° + b and let denote by p, the nilpotent radical of p. Let P be the
normalizer of p and let P, be its unipotent radical. For a nilpotent orbit Q of G* in g*, let denote by Q"
the induced orbit by Q from g° to g.

Lemma 5.12. Let Y be a G-invariant irreducible closed subset of g and let Y’ be the union of G-orbits
of maximal dimension in Y. Let suppose that s is the semisimple component of an element x of Y'. Let
denote by Q the orbit of x,, under G* and let set Y| := 3 + Q+ Pu-

(1) The subset Y| of p is closed and invariant under P.

(1) The subset G(Y1) of g is a closed subset of dimension dim3 + dim G(x).

(iii) For some nonempty open subset Y of Y’, the conjugacy class of ¢ under G does not depend on
the element y of Y"'.

(iv) For a good choice of x in Y", Y is contained in G(Yy).

Proof. (i) By [Ko63, §3.2, Lemma 5], G* is connected and P = P,G*. For all y in p and for all g in Py,
g(y) is in y + py. Hence Y| is invariant under P since it is invariant under G°. Moreover, it is a closed
subset of p since 3 + Qs a closed subset of g’.

(i1) According to (i) and Lemma 1.4, G(Y}) is a closed subset of g. According to [CMa93, Theorem
7.1.1], @ N (Q + py) is a P-orbit and the centralizers in g of its elements are contained in p. So, for all y
in Q* N (Q + p), the subset of elements g of G such that g(y) is in Y| has dimension dim p since g(y) is in
Q + py. As aresult,

dimG(Y;) =dimG Xp Y; = dimp, + dim Y
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Since dim ¢* = dimg* — dim Q,
dimY; = dim3+ dimp, +dimg® — dimg*

dimG(Y;) = dim3+ 2dim p, + dimg® — dimg*
= dim3 + dimG(x)

(iii) Let T be the canonical morphism from g to its categorical quotient g//G under G and let Z be the
closure in g//G of ©(Y). Since Y is irreducible, Z is irreducible and there exists an irreducible component
Z of the preimage of Z in ) whose image in g//G equals Z. Since the set of conjugacy classes under G of
the centralizers of the elements of ) in g is finite, for some nonempty open subset Z* of Z, the centralizers
of its elements are conjugate under G. The image of Z* in g//G contains a dense open subset Z’ of Z. Let
Y” be the inverse image of Z’ by the restriction of T to Y’. Then Y” is a dense open subset of ¥ and the
centralizers in g of the semisimple components of its elements are conjugate under G.

(iv) Let suppose that x is in Y”. Let Zy be the set of elements y of Y/ such that ¢ = g°. Then
G.Zy = Y”. For all nilpotent orbit Q of G* in g°, let set:

YQ:3+§+pu

Then Zy is contained in the union of the Yq’s. Hence Y is contained in the union of the G(Yq)’s.
According to (ii), G(Yq) is a closed subset of g. Hence Y is contained in the union of the G(Yq)’s since Y’
is dense in Y. Then Y is contained in G(Yq) for some Q since Y is irreducible and since there are finitely
many nilpotent orbits in g°, whence the assertion. O

Theorem 5.13. (i) The variety G.X is the union of G.) and the G.Xg’s, 5 € 1L
(ii) The variety X is the union of U.) and the X, ’s, @ € R,.

Proof. Let 34 be the centre of g and let u be the map
Gre([g,0]) — Gre(g) V=3, +V

and let set:
Xy :=B.(bNn[g,6]) Xu4:=B.(VoNlg,g])

for @ in Ry. Then X, G.X, X,, G.X, are the images of X, G. X4, Xo.4, G.Xo.q by p respectively. So one
can suppose g semisimple.

(1) For £ = 1, g is simple of dimension 3. In this case, G.X is the union of G.h and G.g°. So, one can
suppose € > 2. According to Lemma 5.1,(iii), for @ in R, G.X,, is an irreducible component of G.X \ G.b.
Moreover, for all 8 in I1 N W(R)(@), G.X, = G.Xg since V,, and Vg are conjugate under Ng(b).

Let T be an irreducible component of G.X \ G.h. Let set:

Ar =AngxT

and let denote by Y the image of Ar by the first projection. Then Y is closed in g since Gre(g) is a
projective variety. Since A7 is a vector bundle over T and since T is irreducible, Ay is irreducible and
Y is too. Since T is an irreducible component of G.X \ G.), T, Ay and Y are G-invariant. According
to Lemma 5.1,(iii), T has codimension 1 in G.X. Hence, by Corollary 5.10,(i) Y is not contained in the
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nilpotent cone since £ > 2. Let Y’ be the set of elements x of ¥ such that ¢* has minimal dimension.
According to Lemma 5.12,(ii) and (iv), for x in a G-invariant dense subset Y’ of Y,

dimY < dimG(x) + dim3
with 3 the centre of g™ and according to Theorem 5.11,
dimAr < dimG(x) + dim3 + dimg* — £ = dimg + dim3 — ¢

Hence Ar has dimension at most 2n + dim3 and dim3 = £ — 1 since T has codimension 1 in G.X. Let
x be in Y” such that x; is in h. Then x, is subregular and 3 is the kernel of a positive root a. Denoting
by s, the subalgebra of g generated by g* and g~%, ¢ is the direct sum of b, and s,. Since the maximal
commutative subalgebras of s, have dimension 1, a commutative subalgebra of dimension ¢ of g* is either
a Cartan subalgebra of g or conjugate to V, under the adjoint group of g*. As a result, V, is in T and
T =G.V, = G.X, since T is G-invariant, whence the assertion.

(ii) According to Lemma 5.1,(ii), for @ in R,., X,, is an irreducible component of X \ B.h. Let gy, ... ,0x
be its simple factors. For j = 1,...,m, let denote by X; be the closure in Grggj(g ;) of the orbit of h N g;.
Then X = X;X - - - XX, and the complement of B.h in X is the union of the

X1X"'XXJ'_1 X(Xj\B.(bﬂgj))ijHx---me

So, one can suppose g simple. Let consider
b=pC--Cpr=g

an increasing sequence of parabolic subalgebras verifying the following condition: fori = 0,...,¢{ -1,
there is no parabolic subalgebra q of g such that

PiGEa& it

Fori=0,...,¢, let P; be the normalizer of p; in G, let p;, be the nilpotent radical of p; and let P;, be the
unipotent radical of P;. Fori =0, ...,¢ and for @ in R, let set X; := P;.X and X, := P;.X,. Let prove by
induction on ¢ — i that for all sequence of parabolic subalgebras verifying the above condition, the X;,’s,
a € R, are the irreducible components of X; \ P;.h.

For i = ¢, it results from (i). Let suppose that it is true for i + 1. According to Lemma 5.1,(iii), the X;,’s
are irreducible components of X; \ P;.}.

Claim 5.14. Let T be an irreducible component of X; \ P;.h such that P; is its stabilizer in P;.;. Then
T = X;, for some @ in R,.

Proof. According to the induction hypothesis, T is contained in Xj;, for some @ in R;. According to
Lemma 5.1,(iv), T has codimension 1 in X; so that P;;1.7 and Xj;1, have the same dimension. Then
they are equal and T contains g* for some x in by such that x; is a subregular element belonging to b.
Denoting by @’ the positive root such that a’(x;) = 0, ¢* = V, since V, is the commutative subalgebra
contained in b and containing b, which is not Cartan, so that 7 = X; o. O

Let suppose that X; \ P;.his not the union of the X;,’s, @ € R,. One expects a contradiction. Let 7 be
an irreducible component of X; \ P;.h, different from X; , for all @. According to Claim 5.14 and according
to the condition verified by the sequence, T is invariant under P;,;. Moreover, according to Claim 5.14,
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it is so for all sequence pj,...,p; of parabolic subalgebras verifying the above condition and such that
p;. =p,for j=0,...,i. Asaresult, for all simple root 8 such that g is notin p;, T is invariant under the
one parameter subgroup of G generated by adg?. Hence 7 is invariant under G. It is impossible since for
x in g \ {0}, the orbit G(x) is not contained in p; since g is simple, whence the assertion. O

5.6. Let X’ be the subset of g* with x in by, such that x, is regular or subregular. For @ in R,, let denote
by 6, the map
k— X t — exp(tad x,).h

According to [Sh94, Ch. VI, Theorem 1], 6, has a regular extension to P!(k), also denoted by 6,. Let set
Z, := 0,(P!(k)) and X/, := B.Z, so that X, = U.h U B.V,,.

Lemma 5.15. Let a be in R, and let V be in X. Let denote by V the image of V by the projection x — 7.
(i) For x in V), x is subregular if and only if V. = b, for some positive root.
@ai) If V= ba, then Vz = b, for some x in V.
(iii) If V = by, then V is conjugate to V, under B.

Proof. (i) First of all, since €1, .. .,&, are G-equivariant maps, V, is contained in the centre of g* for all x
in g. Then for x in b, V, is the centre of g* by Corollary 5.3,(i), whence the assertion.

(ii) Let suppose V = b,. Then x is not regular semisimple for all x in V. Let suppose that x, is not
subregular for all x in V. One expects a contradiction. Since x; and x are conjugate under B, for all x in
V, there exists y in R, \ {a} such that ¥(X) = 0. Hence V is contained in b, for some y in R, \ {a} since
R, is finite, whence the contradiction. Then by (i), for some x in V, Vx = b, since x; and X are conjugate
under B.

(iii) Let suppose V = by. By (ii), V& = b, for some x in V. Let b be in B such that b(x;) = X. Then b(V)
centralizes b, by Corollary 5.3,(i). Moreover, b(V) is not a Cartan subalgebra since V does not contain
regular semsimple element. The centralizer of ), in b equals b + g* and V,, is the commutative algebra of
dimension ¢ contained in [) + g* which is not a Cartan subalgebra, whence the assertion. O

Corollary 5.16. Let a be a positive root.
(1) The subset X, of X is open.
(ii) The subset X’ of X is open. Moreover, G.X], and G.X" are open subsets of G.X.

