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ON THE COMMUTING VARIETY OF A REDUCTIVE LIE ALGEBRA AND OTHER RELATED

VARIETIES.

JEAN-YVES CHARBONNEL AND MOUCHIRA ZAITER

Abstract. In this note, one discusses about some varieties which are constructed analogously to the isospectral com-

muting varieties. These varieties are subvarieties of varieties having very simple desingularizations. For instance, this is

the case of the nullcone of any cartesian power of a reductive Lie algebra and one proves that it has rational singulari-

ties. Moreover, as a byproduct of these investigations and the Ginzburg’s results, one gets that the normalizations of the

isospectral commuting variety and the commuting variety have rational singularities.
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1. Introduction.

In this note, the base field k is algebraically closed of characteristic 0, g is a reductive Lie algebra of

finite dimension, ℓ is its rank, dimg = ℓ + 2n and G is its adjoint group. The neutral element of G is

denoted by 1g.
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2 J-Y CHARBONNEL AND M. ZAITER

1.1. Notations. • For V a vector space, its dual is denoted by V∗ and the augmentation ideal of its

symmetric algebra S(V) is denoted by S+(V).

• All topological terms refer to the Zariski topology. If Y is a subset of a topological space X, let denote

by Y the closure of Y in X. For Y an open subset of the algebraic variety X, Y is called a big open subset

if the codimension of X \ Y in X is bigger than 2. For Y a closed subset of an algebraic variety X, its

dimension is the biggest dimension of its irreducible components and its codimension in X is the smallest

codimension in X of its irreducible components. For X an algebraic variety, OX is its structural sheaf,

k[X] is the algebra of regular functions on X and k(X) is the field of rational functions on X when X is

irreducible. When X is smooth, the sheaf of regular differential forms of top degree on X is denoted by

ΩX.

• For X an algebraic variety and for M a sheaf on X, Γ(V,M) is the space of local sections of M over

the open subset V of X. For i a nonnegative integer, Hi(X,M) is the i-th group of cohomology of M. For

example, H0(X,M) = Γ(X,M).

Lemma 1.1. Let X be an irreducible affine algebraic variety and let Y be a desingularization of X. Then

H0(Y,OY) is the integral closure of k[X] in its fraction field.

Proof. Let Xn be the normalization of X. According to [H77, Ch. II, Exercise 3.8], the desingularization

morphism factorizes through Xn so that Y is a desingularization of Xn. So one can suppose X = Xn. Then

k[X] is a subalgebra of H0(Y,OY). Moreover, H0(Y,OY) is a subalgebra of k(X) since Y is a desingulariza-

tion of X. According to [H77, Ch. II, Proposition 4.1], a morphism of affine varieties is separated. Then,

according to [EGAII, Corollaire 5.4.3], H0(Y,OY) is a finite extension of k[X] since it is finitely generated

and since the desingularization morphism is projective by definition, whence the lemma. �

• For K a group and for E a set with a group action of K, EK is the set of invariant elements of E under

K.

Lemma 1.2. Let A be an algebra generated by the subalgebras A1 and A2. Let K be a group with a group

action of K on A2. Let suppose that the following conditions are verified:

(1) A1 ∩ A2 is contained in AK
2

,

(2) A is a free A2-module having a basis contained in A1,

(3) A1 is a free A1 ∩ A2-module having the same basis.

Then there exists a unique group action of K on the algebra A extending the action of K on A2 and fixing

all the elements of A1. Moreover, if A1 ∩ A2 = AK
2

then AK = A1.

Proof. Let ml, l ∈ L be a basis of the A2-module A, contained in A1, and let M be the subspace of A

generated by the ml’s so that the canonical morphisms

M ⊗k A2 −→ A M ⊗k (A1 ∩ A2) −→ A1

are isomorphisms by Conditions (2) and (3). Hence there exists a unique group action of K on the space

A fixing all the elements of M and extending the action of K on A2. For (i, j) in L2, let denote by ai, j,k

the coordinate of mim j at mk in the basis ml, l ∈ L. According to Conditions (1) and (3), the ai, j,k’s are
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invariant under K. Let a, a′ be in A. Denoting by ai and a′
i

the coordinates of a and a′ at mi in the basis

ml, l ∈ L respectively, for all g in K, one has

g.aa′ = g.(
∑

(i, j)∈L2 mim jaia
′
j
)

= g.(
∑

k∈L mk(
∑

(i, j)∈L2 ai, j,kaia
′
j
))

=
∑

k∈L mk(
∑

(i, j)∈L2 ai, j,k(g.ai)(g.a
′
j
))

=
∑

(i, j)∈L2 mim j(g.ai)(g.a
′
j
)

= (g.a)(g.a′)

so that the action of K is an action on the algebra A, fixing all element of A1. Furthermore, a is in AK if

and only if the ai’s are in AK
2

since the ml’s are invariant under K. Hence AK = A1 if A1 ∩ A2 = AK
2

. �

• For E a set and k a positive integer, Ek denotes its k-th cartesian power. If E is finite, its cardinality

is denoted by |E|. If E is a vector space, for x = (x1, . . . ,xk) in Ek, Px is the subspace of E generated by

x1, . . . ,xk. Moreover, there is a canonical action of GLk(k) in Ek given by:

(ai, j, 1 ≤ i, j ≤ k).(x1, . . . ,xk) := (

k∑

j=1

ai, jx j, i = 1, . . . , k)

In particular, the diagonal action of G in gk commutes with the action of GLk(k).

• For a reductive Lie algebra, its rank is denoted by ℓa and the dimension of its Borel subalgebras is

denoted by ba . In particular, dima = 2ba − ℓa .

• If E is a subset of a vector space V , let denote by span(E) the vector subspace of V generated by E.

The grassmanian of all d-dimensional subspaces of V is denoted by Grd(V). By definition, a cone of V is

a subset of V invariant under the natural action of k∗ := k \ {0} and a multicone of Vk is a subset of Vk

invariant under the natural action of (k∗)k on Vk.

Lemma 1.3. Let X be an open cone of V and let S be a closed multicone of X ×Vk−1. Denoting by S 1 the

image of S by the first projection, S 1 × {0} = S ∩ (X × {0}). In particular, S 1 is closed in X.

Proof. For x in X, x is in S 1 if and only if for some (v2, . . . ,vk) in Vk−1, (x, tv2, . . . ,tvk) is in S for all t in

k since S is a closed multicone of X × Vk−1, whence the lemma. �

• The dual of g is denoted by g∗ and it identifies with g by a given non degenerate, invariant, symmetric

bilinear form 〈., .〉 on g × g extending the Killing form of [g, g].

• Let b be a Borel subalgebra of g and let h be a Cartan subalgebra of g contained in b. Let denote by R

the root system of h in g and let denote by R+ the positive root system of R defined by b. The Weyl group

of R is denoted by W(R) and the basis of R+ is denoted by Π. The neutral element of W(R) is denoted

by 1h. For α in R, the corresponding root subspace is denoted by gα and a generator xα of gα is chosen so

that 〈xα, x−α〉 = 1 for all α in R.

• The normalizers of b and h in G are denoted by B and NG(h) respectively. For x in b, x is the element

of h such that x − x is in the nilpotent radical u of b.

• For X an algebraic B-variety, let denote by G ×B X the quotient of G × X under the right action of B

given by (g, x).b := (gb, b−1.x). More generally, for k positive integer and for X an algebraic Bk-variety,
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let denote by Gk ×Bk X the quotient of Gk × X under the right action of Bk given by (g, x).b := (gb, b−1.x)

with g and b in Gk and Bk respectively.

Lemma 1.4. Let P and Q be parabolic subgroups of G such that P is contained in Q. Let X be a Q-variety

and let Y be a closed subset of X, invariant under P. Then Q.Y is a closed subset of X. Moreover, the

canonical map from Q ×P Y to Q.Y is a projective morphism.

Proof. Since P and Q are parabolic subgroups of G and since P is contained in Q, Q/P is a projective

variety. Let denote by Q ×P X and Q ×P Y the quotients of Q × X and Q × Y under the right action of P

given by (g, x).p := (gp, p−1.x). Let g 7→ g be the quotient map from Q to Q/P. Since X is a Q-variety,

the map

Q × X −→ Q/P × X (g, x) 7−→ (g, g.x)

defines through the quotient an isomorphism from Q ×P X to Q/P × X. Since Y is a P-invariant closed

subset of X, Q×PY is a closed subset of Q×P X and its image by the above isomorphism equals Q/P×Q.Y .

Hence Q.Y is a closed subset of X since Q/P is a projective variety. From the commutative diagram

Q ×P Y //

&&M
MM

MM
MM

MM
MM

Q/P × Q.Y

��
Q.Y

one deduces that the map Q ×P Y → Q.Y is a projective morphism. �

• For k ≥ 1 and for the diagonal action of B in bk, bk is a B-variety. The canonical map from G × bk

to G ×B b
k is denoted by (g, x1, . . . ,xk) 7→ (g, x1, . . . ,xk). Let B(k) and N(k) be the images of G × bk and

G × uk respectively by the map (g, x1, . . . ,xk) 7→ (g(x1), . . . ,g(xk)) so that B(k) and N(k) are closed subsets

of gk by Lemma 1.4. Let B
(k)
n be the normalization of B(k) and let η be the normalization morphism. One

has a commutative diagram:

G ×B b
k

γn //

γ
##G

GG
GG

GG
GG

B
(k)
n

η}}{{
{{
{{
{{

B(k)

Let N
(k)
n be the normalization of N(k) and let κ be the normalization morphism. One has a commutative

diagram:

G ×B u
k

υ
##H

HH
HH

HH
HH

υn // N
(k)
n

κ}}zz
zz
zz
zz

N(k)

with υ the restriction of γ to G ×B u
k.

• Let i be the injection (x1, . . . ,xk) 7→ (1g, x1, . . . ,xk) from bk to G×B b
k. Then ι := γ◦i and ιn := γn◦i are

closed embeddings of bk into B(k) and B
(k)
n respectively. In particular, B(k) = G.ι(bk) and B

(k)
n = G.ιn(bk).

• Let e be the sum of the xβ’s, β in Π, and let h be the element of h ∩ [g, g] such that β(h) = 2 for all β

in Π. Then there exists a unique f in [g, g] such that (e, h, f ) is a principal sl2-triple. The one parameter
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subgroup of G generated by adh is denoted by t 7→ h(t). The Borel subalgebra containing f is denoted by

b− and its nilpotent radical is denoted by u−. Let B− be the normalizer of b− in G and let U and U− be the

unipotent radicals of B and B− respectively.

Lemma 1.5. Let k ≥ 2 be an integer. Let X be an affine variety and let set Y := bk×X. Let Z be a closed B-

invariant subset of Y for the group action given by g.(v1, . . . ,vk, x) = (g(v1), . . . ,g(vk), x) with (g, v1, . . . ,vk)

in B × bk and x in X. Then Z ∩ hk × X is the image of Z by the projection (v1, . . . ,vk, x) 7→ (v1, . . . , vk, x).

Proof. For all v in b,

v = lim
t→0

h(t)(v)

whence the lemma since Z is closed and B-invariant. �

• For x ∈ g, let xs and xn be the semisimple and nilpotent components of x in g. Let denote by gx and

Gx the centralizers of x in g and G respectively. For a a subalgebra of g and for A a subgroup of G, let set:

ax := a ∩ gx Ax := A ∩Gx

The set of regular elements of g is

greg := {x ∈ g | dimgx = ℓ}

and let denote by greg,ss the set of regular semisimple elements of g. Both greg and greg,ss are G-invariant

dense open subsets of g. Setting hreg := h ∩ greg, breg := b ∩ greg, ureg := u ∩ greg, greg,ss = G(hreg),

greg = G(breg) and G(ureg) is the set of regular elements in the nilpotent cone Ng of g.

Lemma 1.6. Let k ≥ 2 be an integer and let x be in gk. For O open subset of greg, Px ∩ O is not empty if

and only if for some g in GLk(k), the first component of g.x is in O.

Proof. Since the components of g.x are in Px for all g in GLk(k), the condition is sufficient. Let suppose

that Px ∩O is not empty and let denote by x1, . . . ,xk the components of x. For some (a1, . . . ,ak) in kk \ {0},

a1x1 + · · · + ak xk ∈ O

Let i be such that ai , 0 and let τ be the transposition of Sk such that τ(1) = i. Denoting by g the element

of GLk(k) such that g1, j = aτ( j) for j = 1, . . . , k, g j, j = 1 for j = 2, . . . , k and g j,l = 0 for j ≥ 2 and j , l,

the first component of gτ.x is in O. �

• Let denote by S(g)g the algebra of g-invariant elements of S(g). Let p1, . . . , pℓ be homogeneous gener-

ators of S(g)g of degree d1, . . . ,dℓ respectively. Let choose the polynomials p1, . . . ,pℓ so that d1≤ · · · ≤dℓ.

For i = 1, . . . , dℓ and (x, y) ∈ g× g, let consider a shift of pi in direction y: pi(x+ ty) with t ∈ k. Expanding

pi(x + ty) as a polynomial in t, one obtains

pi(x + ty) =

di∑

m=0

p
(m)

i
(x, y)tm; ∀(t, x, y) ∈ k × g × g(1)

where y 7→ (m!)p
(m)

i
(x, y) is the derivate at x of pi at the order m in the direction y. The elements p

(m)

i

defined by (1) are invariant elements of S(g) ⊗k S(g) under the diagonal action of G in g × g. Let remark

that p
(0)
i

(x, y) = pi(x) while p
(di)
i

(x, y) = pi(y) for all (x, y) ∈ g × g.
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Remark 1.7. The family Px := {p
(m)
i

(x, .); 1 ≤ i ≤ ℓ, 1 ≤ m ≤ di} for x ∈ g, is a Poisson-commutative

family of S(g) by Mishchenko-Fomenko [MF78]. One says that the family Px is constructed by the

argument shift method.

• Let i ∈ {1, . . . , ℓ} be. For x in g, let denote by εi(x) the element of g given by

〈εi(x), y〉 =
d

dt
pi(x + ty) |t=0

for all y in g. Thereby, εi is an invariant element of S(g) ⊗k g under the canonical action of G. According

to [Ko63, Theorem 9], for x in g, x is in greg if and only if ε1(x), . . . ,εℓ(x) are linearly independent. In this

case, ε1(x), . . . ,εℓ(x) is a basis of gx.

Let denote by ε
(m)
i

, for 0 ≤ m ≤ di − 1, the elements of S(g × g) ⊗k g defined by the equality:

εi(x + ty) =

di−1∑

m=0

ε
(m)
i

(x, y)tm, ∀(t, x, y) ∈ k × g × g(2)

and let set:

Vx,y := span({ε
(0)

i
(x, y), . . . ,ε

(di−1)

i
(x, y), i = 1, . . . , ℓ})

for (x, y) in g × g. According to [Bol91, Corollary 2], Vx,y has dimension bg if and only if Px,y \ {0} is

contained in greg.

1.2. Main result. By definition, B(k) is the subset of elements (x1, . . . ,xk) of gk such that x1, . . . ,xk are

in a same Borel subalgebra of g. This subset of gk is closed and contains two interesting subsets: the

generalized commuting variety of g, denoted by C(k) and the nullcone of gk denoted by N(k). According

to [Mu88, Ch.2, §1, Theorem], for (x1, . . . ,xk) in B(k), (x1, . . . ,xk) is in N(k) if and only if x1, . . . ,xk are

nilpotent. By definition, C(k) is the closure in gk of the set of elements whose all components are in a same

Cartan subalgebra. According to a Richardson Theorem [Ri79], C(2) is the commuting variety of g.