Proof. (i) Since X, is B-invariant and since U.)) is an open subset of X, contained in X,, it suffices to prove
that X/, is a neighborhood of V,, in X. Let denote by H,, the coroot of @ and let set:

E' = Drenwy  E=kHoOF

Let Q be the set of subspaces V of b such that £ is a complement of V in b and let 7, be the complement
in XN Qg of the union of the X,’s, ¥ € R, \ {a}. Then Q. is an open neighborhood of V,, in X. Let V be in
Q. such that V is not a Cartan subalgebra and let denote by V its image by the projection x — X. Then V
is contained in V + u so that h = kH, + V. Since V is not a Cartan subalgebra and since it is commutative,
VN Dreg is empty. Hence V= b, for some positive root y. According to Lemma 5.15,(iii), V is conjugate
to V, under B. Then a = y and V is in X, since V is not in X;; for all positive root ¢ different from a. As
a result, Q7. is contained in X, whence the assertion.
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(ii) By definition, X” is the union the X,’s, @ € R,. Hence X’ is an open subset of X by (i). Since X, is
invariant under B, X \ X/, is a B-invariant closed subset of X. Hence G.(X \ X)) is a closed subset of G.X
by Lemma 1.4. Moreover, G.X], is the complement of G.(X \ X},) in G.X. Hence G.X/, and G.X" are open
subsets of G.X. O

For B in I1, let set:
ug = @ae&\w} g*  Ug:=exp(adug)
Let Y be the subvariety of elements (V, V) of Gr¢(g) X Gr_;(g) such that V’ is contained in V.

Lemma 5.17. Let 3 be in Il and let set: Yg :=Y N (Xé X B.hp).

(i) The variety Yg is a smooth open subset of J N X X B.hg.

(ii) The variety X, é is smooth.

(iii) The subset G.Yg of 'Y is the intersection of Yy and G.Xé X G.hg. Moreover, the restriction to G.Yg of
the first projection has finite fibers.

(iv) The canonical projection from G.Yg to G.X, é is a finite surjective morphism.

(V) The variety G.Yg is smooth.

Proof. (i) According to Corollary 5.16, Xé is an open subset of X. Hence Yj is an open subset of Y N X X

B.hg. By definition, Xé = B.Zg. For (g,g') in B X B and for V in Zg, (g(V), g’(bg)) is in Y if and only if

b is contained in (g")"'g(V). Since the centralizer of bg in b equals o® + b and since V is a commutative
algebra, () 'g(V)isin Zg in this case. Hence Yg = B.(Zg X {bhg})

Let T be the normalizer of bz in B. Since B = UgTp, the map g = g(bg) from Upg to B.hg is an
isomorphism. Hence the map

UsxZs— Y (8 V) — (g(V),g(bp))

is an isomorphism so that Y3 is smooth since Zg is too.
(ii) Since X[’g = B.Zg and since B.} is a smooth open subset of X7, it suffices to prove that Vg is a smooth
point of X é Let set:

F = uﬂ@kHﬂ

and let denote by Qf the set of complements of ' in b. Then Qp is an affine open subset of Gr(b),
containing Vj, and the map

Homy (Vg, F) — QF ¢ > span({v + ¢(v) | v € Vp}
is an isomorphism. Let denote it by ¥.
Claim 5.18. Let vy, ... v, be a basis of hz. Let denote by 7 the map
Homy(Vg, F) x k™' — Qp x Gry_(b)

(p,ar,...,ae-1) = (span({v + o(v) | v € Vi}), span({v; + ajxg + o(v; + aixg) | i = 1,..., £ —1}))

Then 7 is an isomorphism onto an open neighborhood Q7. of (Vj,bg) in Y.
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Proof. Let F’ be the subspace of b generated by F* and xg and let Qx be the set of complements of F” in
b. Then Qf X Qp is an open neighborood of (Vg, hg) in Gre(b) X Grg_;(b) and the map

Homy (V, F) x Homy(bg, F') — Qp X Qp

(o, 4) —> (span(fv + p(v) | v € Vi}), span({v + ¢(v) | v € Dg}))
is an isomorphism. For (¢,ay,...,a,-1) in Homy(Vg, F) X kT, Y(p,ai,...,ar1) is the image of (¢, )
with ¢ in Homy (bg, F’) defined by ¥(v;) = ¢(v; + a;xg) + ajxg fori = 1,...,{ — 1. Conversely, let (¢, )
be such that its image isin Y. Thenfori=1,...,£{ -1,
13
ViU = ) a0+ ev) + i + 9(xp))

j=1

with a; 1, ... ,a;, in k so that
Y(vi) = aj(xg + @(xp)) + (v;)

whence the claim since the map

Homy(Vg, F) x k™! — Homy(V, F) x Homy (b, F')
(p,ai,....ac-1) — (g, ) with y(v;) = p(v; + a;xg) + aixg, i=1,...,( -1
is an isomorphism onto a subspace of Homy(Vg, F') X Homy (hg, F”). O
Let identify Homy(Vj, F) with Homy (Vj, 1g) X k¢ by the isomorphism
Homy (Vj, 15) X k! — Homy(Vj, F)

-1 -1 ¢
(go,bl, ... ,bg) — (Z v+ 1Iexg = QD(Z v+ ngﬁ) + (Z ljbj)Hﬁ)
=1 j=1 j=1
Let X be the inverse image by y of Qg ﬂXé. Then X is an irreducible locally closed subset of Homy(V3, F)
since Qr N X é is an irreducible locally closed subset of Grg(b). Moreover,

FE XK = Q@ nY N X, x Gre_y ()
Let set:
So :={(g,b1,....b¢,ai1,....ac-1) | (@, b1,....b¢) €EX, bi+bea; =0, i=1,...,0 -1}

Claim 5.19. Let S be the inverse image of Q7. N Yz by . Then § is an irreducible subvariety of S.
Moreover, X is the image of S by the canonical projection from Homy(Vg, F) X k! to Homy (Vp, k.

Proof. Since Yg = B.(Zg X {hg}), Yp and Q). N Yp are irreducible varieties. Hence by Claim 5.18, S
is an irreducible variety. Moreover, ¥(S) = Q. N Yz and X is the image of S by the projection onto
Homy (Vp, F) since Xé is the image of Y by the projection from Y to Gr(b) and since X = x H(Qr N Xé).
Let (¢, b1,...,be,aq,...,ae-1)bein S. Then y(p, by, ...,be) is in QF ﬂX[’g and fori=1,...,{ -1,

@i + aixg) + (bi + bea;j)Hp + a;jxg € by

Hence S is contained in S . O
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Let suppose that S is not contained in £ X {O}. One expects a contradiction. Since Qp N Xé contains
Cartan subalgebras and since X is irreducible, for all (¢, by, ... ,by) in a dense subset X’ of X, (by, . ...,bp) #
0. Then, by Claim 5.19, by # 0. Letset S’ := S N ¥ X k{1 and let (¢, b1,...,bp,aq,...,a¢-1) bein S’
such that (ay,...,ar-1) # 0. After a permutation of the v;’s, one can suppose a; # 0 so that by # 0. Then

0= [V1 + QD(Vl) + blHﬂ, Xg + QD(Xﬂ) + bgHﬁ] € 2b1Xﬁ + ug

whence the contradiction. As a result, S = X X {0}. By (i), S is a smooth variety. Hence X is a smooth
variety and Qp N X é is a smooth open subset of X é containing Vg, whence the assertion.

(iii) Since Y is G-invariant, G.Yg is contained in Y N G.X[’g x G.hg. Let (V, V') be in this intersection. If
V is not a Cartan subalgebra, for some g in G, g(V) = Vg and g(V’) = bg since by is the set of semisimple
elements contained in Vg. Let suppose that V is a Cartan subalgebra, for some g in G, g(V) = b and g(V’)
is an element of G.hg contained in b. In particular, g(V”) contains a subregular element. So, g(V’) = b, for
some positive root @. Moreover, w(a) = 8 for some w in W(R) since g(V’) is in G.hg, whence wg(V’) = bg
and (V, V') is in G.Yp, whence the assertion.

(iv) According to (iii), it suffices to prove

G.YgN G.X[’g x Grp_1(g) C G.Xé x G.hg

since G_Yﬁ is a projective variety. According to (i) and Lemma 1.4, G.Yg = G.B.(Zg x {bg}). Let (V, V")
be in G_YB such that V is in X[’g. Then, for some g in G, (g(V), g(V")) is in B.(Zg X {bg}) so that g(V")
is contained in bg + ug. According to (i), for some b in B, bg(V) is in Zg and bg(V’) is contained in
(b +1g) N ( + ¢°). Hence bg(V’) = bz and V' is in G.lg, whence the assertion.

(v) Let denote by sg the subalgebra of g generated by ¢? and g7P. Let T'é be the normalizer of bz in G
and let Zé be the closure in Gry(g) of the orbit of ) under Té' Since the normalizer of bz in g equals b + sg,
Zé is the set of subspaces of g generated by bz and an element of s \ {0} so that Z} is isomorphic to P2(k).

B
Moreover, G.Yg equals G.(Zé x{bg}) since G.Yp = G.(Zg X {bg}) by (i), and one has a commutative diagram

G Xy (Zg % {hph)° G/Tyx G.Yg

G.Yg

The canonical projection G.Yg — G.hg gives a morphism G.Yg — G/ T'é whence an inverse ¢ of the
diagonal arrow. Hence G.Y3 is isomorphic to G Xy (Zé x {hg}) so that G.Yg is smooth since G/ Té and
Zé x {bg} are smooth, whence the assertion. |

Let denote by X, and (G.X), the normalizations X of G.X and let denote by 6 and 6 the normalization
morphisms X;, — X and (G.X), — G.X respectively.

Proposition 5.20. (i) The open subset 0~1(G.X") of (G.X), is smooth and the restriction of © to 0~ (G.X")
is a homeomorphism onto G.X'.

(ii) The open subset 6 Y(X") of Xy, is smooth and the restriction of 0 to 0, Y(X") is a homeomorphism
onto X'.
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Proof. (i) By definition, X’ is the union of the X/,’s, @ € R,. Then, since all orbit of W(R) in R has a
nonempty intersection with I1, G.X’ is the union of the G.X llﬁ,s’ B € 11. So, it suffices to prove that for 8 in
11, G‘I(G.X[’g) is smooth and the restriction of 0 to G‘I(G.Xé) is injective since 0 is closed and surjective
as a finite dominant morphism.

Since G.h is a smooth open subset of G.X, the restriction of 0 to 0~!(G.b) is an isomorphism onto G.b.
The variety G.Vp is an hypersurface of G.Xé. Hence 07! (G.Vp) is an hypersurface of the normal variety
G‘I(G.Xé) and its elements are smooth points of G‘I(G.Xé) since G‘I(G.X[’g) is a G-variety and since a
normal variety is smooth in codimension 1. As a result, 6‘1(G.Xé) is smooth since G.X[’g is the union of
G.h and G.V. Let x; and x; be in 6‘1(X[’3) such that 0(x1) = 0(x2) = V. According to Lemma 5.17,(iv)
and (v), the canonical projection from G.Y3 to G.Xé factorizes through the restriction of 6 to 6‘1(G.Xé)
since 071(G.X é) is the normalization of G.X},, whence a commutative digram

G.Y; - 071(G.X})

N

G'XB

with 0, finite and surjective. Let y; and y, be in G.Yé such that 0,(y;) = x; for j = 1,2. Since Vg is the
image of y; and y; by the canonical projection onto G.Xé and since Dy is the set of semisimple elements
contained in Vg, y1 = y; and x; = x;. Hence the restriction of 0 to G‘I(G.X[’g) is injective since 0 is
G-equivariant and since G.X é is the union of G.h and G.Vp.

(ii) According to Corollary 5.16,(ii), 661(X’) is an open subset of X;,. Since X" is the union of the X,’s,
a € R, it suffices to prove that for @ in R4, 6, 1(X?) is smooth and the restriction of 0 to 0, I(x2) is
injective since 0y is closed and surjective as a finite dominant morphism.

Let @ be in R, and let B in IT such that B is in the orbit of @ under W(R). Since B.}) is a smooth
open subset of B.X, the restriction of 6 to 6 Y(B.h) is an isomorphism onto B.h. The variety B.V,, is an
hypersurface of X7,. Hence 0, 1(B.V,) is an hypersurface of the normal variety 0y '(X?) and its elements are
smooth points of 6 Ix ! ) since 0, Ix !)is a B-variety and since a normal variety is smooth in codimension
1. As aresult, 6 1(X?) is smooth since X/, is the union of B.h and B.V,. Since f is in the orbit of @ under
W(R), G.X;, = G.X},. Moreover, the varieties G x5 0 1(Xé) and G x 0, (X},) are smooth as fiber bundles
over a smooth variety with smooth fibers, whence a commutative diagram

G Xp egl(X[;) — G‘I(G.X[’g) ~— G xp0,'(X})

| ! |

Gxp Xy ——— G.Xy ~——— G xp X,,

by [H77, Ch. II, Proposition 4.1]. By Lemma 1.4, the horizontal arrows are projective morphisms. Indeed,
since a regular element is contained in finitely many Borel subalgebras, their fibers are finite so that they
are finite. Since B.}) is an open subset of X/, and X[’g, G Xp 661(Xé) and G Xp 661(X(’1) have the same
field of rational functions. As a result, since these two varieties are normal, there exists a G-equivariant
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isomorphism from G Xpg eal(xp onto G Xp 6(‘)1(X(’1) by [H77, Ch. II, Proposition 4.1]. According to
Lemma 5.17,(ii), the restriction of 6¢ to 8, 1(X[’v,) is an isomorphism so that the first down arrow in the
above diagram is an isomorphism. Moreover, the restriction to all fiber of G X 6 Ix é) of the morphism

G xp 65 (X)) — 07'(G.X})

is injective. Hence the restriction of 6 to 6 ! (X, is injective since the restriction of 0 to p-! (G.Xé) is too
by (ii), whence the assertion. O

6. ON THE GENERALIZED ISOSPECTRAL COMMUTING VARIETY.

Let k > 2 be an integer. Let denote by C% the closure of G.b* in g* with respect to the diagonal action
of G in g* and let set C® := 71 (C®)). The varieties €% and C* are called generalized commuting variety
and generalized isospectral commuting variety respectively. For k = 2, G;k) is the isospectral commuting
variety considered by M. Haiman in [Ha99, §8] and [Ha02, §7.2].

6.1. Let set:

E® .= {(u,xl,...,xk)eXxbkIuaxl,...,uaxk}

Lemma 6.1. Let denote by E%" the intersection of E® and Ub x (Breg,ss N b)* and for win W(R), let
denote by 0,, the map

E® — o xpt  (uxr,.x0) o (x0, WD, -, W)

(1) Denoting by X the image ofE(k) by the projection (u, x1, ..., xXg) = (X1, ...,Xk), Xox is the closure
ofB.bk in B* and CW js the image of G X Xo ;. by the map (g, x1,....x¢) = (g(x1), ....8(xx)).
(i) For all w in W(R), 6,,(E**) is dense in 6,,(E®).

Proof. (i) Since X is a projective variety, ¥ is a closed subset of b¥. The variety E® is irreducible of
dimension 7 + k¢ as a vector bundle of rank k¢ over the irreducible variety X. So, B.({h} x b¥) is dense in
E® and ¥ is the closure of B.h* in b¥, whence the assertion by Lemma 1.4.

(i1) Since U.h X (greg,ss N b)* is an open susbet of X X b, E®&* is an open subset of E®_ Moreover, it is
a dense open subset since E® is irreducible as a vector bundle over the irreducible variety X, whence the
assertion since 6,, is a morphism of algebraic varieties. O

6.2. Let s be in h and let G* be the centralizer of s in G. According to [Ko63, §3.2, Lemma 5], G°® is
connected. Let denote by R; the set of roots whose kernel contains s and let denote by W(XR;) the Weyl
group of R;. Let 35 be the centre of g°.

Lemma 6.2. Let x = (x1,...,x;) be in C® verifying the following conditions:

(1) s is the semisimple component of x1,
(2) for z in Py, the centralizer in g of the semisimple component of 7 has dimension at least dim g°.

Then fori=1,...,k, the semisimple component of x; is contained in 3.
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Proof. Since x is in e [x;, x i1 = 0for all (7, j). Let suppose that for some i, the semisimple component
X;s of x; is not in 35. One expects a contradiction. Since [x, x;] = 0, for all #in k, s+ £x; ¢ is the semisimple
component of x| + tx;. Moreover, after conjugation by an element of G°, one can suppose that x; is in
h. Since R is finite, there exists 7 in k* such that the subset of roots whose kernel contains s + 7x; is
contained in R;. Since x; is not in 3,, for some a in Ry, (s + 1x;5) # 0 that is g**+*s is strictly contained
in g¢*, whence the contradiction. O

For w in W(R), let set:
C,:=G*wB/B  B" := wBw!

The following lemma results from [Hu95, §6.17, Lemma].

Lemma 6.3. Let B be the set of Borel subalgebras of g and let B be the set of Borel subalgebras of g
containing s.

(i) For all win W(R), C,, is a connected component of B.

(i) For (w,w’) in W(R) x W(R), C,, = C, if and only if w'w™" is in W(Ry).

(iii) The variety C,, is isomorphic to G*/(G* N BY).

For x in B, let denote by B, the subset of Borel subalgebras containing P.

Corollary 6.4. Let x = (x1,...,x;) be in CH. Let suppose that x verifies Conditions (1) and (2) of
Lemma 6.2. Then the C,, N B,’s, w in W(R) are the connected components of ‘B,.

Proof. Since a Borel subalgebra contains the semisimple component of its elements and since s is the
semisimple component of x;, B, is contained in B;. As a result, according to Lemma 6.3,(i), every
connected component of B, is contained in C,, for some w in W(XR). Let set x; := (X1, ...,Xn). Since
[xi, x;] = O for all (i, j), P, is contained in g°. Let B* be the set of Borel subalgebras of ¢* and for y in
(0%)X, let 53; be the set of Borel subalgebras of g* containing P,. According to [Hu95, Theorem 6.5], B3
is connected. Moreover, according to Lemma 6.2, the semisimple components of xi, .. .,x; are contained
in 3, so that B} = B]. Let w be in W(R). According to Lemma 6.3,(iii), there is an isomorphism from
B to C,,. Moreover, the image of B;. by this isomorphism equals C,, N B,, whence the corollary. O

Corollary 6.5. Let x = (x1, . ..,x) be in C® verifying Conditions (1) and (2) of Lemma 6.2. Then = (x)
is contained in the set of the (xi, ... Xk, W(X1), ... W(Xks))'s with w in W(R).

Proof. Since y = noy,, 7' (x) is the image of y~!(x) by y,. Furthermore, v, is constant on the connected
components of y~!(x) since 7! (x) is finite. Let C be a connected component of y~!(x). Identifying
G xp b* with the subvariety of elements (u, x) of B x g¥ such that P, is contained in u, C identifies with
C,, N B, x {x} for some w in W(R) by Corollary 6.4. Then for some g in G* and for some representative
gw of win Ng(b), gg,,(b) contains P, so that

Yn(C) = {(x1, - -+ Xk, (g8w) ™' (x1), - - -, (88w) ™! (xi))}
By Lemma 6.2, x4,...,x;s are in 3, so that w‘l(x,;s) is the semisimple component of (ggw)‘l(x,-) for
i=1,...,k Hence
Ya(C) = {152 w19 ()
whence the corollary. O
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Proposition 6.6. The variety @gk) is irreducible and equal to the closure of G.i,(b%) in Bf,k).

Proof. Let denote by G.t,(b¥) the closure of G.1y(HY) in Bg‘). Since 7 is G-equivariant, I](G.Ln(bk)) =
G.b*. Hence 1(G.ty(h%)) = C® since 7 is a finite morphism and since C® is the closure of G.H* in g

by definition. Moreover, G.,(h¥) is irreducible as the closure of an irreducible set. So, it suffices to
prove e;"’ = G.,(H%). In other words, for all x in C®), n‘l(x) is contained in G.t,(b¥). According to
Lemma 3.9,(ii), Bl(qk) is a GLy(k)-variety and 7 is GL;(k)-equivariant. As a result, since C%® is invariant
under GLy(k), for x in €%, n~!(x’) is contained in G.t,(b*) for all x’ in PX such that P, = P, if n~'(x)
is contained in G.t,(b¥). Then, according to Lemma 6.2, since 1 is G-equivariant, it suffices to prove that
7~ (x) is contained in G.i,(B%) for x in X N p verifying Conditions (1) and (2) of Lemma 6.2 for some
sinb.
According to Corollary 6.5,

17 () O, X W), - W) | w € W(R)} with x = (xp,....x%)
For s regular, Py is contained in h and x; = x;s fori = 1, ..., k. By definition,

WX, W), wxy), - - . w(xp)) € (B

and for g,, a representative of w in Ng(b),

g;vl w(xy), ... wlxp), w(xp), ..., wlxp) = (x1, ..., x5, w(xy), ... . w(xk))

Hence 7~!(x) is contained in G.i,(H5). As a result, according to the notations of Lemma 6.1, for all w
in W(R), 6,,(E%*) is contained in G.t,(h*). Hence, by Lemma 6.1,(ii), 0,,(E®) is contained in G.t,(H%),
whence the proposition. O

6.3. According to Corollary 3.8,(iii), the variety @' (B®) is invariant under the action of W(R)* in X*
and according to Proposition 3.10, Bflk) is an irreducible component of w~!(B®) and 7 is the restriction
of w to B;k).