There is a natural projective morphism G ×B b
k → B(k). For k = 1, this morphism is not birational

but for k ≥ 2, it is birational. Furthermore, denoting by X the subvariety of elements (x, y) of g × h such

that y is in the closure of the orbit of x under G, the canonical morphism G ×B b → X is projective and

birational and g is the categorical quotient of X under the action of W(R) on the factor h. For k ≥ 2, the

inverse image of B(k) by the canonical projection from Xk to gk is not irreducible but the canonical action

of W(R)k on Xk induces a simply transitive action on the set of its irreducible components. Denoting by

B
(k)

X
one of these components, one has a commutative diagram

G ×B b
k //

γ
##G

GG
GG

GG
GG

B
(k)

X

̟}}{{
{{
{{
{

B(k)

with ̟ the restriction to B
(k)

X
of the canonical projection from Xk to gk. The first main theorem of this

note is the following theorem:
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Theorem 1.8. (i) The variety N(k) has rational singularities.

(ii) The variety B
(k)
n has rational singularities. Moreover, for k ≥ 2, B

(k)

X
is the normalization of B(k)

and ̟ is the normalization morphism.

(iii) The restriction of η to η−1(N(k)) is an isomorphism onto N(k) and the ideal of definition of η−1(N(k))

in k[B
(k)
n ] is generated by the homogeneous elements of positive degree of k[B

(k)
n ]G.

From Theorem 1.8, one deduces that for k ≥ 2, the ideal of definition of N(k) in k[B(k)] is not gen-

erated by the homogeneous elements of positive degree of k[B(k)]G. Moreover, according to a Joseph’s

result [J07], k[B(k)]G is isomorphic to S(hk)W(R) for the diagonal action of W(R) in hk.

In the study of the generalized commuting variety, the closure in Grℓ(g) of the orbit of h under the

action of G plays an important role. Denoting by X the closure in Grℓ(b) of the orbit of h under B, G.X is

the closure of the orbit of G.h and one has the following result:

Theorem 1.9. Let X′ be the set of centralizers of regular elements of g whose semisimple components is

regular or subregular. Let Xn and (G.X)n be the normalizations of X and G.X respectively. Let denote by

θ0 and θ the normalization morphisms Xn → X and (G.X)n → G.X respectively.

(i) All element of X is a commutative algebraic subalgebra of g.

(ii) For x in g and for v′ a regular linear form on gx, the stabilizer of v′, with respect to the coadjoint

action of gx, is in G.X.

(iii) For x in g, the set of elements of G.X containing x has dimension at most dimgx − ℓ.

(iv) The set X′ is an open subset of X and X \ X′ has codimension at least 2 in X.

(v) All irreducible component of X \ B.h has a nonempty intersection with X′.

(vi) The set G.X′ is an open subset of G.X and G.X \G.X′ has codimension at least 2 in G.X.

(vii) All irreducible component of G.X \G.h has a nonempty intersection with G.X′.

(viii) The restriction of θ to θ−1(G.X′) is a homeomorphism onto G.X′ and θ−1(G.X′) is a smooth open

subset of G.Xn.

(ix) The restriction of θ0 to θ−1
0

(X′) is a homeomorphism onto X′ and θ−1
0

(X′) is a smooth open subset

of Xn.

Let X0,k be the closure in bk of B.hk and let Γ be a desingularization of X in the category of B-varieties.

Let E(k) be the inverse image of the canonical vector bundle over X. Then E(k) is a desingularization of

X0,k. Let set: C
(k)
n := η−1(C(k)). The following theorem is the second main result of this note:

Theorem 1.10. (i) The variety X0,k has rational singularities.

(ii) The variety C
(k)
n is irreducible and G ×B E(k) is a desingularization of C

(k)
n .

(iii) The normalization morphisms of C
(k)
n and C(k) are homeomorphisms.

(iv) For k = 2, the normalizations of C
(k)
n and C(k) have rational singularities.

The proof of Assertion (iv) is an easy consequence of the proof of Assertion (i), and the deep result of

Ginzburg [Gi11] which asserts that the normalization of C
(2)
n is Gorenstein.
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2. Cohomological results

Let k ≥ 2 be an integer. According to the above notations, one has the commutative diagrams:

G ×B b
k

γn //

γ
##G

GG
GG

GG
GG

B
(k)
n

η}}{{
{{
{{
{{

B(k)

G ×B u
k

υ
##H

HH
HH

HH
HH

υn // N
(k)
n

κ}}zz
zz
zz
zz

N(k)

2.1. Since the Borel subalgebras of g are conjugate under G, B(k) is the subset of elements of gk whose

components are in a same Borel subalgebra and N(k) are the elements of B(k) whose all the components

are nilpotent.

Lemma 2.1. (i) The morphism γ from G ×B b
k to B(k) is projective and birational. In particular, G ×B b

k

is a desingularization of B(k) and B(k) has dimension kbg + n.

(ii) The morphism υ from G ×B u
k to N(k) is projective and birational. In particular, G ×B u

k is a

desingularization of N(k) and N(k) has dimension (k + 1)n.

Proof. (i) According to Lemma 1.4, γ is a projective morphism. For 1 ≤ i < j ≤ k, let Ω
(k)

i, j
be the inverse

image of Ωg by the projection

(x1, . . . ,xk) 7−→ (xi, x j)

Then Ω
(k)
i, j

is an open subset of gk whose intersection with B(k) is not empty. Let Ω
(k)
g be the union of the

Ω
(k)

i, j
. According to [Bol91, Corollary 2] and [Ko63, Theorem 9], for (x, y) in Ωg ∩B

(2), Vx,y is the unique

Borel subalgebra of g containing x and y so that the restriction of γ to γ−1(Ω
(k)
g ) is a bijection onto Ω

(k)
g .

Hence γ is birational. Moreover, G ×B b
k is a smooth variety as a vector bundle over the smooth variety

G/B, whence the assertion since G ×B b
k has dimension kbg + n.

(ii) According to Lemma 1.4, υ is a projective morphism. Let N
(k)
reg be the subset of elements of N(k)

whose at least one component is a regular element of g. Then N
(k)
reg is an open subset of N(k). Since a

regular nilpotent element is contained in one and only one Borel subalgebra of g, the restriction of υ to

υ−1(N
(k)
reg) is a bijection onto N

(k)
reg. Hence υ is birational. Moreover, G×B u

k is a smooth variety as a vector

bundle over the smooth variety G/B, whence the assertion since G ×B u
k has dimension (k + 1)n. �

Let κ be the map

U− × ureg −→ Ng (g, x) 7−→ g(x)

Lemma 2.2. Let V be the set of elements of N(k) whose first component is in U−(ureg) and let Vk be the

set of elements x of N(k) such that Px ∩ greg is not empty.

(i) The image of κ is a smooth open subset of Ng and κ is an ismorphism onto U−(ureg).

(ii) The subset V of N(k) is open.

(iii) The open subset V of N(k) is smooth.

(iv) The set Vk is a smooth open subset of N(k).

Proof. (i) Since Ng is the nullvariety of p1, . . . ,pℓ in g, Ng ∩ greg is a smooth open susbet of Ng by [Ko63,

Theorem 9]. For (g, x) in U− × ureg such that g(x) is in u, b−1g is in Gx for some b in B since B(x) = ureg.
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Hence g = 1g since Gx is contained in B and since U− ∩ B = {1g}. As a result, κ is an injective morphism

from the smooth variety U− × ureg to the smooth variety Ng ∩ greg. Hence κ is an open immersion by

Zariski Main Theorem [Mu88, §9].

(ii) By definition, V is the intersection of N(k) and U−(ureg) × Nk−1
g . So, by (i), it is an open subset of

N(k).

(iii) Let (x1, . . . ,xk) be in uk and let g be in G such that (g(x1), . . . ,g(xk)) is in V . Then x1 is in ureg and

for some (g′, b) in U− × B, g′b(x1) = g(x1). Hence g−1g′b is in Gx1 and g is in U−B since Gx1 is contained

in B. As a result, the map

U− × ureg × u
k−1 −→ V (g, x1, . . . ,xk) 7−→ (g(x1), . . . ,g(xk))

is an isomorphism whose inverse is given by

V −→ U− × ureg × u
k−1 (x1, . . . ,xk) 7−→ (κ−1(x1)1, κ

−1(x1)1(x1), . . . ,κ−1(x1)1(xk))

with κ−1 the inverse of κ and κ−1(x1)1 the component of κ−1(x1) on U−, whence the assertion since U− ×

ureg × u
k−1 is smooth.

(iv) According to Lemma 1.6, Vk = GLk(k).V , whence the assertion by (iii). �

Corollary 2.3. (i) The subvariety N(k) \ Vk has codimension k + 1.

(ii) The restriction of υ to υ−1(Vk) is an isomorphism onto Vk.

(iii) The subset υ−1(Vk) is a big open subset of G ×B u
k.

Proof. (i) By definition, N(k) \ Vk is the subset of elements x of N(k) such that Px is contained in g \ greg.

Hence N(k) \ Vk is contained in the image of G ×B (u \ ureg)k by υ. Let (x1, . . . ,xk) be in uk ∩ (N(k) \ Vk).

Then, for all (a1, . . . ,ak) in kk,

〈x−β, a1x1 + · · · ak xk〉 = 0

for some β in Π. Since Π is finite, Px is orthogonal to x−β for some β in Π. As a result, the subvariety of

Borel subalgebras of g containing x1, . . . ,xk has positive dimension. Hence

dim (N(k) \ Vk) < dimG ×B (u \ ureg)k = n + k(n − 1)

Moreover, for β in Π, denoting by uβ the orthogonal complement of g−β in u, υ(G ×B (uβ)
k) is contained

in N(k) \Vk and its dimension equal (k+ 1)(n− 1) since the variety of Borel subalgebras containing uβ has

dimension 1, whence the assertion.

(ii) For x in N(k), Px is contained in all Borel subalgebra of g, containing the components of x. Then

the restriction of υ to υ−1(Vk) is injective since all regular nilpotent element of g is contained in a single

Borel subalgebra of g, whence the assertion by Zariski Main Theorem [Mu88, §9] since Vk is a smooth

open subset of N(k) by Lemma 2.2,(iv).

(iii) Let identify U− with the open subset U−B/B of G/B and let denote by ψ the canonical projection

from G ×B u
k to G/B. Since υ−1(Vk) is G-invariant, it suffices to prove that υ−1(Vk) ∩ ψ−1(U−) is a big

open subset of ψ−1(U−).

The open subset ψ−1(U−) of G ×B u
k identifies with U− × u

k and υ−1(Vk)∩ ψ−1(U−) identifies with the

set of (g, x) such that Px ∩ greg is not empty. Let denote by V0 the subset of elements x of uk such that

Px ∩ greg is not empty. Then uk \ V0 is contained in (u \ ureg)k and has codimension at least 2 in uk since

k ≥ 2. As a result, U− × V0 is a big open subset of U− × u
k, wence the assertion. �
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Theorem 2.4. Let k ≥ 2 be an integer and let N
(k)
n be the normalization of N(k). Then N

(k)
n has rational

singularities.

Proof. Since G ×B u
k is a desingularization of N(k) by Lemma 2.1,(ii), one has a commutative diagram

G ×B u
k

υn //

υ
##H

HH
HH

HH
HH

N
(k)
n

κ}}zz
zz
zz
zz

N(k)

with κ the normalization morphism. Moreover, υn is a projective birational morphism. According to

Corollary 2.3, κ−1(Vk) is a smooth big open subset of N
(k)
n , υ−1(Vk) is a big open subset of G×B u

k and the

restriction of υn to υ−1(Vk) is an isomorphism onto κ−1(Vk). Hence, by Proposition C.2, with Y = G×B u
k,

N
(k)
n has rational singularities. �

2.2. For E a finite dimensional B-module, let denote by L0(E) the sheaf of local sections of the vector

bundle G ×B E over G/B. For (k, l) in N2, let set:

Ek := (b∗)⊗k Ek,l := (b∗)⊗k ⊗k u
⊗l

so that Ek and Ek,l are B-modules. According to the identification of g and g∗ by 〈., .〉, the dual of u

identifies with u− so that u− is a B-module.

Proposition 2.5. Let k, l be nonnegative integers.

(i) For all positive integer i, Hi(G/B,L0(u⊗k
− )) = 0.

(ii) For all positive integer i, Hi(G/B,L0(Ek)) = 0.

(iii) For all positive integer i, Hi+l(G/B,L0(Ek,l)) = 0.

Proof. (i) First of all, since H j(G/B,OG/B) = 0 for all positive integer by Borel-Weil-Bott’s Theorem

[Dem68], one can suppose k > 0. According to the identification of u∗ and u−, S(uk
−) is the algebra of

polynomial functions on uk. Then, since G ×B u
k is a vector bundle over G/B, for all nonnegative integer

i,

Hi(G ×B u
k,OG×Buk ) = Hi(G/B,L0(S(uk

−))) =
⊕

q∈N

Hi(G/B,L0(Sq(uk
−)))

According to Theorem 2.4, for i > 0, the left hand side equals 0 since G ×B u
k is a desingularization of

N
(k)
n by Lemma 2.1,(ii). As a result, for i > 0,

Hi(G/B,L0(Sk(uk
−))) = 0

The decomposition of uk
− as a direct sum of k copies of u− induces a multigradation of S(u−) such that

each subspace of multidegree ( j1, . . . , jk) is a B-submodule. Denoting this subspace by S j1 ,..., jk , one has

Sk(uk
−)) =

⊕

( j1 ,..., jk)∈Nk

j1+···+ jk=k

S j1,..., jk and S 1,...,1 = u
⊗k
−

Hence for i > 0,

0 = Hi(G/B,L0(Sk(uk
−))) =

⊕

( j1 ,..., jk )∈Nk

j1+···+ jk=k

Hi(G/B,L0(S j1 ,..., jk ))
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whence the assertion.

(ii) Let i be a positive integer. Let prove by induction on j that for k ≥ j,

Hi(G/B,L0(E j ⊗k u
⊗(k− j)
− )) = 0(3)

By (i), it is true for j = 0. Let suppose j > 0 and (3) true for j − 1 and for all k ≥ j − 1. From the exact

sequence of B-modules

0 −→ h −→ b∗ −→ u− −→ 0

one deduces the exact sequence of B-modules

0 −→ E j−1 ⊗k h ⊗k u
⊗(k− j)
− −→ E j ⊗k u

⊗(k− j)
− −→ E j−1 ⊗k u

⊗(k− j+1)
− −→ 0

whence the exact sequence of OG/B-modules

0 −→ L0(E j−1 ⊗k h ⊗k u
⊗(k− j)
− ) −→ L0(E j ⊗k u

⊗(k− j)
− ) −→ L0(E j−1 ⊗k u

⊗(k− j+1)
− ) −→ 0

since L0 is an exact functor. From the cohomology long exact sequence deduced from this short exact

sequence, one has the exact sequence

Hi(G/B,L0(E j−1 ⊗k h ⊗k u
⊗(k− j)
− )) −→ Hi(G/B,L0(E j ⊗k u

⊗(k− j)
− ))

−→ Hi(G/B,L0(E j−1 ⊗k u
⊗(k− j+1)
− ))

By induction hypothesis, the last term equals 0. Since h is a trivial B-module,

L0(E j−1 ⊗k h ⊗k u
⊗(k− j)
− ) = h ⊗k L0(E j−1 ⊗k u

⊗(k− j)
− )

Hi(G/B,L0(E j−1 ⊗k h ⊗k u
⊗(k− j)
− )) = h ⊗k Hi(G/B,L0(E j−1 ⊗k u

⊗(k− j)
− ))

Then, by induction hypothesis again, the first term of the last exact sequence equals 0, whence Equality

(3) and whence the assertion since it is true for k = 0 by Borel-Weil-Bott’s Theorem.