Lemma 6.7. Let @ be the restriction to S(h)* of the canonical map from k[quk)] to k[@gk)].
(1) The subvariety (3;") of X* is invariant under the diagonal action of W(R) in X*.
(i1) The map @ is an embedding of S(H)®* into k[@l(qk)]. Moreover, ®(S(H)>¢) equals k[@g‘)]G.
(iii) The image of (SH)®)V® by ® equals k[CH1°.

Proof. (i) For all w in W(RR) and for all representative g,, of w in W(R),

(X1, X, w(xy), ..., w(xg)) = gv_vl.(w(xl )y oo WXk, w(xp), ..., w(xy))

for all (x1,...,xz) in B*. As a result, for all w in W(R), w.t,(H%) is contained in G..,(5%). Hence G.i,(HF)
is invariant under the diagonal action of W(R) in X* since the actions of G and W(R)* in X* commute,
whence the assertion.

(i1) According to Corollary 3.12,(i), NGO equals k[Bflk)]G. Moreover, for all P in S(h)®* and for all x
in ¥, Pety(x) = P(x). Hence @ is injective by Proposition 6.6. Since G is reductive, k[@qu)]G is the image
of k['Bflk)]G by the quotient morphism, whence the assertion.

(iii) Since G is reductive, k[CP1C is the image of k[BW]C by the quotient morphism, whence the
assertion since (S(h)*)V® equals k[B®1 by Corollary 3.12,(ii). |
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Let identify S(5)** to a subalgebra of k[C¥] by ®.

Proposition 6.8. Let Cl(qk) and C® be the normalizations of Cl(qk) and C®,
(i) The variety C® is the categorical quotient of CX under the action of W(R).
(ii) The variety C®) is the categorical quotient of CX under the action of W(R).

Proof. (i) According to Proposition 3.10,(ii), k[B®] is generated by k[B®] and S(p)**. Since € =
17~ 1(€M) by Proposition 6.6, the image of k[B®] in k[€¥] by the restriction morphism equals k[C¥)].
Hence k[@g‘)] is generated by k[C®] and S(H)®*. Then, by Lemma 6.7,(iii), k[@l(,k)]w(y) = k[CP].

(ii) Let K be the fraction field of k[(ﬂqu)]. Since quk) is a W(R)-variety, there is an action of W(R) I’IL K
and K™ is the fraction field of k[@,(]k) 1" since W(R) is finite. As a result, the integral closure k[@,(]k) ]
of k[€¥] in K is invariant under W(R) and k[C®] is contained in k[CP]. Let a be in kK[€X1"® . Then a
verifies a dependence integral equation over k[@,(]k) 1,

1

at+ap_1d" +-+ay=0

whence | |
"t (e Z Wty )a" e —— Z w.ag =0
W weW(R) W weW(R)
since a in invariant under W(R) so that a is in k[é?k/)], whence the assertion. m|

7. DESINGULARIZATION.

Let k > 2 be an integer. Let X, X', X;,, 0p be as in Subsection 5.6. Let denote by X], the inverse image
of X’ in X,,. According to Proposition 5.20, X} is a smooth open subset of X, and according to [Hir64],
there exists a desingularization (I', m,) of X; such that the restriction of m, to 7, 1(X{,) is an isomorphism
onto X]. Let set m = Bpemry, so that (I', 7) is a desingularization of X. Let recall that X is the closure in i
of B.h* and let set ¥ := G xp Xox- Then Xy is a closed subvariety of G Xp b,

Lemma 7.1. Let E be the restriction to X of the tautological vector bundle of rank € over Gry(b) and let
7’ be the canonical morphism from E to b.

(1) The morphism 1’ is projective and birational.

(ii) Let v be the canonical map from n*(E) to E. Then 1T := 7’ov is a B-equivariant birational projective
morphism from n*(E) to b. In particular, 7*(E) is a desingularization of b.

Proof. (i) By definition, E is the subvariety of elements (i, x) of X X b such that x is in u so that 7’ is the
projection from E to b. Since X is a projective variety, 7’ is a projective morphism and 7'(E) is closed in
b. Moreover, 7/(E) is B-invariant since 7’ is a B-equivariant morphism and it contains b since f) is in X. As
aresult, 7'(E) = b. By (i), for x in Byeg, (")~1(x) = {(b, x)} since g* = h. Hence 7’ is a birational morphism
since B.Dyg is an open subset of b.

(ii) Since E is a vector bundle over X and since 7 is a projective birational morphism, v is a projective
birational morphism. Then 7 is a projective birational morphism from 7*(E) to b by (i). It is B-equivariant
since v and 7’ are too. Moreover, 7*(FE) is a desingularization of b since 7*(FE) is smooth as a vector bundle
over a smooth variety. O
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Let denote by i the canonical projection from 7*(E) to I'. Then, according to the above notations, one
has the commutative diagram:

A(E) T
b/ E X

Lemma 7.2. Let E® be the fiber product n*(E) Xy -+ Xy 7°(E) and let T be the canonical morphism
from E® o bk,

(i) The vector bundle E® over T is a vector subbundle of the trivial bundle T x b*. Moreover, E® has
dimension k€ + n.

(ii) The morphism 7y is a projective birational morphism from E® onto ¥y;. Moreover, E® is a
desingularization of Xy in the category of B-varieties.

Proof. (i) By definition, E® is the subvariety of elements (i, x1, ...,xx) of I' x b* such that xy,...,x; are
in 7(u). Since X is the closure of B.h, X and I' have dimension n. Hence E® has dimension k¢ + n since
E™® is a vector bundle of rank k¢ over I.

(i1) Since I is a projective variety, Ty is a projective morphism and T(EW)Y) = Xox by Lemma 6.1,(i).

For (x1,...,x;) in bfeg,sy lel(xl, cooxe) = {(@, (xq, ... ,xx))) since g*! is a Cartan subalgebra. Hence 7
is a birational morphism, whence the assertion since E®) is a smooth variety as a vector bundle over the
smooth variety I'. O

Let set 9 := G xp (I' x b¥). The canonical projections from G X I’ x b* to G x T and G x b* define
through the quotients morphisms from ) to G Xg I" and G Xp bk, Let denote by ¢ and { these morphisms.
Then one has the following diagram:

plj G Xp bk
S l)’n
GxpT 3K

The map (g, x) — (g, Ti(x)) from G x E® to G x b¥ defines through the quotient a morphism 7 from
G x3 E® to ¥;.

Proposition 7.3. Let set § := yoy.

(i) The variety G xg E® is a closed subvariety of ).

(i1) The variety G Xp E® is a vector bundle of rank k€ over G xg I'. Moreover, G XgI' and G Xp E®
are smooth varieties.

(iii) The morphism & is a projective birational morphism from G xg E® onto G;k). Moreover G xg E®
is a desingularization of Cl(qk).

Proof. (i) According to Lemma 7.2,(i), E® is a closed subvariety of I X b¥, invariant under the diagonal
action of B. Hence G x E® is a closed subvariety of G X I' X b¥, invariant under the action of B, whence
the assertion.
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(ii) Since E® is a B-equivariant vector bundle over I', G xp E® is a G-equivariant vector bundle over
G xpT'. Since G xpI is a fiber bundle over the smooth variety G/B with smooth fibers, G XgI " is a smooth
variety. As a result, G xg E® is a smooth variety.

(iii) According to Lemma 7.2,(ii), T is a projective birational morphism from GxzE® to ¥;. Since Xox
is a B-invariant closed subvariety of bk, X, is closed in G x bX. According to Lemma 6.1,(i), y(X;) = ek,
Moreover, y,(Xy) is a closed subvariety of Bl(qk) since 7, is a projective morphism by Lemma 1.4. Hence

Yn(Xp) = (Bg‘) by Proposition 6.6. For all z in G.Ln(bfeg), |y;1(z)| = 1. Hence the restriction of y, to X; is
k

reg) 1S dense in (B;k). Moreover, this morphism is projective

a birational morphism onto @flk) since G.ty(h

since vy, is projective. As a result, & is a projective birational morphism from G xg E® onto G;k) and
G xp EW is a desingularization of G;k) by (ii). O

The following corollary results from Lemma 7.2,(ii), Proposition 7.3,(iii) and Lemma 1.1.

Corollary 7.4. Let E’E:)Tk and Cl(qk) be the normalizations of X and Gg‘) respectively. Then k[i:{k] and

k[(fl(qk)] are the spaces of global sections of Ogw and Ogy,pw respectively.

8. RATIONAL SINGULARITIES

Let k > 2 be an integer. Let X, X', X;,, 00, X/, I, my, 71, E, E®, W, v, T, Ty be as in Section 7. One has
the commutative diagram:

gl T Xox

Yk

with i the canonical projection from E® onto I

8.1. According to the notations of Subsection 5.1, let denote by S, the closure of U(b,) in b. For 8 in II,
let set:

ug = @aemw} ¢ bgi=bpdug

Lemma 8.1. For a in R, let V), be the set of subregular elements belonging to b,.
(i) For a in R, S, is a subvariety of codimension 2 of b. Moreover, it is contained in b \ Dyeg.
(11) Forﬂ in H, S'g = bﬁ.
(iii) The S ,’s, @ € Ry, are the irreducible components of b \ Dyeg.

Proof. (i) For xin b, 8* = b + kx,. Hence U(b,) has dimension n — 1 + ¢ — 1, whence the assertion since
U(by,) is dense in S, and since by, is contained in b \ Dyeg.

@ii) For Bin I1, U (b;,) is contained in bg since by is an ideal of b, whence the assertion by (i).

(iii) According to (i), it suffices to prove that b \ by, is the union of the §,’s. Let x be in b \ Dreg.
According to [V72], for some g in G and for some g in II, x is in g(bg). Since bg is an ideal of b, by
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Bruhat’s decomposition of G, for some b in B and for some w in W(R), b~!(x) is in w(bg) N b. By
definition,
w(bg) = w(bp) @ wig) = bup @ P @
@R \{B}
So,
w(bg) Nb = g S g with g := () 9"

aeR+\ (B}
w(a@)eR+

The subspace 11y of 1 is a subalgebra, not containing g, Then, denoting by Uy the closed subgroup of
U whose Lie algebra is aduy,

Uo(bwp)) = w(bg) ND
since the left hand side is contained in the right hand side and has the same dimension. As a result, x is in
S () since S, is B-invariant, whence the assertion. O

’

Let g, be the set of regular elements x such that x; is regular or subregular and let set by, := gj., N .