(iii) Let k be a nonnegative integer. Let prove by induction on j that for i > 0 and for l ≥ j,

Hi+ j(G/B,L0(Ek+l− j, j)) = 0(4)

By (ii) it is true for j = 0. Let suppose j > 0 and (4) true for j − 1 and for all l ≥ j − 1. From the short

exact sequence of B-modules

0 −→ u −→ g −→ b∗ −→ 0

one deduces the short exact sequence of B-modules

0 −→ Ek+l− j, j −→ g ⊗k Ek+l− j, j−1 −→ Ek+l− j+1, j−1 −→ 0

whence the exact sequence of OG/B-modules

0 −→ L0(Ek+l− j, j) −→ L0(g ⊗k Ek+l− j, j−1) −→ L0(Ek+l− j+1, j−1) −→ 0

since L0 is an exact functor. From the cohomology long exact sequence deduced from this short exact

sequence, one has the exact sequence

Hi+ j−1(G/B,L0(Ek+l− j+1, j−1)) −→ Hi+ j(G/B,L0(Ek+l− j, j))

−→ Hi+ j(G/B,L0(g ⊗k Ek+l− j, j−1))
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for all positive integer i. By induction hypothesis, the first term equals 0 for all i > 0. Since g is a

G-module,

L0(g ⊗k Ek+l− j, j−1) = g ⊗k L0(Ek+l− j, j−1)

Hi+ j(G/B,L0(g ⊗k Ek+l− j, j−1)) = g ⊗k Hi+ j(G/B,L0(Ek+l− j, j−1))

Then by induction hypothesis again, the last term of the last exact sequence equals 0, whence Equality (4)

and whence the assertion for j = l. �

Corollary 2.6. Let V be a subspace of b containining u and let i be a positive integer.

(i) For all nonnegative integers k, l, Hi+l(G/B,L0((b∗)⊗k ⊗k V⊗l)) = 0.

(ii) For all nonnegative integer m and for all positive integer k,

Hi+m(G/B,L0(
∧m(Vk))) = 0

Proof. (i) Let prove by induction on j that for l ≥ j,

Hi+l(G/B,L0((b∗)
⊗k ⊗k V

⊗ j ⊗k u
⊗(l− j))) = 0(5)

According to Proposition 2.5,(iii), it is true for j = 0. Let suppose that it is true for j − 1. From the exact

sequence of B-modules

0 −→ u −→ V −→ V/u −→ 0

one deduces the exact sequence of B-modules

0 −→ (b∗)
⊗k ⊗k V

⊗( j−1) ⊗k u
⊗(l− j+1) −→ (b∗)

⊗k ⊗k V
⊗ j ⊗k u

⊗(l− j)

−→ V/u ⊗k (b∗)
⊗k ⊗k V

⊗( j−1) ⊗k u
⊗(l− j) −→ 0

whence the exact sequence of OG/B-modules

0 −→ L0((b∗)
⊗k ⊗k V

⊗( j−1) ⊗k u
⊗(l− j+1)) −→ L0((b∗)

⊗k ⊗k V
⊗ j ⊗k u

⊗(l− j))

−→ L0(V/u ⊗k (b∗)
⊗k ⊗k V

⊗( j−1) ⊗k u
⊗(l− j)) −→ 0

From the cohomology long exact sequence deduced from this short exact sequence, one has the exact

sequence

Hi+l(G/B,L0((b∗)
⊗k ⊗k V

⊗( j−1) ⊗k u
⊗(l− j+1))) −→ Hi+l(G/B,L0((b∗)

⊗k ⊗k V
⊗ j ⊗k u

⊗(l− j)))

−→ Hi+l(G/B,L0(V/u ⊗k (b∗)
⊗k ⊗k V

⊗( j−1) ⊗k u
⊗(l− j)))

By induction hypothesis, the first term equals 0. Since V/u is a trivial B-module,

L0(V/u ⊗k (b∗)
⊗k ⊗k V

⊗( j−1) ⊗k u
⊗(l− j)) = V/u ⊗k L0((b∗)

⊗k ⊗k V
⊗( j−1) ⊗k u

⊗(l− j))

Hi+l(G/B,L0(V/u ⊗k (b∗)
⊗k ⊗k V

⊗( j−1) ⊗k u
⊗(l− j))) =

V/u ⊗k Hi+l(G/B,L0((b∗)
⊗k ⊗k V

⊗( j−1) ⊗k u
⊗(l− j)))

Then, by induction hypothesis again, the last term of the last exact sequence equals 0, whence Equality

(5) and whence the assertion for j = l.
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(ii) Since ∧m(Vk) =
⊕

( j1 ,..., jk)∈Nk

j1+···+ jk=m

∧ j1 (V) ⊗k · · · ⊗k
∧ jk (V)

(ii) results from (i) and Proposition B.2. �

3. On the varieties B(k).

Let X be the closed subvariety of g × h such that k[X] = S(g) ⊗S(h)W(R) S(h). Let k ≥ 2 be an integer and

let B
(k)
n be the normalization of B(k). The goal of the section is to prove that B

(k)
n is a closed subvariety of

Xk and to give some consequences of this fact.

3.1. According to the notations of Subsection 1.1, γ is the morphism from G×B b to g defined by the map

(g, x) 7→ g(x) through the quotient map.

Lemma 3.1. (i) The subvariety X of g × h is invariant under the G-action on the first factor and the

W(R)-action on the second factor. Furthermore, these actions commute.

(ii) There exists a well defined G-equivariant morphism γn from G×Bb to X such that γ is the compound

of γn and the canonical projection from X to g.

(iii) The variety X is irreducible and the morphism γn is projective and birational.

(iv) The variety X is normal. Moreover, all element of greg × h ∩ X is a smooth point of X.

(v) The algebra k[X] is the space of global sections of OG×Bb and k[X]G = S(h).

Proof. (i) By definition, for (x, y) in g× h, (x, y) is in X if and only if p(x) = p(y) for all p in S(g)G. Hence

X is invariant under the G-action on the first factor and the W(R)-action on the second factor. Moreover,

these two actions commute.

(ii) Since the map (g, x) 7→ (g(x), x) is constant on the B-orbits, there exists a uniquely defined mor-

phism γn from G ×B b to g × h such that (g(x), x) is the image by γn of the image of (g, x) in G ×B b. The

image of γn is contained in X since for all p in S(g)G , p(x) = p(x) = p(g(x)). Furthermore, γn verifies the

condition of the assertion.

(iii) According to Lemma 1.4, γn is a projective morphism. Let (x, y) be in g × h such that p(x) = p(y)

for all p in S(g)G . For some g in G, g(x) is in b and its semisimple component is y so that (x, y) is in the

image of γn. As a result, X is irreducible as the image of the irreducible variety G ×B b. Since for all

(x, y) in X ∩ hreg × hreg, there exists a unique w in W(R) such that y = w(x), the fiber of γn at any element

X ∩G.(hreg × hreg) has one element. Hence γn is birational, whence the assertion.

(iv) Let I be the ideal of k[g × h] generated by the functions (x, y) 7→ pi(x) − pi(y), i = 1, . . . , ℓ and

let XI be the subscheme of g × h defined by I. Then X is the nullvariety of I in g × h. Since X has

codimension ℓ in g × h, XI is a complete intersection. Let (x, y) be in X such that x is a regular element of

g and let Tx,y be the tangent space at (x, y) of XI . For i = 1, . . . , ℓ, the differential at (x, y) of the function

(x, y) 7→ pi(x) − pi(y) is

(v,w) 7→ 〈εi(x), v〉 − 〈εi(y),w〉

For w in h, if (v,w) and (v′,w) are in Tx,y then v − v′ is orthogonal to ε1(x), . . . ,εℓ(x). Since x is regular,

ε1(x), . . . ,εℓ(x) is a basis of gx by [Ko63, Theorem 9]. Hence

dimTx,y ≤ dimg − ℓ + dimh
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As a result, X ∩ greg × h is contained in the subset of smooth points of XI . According to [V72], g \

greg has codimension 3 in g. Hence XI is regular in codimension 1 and according to Serre’s normality

criterion [Bou98, §1, no 10, Théorème 4], XI is normal. In particular, I is prime and X = XI , whence the

assertion.

(v) According to (iii), (iv) and Lemma 1.1, k[X] = H0(G ×B b,OG×Bb). Under the action of G in g × h,

k[g× h]G = S(g)G ⊗k S(h) and its image in k[X] by the quotient morphism equals S(h). Moreover, since G

is reductive, k[X]G is the image of k[g × h]G by the quotient morphism, whence the assertion. �

The following proposition is given by [He76, Theorem B and Corollary].

Proposition 3.2. (i) For i > 0, Hi(G/B,L0(S(b∗)) equals 0.

(ii) The variety X has rational singularities.

Corollary 3.3. (i) Let x and x′ be in breg such that (x′, x′) is in G.(x, x). Then x′ is in B(x).

(ii) For all w in W(R), the map

U− × breg −→ X (g, x) 7−→ (g(x),w(x))

is an isomorphism onto a smooth open subset of X.

Proof. (i) The semisimple components of x and x′ are conjugate under B since they are conjugate to

x under B. Let b and b′ be in B such that x is the semisimple component of b(x) and b′(x′). Then

the nilpotent components of b(x) and b′(x′) are regular nilpotent elements of gx, belonging to the Borel

subalgebra b ∩ gx of gx. Hence x′ is in B(x).

(ii) Since the action of G and W(R) on X commute, it suffices to prove the corollary for w = 1h. Let

denote by θ the map

U− × breg −→ X (g, x) 7−→ (g(x), x)

Let (g, x) and (g′, x′) be in U− × breg such that θ(g, x) = θ(g′, x′). By (i), x′ = b(x) for some b in B. Hence

g−1g′b is in Gx. Since x is in breg, Gx is contained in B and g−1g′ is in U− ∩ B, whence (g, x) = (g′, x′)

since U− ∩ B = {1g}. As a result, θ is a dominant injective map from U− × breg to the normal variety X.

Hence θ is an isomorphism onto a smooth open subset of X, by Zariski Main Theorem [Mu88, §9]. �

3.2. Let ∆ be the diagonal of (G/B)k and let J∆ be its ideal of definition in O(G/B)k . The variety G/B

identifies with ∆ so that O(G/B)k/J∆ is isomorphic to OG/B. For E a Bk-module, let denote by L(E) the

sheaf of local sections of the vector bundle Gk ×Bk E over (G/B)k.

Lemma 3.4. Let E be a finite dimensional Bk-module and let E• be an acyclic complex of finite dimen-

sional Bk-modules. Let denote by E the B-module defined by the diagonal action of B on E.

(i) The short sequence of O(G/B)k -modules

0 −→ J∆ ⊗O
Gk×

Bk b
k
L(E) −→ L(E) −→ L0(E) −→ 0

is exact.

(ii) The complex J∆ ⊗O
(G/B)k

L(E•) is acyclic.
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Proof. (i) Since L(E) is a locally free O(G/B)k -module, the short sequence of O(G/B)k -modules

0 −→ J∆ ⊗O
(G/B)k

L(E) −→ L(E) −→ O∆ ⊗O
(G/B)k

L(E) −→ 0

is exact, whence the assertion since O∆ ⊗O
(G/B)k

L(E) is isomorphic to L0(E).

(ii) Since ∆ is a smooth subvariety of the smooth variety (G/B)k, it is a locally complete intersection.

Hence locally, J∆ has a free resolution by a Koszul complex

K• −→ J∆ −→ 0

Locally, one has a double complex C•,• := K•⊗O
(G/B)k

L(E•). Since L(E•) is an acyclic complex of locally

free modules, the complex C•,i is acyclic for all i and the complex Ci,• is acyclic for all i > 0, whence the

assertion since the exactness of the complex of the assertion is a local property. �

Corollary 3.5. Let V be a subspace of b containining u and let i be a positive integer.

(i) For all nonnegative integer m,

Hi+m+1((G/B)k, J∆ ⊗O
(G/B)k

L(
∧m(Vk))) = 0

(ii) For all nonnegative integer m,

Hi+1((G/B)k, J∆ ⊗OG/B×G/B
L(Sm((b∗)k))) = 0

Proof. The spaces (b∗)k and Vk are naturally Bk-modules. Then it is so for Sm((b∗)k) and
∧m(Vk). Let

denote by E one of these two modules and let denote by E the B-module defined by the diagonal action

of B on E. According to Lemma 3.4,(i), the short sequence of O(G/B)k -modules

0 −→ J∆ ⊗O
(G/B)k

L(E) −→ L(E) −→ L0(E) −→ 0

is exact whence the cohomology long exact sequence

· · · −→ H j((G/B)k,L(E)) −→ H j(G/B,L0(E))

−→ H j+1((G/B)k, J∆ ⊗O
(G/B)k

L(E)) −→ H j+1((G/B)k,L(E)) −→ · · ·

Since
∧m(Vk) =

⊕
( j1 ,..., jk )∈Nk

j1+···+ jk=m

∧ j1(V) ⊗k · · · ⊗k
∧ jk (V)

Sm((b∗)k) =
⊕

( j1 ,..., jk)∈Nk

j1+···+ jk=m

S j1(b∗) ⊗k · · · ⊗k S jk (b∗)

H j((G/B)k,L(E)) = 0 for j > m and for E =
∧m(Vk) by Corollary 2.6,(ii) and for j > 0 and for

E = Sm((b∗)k) by Proposition 2.5,(ii) and Proposition B.2. As a result, the sequence

0 −→ H j(G/B,L0(E)) −→ H j+1((G/B)k, J∆ ⊗O
(G/B)k

L(E)) −→ 0

is exact with j = i + m for E =
∧m(Vk) and with j = i for E = Sm((b∗)k), whence Assertion (i) by

Corollary 2.6,(ii) and Assertion (ii) by Proposition 2.5,(ii) and Proposition B.2. �

Let set Y := Gk ×Bk bk. The map

G × bk −→ Gk × bk (g, v1, . . . ,vk) 7−→ (g, . . . , g, v1, . . . ,vk)

defines through the quotient a closed immersion from G ×B b
k to Y. Let denote it by ν.
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Corollary 3.6. Let J be the ideal of definition in OY of ν(G ×B b
k). Then Hi(Y, J) = 0 for all positive

integer i.

Proof. Let denote by κ the canonical projection from Y to (G/B)k. Then

κ∗(J) = J∆ ⊗O
(G/B)k

L(S((b∗)k))

so that

Hi(Y, J) = Hi((G/B)k, J∆ ⊗O
(G/B)k

L(S((b∗)k)))

for all i. According to Corollary 3.5,(ii), the both sides equal 0 for i ≥ 2.

Since 〈., .〉 identifies g∗ and its dual, one has a short exact sequence of Bk-modules:

0 −→ uk −→ (g∗)k −→ (b∗)k −→ 0

From this exact sequence, on deduces the exact Koszul complex

· · ·
d
−→ K2

d
−→ K1

d
−→ K0 −→ S((b∗)k) −→ 0

with

Km := S((g∗)k) ⊗k
∧m((u)k)

da⊗a0∧ · · · ∧am :=

m∑

i=0

(−1)iaia⊗a0∧ · · ·aî ∧ · · · ∧ am

This complex K• is canonically graded by

K• :=
∑

q

K
q
• with K

q
m := Sq−m((g∗)k) ⊗k

∧m(uk)

so that the sequence

· · · −→ K
q

2
−→ K

q

1
−→ K

q

0
−→ Sq((b∗)k) −→ 0

is exact. According to Lemma 3.4,(ii), the sequence of O(G/B)k -modules:

· · · −→ J∆ ⊗O
(G/B)k

L(K
q

2
) −→ J∆ ⊗O

(G/B)k
L(K

q

1
) −→

−→ J∆ ⊗O
(G/B)k

L(K
q

0
) −→ J∆ ⊗O

(G/B)k
L(Sq((b∗)k)) −→ 0

is exact. Since H• is an exact δ-functor, for i nonnegative integer,

Hi((G/B)k, J∆ ⊗O
(G/B)k

L(S((b∗)k))) = 0

if

Hi+m((G/B)k, J∆ ⊗O
(G/B)k

L(K
q
m)) = 0

for all nonnegative integers q and m. Since (g∗)k is a Gk-module, for all nonnegative integers q and m,

L(K
q
m) is isomorphic to

Sq−m((g∗)k) ⊗k L(
∧m((u)k))

As a result,

Hi((G/B)k, J∆ ⊗O
(G/B)k

L(S((b∗)k))) = 0

if

Hi+m((G/B)k, J∆ ⊗O
(G/B)k

L(
∧m((u)k)) = 0
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for all nonnegative integer m. According to Corollary 3.5,(i),

H1+m((G/B)k, J∆ ⊗O
(G/B)k

L(
∧m(uk)) = 0

for all positive integer m. From the cohomology long exact sequence deduced from the short exact se-

quence of Lemma 3.4,(i), with E the trivial module of dimension 1, the sequence

0 −→ H0((G/B)k, J∆) −→ H0((G/B)k,O(G/B)k ) −→ H0(G/B,OG/B)

−→ H1((G/B)k, J∆) −→ H1((G/B)k,O(G/B)k )

is exact. According to Borel-Weil-Bott’s Theorem [Dem68],

H0((G/B)k,O(G/B)k ) = k H0(G/B,OG/B) = k H1((G/B)k,O(G/B)k ) = 0

whence

H1((G/B)k, J∆) = 0

As a result,

H1((G/B)k, J∆ ⊗O
(G/B)k

L(S((b∗)k))) = 0

whence the corollary. �

3.3. According to Lemma 2.1,(i), G×Bb
k is a desingularization of B(k) and one has a commutative diagram

G ×B b
k

γn //

γ
##G

GG
GG

GG
GG

B
(k)
n

η}}{{
{{
{{
{{

B(k)

Lemma 3.7. Let ̟ be the canonical projection from Xk to gk. Let denote by ι1 the map

bk −→ Xk (x1, . . . ,xk) 7−→ (x1, . . . ,xk, x1, . . . , xk)

(i) The map ι1 is a closed embedding of bk into Xk.

(ii) The subvariety ι1(bk) of Xk is an irreducible component of ̟−1(bk).

(iii) The subvariety ̟−1(bk) of Xk is invariant under the canonical action of W(R)k in Xk and this

action induces a simply transitive action of W(R)k on the set of irreducible components of ̟−1(bk).

Proof. (i) The map

bk −→ Gk × bk (x1, . . . ,xk) 7−→ (1g, . . . , 1g, x1, . . . ,xk)

defines through the quotient a closed embedding of bk in Gk ×Bk bk. Let denote it by ι′. Let γ
(k)
n be the map

Gk ×Bk bk −→ Xk (x1, . . . ,xk) 7−→ (γn(x1), . . . ,γn(xk))

Then ι1 = γ
(k)
n ◦ι′. Since γn is a projective morphism, ι1 is a closed morphism. Moreover, it is injective

since ̟◦ι1 is the identity of bk.

(ii) According to Lemma 3.1,(ii) and Lemma 1.4, ̟ is a finite morphism. So ̟−1(bk) and bk have the

same dimension. According to (i), ι1(bk) is an irreducible subvariety of ω−1(bk) of the same dimension,

whence the assertion.
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(iii) Since all the fibers of ̟ are invariant under the action of W(R)k on Xk, ̟−1(bk) is invariant

under this action and W(R)k permutes the irreducible components of ̟−1(bk). For w in W(R)k, let set

Zw := w.ι1(bk). Then Zw is an irreducible component of ̟−1(bk) for all w in W(R)k by (ii). For w

in W(R)k such that Zw = ι1(bk), for all (x1, . . . ,xk) in hkreg, (x1, . . . ,xk,w.(x1, . . . ,xk)) is in ι1(bk) so that

(x1, . . . ,xk) is invariant under w and w is the identity.

Let Z be an irreducible component of ̟−1(bk) and let Z0 be its image by the map

(x1, . . . ,xk, y1, . . . ,yk) 7−→ (x1, . . . , xk, y1, . . . ,yk)

Since ̟ is Gk-equivariant and since bk is invariant under Bk, ̟−1(bk) and Z are invariant under Bk. Hence

by Lemma 1.5, Z0 is closed. Moreover, since the image of the map

Z0 × u
k −→ Xk ((x1, . . . ,xk, y1, . . . ,yk), (u1, . . . ,uk)) 7−→ (x1 + u1, . . . , xk + uk, y1, . . . ,yk)

is an irreducible subset of ̟−1(bk) containing Z, Z is the image of this map. Since Z0 is contained in Xk,

Z0 is contained in the image of the map

hk ×W(R)k −→ hk × hk (x1, . . . ,xk,w1, . . . ,wk) 7−→ (x1, . . . ,xk,w1(x1), . . . ,wk(xk))

Then, since W(R) is finite and since Z0 is irreducible, for some w in W(R)k, Z0 is the image of hk by the

map

(x1, . . . ,xk) 7−→ (x1, . . . ,xk,w.(x1, . . . ,xk))

Then Z = Zw, whence the assertion. �

Let consider the diagonal action of G on Xk and let identify G ×B b
k with ν(G ×B b

k) by the closed

immersion ν.

Corollary 3.8. Let set B
(k)

X
:= G.ι1(bk).

(i) The subset B
(k)

X
is the image of G ×B b

k by γ
(k)
n . Moreover, the restriction of γ

(k)
n to G ×B b

k is a

projective birational morphism from G ×B b
k onto B

(k)

X
.

(ii) The subset B
(k)

X
of Xk is an irreducible component of ̟−1(B(k)).

(iii) The subvariety ̟−1(B(k)) of Xk is invariant under W(R)k and this action induces a simply transitive

action of W(R)k on the set of irreducible components of ̟−1(B(k)).

(iv) The subalgebra k[B(k)] of k[̟−1(B(k)] equals k[̟−1(B(k))]W(R)k

with respect to the action of W(R)k

on ̟−1(B(k)).

Proof. (i) Let γX be the restriction of γ
(k)
n to G×B b

k. Since ι1 = γ
(k)
n ◦ι′, since G×B b

k = G.ι′(b(k)) and since

γ
(k)
n is G-equivariant, B

(k)

X
= γX(G ×B b

k). Hence B
(k)

X
is closed in Xk and γX is a projective morphism

from G×B b
k to B

(k)

X
since γ

(k)
n is a projective morphism. According to Lemma 2.1,(i), ̟◦γX is a birational

morphism onto B(k). Then γX is birational since ̟(B
(k)

X
) = B(k), whence the assertion.

(ii) Since ̟ is a finite morphism, ̟−1(B(k)), B
(k)

X
and B(k) have the same dimension, whence the

assertion since B
(k)

X
is irreducible as an image of an irreducible variety.

(iii) Since the fibers of ̟ are invariant under W(R)k, ̟−1(B(k)) is invariant under this action and W(R)k

permutes the irreducible components of ̟−1(B(k)). Let Z be an irreducible component of ̟−1(B(k)).

Since ̟ is Gk-equivariant, ̟−1(B(k)) and Z are invariant under the diagonal action of G. Moreover,



COMMUTING VARIETY 19

Z = G.(Z ∩ ̟−1(bk)) since B(k) = G.bk. Hence for some irreducible component Z0 of Z ∩ ̟−1(bk),

Z = G.Z0. According to Lemma 3.7,(iii), Z0 is contained in w.ι1(bk) for some w in W(R)k. Hence Z is

contained w.B
(k)

X
since the actions of Gk and W(R)k on Xk commute, whence Z = w.B

(k)

X
since Z is an

irreducible component of ̟−1(B(k)).

Let w = (w1, . . . ,wk) be in W(R)k such that w.B
(k)

X
= B

(k)

X
. Let x be in hreg and let i be equal to 1, . . . , k.

Let set

z := (x1, . . . ,xk, x1, . . . , xk) with x j :=

{
x if j = i

x j = e otherwise

Then there exists (y1, . . . ,yk) in bk and g in G such that

w.z = (g(y1), . . . ,g(yk), y1, . . . , yk)

Then, for some b in B, b(yi) = yi since yi is a regular semisimple element, belonging to b. As a result,

gb−1(yi) = x and wi(x) = yi. Hence gb−1 is an element of NG(h) representing w−1
i

. Furthermore, since

gb−1(b(y j)) = e for j , i, b(y j) is a regular nilpotent element belonging to b. Then, since there is one and

only one Borel subalgebra containing a regular nilpotent element, gb−1(b) = b. Hence wi = 1h, whence

the assertion.

(iv) Since the fibers of ̟ are invariant under W(R)k, k[B(k)] is contained in k[̟−1(B(k))]W(R)k

. Let p

be in k[̟−1(B(k))]W(R)k

. Since W(R) is a finite group, p is the restriction to ̟−1(B(k)) of an element q

of k[X]⊗k, invariant under W(R)k. Since k[X]W(R) = S(g), q is in S(g)⊗k and p is in k[B(k)], whence the

assertion. �

Let recall that θ is the map

U− × breg −→ X (g, x) 7−→ (g(x), x)

and let denote by W ′
k

the inverse image of θ(U− × breg) by the projection

B
(k)

X
−→ X (x1, . . . ,xk, y1, . . . ,yk) 7−→ (x1, y1)

Lemma 3.9. Let Wk be the subset of elements (x, y) of B
(k)

X
(x ∈ gk, y ∈ hk) such that Px∩greg is not empty.

(i) The subset W ′
k

of B
(k)

X
is a smooth open subset. Moreover, the map

U− × breg × b
k−1 −→ W ′

k
(g, x1, . . . ,xk) 7−→ (g(x1), . . . ,g(xk), x1, . . . , xk)

is an isomorphism of varieties.

(ii) The subset B
(k)

X
of gk × hk is invariant under the canonical action of GLk(k).

(iii) The subset Wk of B
(k)

X
is a smooth open subset. Moreover, Wk is the G × GLk(k)-invariant set

generated by W ′
k
.

(iv) The subvariety B
(k)

X
\Wk has codimension at least 2k.

Proof. (i) According to Corollary 3.3,(ii), the image of θ is an open subset of X. Hence W ′
k

is an open

subset of B
(k)

X
. Let (x1, . . . ,xk) be in bk and let g be in G such that (g(x1), . . . ,g(xk), x1, . . . , xk) is in W ′

k
.

Then x1 is in breg and for some g′ in U− and for some x′
1

in breg, g.(x1, x1) = g′.(x′
1
, x′

1
). Hence, according
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to Corollary 3.3,(i), for some b in B, x′
1
= b(x1). So, g−1g′b is in Gx1 and g is in U−B since Gx1 is

contained in B. As a result, the map

U− × breg × b
k−1 −→ W ′

k
(g, x1, . . . ,xk) 7−→ (g(x1), . . . ,g(xk), x1, . . . , xk)

is an isomorphism whose inverse is given by

W ′k −→ U− × breg × b
k−1

(x1, . . . ,xk) 7−→ (θ−1(x1, x1)1, θ
−1(x1, x1)1(x1), . . . ,θ−1(x1, x1)1(xk))

with θ−1 the inverse of θ and θ−1(x1, x1)1 the component of θ−1(x1, x1) on U−, whence the assertion since

U− × breg × b
k−1 is smooth.

(ii) For (x1, . . . ,xk) in bk and for (ai, j, 1 ≤ i, j ≤ k) in GLk(k),

k∑

j=1

ai, jx j =

k∑

j=1

ai, jx j

So, ι1(bk) is invariant under the action of GLk(k) in gk × hk defined by

(ai, j, 1 ≤ i, j ≤ k).(x1, . . . ,xk, y1, . . . ,yk) := (

k∑

j=1

ai, jx j, j = 1, . . . , k,

k∑

j=1

ai, jy j, j = 1, . . . , k)

whence the assertion since B
(k)

X
= G.ι1(bk) and since the actions of G and GLk(k) in gk × hk commute.

(iii) According to (i), G.W ′
k

is a smooth open subset of B
(k)

X
. Moreover, G.W ′

k
is the subset of elements

(x, y) such that the first component of x is regular. So, by (ii) and Lemma 1.6, Wk = GLk(k).(G.W ′
k
),

whence the assertion.

(iv) According to Corollary 3.8,(i), B
(k)

X
is the image of G ×B b

k by the restriction γX of γ
(k)
n to G ×B b

k.

Then B
(k)

X
\Wk is contained in the image of G ×B (b \ breg)k by γX. As a result (see Lemma 8.1),

dimBk
X
\Wk ≤ n + k(bg − 2)

whence the assertion. �

Proposition 3.10. (i) The varieties B
(k)
n and B

(k)

X
are equal. Moreover, γn = γX.

(ii) The restriction to S(h)⊗k of the quotient morphism k[X]⊗k → k[B
(k)

X
] is an embedding.

(iii) The algebra k[B
(k)
n ] is generated by k[B(k)] and S(h)⊗k. Moreover, η is the restriction of ̟ to B

(k)

X
.

(iv) The restriction of γX to γ−1
X

(Wk) is an isomorphism onto Wk.

Proof. (i) According to Corollary 3.6, from the short exact sequence

0 −→ J −→ OGk×
Bk bk
−→ OG×Bbk −→ 0

one deduces the short exact sequence

0 −→ H0(Gk ×Bk bk, J) −→ H0(Gk ×Bk bk,OGk×
Bkbk

) −→ H0(G ×B b
k,OG×Bbk

) −→ 0

In particular, the restriction map

H0(Gk ×Bk bk,OGk×
Bk bk

) −→ H0(G ×B b
k,OG×Bbk

)
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is surjective. Since k[X] equals H0(G×B b,OG×Bb) by Lemma 3.1,(v), the image of this map equals k[B
(k)

X
]

by Corollary 3.8,(i). Moreover, according to Lemma 1.1, k[B
(k)
n ] = H0(G ×B b

k,OG×Bbk ) since G ×B b
k is

a desingularization of the normal variety B
(k)
n by Lemma 2.1,(i). Hence k[B

(k)
n ] = k[B

(k)

X
] and γn = γX.

(ii) According to (i), ιn(bk) is a closed subvariety of B
(k)
n and for p in S(h)⊗k, the restriction to ιn(bk) of

its image in k[B
(k)
n ] is the function

(x1, . . . ,xk, x1, . . . , xk) 7−→ p(x1, . . . , xk)

Hence the restriction to S(h)⊗k of the quotient map k[X]⊗k → k[B
(k)
n ] is an embedding.