Lemma 8.2. (i) The subset b, of b is a big open subset of b.

reg

(i1) The subset g;eg of g is a big open subset of g.

Proof. Let x be in g;eg \ Greg,ss- Let W be the set of elements y of g* such that the restriction of ady to
[xs, g] is injective. Then W is an open subset of g, containing x, and the map

GxXW—g (gy)r— 8

is a submersion. Let 3 be the centre of g™ and let set 3’ := WnN3. For some open subset W’ of W, containing
x, for all y in W’, the component of y on 3 is in 3’. Since [g*, g*] is a simple algebra of dimension 3,
W’ N greg is contained in g;eg and G(W’ N greg) is an open set, contained in g;eg and containing x. As a
reg 1S an open subset of b.

(1) Let suppose that b \ b;eg has an irreducible component X of codimension 1 in b. One expects a
contradiction. Since X is invariant under B, 2N} is the image of X by the projection x — X by Lemma 1.5.
Since X has codimension 1 in b, XN =hor X =X NDH+ u Since X does not contain regular semisimple
element, ¥ N1 is an irreducible subset of codimension 1 of ), not containing regular semisimple elements.
Hence X N §) = b, for some positive root and X N (h;, + %) N gre, is not empty, whence the contradiction.

(ii) Since b \ b;eg is invariant under B, g \ g;eg =G\ bﬁeg) and

result, gy, is an open subset of g and b

’
reg

dimg \ g;eg <n+dimb\b

whence the assertion by (i). O

Setting breg 0 := Dreg and breg | := b;eg, let V. ; be the subset of elements x of X( 4 such that Py N breg ; is
not empty for j =0, 1.

Proposition 8.3. For j = 0,1, let V];j be the subset of elements x = (x1,...,xx) of Xox such that xy is in
Dreg.j-

(1) For j=0,1, V,;j is a smooth open subset of X .

(i) For j = 0,1, V} ; is a smooth open subset of Xo.

(iii) For j = 0,1, Vi ; is a big open subset of X .
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Proof. (i) By definition, V,;j is the intersection of Xo, and the open subset by ; X bk~ of b¥. Hence
V];j is an open subset of Xo . For xi in breg o, (X1,...,x) is in V];O if and only if xp,...,x; are in g*' by
Corollary 5.3,(ii) and Lemma 7.2,(ii) since g*' is in X. According to [Ko63, Theorem 9], for x in Dy,
€1(x),...,e¢(x) is a basis of g*. Hence the map

0
breg X Mk—l,t’(k) — V];()

. . ¢ t

(x,(aij 1 <i<k=1,1<j<0))— (x5, 25 a1,j&/(X), ..., X ak-1,j&(X))
is a bijective morphism. The open subset by, has a cover by open subsets V such that for some ey, ... e,
in b, £1(x),....e¢(x),e1,...,e, is a basis for all x in V. Then there exist regular functions ¢y, ...,p, on

V X b such that

¢
V- Z @j(x,v)ej(x) € span(ey,...,e,)

j=1
for all (x,v) in V X b, so that the restriction of 8 to V X M;_; ¢(k) is an isomorphism onto Xy, NV X pk-!
whose inverse is

(x15 - x0) = (xn, (@1 (xn, Xi), - ope(X1, X)), 0= 2,000, k)

As a result, 6 is an isomorphism and V/i,o is a smooth variety, whence the assertion since V,;l is an open
subset of V];O.

(i1) The subvariety X ; of b¥ is invariant under the natural action of GL (k) in b* and Vij = GLk(k).V,;j
by Lemma 1.6, whence the assertion by (i).

(iii) Since Vy 1 is contained in Vy, it suffices to prove the assertion for j = 1. Let suppose that Xqx\ Vi1
has an irreducible component X of codimension 1. One expects a contradiction. Since X and Vi are
invariant under B and GL(k), it is so for . Since X has codimension 1 in Xq, lel (2) has codimension 1
in E®. Let %) be an irreducible component of codimension 1 of 7, (£) and let set T := w4 (o). Since T
is invariant under GL(k), X is invariant under the action of GL(k) so that the intersection of (o)~ !(T)
and the null section of E® is contained in Xy. So, T is a closed irreducible subset of X. Moreover, T
is strictly contained in X. Indeed, if it is not so, for all u in U.Y, {u} X u* N Iy has dimension at most
k(I — 1) since X is invariant under S;. Then T has codimension 1 in X and X = (weysy) ™ (T). According
to Theorem 5.13,(ii), for some u in T, u N by 1 is not empty, whence the contradiction since for all x in
%, Py N byeg 1 is empty and since ¥ is contained in X for all u in 7. |

Let BFEE;{ be the normalization of Xy and let A; be the normalization morphism whence a commutative
diagram

gk T 3’65,7(
N

Tk
Xok

since (E®, 14) is a desingularization of X .

Corollary 84. For j = 0,1, Alzl(Vk, ;) is a smooth big open susbset of .%Ejk and the restriction of Ty to
lel (Vi,j) is an isomorphism onto /l]:1 Vi, j)-
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Proof. According to Proposition 8.3, V} ; is a smooth big open subset of X . Hence the restriction of Ay
to /1]:1 (Vi,j) 1s an isomorphism onto V; ;. For all x in Vj ;, lel (x) = (u, x) with u equal to the centralizer of
a regular element contained in P,. Hence, by Zariski Main Theorem [Mu88, /S 9], the restriction of 7 to
T;l(Vk’ ;) is an isomorphism onto Vj ; since Vi ; is smooth, whence the corollary. O

8.2. By definition, the restriction of 7, to 75! (X}) is an isomorphism onto X. Let identify 7;'(X}) and
X’ by m,. Let denote by Ej the restriction of E® to X’. According to Proposition 5.20,(ii), 0 is a
homeomorphism from 6 '(X") to X’. Moreover, U.h identifies with an open subset of X/ since it is a
smooth open subset of X’.

Lemma 8.5. Let set E,, := BS(E) and let denote by vy, the canonical morphism from E, to E.

(1) There exists a well defined projective birational morphism t,, from 7*(E) to E, such that v = vyo1y.
Moreover, E, is normal.

(i1) The Op+(gy-module Q) is free.

(iii) The variety E, is Gorenstein and has rational singularities.

Proof. (i) Since E|, is a vectore bundle over X;,, F, is a normal variety. Moreover, it is the normalization
of E and v, is the normalization morphism, whence the assertion by Lemma 7.1,(ii).

(ii) Let w be a volume form on b. According to Lemma 7.1,(ii), 7"(w) is a global section of Q+g),
without zero, whence the assertion since Q+(g) is locally free of rank 1.

(iii) According to (ii), Ox+(g) is isomorphic to Qq«g). So, by Grauert-Riemenschneider Theorem
[GRT70], Ri(Tn)*((‘),,*(E)) = 0 for i > 0. Hence E, has rational singularities by (i). Moreover, (74)+(Qz+(£))
is free of rank 1 by (ii). In other words, the canonical module of E; is isomorphic to O, that is E, is
Gorenstein. O

Let p, be the canonical projection from E, to X, and let set Ef,") = Ey Xp, 0 Xy

n

E,.
k factors

Corollary 8.6. (i) The variety E® is a desingularization of Egk).
(ii) The variety El(lk) is Gorenstein and has rational singularities.

Proof. (i) Let p be the canonical projection from E to X and let set E® = E X, -+ X, E. Since Egk) is
———————
k factors

a vector bundle over the normal variety X, Eflk) is a normal variety. Moreover, it is the normalization of
E® since X, is the normalization of X, whence a commutative diagram

E® o El(qk)

N

Ek)
According to Lemma 7.2,(ii), the diagonal arrow is a birational projective morphism. Hence the horizontal
arrow is birational and projective.

(i1) The variety Eflk) is a vector bundle over E,. So, by Lemma 8.5,(iii), Eflk) is Gorenstein and has
rational singularities. O
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Theorem 8.7. The normalization 3’65} of Xox has rational singularities.
Proof. By definition, the morphism 7; from E® to 3’65} factorizes through the morphism E® — Eflk) SO
that there is a commutative diagram

E® —— EP

BN

Xok
Moroeover, according to Lemma 7.2,(ii) and Corollary 8.6,(i), all the arrows are projective and birational.
According to the previous identifications, Ej is a smooth big open subset of Eflk) since X} is a smooth
big open subset of X,. According to Corollary 8.4, the open subset V| of X identifies with its inverse
images in 3’65} and Ej. Moreover, Vi is a big open subset of 3’65}. For all Cartan subalgebra ¢ of g,
contained in b, ¢* \ V.1 1s contained in (¢ \ greg)k so that it has codimension at least 2 in ¢* since k > 2.
As aresult, Vi is a big open subset of Eflk) since for all u in X’ \ U.b, u* is not contained in Vi.1- Then,
according to Corollary 8.6 and Proposition C.2, with ¥ = Eflk), 553} has rational singularities. O

8.3. Let denote by E* the dual of the vector bundle 7*(E) over I'.
Lemma 8.8. Let & be the sheaf of local sections of E*. Fori > 0 and for j > 0, H(I', S/(€*)) = 0.
Proof. Since y is the canonical projection from 7*(E) to I, O+g) equals ¢*(S(E*)) so that

)+ (Or(p)) = S(EY)

As aresult, for i > 0,
H'(x"(E), O () = HI(T, S(E") = (P HIT, $7(€")
JjEN
According to Lemma 7.1,(ii), 7*(E) is a desingularization of the smooth variety b. Hence by [El178],
H'(m"(E), O () = 0
for i > 0, whence
H'(T,S7(€") = 0

fori> 0and j> 0. O

According to the identification of g and g* by the Killing form, b_ identifies with b*. Let denote by E_

the orthogonal complement of 7*(E) in I' X b_ so that E_ is a vector bundle of rank n over I". Let £_ be
the sheaf of local sections of E_.

Corollary 8.9. Let J be the ideal of Or ® S(b_) generated by &_. Then, for i > 0, H(T',Jo) = 0 and
HI(T, &) = 0.