(iii) The comorphism of the restriction of ̟ to B
(k)

X
is the embedding of to k[B(k)] into k[B

(k)

X
] so that

η is the restriction of ̟ to B
(k)

X
by (i). Since k[Xk] is generated by S(g)⊗k and S(h)⊗k and since the image

of S(g)⊗k by the quotient morphism equals k[B(k)], k[B
(k)

X
] is generated by k[B(k)] and S(h)⊗k.

(iv) Since the subset of Borel subalgebras containing a regular element is finite, the fibers of γX over

the elements of Wk are finite. Indeed, according to Zariski Main Theorem [Mu88, §9], they have only one

element since B
(k)

X
is normal by (i) and since γX is projective and birational. So, the restriction of γX to

γ−1
X

(Wk) is a bijection onto the open subset Wk, whence the assertion by Zariski Main Theorem [Mu88,

§9]. �

Remark 3.11. By Proposition 3.10,(i) and (iii), B
(k)
n identifies with B

(k)

X
and η identifies with the restriction

of ̟ to B
(k)

X
so that γn = γX and ιn = ι1.

Let consider on hk the diagonal action of W(R).

Corollary 3.12. (i) The subalgebra S(h)⊗k of k[B
(k)
n ] equals k[B

(k)
n ]G.

(ii) The subalgebras k[B(k)]G and (S(h)⊗k)W(R) of k[B
(k)
n ]G are equal.

Proof. (i) Let p be in k[B
(k)
n ]G such that its restriction to ιn(hk) equals 0. Since

lim
t→0

h(t).(x1, . . . ,xk) = (x1, . . . , xk)

for all (x1, . . . ,xk) in bk, the restriction of p to ιn(bk) equals 0 and p = 0 since B
(k)
n = G.ιn(bk).

According to Lemma 3.1,(v), S(h)⊗k = (k[X]⊗k)Gk

. Hence S(h)⊗k is a subalgebra of k[B
(k)
n ]G since

k[B
(k)
n ] is a G-equivariant quotient of k[X]⊗k. For p in k[B

(k)
n ], let denote by p the element of S(h)⊗k such

that

p(x1, . . . ,xk) := p(x1, . . . ,xk, x1, . . . ,xk)

Then the restriction of p − p to ιn(hk) equals 0. Moreover, if p is in k[B
(k)
n ]G, p − p is G-invariant. Hence

k[B
(k)
n ]G = S(h)⊗k.

(ii) According to (i), the restriction from B(k) to hk induces an embedding of k[B(k)]G into (S(h)⊗k)W(R).

Moreover, since G is reductive, k[B(k)]G is the image of (S(g)⊗k)G by the restriction morphism. According

to [J07, Theorem 2.9 and some remark], the restriction morphism (S(g)⊗k)G → (S(h)⊗k)W(R) is surjective.

Hence the restriction morphism k[B(k)]G → (S(h)⊗k)W(R) is surjective. Then the injection k[B(k)]G →

(S(h)⊗k)W(R) is bijective since k[B(k)] and S(h)⊗k are graded quotients of S(g)⊗k. �
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3.4. The natural action of k∗ in gk induces an action of k∗ on hk, bk, B(k), B
(k)
n and Gk ×Bk bk. In particular,

k[B(k)] is a graded subalgebra of the graded algebra k[B
(k)
n ].

Proposition 3.13. The variety B
(k)
n has rational singularities.

Proof. From the short exact sequence of OGk×
Bkbk

-modules

0 −→ J −→ OGk×
Bk bk
−→ OG×Bbk −→ 0

one deduces the cohomology long exact sequence

· · · −→ Hi(Gk ×Bk bk,OGk×
Bkbk

) −→ Hi(G ×B b
k,OG×Bbk

) −→ Hi+1(Gk ×Bk bk, J) −→ · · ·

By Borel-Weil-Bott’s Theorem [Dem68], for i > 0, the first term equals 0 and by Corollary 3.6, the third

term equals 0. Hence Hi(G ×B b
k,OG×Bbk

) = 0 for all i > 0, whence the proposition since (G ×B b
k, γn) is

a desingularization of B
(k)
n by Lemma 2.1,(i). �

Corollary 3.14. Let M be a graded complement of k[B(k)]G
+k[B

(k)] in k[B(k)].

(i) The algebra k[B
(k)
n ] is a free extension of S(h)⊗k. Moreover, M contains a basis of k[B⊗k

n ] over

S(h)⊗k.

(ii) The intersection of M and S+(hk)k[B
(k)
n ] is different from 0.

Proof. (i) Let recall that N(k) is the subset of elements (x1, . . . ,xk) of B(k) such that x1, . . . ,xk are nilpotent

and let recall that η is the canonical morphism from B
(k)
n to B(k). Let denote by τ the morphism from

B
(k)
n to h⊗k whose comorphism is the injection of S(h)⊗k in k[B

(k)
n ]. First of all, B

(k)
n , h⊗k and N(k) have

dimension kbg + n, kℓ, (k + 1)n respectively. Moreover, η−1(N(k)) is the nullvariety of S+(hk) in B
(k)
n .

In particular, the fiber at (0, . . . , 0) of τ has minimal dimension. Since τ is an equivariant morphism

with respect to the actions of k∗ and since (0, . . . , 0) is in the closure of all orbit of k∗ in hk, τ is an

equidimensional morphism of dimension dimB
(k)
n − dimh⊗k. According to Proposition 3.13 and [El78],

B
(k)
n is Cohen-Macaulay. Then, by [MA86, Theorem 23.1], k[B

(k)
n ] is a flat extension of S(h)⊗k.

The action of k∗ on B
(k)
n induces a N-gradation of the algebra k[B

(k)
n ] compatible with the gradations of

k[B(k)] and S(h)⊗k since τ is equivariant. Since M is a graded complement of k[B(k)]G
+k[B

(k)] in k[B(k)],

by induction on l,

k[B(k)] = Mk[B(k)]G + (k[B(k)]G
+ )lk[B(k)]

Hence k[B(k)] = Mk[B(k)]G since k[B(k)] is graded. Then, by Proposition 3.10,(iii) and Corollary 3.12,(ii),

k[B
(k)
n ] = MS(h)⊗k. In particular,

k[B
(k)
n ] = M + S+(hk)k[B

(k)
n ]

Then M contains a graded complement M′ of S+(hk)k[B
(k)
n ] in k[B

(k)
n ]. Arguing as before, k[B

(k)
n ] =

M′S(h)⊗k since k[B
(k)
n ] is graded. By flatness, from the short exact sequence

0 −→ S+(hk) −→ S(h)
⊗k −→ k −→ 0

one deduces the short exact sequence

0 −→ k[B
(k)
n ] ⊗S(h)⊗k S+(hk) −→ k[B

(k)
n ] −→ k[B

(k)
n ] ⊗S(h)⊗k k −→ 0

As a result, the canonical map M′ ⊗k S(h)⊗k −→ k[B
(k)
n ] is injective. Hence all basis of M′ is a basis of

the S(h)⊗k-module k[B
(k)
n ], whence the assertion.
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(ii) Let suppose that M′ = M. One expects a contradiction. According to (i), the canonical maps

M ⊗k S(h)⊗k −→ k[B
(k)
n ] M ⊗k k[B

(k)]G −→ k[B(k)]

are isomorphisms. Then, according to Lemma 1.2, there exists a group action of W(R) on k[B
(k)
n ] extend-

ing the diagonal action of W(R) in S(h)⊗k and such that k[B
(k)
n ]W(R) = k[B(k)] since k[B(k)] ∩ S(h)⊗k =

(S(h)⊗k)W(R) by Corollary 3.12,(ii). Moreover, since W(R) is finite, the subfield of invariant elements of

the fraction field of k[B
(k)
n ] is the fraction field of k[B

(k)
n ]W(R). Hence the action of W(R) in k[B

(k)
n ] is

trivial since k[B
(k)
n ] and k[B(k)] have the same fraction field, whence the contradiction since (S(h)⊗k)W(R)

is strictly contained in S(h)⊗k. �

4. On the nullcone.

Let k ≥ 2 be an integer. Let I be the ideal of k[B
(k)
n ] generated by S+(hk) and let N be the subscheme of

B
(k)
n defined by I.

Lemma 4.1. Let set N
(k)

X
:= η−1(N(k)).

(i) The variety N
(k)

X
equals γn(G ×B u

k).

(ii) The nullvariety of I in B
(k)
n equals N

(k)

X
.

(iii) The scheme N is smooth in codimension 1.

Proof. (i) By definition, γ−1(N(k)) = G ×B u
k. Then, since γ = γn◦η, N

(k)

X
= γn(G ×B u

k).

(ii) Let VI be the nullvariety of I in B
(k)
n . According to Proposition 3.10,(ii), for (g, x1, . . . ,xk) in G×bk,

γn((g, x1, . . . ,xk)) is a zero of I if and only if x1, . . . ,xk are nilpotent, whence the assertion.

(iii) According to Lemma 3.9,(i), one has an isomorphism of varieties

U− × breg × b
(k−1) −→ W ′

k
(g, x1, . . . ,xk) 7−→ (g(x1), . . . ,g(xk), x1, . . . , xk)

Let J be the ideal of k[breg × b
(k−1)] generated by the functions (x1, . . . ,xk) 7→ 〈v, xi〉, i = 1, . . . , k, v ∈ h

and let N0 be the subscheme of breg × b
(k−1) defined by the ideal J. Then the above map induces an

isomorphism of U− × N0 onto the open subset W ′
k
∩ N of N. For all x in ureg × u

(k−1), the tangent space

of N0 at x equals uk. Hence N0 is smooth and W ′
k
∩ N is smooth. Then, since N is a subscheme of B

(k)
n

invariant under the actions of G and GLk(k), the open subset Wk ∩ N of N is smooth by Lemma 3.9,(ii).

By definition, Wk ∩ N = η−1(Vk), whence the assertion by Corollary 2.3,(i) since η is finite. �

Proposition 4.2. The variety N
(k)

X
is a normal variety and I is its ideal of definition in k[B

(k)
n ]. In partic-

ular, I is prime.

Proof. According to Corollary 3.14,(i), k[B
(k)
n ] is a flat extension of S(h)⊗k. Since B

(k)
n is Cohen Macaulay,

N is Cohen Macaulay by [MA86, Corollary of Theorem 23.2]. According to Lemma 4.1,(iii), N is

smooth in codimension 1. Hence N is a normal scheme by Serre’s normality criterion [Bou98, §1, no

10, Théorème 4]. According to Lemma 4.1,(ii), N
(k)

X
is the nullvariety of I in B

(k)
n . Moreover, N

(k)

X
is

irreducible as image of the irreducible variety G ×B u
k by Lemma 4.1,(i). Hence I is prime and N

(k)

X
is a

normal variety. �
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Theorem 4.3. Let I0 be the ideal of k[B(k)] generated by k[B(k)]G
+ .

(i) The ideal I0 is strictly contained in the ideal of definition of N(k) in k[B(k)].

(ii) The nullcone N(k) has rational singularities.

Proof. (i) Since k[B(k)]G
+ is contained in S+(hk), I0 is contained in I∩k[B(k)]. According to Lemma 4.1,(ii)

and Proposition 4.2, I∩k[B(k)] is the ideal of definition of N(k) in k[B(k)]. Let M be a graded complement

of k[B(k)]G
+k[B

(k)] in k[B(k)]. According to Corollary 3.14,(ii), I ∩ M is different from 0. Hence I0 is

strictly contained in I ∩ k[B(k)], whence the assertion.

(ii) According to Proposition 3.10,(iii) and Proposition 4.2, the restriction to k[B(k)] of the quotient

map from k[B
(k)
n ] to k[N

(k)

X
] is surjective. Furthermore, the image of k[B(k)] by this morphism equals

k[N(k)] since N
(k)

X
= η−1(N(k)), whence k[N(k)] = k[N

(k)

X
]. As a result, N(k) has rational singularities since

N
(k)

X
is normal and since the normalization of N(k) has rational singularities by Theorem 2.4. �

5. Main varieties.

Let denote by X the closure in Grℓ(g) of the orbit of h under B. According to Lemma 1.4, G.X is the

closure in Grℓ(g) of the orbit of h under G.

5.1. For α in R, let denote by hα the kernel of α. Let set Vα := hα ⊕ g
α and let denote by Xα the closure

in Grℓ(g) of the orbit of Vα under B.

Lemma 5.1. Let α be in R+. Let p be a parabolic subalgebra containing b and let P be its normalizer in

G.

(i) The subset P.X of Grℓ(g) is the closure in Grℓ(g) of the orbit of h under P.

(ii) The closed set Xα of Grℓ(g) is an irreducible component of X \ B.h.

(iii) The set P.Xα is an irreducible component of P.X \ P.h.

(iv) The varieties X \ B.h and P.X \ P.h are equidimenional of codimension 1 in X and P.X respectively.

Proof. (i) Since X is a B-invariant closed subset of Grℓ(g), P.X is a closed subset of Grℓ(g) by Lemma 1.4.

Hence P.h is contained in P.X since h is in X, whence the assertion since P.h is a P-invariant subset

containing X.

(ii) Denoting by Hα the coroot of α,

lim
t→∞

exp(tad xα)(
−1

2t
Hα) = xα

So Vα is in the closure of the orbit of h under the one parameter subgroup of G generated by ad xα. As a

result, Xα is a closed subset of X \ B.h since Vα is not a Cartan subalgebra. Moreover, Xα has dimension

n − 1 since the normalizer of Vα in g is h + gα. Hence Xα is an irreducible component of X \ B.h since X

has dimension n.

(iii) Since Xα is a B-invariant closed subset of Grℓ(g), P.Xα is a closed subset of Grℓ(g) by Lemma 1.4.

According to (ii), P.Xα is contained in P.X \ P.h and it has dimension dimp − ℓ − 1, whence the assertion

since P.X has dimension dimp − ℓ.

(iv) Let Pu be the unipotent radical of P and let L be the reductive factor of P whose Lie algebra

contains adh. Let denote by NL(h) the normalizer of h in L. Since B.h and P.h are isomorphic to U and
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L/NL(h)× Pu respectively, they are affine open subsets of X and P.X respectively, whence the assertion by

[EGAIV, Corollaire 21.12.7]. �

For x in V , let set:

Vx := span({ε1(x), . . . ,εℓ(x)})

Lemma 5.2. Let ∆ be the set of elements (x,V) of g ×G.X such that x is in V.

(i) For (x,V) in b × X, (x,V) is in the closure of B.(hreg × {h}) in b × Grℓ(b) if and only if x is in V.

(ii) The set ∆ is the closure in g × Grℓ(g) of G.(hreg × {h}).

(iii) For (x,V) in ∆, Vx is contained in V.

Proof. (i) Let ∆′ be the subset of elements (x,V) of b × X such that x is in V and let ∆′
0

be the closure of

B.(hreg × {h}) in b × Grℓ(b). Then ∆′ is a closed subset of b × Grℓ(b) containing ∆′
0
. Let (x,V) be in ∆′.

Let E be a complement of V in b and let ΩE be the set of complements of E in g. Then ΩE is an open

neighborhood of V in Grℓ(b). Moreover, the map

Homk(V, E)
κ
−→ ΩE ϕ 7−→ κ(ϕ) := span({v + ϕ(v) | v ∈ V})

is an isomorphism of varieties. Let Ωc
E

be the inverse image of the set of Cartan subalgebras. Then 0 is in

the closure of Ωc
E

in Homk(V, E) since V is in X. For all ϕ in Ωc
E

, (x + ϕ(x), κ(ϕ)) is in ∆′
0
. Hence (x,V) is

in ∆′
0
.