Proof. Since E_ is the orthogonal complement of 7*(E) in I" X b_, Jy is the ideal of definition of 7*(E) in
Or ® S(b_) whence a short exact sequence

0—Jo— Or® S(b.) — S(E")— 0
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and whence a cohomology long exact sequence
- — H(I,S(€%) — H*'(T, do) — H™'([, Or & S(b-)) — -+~
Then, by Lemma 8.8, from the equality
H/(T, Or @ S(b-)) = S(b-) & H'(T, Or)
for all i, one deduces H/(T',Jy) = O for i > 2. Moreover, since I is an irreducible projective variety,
HO(T', Or) = k and since 7*(E) is a desingularization of b, HO(T, S(£%)) = S(b_) so that the map
H(T, Or @ S(b-)) — H(I, S(€")
is an isomorphism. Hence H/(T',Jy) = O for i = 0,1. The gradation on S(b_) induces a gradation on

Or ® S(b_) so that Jg is a graded ideal. Since & _ is the subsheaf of local sections of degree 1 of Jo, it is
a direct factor of {Jy, whence the corollary. m]

Proposition 8.10. Let [, m be nonnegative integers.
(i) For all positive integer i, H(T", (£€")®™) = 0.
(ii) For all positive integer i,
HHI(F, 8%1 ®Or (8*)®m) =0
Proof. (i) According to Lemma 8.8, one can suppose m > 1. Since E™* is the dual of the vector bundle
n*(E) over I', the fiber product Ej, := E* X, - -+ X E* is the dual of the vector bundle E™ over I'. Let

Y be the canonical projection from E, to I' and let £, be the sheaf of local sections of E,(:f) Then O g
equals ¥ ,(S(E,)) and since E™ is a vector bundle over T, for all nonnegative integer i,

HI(E™, Op) = HIT, S(E3,) = (P HI(T, SU(E;,)
geN

According to Theorem 8.7, for i > 0, the left hand side equals 0 since E™™ is a desingularization of i&;
by Lemma 7.2,(iv). As a result, for i > 0,

H'(T,S™(€;,)) = 0

The decomposition of €, as a direct sum of m copies isomorphic to £* induces a multigradation of S(E*).

Denoting by §, ;. the subsheaf of multidegree (ji,...,jn), one has
Sm(8:1) = @ 'Sjl ..... im and 81 ..... 1 = (8*)®m
(J:] ...... fm.)ENm
J1++im=m

Hence for i > 0,

(il swemss jm)EN™
J1++im=m

whence the assertion.
(ii) Let m be a nonnegative integer. Let prove by induction on j that for i > 0 and for [ > j,

6) H™(L, €% @, (£9°m1) = 0
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By (i) it is true for j = 0. Let suppose j > 0 and (6) true for j — 1 and for all / > j — 1. From the short
exact sequence of Or-modules
0— & —Or&b.— & —0
one deduces the short exact sequence of Op-modules
0 — g%j ®0; (8*)®(m+l—j) — b ® gfu—l) R0, (8*)®(m+l—j) N 863(1’—1) R0, (8*)®(m+l—j+1) 50

From the cohomology long exact sequence deduced from this short exact sequence, one has the exact
sequence

HHj_l(F, EQE(j_l) R0, (8*)®(m+l_j+1)) N Hi+j(r’ g%j ®0, (8*)®('n+1—j))

N Hi+j(1—*, b O 8%(]_1) ®Or (8*)®(m+1_j))
for all positive integer i. By induction hypothesis, the first term equals O for all i > 0. Since
Hl+‘](r, b ®k 8?(]—1) ®Or (8*)®(m+l—j)) =bh_ ®k Hl+j(1", 8?(]_1) ®Or (8*)®(m+l—j))

the last term of the last exact sequence equals 0 by induction hypothesis again, whence Equality (6) and
whence the assertion for j = [. O

The following corollary results from Proposition 8.10,(ii) and Proposition B.2.

Corollary 8.11. For m positive integer and for | = (11, ... l,) in N,
HYI A () @0, -+ ®op A"(E-)) =0
for all positive integer i.

8.4. By definition, E® is a closed subvariety of I' x b*. Let denote by o the canonical projection from
I" x b* to ', whence the diagram

E®MC - T xpk

Nk

r
For j =1,...,k, let denote by G the set of injections from {1,..., j} to {I,...,k} and for o in S}y, let

set:
OrerS-) if i¢o(l,...,j}H

Jdo if iec({l,....j})
For jin {1,...,k}, the direct sum of the X, ’s is denoted by J;x and for o in S, K, is also denoted by

KO' = Ml ®O]" s ®OF Mk with Mj = {

K1) k-

Lemma 8.12. Let J be the ideal of definition of E® in Opyy.
(i) The ideal 0.(J) of Or & S(bX) is the sum of K11, ..., Kix.
(i) There is an exact sequence of Or-modules

0 — ik — Jk-14 — - — dix — 0:(d) — 0

(iii) For i > 0, H(" x b%, J) = 0 if H*/(T, gﬁf) =0forj=1,...,k
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Proof. (i) Let Ji be the sum of K g, ... ,Kix. Since Jy is the ideal of Or ® S(b_) generated by €_, Ji is a
prime ideal of Or ® S(b¥). Moreover, &_ is the sheaf of local sections of the orthogonal complement of
E in T x b_. Hence J; is the ideal of definition of E® in O @, S(b¥), whence the assertion.

.....

I=1
Then by (i), one has an augmented complex

d d d
0 — ik — Jk-14 — - — Jix — 0:(d) — 0

Let J the the subbundle of the trivial bundle I'x S(b_) such that the fiber at x is the ideal of S(b_) generated
by the fiber E_ , of E_ at x. Then Jy is the sheaf of local sections of J and the above augmented complex
is the sheaf of local sections of the augmented complex of vector bundles over I,

0— G XSW).J) — -+ — CPTXSO).T) = T — 0

According to Lemma B.3 and Remark B.4, this complex is acyclic, whence the assertion by Nakayama
Lemma since J and S(b_) are graded.

(iii) Let i be a positive integer such that H™I(T, H?) =0forj=1,...,k. Thenfor j=1,...,k and for
o in S, HY(I',X,) = 0 since K, is isomorphic to a sum of copies of H?j . Moreover, H(T', X;;) = 0
forl = 1,...,k since H([,Jo) = 0 by Corollary 8.9. Hence by (ii), since H® is an exact ¢-functor,
H(T, 0x(d)) = 0, whence the assertion since o is an affine morphism. ]

8.5. For m positive integer, for j nonnegative integer and for [ = (/y,...,[,;) in N, let set:
My =3y @0, AN"(E2) @, -+ ®o, A"(E2)

Lemma 8.13. Let j, m be positive integers and let [ be in N™.
(1) The Or-module Jy is locally free.
(i) There is an exact sequence

0 — S(b-) & M1 (1) — SO-) & Mt (nt,y — -~
— S(b_) & Mj—1,1, — M;; — 0
(iii) For i > 0, HH/*I(T, M) = 0.

Proof. (i) Let x be in I" and let E_ , be the fiber at x of the vector bundle E_ over I'. Then E_ is a
subspace of dimension n of b_. Let M be a complement of E_ , in b_. Since the map y — E_ , is a regular
map from I to Gr,(b_), for all y in an open neighborhood V of xin T,

b=E_ &M
Denoting by €_ y the restriction of £_ to V, one has

Oy & b_ = 8_’\/@0\/ x M
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so that
Oy & S(b-) = S(E_y) @ S(M)
whence
dolv = S+(€-v) ® S(M)

As aresult, Jg is locally free since & _ is locally free.

(ii) Since Jy is the ideal of Or ®, S(b_) generated by the locally free module £_ of rank »n and since €_
is locally generated by a regular sequence of the algebra Or ®, S(b_), having n elements, one has an exact
Koszul complex

0— S(O) & \"(E-) — -+ — S )& & — Jo — 0

whence a complex

0 — S(-) @ N"(E2)®o Mj—j; — -+ — S(b_) & E_- ®9 M1y
— Jo ®oy Mj_1;, — 0

According to (i), M;_;; is a locally free module. Hence this complex is acyclic.

(iii) Let prove the assertion by induction on j. According to Corollary 8.11, it is true for j = 0. Let
suppose that it is true for j — 1. According to the induction hypothesis, for all positive integer i and for
p=1,...,n,

HHHPHIE, S(02) @ Mot pp) = S(0-) @ HH P, My ) = 0
Then, according to (ii), H*/*(I", M) = 0 for all positive integer i since H*® is an exact 6-functor. O

Proposition 8.14. The variety Xy has rational singularities and its ideal of definition in Oy is the
space of global sections of J.

Proof. From the short exact sequence,
0— 3 — Opyr — Opw — 0
one deduces the long exact sequence
.. — H(T x 0¥, J) — S(b_)®* @, HI(I", Or) — HI(EW, Opw) — HTH(T x5, 9) — - -

According to Lemma 8.8, H(I', Or) = 0 for i > 0 and according to Lemma 8.12,(iii) and Lemma 8.13,(iii),
HY(T x b*, J) = 0 for i > 0. Hence, Hi(E(k), Opw) = 0 for i > 0, whence the short exact sequence

0 — HUT x b, 9) — S(_)* — HYEP, Opw) — 0

Since the image of S(b_)®* is contained in k[Xoxl, k[Xox] = k[%jk] by Corollary 7.4, whence the propo-
sition by Theorem 8.7 since E® is a desingularization of Xo; by Lemma 7.2,(iii). O

Corollary 8.15. (i) The normalization morphism of ng) is a homeomorphism.
(i) The normalization morphism of C® is a homeomorphism.
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Proof. (i) According to Proposition 3.10, one has the commutative diagram

G Xp %O,k(—> G Xp bk

| |

@ glk) C B glk)

Since Bflk) is a normal variety and since G xp b* is a desingularization of B%® and Bflk), the fibers of vy,
are connected by Zariski Main Theorem [Mu88, /S 9]. Then the fibers of the restriction of y, to G Xp Xo
are too since G Xp Xo is the inverse image of (Bl(qk). According to Proposition 8.14, G Xp X is a normal
variety. Moreover, the restriction of y, to G Xp Xo is projective and birational, whence the commutative
diagram

G XB XO,k G;k)

RN

e

with 4 the normalization morphism. For x in €%, 4~1(x) = 7m(y:'(x)). Hence u is injective since the
fibers of y, are connected, whence the assertion since y is closed as a finite morphism.
(i1) One has a commutative diagram

e gk) H @ gk)

I

ek — o e®
Ho

with po the normalization morphism. According to Proposition 6.8, all fiber of 7 or 77 is one single W(XR)-
orbit and by (i), u is bijective. Hence py is bijective, whence the assertion since py is closed as a finite
morphism. O

8.6. In this subsection k = 2. The open subset E, of E? identifies with an open subset of E\” and it is
B-invariant so that G Xp E; is an open subset of G Xp E® and G xp Eflz).

Lemma 8.16. (i) The variety G Xp Xo 2 has rational singularities.
(ii) The set G Xp V31 is a smooth big open subset of G Xp X 2.
(iii) The set G.ty(V2,1) is a smooth big open subset of ef’.
(iv) A global section of Qg..,(v,,) has a regular extension to the smooth locus of G Xp Xo3.

Proof. (i) According to Proposition 8.14, X, has rational singularities, whence the assertion since G Xp
X is a fiber bundle over the the smooth variety G/B with fibers isomorphic to X 5.

(ii) According to Proposition 8.3,(iii), V»,; is a smooth big open subset of Xpx. Then G Xp V1 is a
smooth big open subset of G Xp X7 since G/B is smooth.

(iii) Since y; '(G.tn(V2,1)) equals G Xp V5,1 and since 7y, is projective and birational, G.t,(V5) is a big
open subset of (31(12). Moreover, G X V5 is contained in the open subset y, L(W,) of G xp b% and the
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restriction of ¥, to y; !(W>) is an isomorphism onto W, by Proposition 3.10,(iv) so that the restriction of
vn to G Xp V1 is an isomorphism onto G.t,(V3,1), whence the assertion.
(iv) The assertion results from (iii) and Lemma C.1,(v). O

Corollary 8.17. The varieties (3;2) and C® have rational singularities.

Proof. According to the proof of Corollary 8.15, one has the following commutative diagram:

G Xp X0 n ey

RN

e

with u the normalization morphism. Moreover, yy is a projective and birational morphism. By
Lemma 8.16,(iii), u~' (G.tn(V3,1)) is a smooth big open subset of CE,Z) and the restriction of u to
u! (G.tn(V3,1)) is an isomorphism onto G.ty(V21). So, by Lemma 8.16,(iv), all global section of
Q,-1(G (v, has a regular extension to the smooth locus of G Xp Xo2. According to Proposition 7.3,(ib),
G x5 E® is a desingularization of € and E? is a desingularization of ¥, with a B-equivariant desingu-
larization morphism by Lemma 7.2,(ii). Hence G Xpg E@isa desingularization of @512) and G Xp X 2. As
a result by Lemma 8.16,(1) and [KK73, p.50], all global section of -1, (v,,) has a regular extension
to G xg E®. According to Proposition 6.6, iﬂ? is the normalization of the isospectral commuting variety
and according to [Gill, Theorem 1.3.4], Cflz) is Gorenstein. Hence bﬂKK73, p.50], (3;2) has rational
singularities. By Proposition 6.8,(ii), CD is the categorical quotient of G,(]z) under the action of W(R). So,
by [EI81, Lemme 1], C has rational singularities. i

APPENDIX A. NOTATIONS.

In this appendix, V is a finite dimensional vector space. Let denote by S(V) and A (V) the symmetric
and exterior algebras of V respectively. For all integer i, S'(V) and A’(V) are the subspaces of degree i for
the usual gradation of S(V) and A (V) respectively. In particular, S'(V) and /\i(V) are equal to zero for i
negative.

e For [ positive integer, let denote by &; the group of permutations of / elements.
e For m positive integer and for [ = (I, ...,l,,) in N, let set:
|7 := I+ +ly
S'(Vy:= SH(V)@ - @ St(V)
ANV = AV @@ A(V)

e For k positive integer and for [ = (/y,...,l,) in N” such that 1 < |/| < k, let denote by Ve the k-th
tensor power of V and let denote by &; the direct product S;, X - - - X&; . The group &; has a natural action
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on V¥ given by

(0150 som) (V- - 0vg) = Vo (1)® SV (1) V] 402 (1D * " OVI 05 (la)
@« ®v|ll_lm+(rm(l)® T ®v|ll_lm+(rm(lm)®v|ll+l® e ®Vk

The map
m
1
a»—>7rk1(a) :DI_ Z

is a projection of V* onto (V®)%!. Moreover, the restriction to (V®)® of the canonical map from V to
S(v) @, V&I is an isomorphism of vector spaces.

APpPENDIX B. SOME COMPLEXES.

Let X be a smooth algebraic variety. For M a coherent Ox-module and for k positive integer, let denote
by M® the k-th tensor power of M. According to Notations A, for all / in N”* such that |/| < k, there is an
action of &; on M®. Moreover, S/(\) and /\l (M) are coherent modules defined by the same formulas as
in Notations A.

B.1. Let D(V) be the algebra S(V) @, A(V) and let d be the A (V)-derivation of D(V) such that dvea =
le(v A a) for all (v,a) in V x A (V). The gradation of A (V) induces on D(V) a gradation so that D(V) is
a graded cohomology complex denoted by D*(V). For k positive integer, let denote by D; (V) the graded
subcomplex of D*(V) whose space of degree i is SKI(V) @ /\i(V):
k
Dy(V) = EBD V) =P s vye Nv)
i=0
Lemma B.1. Let k be a positive integer.
(1) The cohomology of D*(V) equals k.
(ii) For k positive, the subcomplex D} (V) of D*(V) is acyclic.

Proof. (i) We prove the assertion by induction on dim V. Let denote by d the differential of D*(V). The
cohomology in degree 0 of D*(V) equals k. For dimV = 1, D*(V) has no cohomology in positive degree
since dv"el = my"~!
dimV — 1. Let a be an homogeneous cocycle of positive degree d, let W be a subspace of codimension 1

of V and let v be in V \ W. Then a has a unique expansion

oy for all vin V. Let suppose that it is true for all vector space of dimension at most

a=v"(a, +a, Av)+---+ay+a; \v,

with @} and &’ in DY(W) and D! (W) respectively for i = 0, ..., m. From the equality
m m
da = Z Vi(dd, + (dd)) A v) + Z(—ndiv"—la; Av
i=0 i=1
one deduces that a;, and a;, are cocycles of degree d and d — 1 respectively of D*(V) since a is a cocycle.
Hence by induction hypothesis, a/, = db!, for some element b/, of D‘"!(W). If d > 1, by induction
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hypothesis again, a”/ = db’’ for some element b”, of DY"2(W). As a result,

m—1
a—dv" (b, + b, Av) = (—l)dmvm_lb;n AV + Z vi(a; +a’ Av).
i=0

So by induction on m, a is a coboundary. Let suppose d = 1. Since aj, is a cocycle, it is in k. Then

-1
1 & .
mi/ o m+ly _ m—177 i 7 1
a—dy bm+mamv )=-mV""" b, AV + E vi(a; +a;” Av).
i=0

So by induction on m, a is a coboundary, whence the assertion.
(i1) Since D*(V) is the direct sum of the subcomplexes D;(V), k € N, the assertion results from (i). O

B.2. Let € and M be locally free Ox-modules.

Proposition B.2. Let i be a positive integer and let suppose that
H(X, &% @9, M) =0

for all nonnegative integers j, k.
(1) For all positive integers m and k and for all | in N™ such that |l| < k,

H'(X, S'(&) ®p, £*F 1 @y, M) =0
(i) For all positive integers ny, ny, k and for all (I, m) in N™ X N"2 such that |l| + |m| < k,
H'(X. S'(€) ®0, \"(€) ®0, £ @0, M) = 0
Proof. (i) Let U be an affine open cover of X so that the cohomology of the Cech complexes C*(U, £%)
and C*(U, S'(&)®p, E®*~) are the cohomology of the Ox-modules % and S'(€)®p, ¥ respectively.

The action of S; on €% induces an action on C*(U, £ ®0, M) commuting with its derivation denoted
by d. Let ¢ be a cocycle of degree i of

C* (U, S'(&) ®o, £ M ®y, M)

and let ¢ be the representative of @ in C/(U, £ ®9, M) i, Then ¢ is a cocycle of degree i of C*(U, E%F ®0y
M). By hypothesis, for some  in C*=' (U, £%* ®¢, M), ¢ = diy. Then, since ¢ is invariant under &; and
since d commutes with the action of S;, ¢ = dy*. Hence ¢ is the coboundary of the image of * in
C=1(U, S(&) ®p, £2*I @4y, M), whence the assertion.

(ii) Let suppose ny = 1 and let prove the assertion by induction on m. Since € is a locally free module,
according to Lemma B.1,(ii), one has a long exact sequence of Oy-modules,

0— S™(E) — S" (&) ®yy € — -+ — E®py A"T(E) — AN™(E) — 0
whence an exact sequence
0 — Sl(’”)(g) ®0, 8®(k—|ll—m) B0y M — Sl('"_”(g) ®0, e B0y 8®(k—|ll—m) ®0y M— .-

— §"(€) ®9, N"1(€) 0, M gy M
— Sl(g) ®0y A™E) ®0y & elk=lli=m) ®0y M—0
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with ) = (1, j) in N"*! for all j in N, since S/(€) ®p, 2" and M are locally free modules.
According to the induction hypothesis for j > 0,

Hi+j—l (X, Sl(j)(E) ®OX /\m—j(g) ®Ox 8®(k—|l|—m) ®Ox M) =0

Then,
H (X, S'(&) ®0, A\"(€) ®py £ @0, M) =0

since H* is an exact §-functor.

Let suppose the assertion true for n, — 1 and let prove the assertion by induction on m,,. According
to the induction hypothesis, it is true for m,, = 0. According to Lemma B.1,(ii), one has a long exact
sequence of Ox-modules,

0 — §"™2(&) — §™271(E) B, & — 11— E®, A"THE) — A™(E) — 0
Tensoring this sequence by the locally free module
5'(&) ®o, A" (€) ®o, £ @0, M
with m" = (my, ... ,m,,_1) and arguing as before, we deduce the equality
H'(X,S'(&) ®9, N"™(E) ®p, ¢ M gy M) =0
from the induction hypothesis, whence the assertion. O

B.3. Let W be a subspace of V and let set £ := V/W. Let Cﬂ")(V, W), n = 1,2,... be the sequence of
graded spaces over N defined by the induction relations:

cPvwy=v  cPiwy=w  cPvw) =0
CY(V, W) = Ve c§">(v, W) = c§"‘”<v, W) & Ve cﬁ.’i VW e W
fori>2and j> 1.

Lemma B.3. Let n be a positive integer. There exists a graded differential of degree —1 on CEn)(V, W)
such that the complex so defined has no homology in positive degree.