(ii) Let (x,V) be in ∆. For some g in G, g(V) is in X. So by (i), (g(x), g(V)) is in ∆′
0

and (x,V) is in the

closure of G.(hreg × {h}) in g × Grℓ(g), whence the assertion.

(iii) For i = 1, . . . , ℓ, let ∆i be the set of elements (x,V) of ∆ such that εi(x) is in V . Then ∆i is a closed

subset of g × G.X, invariant under the action of G in g × Grℓ(g) since εi is a G-equivariant map. For all

(g, x) in G × hreg, (g(x), g(h)) is in ∆i since εi(g(x)) centralizes g(x). Hence ∆i = ∆ since G.(hreg × {h}) is

dense in ∆ by (ii). As a result, for all V in G.X and for all x in V , ε1(x), . . . ,εℓ(x) are in V . �

Corollary 5.3. Let (x,V) be in ∆ and let z be the centre of gxs .

(i) The subspace z is contained in Vxs
and V.

(ii) The space V is an algebraic, commutative subalgebra of g.

Proof. (i) If x is regular semisimple, V is a Cartan subalgebra of g. Let suppose that x is not regular

semisimple. Let denote by z be the centre of gxs . Let Ngxs be the nilpotent cone of gxs and let Ωreg be the

regular nilpotent orbit of gxs . For all y in Ωreg, xs + y is in greg and ε1(xs + y), . . . ,εℓ(xs + y) is a basis of

gxs+y by [Ko63, Theorem 9]. Then for all z in z, there exist regular functions on Ωreg, a1,z, . . . ,aℓ,z, such

that

z = a1,z(y)ε1(xs + y) + · · · + aℓ,z(y)εℓ(xs + y)

for all y in Ωreg. Furthermore, these functions are uniquely defined by this equality. Since Ngxs is a normal

variety and since Ngxs \Ωreg has codimension 2 in Ngxs , the functions a1,z, . . . ,aℓ,z have regular extensions

to Ngxs . Denoting again by ai,z the regular extension of ai,z for i = 1, . . . , ℓ,

z = a1,z(y)ε1(xs + y) + · · · + aℓ,z(y)εℓ(xs + y)

for all y in Ngxs . As a result, z is contained in Vx. Hence z is contained in V by Lemma 5.2,(iii).
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(ii) Since the set of commutative subalgebras of dimension ℓ is closed in Grℓ(g), V is a commutative

subalgebra of g. According to (i), the semisimple and nilpotent components of the elements of V are

contained in V . For x in V \Ng, all the replica of xs are contained in z. Hence V is an algebraic subalgebra

of g by (i). �

5.2. For s in h, let denote by Xs the subset of elements of X, contained in gs.

Lemma 5.4. Let s be in h and let z be the centre of gs.

(i) The set Xs is the closure in Grℓ(g
s) of the orbit of h under Bs.

(ii) The set of elements of G.X containing z is the closure in Grℓ(g) of the orbit of h under Gs.

Proof. (i) Let set p := gs + b, let P be the normalizer of p in G and let pu be the nilpotent radical of p.

For g in P, let denote by g its image by the canonical projection from P to Gs. Let Z be the closure in

Grℓ(g) × Grℓ(g) of the image of the map

B −→ Grℓ(b) × Grℓ(b) g 7−→ (g(h), g(h))

and let Z′ be the subset of elements (V,V ′) of Grℓ(b) × Grℓ(b) such that

V ′ ⊂ gs ∩ b and V ⊂ V ′ ⊕ pu

Then Z′ is a closed subset of Grℓ(b) ×Grℓ(b) and Z is contained in Z′ since (g(h), g(h)) is in Z′ for all g in

B. Since Grℓ(b) is a projective variety, the images of Z by the projections (V,V ′) 7→ V and (V,V ′) 7→ V ′

are closed in Grℓ(b) and they equal X and Bs.h respectively. Furthermore, Bs.h is contained in Xs.

Let V be in Xs. For some V ′ in Grℓ(b), (V,V ′) is in Z. Since

V ⊂ gs, V ′ ⊂ gs, V ⊂ V ′ ⊕ pu

V = V ′ so that V is in Bs.h, whence the assertion.

(ii) Since z is contained in h, all element of Gs.h is an element of G.X containing z. Let V be in G.X,

containing z. Since V is a commutative subalgebra of gs and since gs ∩ b is a Borel subalgebra of gs, for

some g in Gs, g(V) is contained in b ∩ gs. So, one can suppose that V is contained in b. According to

the Bruhat decomposition of G, since X is B-invariant, for some b in U and for some w in W(R), V is in

bw.X. Let set:

R+,w := {α ∈ R+ | w(α) ∈ R+} R′+,w := {α ∈ R+ | w(α) < R+}

u1 :=
⊕

α∈R+,w
gw(α) u2 :=

⊕
α∈−R′+,w

gw(α) u3 :=
⊕

α∈R′+,w
gw(α)

Bw := wBw−1 bw := h ⊕ u1 ⊕ u3

so that adbw is the Lie algebra of Bw and w.X is the closure in Grℓ(g) of the orbit of h under Bw. Moreover,

u is the direct sum of u1 and u2. For i = 1, 2, let denote by Ui the closed subgroup of U whose Lie algebra

is adui. Then U = U2U1 and b = b2b1 with bi in Ui for i = 1, 2. Since w−1(u1) is contained in u and since

X is invariant under B, b2b1w.X = b2w.X. Since b−1
2

(V) is in w.X and since V is contained in b,

b−1
2 (V) ⊂ b ∩ bw = h ⊕ u1

Let set:

u2,1 := u2 ∩ g
s u2,2 := u2 ∩ pu
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and for i = 1, 2, let denote by U2,i the closed subgroup of U2 whose Lie algebra is adu2,i. Then u2 is the

direct sum of u2,1 and u2,2 and U2 = U2,1U2,2 so that b2 = b2,1b2,2 with b2,i in U2,i for i = 1, 2. As a result,

z is contained in b−1
2,1

(V) and b−1
2,2

(z) is contained h ⊕ u1. Hence b−1
2,2

(z) = z since u1 ∩ u2,2 = {0}.

Let suppose b2,2 , 1. One expects a contradiction. For some x in u2,2, b2,2 = exp(ad x). The space u2,2

is a direct sum of root spaces since u2 and pu are too. Let α1, . . . ,αm be the positive roots such that the

corresponding root spaces are contained in u2,2. They are ordered so that for i ≤ j, α j − αi is a positive

root if it is a root. For i = 1, . . . ,m, let ci be the coordinate of x at xαi
and let i0 be the smallest integer

such that ci0 , 0. For all z in z,

b−1
2,2(z) − z − ci0αi0 (z)xαi0

∈
⊕

j>i0

gα j

whence the contradiction since for some z in z, αi0(z) , 0. As a result, b−1
2,1

(V) is an element of w.X = Bw.h,

contained in gs. So, by (i), b−1
2,1

(V) and V are in Gs.h, whence the assertion. �

5.3. For x in g, let denote by Rx the subset of stabilizers of regular linear forms on gx under the coadjoint

action. According to [Y06a] and [deG08], all element of Rx is a commutative subalgebra of dimension

ℓ of g. For x and v in g, the stabilizer of the linear form w 7→ 〈v,w〉 on gx under the coadjoint action is

denoted by (gx)v.

Lemma 5.5. Let x be in g.

(i) For all v in g, there exists a positive integer d and a regular map βv from P1(k) to Grd(g) such that

βv(t) = gtx+v for all t in a dense open subset of k. Moreover, βv(∞) is contained in (gx)v.

(ii) For all v in a dense open subset Ω of g, x + v is regular semisimple and the linear form w 7→ 〈v,w〉

on gx is regular.

Proof. (i) Let d be the minimal dimension of the gtx+v’s, t ∈ k. Then for all t in a dense open subset Ωv of

k, the map

Ωv −→ Grd(g) t 7−→ gtx+v

is regular, whence the assertion by [Sh94, Ch. VI, Theorem 1].

Let E be a complement of βv(∞) in g and let ΩE be the set of complements of E in g. Then ΩE is an

open neighborhood of βv(∞) in Grℓ(g) and the map

Homk(βv(∞), E) −→ ΩE ϕ 7−→ span({w + ϕ(w) | v ∈ βw(∞)})

is an isomorphism. Let denote by χ this isomorphism. For all t in a nonempty open subset T of k∗, there

exists a unique ϕt in Homk(βv(∞), E) such that χ(ϕt) = g
tx+v. Then

lim
t−→∞

ϕt = 0

and for all (w, t) in βv(∞) × T , one has

0 = [w + ϕt(w), tx + v] = [w + ϕt(w), x +
1

t
v]

whence βv(∞) ⊂ gx. Moreover, for all all w′ in gx,

0 = 〈w′, [w + ϕt(w), tx + v]〉 = −〈w + ϕt(w), [w′, v]〉
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whence βv(∞) ⊂ (gx)v.

(ii) Since greg,ss is a dense open subset of g, for all v in a dense open subset, x+ v is regular semisimple.

Since the map

g −→ (gx)∗ v 7−→ (w 7→ 〈v,w〉)

is a dominant morphism, for all v in a dense open subset of g, the linear form w 7→ 〈v,w〉 on gx is regular,

whence the assertion. �

Corollary 5.6. For x in g, Rx is contained in G.X.

Proof. Let v be in the open subset Ω of Lemma 5.5,(ii). Then gtx+v is a Cartan subalgebra of g for all t in

a dense open subset of k. So βv(∞) is in G.X and by Lemma 5.5,(i), βv(∞) = (gx)v since the index of gx

equals ℓ. Denoting by (gx)∗reg the set of regular linear forms on gx, the map

(gx)∗reg −→ Grℓ(g) v 7−→ (gx)v

is regular. Hence Rx is contained in G.X since the projection of Ω to (gx)∗ is dense in (gx)∗reg and since

G.X is closed in Grℓ(g). �

For E a subspace of g of even dimension 2m and for e = e1, . . . ,e2m a basis of E, let set:

pE,e := det



[e1, e1] · · · [e1, e2m]
...

. . .
...

[e2m, e1] · · · [e2m, e2m]



The element pE,e of S(g), up to a multiplicative scalar, does not depend on the basis e. So, when pE,e is

different from zero, one will say that pE is different from zero. Otherwise, one will say pE = 0.

Lemma 5.7. Let x be in g.

(i) For V in Grℓ(g
x), V is in Rx if and only if for all complement E of V in gx, pE is different from zero.

(ii) For V in Grℓ(g), V is in G.X if and only if for all complement E of V in g, pE is different from zero.

(iii) For E in Grdim gx−ℓ(g
x) such that pE , 0, pE⊕F , 0 for all complement F of gx in g.

Proof. (i) and (ii) Let denote by a the Lie algebra g or gx. For v in g, let denote by av the stabilizer of the

linear form w 7→ 〈v,w〉 on a and let set:

Z0 :=

{
G.X if a = g

Rx if a = gx

Let V be in Grℓ(a). For all complement E of V in a, E has even dimension. Let suppose pE , 0 for

all complement E of V in a. Let E1, . . . ,Em be some complements of V in a. Then for all v in a dense

open subset of g, v is not a zero of pE1
, . . . ,pEm

and the linear form w 7→ 〈v,w〉 on a is regular. Hence for

i = 1, . . . ,m, av is a complement of Ei in a. As a result, V is in Z0. Conversely, let suppose that V is in Z0

and let E be a complement of V in a. Then for some v in g, av is a complement of E in a so that v is not a

zero of pE .

(iii) Let v be in g such that pE(v) , 0 and such that the linear form w 7→ 〈v,w〉 on gx is regular. Then

(gx)v is a complement of E in gx. According to Lemma 5.5,(iii), (gx)v is in G.X. For all complement F of

gx in g, E ⊕ F is a complement of (gx)v in g, whence the assertion by (ii). �
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5.4. Let call a torus of g a commutative algebraic subalgebra of g whose all elements are semisimple. For

x in g, let denote by Zx the subset of elements of G.X containing x and let denote by (Gx)0 the identity

component of Gx.

Lemma 5.8. Let x be in Ng and let Z be an irreducible component of Zx. Let suppose that some element

of Z is not contained in Ng.

(i) For some torus s of gx, all element of a dense open subset of Z contains a conjugate of s under (Gx)0.

(ii) For some s in s and for some irreducible component Z1 of Zs+x, Z is the closure in Grℓ(g) of

(Gx)0.Z1.

(iii) If Z1 has dimension smaller than dimgs+x − ℓ, then Z has dimension smaller than dimgx − ℓ.

Proof. (i) After some conjugation by an element of G, one can suppose that gx ∩ b and gx ∩ h are a Borel

subalgebra and a maximal torus of gx respectively. Let Z0 be the subset of elements of Z contained in b and

let (Bx)0 be the identity component of Bx. Since Z is an irreducible component of Zx, Z is invariant under

(Gx)0 and Z = (Gx)0.Z0. Since (Gx)0/(B
x)0 is a projective variety, according to the proof of Lemma 1.4,

(Gx)0.Z∗ is a closed subset of Z for all closed subset Z∗ of Z. Hence for some irreducible component Z∗ of

Z0, Z = (Gx)0.Z∗. According to Corollary 5.3,(ii), for all V in Z∗, there exists a torus s, contained in gx ∩ h

and verifying the following two conditions:

(1) V is contained in s + (gx ∩ u),

(2) V contains a conjugate of s under (Bx)0.

Let s be a torus of maximal dimension verifying Conditions (1) and (2) for some V in Z∗. By hypothesis,

s has positive dimension. Let Zs be the subset of elements of Z∗ verifying Conditions (1) and (2) with

respect to s. By maximality of dim s, for V in Z∗ \ Zs, dim V ∩ u > ℓ − dim s or dim V ∩ u = ℓ − dim s and

V is contained in s′ + u for some torus of dimension dim s, different from s. By rigidity of tori, s is not in

the closure in Grdim s(h) of the set of tori different from s. Hence Z∗ \ Zs is a closed subset of Z∗ since for

all V in Z∗ \ Zs, dimV ∩ u has dimension at least ℓ − dim s. As a result, (Gx)0.Zs contains a dense open

subset whose all elements contain a conjugate of s under (Gx)0.

(ii) For some s in s, gs is the centralizer of s in g. Let Z s be the subset of elements of Z containing

s. Then Z s is contained in Zs+x and according to Corollary 5.3,(i), Z s is the subset of elements of Z,

containing s. By (i), for some irreducible component Z′
1

of Z s, (Gx)0.Z
′
1

is dense in Z. Let Z1 be an

irreducible component of Zs+x, containing Z′
1
. According to Corollary 5.3,(ii), Z1 is contained in Zx since

x is the nilpotent component of s + x. So Z1 = Z′
1

and (Gx)0.Z1 is dense in Z.

(iii) Since Z1 is an irreducible component of Zs+x, Z1 is invariant under the identity component of Gs+x.

Moreover, Gs+x is contained in Gx since x is the nilpotent component of s + x. As a result, by (ii),

dim Z ≤ dimgx − dimgs+x + dim Z1

whence the assertion. �

Let denote by Ch the G-invariant closed cone generated by h.

Lemma 5.9. Let suppose g semisimple. Let Γ be the closure in g × Grℓ(g) of the image of the map

k∗ ×G −→ g × Grℓ(g) (t, g) 7−→ (tg(h), g(h))
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and let Γ0 be the inverse image of the nilpotent cone by the first projection.

(i) The subvariety Γ of g × Grℓ(g) has dimension 2n + 1. Moreover, Γ is contained in ∆.

(ii) The varieties Ch and G.X are the images of Γ by the first and second projections respectively.

(iii) The subvariety Γ0 of Γ is equidimensional of codimension 1.

(iv) For x nilpotent in g, the subvariety of elements V of G.X, containing x and contained in G(x), has

dimension at most dimgx − ℓ.

Proof. (i) Since the stabilizer of (h, h) in k∗ ×G equals {1} × H, Γ has dimension 2n + 1. Since tg(h) is in

g(h) for all (t, g) in k∗ ×G and since ∆ is a closed subset of g × Grℓ(g), Γ is contained in ∆.

(ii) Since Grℓ(g) is a projective variety, the image of Γ by the first projection is closed in g. So, it equals

Ch since it is contained in Ch and since it contains the cone generated by G.h. Let ̟ be the canonical

map from g \ {0} to the projective space P(g) and let Γ̃ be the image of Γ ∩ (g \ {0}) × Grℓ(g) by the map

(x,V) 7→ (̟(x),V). Since Ch is a closed cone, Γ̃ is a closed subset of P(g) × Grℓ(g). Hence the image of

Γ̃ by the second projection is a closed subset of Grℓ(g). So, it equals G.h since it is contained in G.h and

since it contains G.h. As a result, the image of Γ by the second projection equals G.h since it is contained

in G.h and since it contains the image of Γ̃ by the second projection.

(iii) The subvariety Ch of g has dimension 2n + 1 and the nullvariety of p1 in Ch is contained in Ng
since it is the nullvariety in g of the polynomials p1, . . . ,pℓ. Hence Ng is the nullvariety of p1 in Ch and

Γ0 is the nullvariety in Γ of the function (x,V) 7→ p1(x). So Γ0 is equidimensional of codimension 1 in Γ.

(iv) Let T be the subset of elements V of G.X, containing x and contained in G(x). Let denote by ΓT

the inverse image of G.T by the projection from Γ to G.X. Then ΓT is contained in Γ0. Since x is in all

element of T and since ΓT is invariant under G, the image of ΓT by the first projection equals G(x). Hence

dimΓT = dim T + dimg − dimgx

Since ΓT is contained in Γ0, ΓT has dimension at most dimg − ℓ, whence the assertion. �

When g is semisimple, let denote by (G.X)u the subset of elements of G.X contained in Ng.

Corollary 5.10. Let suppose g semisimple. Let x be in Ng.

(i) The variety (G.X)u has dimension at most 2n − ℓ.

(ii) The variety Zx ∩ (G.X)u has dimension at most dimgx − ℓ.

Proof. (i) Let T be an irreducible component of (G.X)u and let ∆T be its inverse image by the canonical

projection from ∆ to G.X. Then ∆T is a vector bundle of rank ℓ over T . So it has dimension dim T + ℓ. Let

Y be the projection of ∆T onto g. Since T is an irreducible projective variety, Y is an irreducible closed

subvariety of g contained in Ng. The subvariety (G.X)u of G.X is invariant under G since it is so for Ng.

Hence ∆T and Y are G-invariant and for some y in Ng, Y = G(y). Denoting by Fy the fiber at y of the

projection ∆T → Y , V is contained in G(y) and contains y for all V in Fy. So, by Lemma 5.9,(iv),

dim Fy ≤ dimgy − ℓ

Since the projection is G-equivariant, this inequality holds for the fibers at the elements of G(y). Hence,

dim∆T ≤ dimg − ℓ and dim T ≤ 2n − ℓ
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(ii) Let Z be an irreducible component of Zx ∩ (G.X)u and let T be an irreducible component of (G.X)u,

containing Z. Let ∆T and Y be as in (i). Then G(x) is contained in Y and the inverse image of G(x) in ∆T

has dimension at least dimG(x) + dim Z. So, by (i),

dimG(x) + dim Z ≤ dimg − ℓ

whence the assertion. �

Theorem 5.11. For x in g, the variety of elements of G.X, containing x, has dimension at most dimgx − ℓ.

Proof. Let prove the theorem by induction on dimg. If g is commutative, G.X = {g}. If the derived

Lie algebra of g is simple of dimension 3, G.X has dimension 2 and for x not in the centre of g, gx has

dimension ℓ. Let suppose the theorem true for all reductive Lie algebra of dimension strictly smaller than

dimg. Let x be in g. Since G.X has dimension dimg − ℓ, one can suppose x not in the centre of g. If

x is not nilpotent, gxs has dimension strictly smaller than dimg and all element of G.X containing x is

contained in gxs by Corollary 5.3,(i), whence the theorem in this case by induction hypothesis. As a result,

by Lemma 5.8, for all x in g, all irreducible component of Zx, containing an element not contained in Ng,

has dimension at most dimgx − ℓ.

Let zg be the centre of g and let x be a nilpotent element of g. Denoting by Z′x the subset of elements

of G.(h ∩ [g, g]) containing x, Zx is the image of Z′x by the map V 7→ V + zg, whence the theorem by

Corollary 5.10. �

5.5. Let s be in h \ {0}. Let set p := gs + b and let denote by pu the nilpotent radical of p. Let P be the

normalizer of p and let Pu be its unipotent radical. For a nilpotent orbit Ω of Gs in gs, let denote by Ω#

the induced orbit by Ω from gs to g.

Lemma 5.12. Let Y be a G-invariant irreducible closed subset of g and let Y ′ be the union of G-orbits

of maximal dimension in Y. Let suppose that s is the semisimple component of an element x of Y ′. Let

denote by Ω the orbit of xn under Gs and let set Y1 := z + Ω + pu.

(i) The subset Y1 of p is closed and invariant under P.

(ii) The subset G(Y1) of g is a closed subset of dimension dim z + dimG(x).

(iii) For some nonempty open subset Y ′′ of Y ′, the conjugacy class of gys under G does not depend on

the element y of Y ′′.

(iv) For a good choice of x in Y ′′, Y is contained in G(Y1).

Proof. (i) By [Ko63, §3.2, Lemma 5], Gs is connected and P = PuGs. For all y in p and for all g in Pu,

g(y) is in y + pu. Hence Y1 is invariant under P since it is invariant under Gs. Moreover, it is a closed

subset of p since z + Ω is a closed subset of gs.

(ii) According to (i) and Lemma 1.4, G(Y1) is a closed subset of g. According to [CMa93, Theorem

7.1.1], Ω# ∩ (Ω + pu) is a P-orbit and the centralizers in g of its elements are contained in p. So, for all y

in Ω# ∩ (Ω+ pu), the subset of elements g of G such that g(y) is in Y1 has dimension dimp since g(y) is in

Ω + pu. As a result,

dimG(Y1) = dimG ×P Y1 = dimpu + dim Y1
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Since dimgx = dimgs − dimΩ,

dim Y1 = dim z + dimpu + dimgs − dimgx

dimG(Y1) = dim z + 2dimpu + dimgs − dimgx

= dim z + dimG(x)

(iii) Let τ be the canonical morphism from g to its categorical quotient g//G under G and let Z be the

closure in g//G of τ(Y). Since Y is irreducible, Z is irreducible and there exists an irreducible component

Z̃ of the preimage of Z in h whose image in g//G equals Z. Since the set of conjugacy classes under G of

the centralizers of the elements of h in g is finite, for some nonempty open subset Z# of Z̃, the centralizers

of its elements are conjugate under G. The image of Z# in g//G contains a dense open subset Z′ of Z. Let

Y ′′ be the inverse image of Z′ by the restriction of τ to Y ′. Then Y ′′ is a dense open subset of Y and the

centralizers in g of the semisimple components of its elements are conjugate under G.

(iv) Let suppose that x is in Y ′′. Let ZY be the set of elements y of Y ′′ such that gys = gs. Then

G.ZY = Y ′′. For all nilpotent orbit Ω of Gs in gs, let set:

YΩ = z + Ω + pu

Then ZY is contained in the union of the YΩ’s. Hence Y ′′ is contained in the union of the G(YΩ)’s.

According to (ii), G(YΩ) is a closed subset of g. Hence Y is contained in the union of the G(YΩ)’s since Y ′′

is dense in Y . Then Y is contained in G(YΩ) for some Ω since Y is irreducible and since there are finitely

many nilpotent orbits in gs, whence the assertion. �

Theorem 5.13. (i) The variety G.X is the union of G.h and the G.Xβ’s, β ∈ Π.

(ii) The variety X is the union of U.h and the Xα’s, α ∈ R+.

Proof. Let zg be the centre of g and let µ be the map

Grℓ([g, g]) −→ Grℓ(g) V 7−→ zg + V

and let set:

Xd := B.(h ∩ [g, g]) Xα,d := B.(Vα ∩ [g, g])

for α in R+. Then X, G.X, Xα, G.Xα are the images of Xd, G.Xd, Xα,d, G.Xα,d by µ respectively. So one

can suppose g semisimple.

(i) For ℓ = 1, g is simple of dimension 3. In this case, G.X is the union of G.h and G.ge. So, one can

suppose ℓ ≥ 2. According to Lemma 5.1,(iii), for α in R+, G.Xα is an irreducible component of G.X \G.h.

Moreover, for all β in Π ∩W(R)(α), G.Xα = G.Xβ since Vα and Vβ are conjugate under NG(h).

Let T be an irreducible component of G.X \G.h. Let set:

∆T := ∆ ∩ g × T

and let denote by Y the image of ∆T by the first projection. Then Y is closed in g since Grℓ(g) is a

projective variety. Since ∆T is a vector bundle over T and since T is irreducible, ∆T is irreducible and

Y is too. Since T is an irreducible component of G.X \ G.h, T , ∆T and Y are G-invariant. According

to Lemma 5.1,(iii), T has codimension 1 in G.X. Hence, by Corollary 5.10,(i) Y is not contained in the
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nilpotent cone since ℓ ≥ 2. Let Y ′ be the set of elements x of Y such that gx has minimal dimension.

According to Lemma 5.12,(ii) and (iv), for x in a G-invariant dense subset Y ′′ of Y ′,

dim Y ≤ dimG(x) + dim z

with z the centre of gxs and according to Theorem 5.11,

dim∆T ≤ dimG(x) + dim z + dimgx − ℓ = dimg + dim z − ℓ

Hence ∆T has dimension at most 2n + dim z and dim z = ℓ − 1 since T has codimension 1 in G.X. Let

x be in Y ′′ such that xs is in h. Then xs is subregular and z is the kernel of a positive root α. Denoting

by sα the subalgebra of g generated by gα and g−α, gxs is the direct sum of hα and sα. Since the maximal

commutative subalgebras of sα have dimension 1, a commutative subalgebra of dimension ℓ of gxs is either

a Cartan subalgebra of g or conjugate to Vα under the adjoint group of gxs . As a result, Vα is in T and

T = G.Vα = G.Xα since T is G-invariant, whence the assertion.

(ii) According to Lemma 5.1,(ii), for α in R+, Xα is an irreducible component of X \ B.h. Let g1, . . . ,gm
be its simple factors. For j = 1, . . . ,m, let denote by X j be the closure in Grℓg j

(g j) of the orbit of h ∩ g j.

Then X = X1× · · · ×Xm and the complement of B.h in X is the union of the

X1× · · · ×X j−1 × (X j \ B.(h ∩ g j)) × X j+1× · · · ×Xm

So, one can suppose g simple. Let consider

b = p0⊂ · · · ⊂pℓ = g

an increasing sequence of parabolic subalgebras verifying the following condition: for i = 0, . . . , ℓ − 1,

there is no parabolic subalgebra q of g such that

pi $ q $ qi+1

For i = 0, . . . , ℓ, let Pi be the normalizer of pi in G, let pi,u be the nilpotent radical of pi and let Pi,u be the

unipotent radical of Pi. For i = 0, . . . , ℓ and for α in R+, let set Xi := Pi.X and Xi,α := Pi.Xα. Let prove by

induction on ℓ − i that for all sequence of parabolic subalgebras verifying the above condition, the Xi,α’s,

α ∈ R+, are the irreducible components of Xi \ Pi.h.

For i = ℓ, it results from (i). Let suppose that it is true for i+1. According to Lemma 5.1,(iii), the Xi,α’s

are irreducible components of Xi \ Pi.h.

Claim 5.14. Let T be an irreducible component of Xi \ Pi.h such that Pi is its stabilizer in Pi+1. Then

T = Xi,α for some α in R+.

Proof. According to the induction hypothesis, T is contained in Xi+1,α for some α in R+. According to

Lemma 5.1,(iv), T has codimension 1 in Xi so that Pi+1.T and Xi+1,α have the same dimension. Then

they are equal and T contains gx for some x in breg such that xs is a subregular element belonging to h.

Denoting by α′ the positive root such that α′(xs) = 0, gx = Vα′ since Vα′ is the commutative subalgebra

contained in b and containing hα′ , which is not Cartan, so that T = Xi,α′ . �

Let suppose that Xi \ Pi.h is not the union of the Xi,α’s, α ∈ R+. One expects a contradiction. Let T be

an irreducible component of Xi \Pi.h, different from Xi,α for all α. According to Claim 5.14 and according

to the condition verified by the sequence, T is invariant under Pi+1. Moreover, according to Claim 5.14,
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it is so for all sequence p′
0
, . . . ,p′

ℓ
of parabolic subalgebras verifying the above condition and such that

p′
j
= p j for j = 0, . . . , i. As a result, for all simple root β such that g−β is not in pi, T is invariant under the

one parameter subgroup of G generated by adg−β. Hence T is invariant under G. It is impossible since for

x in g \ {0}, the orbit G(x) is not contained in pi since g is simple, whence the assertion. �

5.6. Let X′ be the subset of gx with x in breg such that xs is regular or subregular. For α in R+, let denote

by θα the map

k −→ X t 7−→ exp(tad xα).h

According to [Sh94, Ch. VI, Theorem 1], θα has a regular extension to P1(k), also denoted by θα. Let set

Zα := θα(P1(k)) and X′α := B.Zα so that X′α = U.h ∪ B.Vα.

Lemma 5.15. Let α be in R+ and let V be in X. Let denote by V the image of V by the projection x 7→ x.

(i) For x in h, x is subregular if and only if Vx = hγ for some positive root.

(ii) If V = hα, then Vx = hα for some x in V.

(iii) If V = hα, then V is conjugate to Vα under B.

Proof. (i) First of all, since ε1, . . . ,εℓ are G-equivariant maps, Vx is contained in the centre of gx for all x

in g. Then for x in h, Vx is the centre of gx by Corollary 5.3,(i), whence the assertion.

(ii) Let suppose V = hα. Then x is not regular semisimple for all x in V . Let suppose that xs is not

subregular for all x in V . One expects a contradiction. Since xs and x are conjugate under B, for all x in

V , there exists γ in R+ \ {α} such that γ(x) = 0. Hence V is contained in hγ for some γ in R+ \ {α} since

R+ is finite, whence the contradiction. Then by (i), for some x in V , Vx = hα since xs and x are conjugate

under B.

(iii) Let suppose V = hα. By (ii), Vx = hα for some x in V . Let b be in B such that b(xs) = x. Then b(V)

centralizes hα by Corollary 5.3,(i). Moreover, b(V) is not a Cartan subalgebra since V does not contain

regular semsimple element. The centralizer of hα in b equals h + gα and Vα is the commutative algebra of

dimension ℓ contained in h + gα which is not a Cartan subalgebra, whence the assertion. �

Corollary 5.16. Let α be a positive root.

(i) The subset X′α of X is open.