Proof. Let prove the lemma by induction on n. For n = 1, d is given by the canonical injection of W in
V. Let suppose that CE”_I)(V, W) has a differential d verifying the conditions of the lemma. For j > 0, let
denote by ¢ the linear map

PV, W) — C (VW) (asv, bew) +— (dasv + (=1)/bew, dbsw)

with a, b, v, w in C;"_l)(V, W), CE.':U(V, W), V, W respectively. Then ¢ is a graded differential of degree
—1. Let ¢ be a cycle of positive degree j of CE”)(V, W). Then ¢ has an expansion

d d
c= (Z a;®v;, Z biev;)
i=1 i=1
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with vq,...,vg a basis of V such that vi,...,vs is a basis of W and with ay,...,as and bq,...,by in
C;"_l)(V, W) and CY- (v, W) respectively. Since c is a cycle,

Jj-1
d . d
Z da,-cz»vi + (—1)j Z b,-®v,- =0
i=1 i=1

Hence b; = (—1)/*'da; fori=1,...,d so that

d d d d d d
c+ 00 (1 aiev;,00= () apvi+ )" awvi, Y (bievi + (=1 daev)) = () agevi + ) azevi, 0)
i=1 i=1 i=1 i=1 i=1 i=1

So one can suppose by, ...,by all equal to 0. Then ay,...,a, are cycles of degree j of CE"_D(V, W). By
induction hypothesis, they are boundaries of C E”_l)(V, W) so that ¢ is a boundary of C (.")(V, W), whence
the lemma. =

Remark B.4. The results of this subsection remain true for V or W of infinite dimension since a vector
space is an inductive limit of finite dimensional vector spaces.

APPENDIX C. RATIONAL SINGULARITIES.

Let X be an affine irreducible normal variety and let X’ be a smooth big open subset of X.

Lemma C.1. Let Y be an irreducible Gorenstein variety Y and let w be a projective birational morphism
from Y to X. Let denote by X the canonical module of Y. Let suppose that the following conditions are
verified:
(1) the open subset 1~ (X") of Y is big,
(2) the restriction of m to Y (X") is an isomorphism onto X'.
Let denote by J the space of global sections of X and let J be the localization of J on X.
(1) The algebra k[X] is the space of global sections of Oy and Y is a normal variety.
(ii) For all open subset O of X and for all local section a of J over O N X', a is the restriction to ON X’
of one and only one local section of J over O.
(iii) The Oy-modules n*(J) and X are equal.
(iv) For all injective k[ X]-module I, the canonical morphism

J ®x[X] Homk[x](J, H—1

is an isomorphism.
(v) All regular form of top degree on X’ has a unique regular extension to the smooth locus of Y.

Proof. () If Y/ — Y is a desingularization of Y, Y’ — X is a desingularization of X since 7 is projective
and birational. Moreover, all global section of Oy is a global section of Oy-, whence, by Lemma 1.1, k[ X]
is the space of global sections of Oy since X is normal. According to Conditions (1) and (2), al(X')is
a smooth big open subset of Y. So, by Serre’s normality criterion [Bou98, §1, no 10, Théoreme 4], Y is
normal since Y is Gorenstein.

(ii) Since J is the localization of J on X, it suffices to prove the assertion for O = X. Let a be a local
section of J over X’. According to (2), 7*(a) is a local section of K over 77! (X”). Since Y is Gorenstein,



COMMUTING VARIETY 59

X is locally free of rank 1. So, there is an affine open cover Vy,...,V; of Y such that the restriction of K
to V; is a free Oy,-module of rank 1. Let p; be a generator of this module. Setting Vl.’ =Vina (X)),
for some regular function a; on V!, a;p; is the restriction of 7*(a) to V;. According to (i), a; has a regular
extension to V; since V! is a big open subset of V; by Condition (1). Let denote by a; this extension. Then,
for 1 <i, j <[, the restrictions of a;p; and ajp; to V; N V; are two local sections of X over V; N V; which
are equal on V/ N Vj’.. Hence a;p; and a;p; have the same restriction to V; N V; since X is torsion free as
a locally free module. As a result, 7*(a) is the restriction to 77!(X") of a unique global section of K since
X is torsion free.

(iii) Let a be in k[ V;] ®x(x) J. By condition (2), for some regular function @’ on V/, a’ p; is the restriction
of a to V!. Since V; is normal and since V! is a big open subset of V;, a’ has a regular extension to V; so
that a is in ['(V;, X). Conversely, let a be in ['(V;, X). Since V/ is a big open subset of V;, for some open
subset V!” of X, V; is contained in n‘l(Vi’ ") and X" N V!’ equals n(V}). By Condition (2), for some a’ in
[(m(V!),d), n*(a’) is the restriction of a to V/. According to (ii), a’ is the restriction to (V) of a unique
local section a” of g over V/”. Then the restriction of n*(a”) to V; equals a since a and 7*(a’’) have the
same restriction to Vl.’ and since X is torsion free, whence the assertion.

(iv) Let denote by ¢ the canonical morphism

J ®yx) Homyxj(J, 1) — I asp — ¢(a)

Let x be in I and let a be in J \ {0}. Since / is an injective module, / is divisible so that x = bx’ for some
x’" in I. Denoting by ¢ the morphism ¢ + cx’ from J to I, y(bep) = x. So, i is surjective.

Let denote by K the kernel of ¢ and let suppose K different from 0. One expects a contradiction. Let ¢
bein K. Fori=1,...,1 let set:

Ji = k[V;] ®kx) J I :=k[Vi] ®kpxy 1
so that
k[Vi] ®xy J ®xy Homyx (J, 1) = J; ;) Homyy, (U5, 1)
and let denote by i; the canonical morphism
Ji ®xv;) Homyqy, (Ui, I;) —

so that the restriction of 7*(¢) to V; is in the kernel of ;. According to (iii), J; is the free k[V;]-module
generated by p; so that the morphism

I; — J; ®v,) Homyy, (Ui, ) x +— piegy with ex(ap;) = ax

is an isomorphism equals to the inverse of ;. Hence the restriction of 7%(¢) to V; equals 0. As a result,
7*(¢) = 0. Hence n*(Ox ®x1 K) = 0. Since K is different from 0, K contains a finitely generated
submodule K’, different from 0. Then, for some locally closed subvariety Xg: of X, Ox,, ®x) K’ is a
free Ox,,-module different from 0. Denoting, by 7k~ the restriction of 7 to ' (Xg), e (Ox,r Bkx) K )
is different from zero, whence the contradiction since it is the restriction to n}} (Xk) of m*(Ox ®xx) K').
(v) Let Y’ be the smooth locus of Y. According to Condition (2), a 1(X’) is a dense open subset of
Y’. Moreover, n~!(X’) identifies with X’. Let w be a differential form of top degree on X’. Since Qy is
a locally free module of rank one, there is an affine open cover Oy, ...,0f on Y’ such that restriction of
Qy to O; is a free Op,-module generated by some section w;. Fori =1,...,k, let set O} := O; N X’. Let
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w be a regular form of top degree on X”. Fori = 1,...,k, for some regular function a; on O}, a;w; is the
restriction of w to O}. According to Condition (1), O; is a big open subset of O;. Hence a; has a regular
extension to O; since O; is normal. Denoting again by g; this extension, for 1 < i, j < k, a;w; and aw;
have the same restriction to 0; N 0;. and O; N O; since Qy is torsion free as a locally free module. Let
w’ be the global section of Qys extending the a;w;’s. Then «’ is a regular extension of w to Y’ and this
extension is unique since X’ is dense in Y’ and since Qy- is torsion free. m]

Proposition C.2. Let suppose that there exist an irreducible Gorenstein variety Y, with rational singular-
ities, and a projective birational morphism xt from Y to X verifying Conditions (1) and (2) of Lemma C.1.
Then X has rational singularities.

Proof. Let Y’ be the smooth locus of Y. According to [Hir64], there exists a desingularization Z of
Y, with morphism 7, such that the restriction of 7 to 7!(¥”) is an isomorphism onto Y’. According
to Lemma C.1,(v), all regular differential form of top degree on the smooth locus of X has a regular
extension to Y’. Since Y has rational singularities and since Z is a desingularization of Y, all regular
differential form of top degree on the smooth locus of Y has a regular extension to Z by [KK73, p.50].
Hence all regular differential form of top degree on the smooth locus of X has a regular extension to Z.
Since Z is a desingularization of Y and since x is projective and birational, Z is a desingularization of X.
So, by [KK73, p.50] again, it remains to prove that X is Cohen-Macaulay.
Since Z, Y, X are varieties over k, one a has the commutative digrams

ZXT/Y YX”/X

Spec(k) Spec(k)

According to [Hi91, 4.3,(iv)], p'(k), ¢'(k), r'(k) are dualizing complexes over Z, Y, X respectively.
Furthermore, by [Hi91, 4.3,(ii)], p!(k)[—dimZ] equals Qz and since Y is Gorenstein, the cohomology
of q!(k)[—dimZ] is concentrated in degree 0 and equals the canonical module K of Y. Let set D :=
r'(k)[-dim Z] so that 7'(D) = X and (71)'(D) = Q by [Hi91, 4.3,(iv)]. Since 7 and 7 are projective
morphisms, one has the isomorphisms

R(D).(RAomz(Qz,Q7)) — RA0my(R(1).(Qz), K)

R(m).(RF#omy(K, X)) — RFAFomx(R(1).(X), D)
by [Hi91, 4.3,(iii)]. Since Q7 and X are locally free of rank 1,

’ Oz if i=0
H'(RAomz(Qz, Q7)) = { 0Z if i >0

i [ Oy if i=0
H'(Rsomy(K,K)) = { 0 if i>0

the left hand sides can be identified to R(7)..(O) and R(x).(X) respectively, whence an isomorphism

R(m):(Oy) — RAomx(R(m).(X), D)
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Let J be the space of global sections of K. According to Grauert-Riemenschneider Theorem [GR70],
denoting by J the localization of J on X,

RM.(Qz2) =X  R@1)(Qz) =7
whence R(r).(X) = J and one has an isomorphism

R(7).(Oy) — R omx(d, D)
According to Lemma C.1,(iv), there is an isomorphism
Je" Rs%omx(J, D) — D
in the derived category D*(X) of complexes bounded below of Ox-modules, whence an isomorphism
J & R(0).(Oy) — D

According to Lemma C.1,(iii), 7*(J) = K. Then, since J = R(r).()K), one has an isomorphism

J ®" R(@).(Oy) — R@.(K ® Oy)

by the projection formula [Mebk89, Appendice B]. So, since the right hand side equals J, there is an
isomorphism

J— D
in D*(X). As a result, the cohomology of the dualizing complex D of X is concentrated in degree 0.
Hence X is Cohen-Macaulay [El178]. O
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