(ii) The subset X′ of X is open. Moreover, G.X′α and G.X′ are open subsets of G.X.

Proof. (i) Since X′α is B-invariant and since U.h is an open subset of X, contained in X′α, it suffices to prove

that X′α is a neighborhood of Vα in X. Let denote by Hα the coroot of α and let set:

E′ :=
⊕

γ∈R+\{α}
gγ E := kHα ⊕ E′

Let ΩE be the set of subspaces V of b such that E is a complement of V in b and let Ω′
E

be the complement

in X∩ΩE of the union of the Xγ’s, γ ∈ R+ \ {α}. Then Ω′
E

is an open neighborhood of Vα in X. Let V be in

Ω′
E

such that V is not a Cartan subalgebra and let denote by V its image by the projection x 7→ x. Then V

is contained in V + u so that h = kHα +V . Since V is not a Cartan subalgebra and since it is commutative,

V ∩ hreg is empty. Hence V = hγ for some positive root γ. According to Lemma 5.15,(iii), V is conjugate

to Vγ under B. Then α = γ and V is in X′α since V is not in Xδ for all positive root δ different from α. As

a result, Ω′
E

is contained in X′α, whence the assertion.
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(ii) By definition, X′ is the union the X′α’s, α ∈ R+. Hence X′ is an open subset of X by (i). Since X′α is

invariant under B, X \ X′α is a B-invariant closed subset of X. Hence G.(X \ X′α) is a closed subset of G.X

by Lemma 1.4. Moreover, G.X′α is the complement of G.(X \ X′α) in G.X. Hence G.X′α and G.X′ are open

subsets of G.X. �

For β in Π, let set:

uβ :=
⊕

α∈R+\{β}
gα Uβ := exp(aduβ)

Let Y be the subvariety of elements (V,V ′) of Grℓ(g) × Grℓ−1(g) such that V ′ is contained in V .

Lemma 5.17. Let β be in Π and let set: Yβ := Y ∩ (X′
β
× B.hβ).

(i) The variety Yβ is a smooth open subset of Y ∩ X × B.hβ.

(ii) The variety X′
β

is smooth.

(iii) The subset G.Yβ of Y is the intersection of Y and G.X′
β
×G.hβ. Moreover, the restriction to G.Yβ of

the first projection has finite fibers.

(iv) The canonical projection from G.Yβ to G.X′
β

is a finite surjective morphism.

(v) The variety G.Yβ is smooth.

Proof. (i) According to Corollary 5.16, X′
β

is an open subset of X. Hence Yβ is an open subset of Y ∩ X ×

B.hβ. By definition, X′
β
= B.Zβ. For (g, g′) in B × B and for V in Zβ, (g(V), g′(hβ)) is in Y if and only if

hβ is contained in (g′)−1g(V). Since the centralizer of hβ in b equals gβ + h and since V is a commutative

algebra, (g′)−1g(V) is in Zβ in this case. Hence Yβ = B.(Zβ × {hβ})

Let Tβ be the normalizer of hβ in B. Since B = UβTβ, the map g 7→ g(hβ) from Uβ to B.hβ is an

isomorphism. Hence the map

Uβ × Zβ −→ Yβ (g,V) 7−→ (g(V), g(hβ))

is an isomorphism so that Yβ is smooth since Zβ is too.

(ii) Since X′
β
= B.Zβ and since B.h is a smooth open subset of X′

β
, it suffices to prove that Vβ is a smooth

point of X′
β
. Let set:

F := uβ ⊕ kHβ

and let denote by ΩF the set of complements of F in b. Then ΩF is an affine open subset of Grℓ(b),

containing Vβ, and the map

Homk(Vβ, F) −→ ΩF ϕ 7−→ span({v + ϕ(v) | v ∈ Vβ}

is an isomorphism. Let denote it by χ.

Claim 5.18. Let v1, . . . ,vℓ−1 be a basis of hβ. Let denote by χ̃ the map

Homk(Vβ, F) × kℓ−1 −→ ΩF × Grℓ−1(b)

(ϕ, a1, . . . ,aℓ−1) 7−→ (span({v + ϕ(v) | v ∈ Vβ}), span({vi + aixβ + ϕ(vi + aixβ) | i = 1, . . . , ℓ − 1}))

Then χ̃ is an isomorphism onto an open neighborhood Ω′
F

of (Vβ, hβ) in Y.
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Proof. Let F′ be the subspace of b generated by F and xβ and let ΩF′ be the set of complements of F′ in

b. Then ΩF ×ΩF′ is an open neighborood of (Vβ, hβ) in Grℓ(b) × Grℓ−1(b) and the map

Homk(Vβ, F) × Homk(hβ, F
′) −→ ΩF ×ΩF′

(ϕ, ψ) 7−→ (span({v + ϕ(v) | v ∈ Vβ}), span({v + ψ(v) | v ∈ hβ}))

is an isomorphism. For (ϕ, a1, . . . ,aℓ−1) in Homk(Vβ, F) × kℓ−1, χ̃(ϕ, a1, . . . ,aℓ−1) is the image of (ϕ, ψ)

with ψ in Homk(hβ, F
′) defined by ψ(vi) = ϕ(vi + aixβ) + ai xβ for i = 1, . . . , ℓ − 1. Conversely, let (ϕ, ψ)

be such that its image is in Y. Then for i = 1, . . . , ℓ − 1,

vi + ψ(vi) =

ℓ∑

j=1

ai, j(v j + ϕ(v j)) + ai,ℓ(xβ + ϕ(xβ))

with ai,1, . . . ,ai,ℓ in k so that

ψ(vi) = ai,ℓ(xβ + ϕ(xβ)) + ϕ(vi)

whence the claim since the map

Homk(Vβ, F) × kℓ−1 −→ Homk(Vβ, F) × Homk(hβ, F
′)

(ϕ, a1, . . . ,aℓ−1) 7−→ (ϕ, ψ) with ψ(vi) = ϕ(vi + aixβ) + aixβ, i = 1, . . . , ℓ − 1

is an isomorphism onto a subspace of Homk(Vβ, F) × Homk(hβ, F
′). �

Let identify Homk(Vβ, F) with Homk(Vβ, uβ) × k
ℓ by the isomorphism

Homk(Vβ, uβ) × k
ℓ −→ Homk(Vβ, F)

(ϕ, b1, . . . ,bℓ) 7−→ (

ℓ−1∑

j=1

t jv j + tℓxβ 7→ ϕ(

ℓ−1∑

j=1

t jv j + tℓxβ) + (

ℓ∑

j=1

t jb j)Hβ)

Let Σ be the inverse image by χ of ΩF ∩X′
β
. Then Σ is an irreducible locally closed subset of Homk(Vβ, F)

since ΩF ∩ X′
β

is an irreducible locally closed subset of Grℓ(b). Moreover,

χ̃(Σ × kℓ−1) = Ω′F ∩ Y ∩ X′β × Grℓ−1(b)

Let set:

S 0 := {(ϕ, b1, . . . ,bℓ, a1, . . . ,aℓ−1) | (ϕ, b1, . . . ,bℓ) ∈ Σ, bi + bℓai = 0, i = 1, . . . , ℓ − 1}

Claim 5.19. Let S be the inverse image of Ω′
F
∩ Yβ by χ̃. Then S is an irreducible subvariety of S 0.

Moreover, Σ is the image of S by the canonical projection from Homk(Vβ, F) × kℓ−1 to Homk(Vβ, k
ℓ−1).

Proof. Since Yβ = B.(Zβ × {hβ}), Yβ and Ω′
F
∩ Yβ are irreducible varieties. Hence by Claim 5.18, S

is an irreducible variety. Moreover, χ̃(S ) = Ω′
F
∩ Yβ and Σ is the image of S by the projection onto

Homk(Vβ, F) since X′
β

is the image of Yβ by the projection from Y to Grℓ(b) and since Σ = χ−1(ΩF ∩ X′
β
).

Let (ϕ, b1, . . . ,bℓ, a1, . . . ,aℓ−1) be in S . Then χ(ϕ, b1, . . . ,bℓ) is in ΩF ∩ X′
β

and for i = 1, . . . , ℓ − 1,

ϕ(vi + aixβ) + (bi + bℓai)Hβ + aixβ ∈ hβ

Hence S is contained in S 0. �
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Let suppose that S is not contained in Σ × {0}. One expects a contradiction. Since ΩF ∩ X′
β

contains

Cartan subalgebras and since Σ is irreducible, for all (ϕ, b1, . . . ,bℓ) in a dense subset Σ′ of Σ, (b1, . . . ,bℓ) ,

0. Then, by Claim 5.19, bℓ , 0. Let set S ′ := S ∩ Σ′ × kℓ−1 and let (ϕ, b1, . . . ,bℓ, a1, . . . ,aℓ−1) be in S ′

such that (a1, . . . ,aℓ−1) , 0. After a permutation of the vi’s, one can suppose a1 , 0 so that b1 , 0. Then

0 = [v1 + ϕ(v1) + b1Hβ, xβ + ϕ(xβ) + bℓHβ] ∈ 2b1xβ + uβ

whence the contradiction. As a result, S = Σ × {0}. By (i), S is a smooth variety. Hence Σ is a smooth

variety and ΩF ∩ X′
β

is a smooth open subset of X′
β
, containing Vβ, whence the assertion.

(iii) Since Y is G-invariant, G.Yβ is contained in Y ∩G.X′
β
×G.hβ. Let (V,V ′) be in this intersection. If

V is not a Cartan subalgebra, for some g in G, g(V) = Vβ and g(V ′) = hβ since hβ is the set of semisimple

elements contained in Vβ. Let suppose that V is a Cartan subalgebra, for some g in G, g(V) = h and g(V ′)

is an element of G.hβ contained in h. In particular, g(V ′) contains a subregular element. So, g(V ′) = hα for

some positive root α. Moreover, w(α) = β for some w in W(R) since g(V ′) is in G.hβ, whence wg(V ′) = hβ
and (V,V ′) is in G.Yβ, whence the assertion.

(iv) According to (iii), it suffices to prove

G.Yβ ∩G.X′β × Grℓ−1(g) ⊂ G.X′β ×G.hβ

since G.Yβ is a projective variety. According to (i) and Lemma 1.4, G.Yβ = G.B.(Zβ × {hβ}). Let (V,V ′)

be in G.Yβ such that V is in X′
β
. Then, for some g in G, (g(V), g(V ′)) is in B.(Zβ × {hβ}) so that g(V ′)

is contained in hβ + uβ. According to (i), for some b in B, bg(V) is in Zβ and bg(V ′) is contained in

(hβ + uβ) ∩ (h + gβ). Hence bg(V ′) = hβ and V ′ is in G.hβ, whence the assertion.

(v) Let denote by sβ the subalgebra of g generated by gβ and g−β. Let T ′
β

be the normalizer of hβ in G

and let Z′
β

be the closure in Grℓ(g) of the orbit of h under T ′
β
. Since the normalizer of hβ in g equals h+ sβ,

Z′
β

is the set of subspaces of g generated by hβ and an element of sβ \ {0} so that Z′
β

is isomorphic to P2(k).

Moreover, G.Yβ equals G.(Z′
β
×{hβ}) since G.Yβ = G.(Zβ×{hβ}) by (i), and one has a commutative diagram

G ×T ′
β

(Z′
β
× {hβ})

�

�

//

&&N
NN

NN
NN

NN
N

G/T ′
β
×G.Yβ

yyss
ss
ss
ss
ss

G.Yβ

φgg

The canonical projection G.Yβ → G.hβ gives a morphism G.Yβ → G/T ′
β

whence an inverse ϕ of the

diagonal arrow. Hence G.Yβ is isomorphic to G ×T ′
β

(Z′
β
× {hβ}) so that G.Yβ is smooth since G/T ′

β
and

Z′
β
× {hβ} are smooth, whence the assertion. �

Let denote by Xn and (G.X)n the normalizations X of G.X and let denote by θ0 and θ the normalization

morphisms Xn → X and (G.X)n → G.X respectively.

Proposition 5.20. (i) The open subset θ−1(G.X′) of (G.X)n is smooth and the restriction of θ to θ−1(G.X′)

is a homeomorphism onto G.X′.

(ii) The open subset θ−1
0

(X′) of Xn is smooth and the restriction of θ0 to θ−1
0

(X′) is a homeomorphism

onto X′.
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Proof. (i) By definition, X′ is the union of the X′α’s, α ∈ R+. Then, since all orbit of W(R) in R has a

nonempty intersection with Π, G.X′ is the union of the G.X′
β
’s, β ∈ Π. So, it suffices to prove that for β in

Π, θ−1(G.X′
β
) is smooth and the restriction of θ to θ−1(G.X′

β
) is injective since θ is closed and surjective

as a finite dominant morphism.

Since G.h is a smooth open subset of G.X, the restriction of θ to θ−1(G.h) is an isomorphism onto G.h.

The variety G.Vβ is an hypersurface of G.X′
β
. Hence θ−1(G.Vβ) is an hypersurface of the normal variety

θ−1(G.X′
β
) and its elements are smooth points of θ−1(G.X′

β
) since θ−1(G.X′

β
) is a G-variety and since a

normal variety is smooth in codimension 1. As a result, θ−1(G.X′
β
) is smooth since G.X′

β
is the union of

G.h and G.Vβ. Let x1 and x2 be in θ−1(X′
β
) such that θ(x1) = θ(x2) = Vβ. According to Lemma 5.17,(iv)

and (v), the canonical projection from G.Yβ to G.X′
β

factorizes through the restriction of θ to θ−1(G.X′
β
)

since θ−1(G.X′
β
) is the normalization of G.X′

β
, whence a commutative digram

G.Yβ
θn //

!!D
DD

DD
DD

DD
θ−1(G.X′

β
)

θ

zzuu
uu
uu
uu
u

G.X′
β

with θn finite and surjective. Let y1 and y2 be in G.Y ′
β

such that θn(y j) = x j for j = 1, 2. Since Vβ is the

image of y1 and y2 by the canonical projection onto G.X′
β

and since hβ is the set of semisimple elements

contained in Vβ, y1 = y2 and x1 = x2. Hence the restriction of θ to θ−1(G.X′
β
) is injective since θ is

G-equivariant and since G.X′
β

is the union of G.h and G.Vβ.

(ii) According to Corollary 5.16,(ii), θ−1
0

(X′) is an open subset of Xn. Since X′ is the union of the X′α’s,

α ∈ R+, it suffices to prove that for α in R+, θ−1
0

(X′α) is smooth and the restriction of θ0 to θ−1
0

(X′α) is

injective since θ0 is closed and surjective as a finite dominant morphism.

Let α be in R+ and let β in Π such that β is in the orbit of α under W(R). Since B.h is a smooth

open subset of B.X, the restriction of θ0 to θ−1
0

(B.h) is an isomorphism onto B.h. The variety B.Vα is an

hypersurface of X′α. Hence θ−1
0

(B.Vα) is an hypersurface of the normal variety θ−1
0

(X′α) and its elements are

smooth points of θ−1
0

(X′α) since θ−1
0

(X′α) is a B-variety and since a normal variety is smooth in codimension

1. As a result, θ−1
0

(X′α) is smooth since X′α is the union of B.h and B.Vα. Since β is in the orbit of α under

W(R), G.X′α = G.X′
β
. Moreover, the varieties G ×B θ

−1
0

(X′
β
) and G ×B θ

−1
0

(X′α) are smooth as fiber bundles

over a smooth variety with smooth fibers, whence a commutative diagram

G ×B θ
−1
0

(X′
β
) //

��

θ−1(G.X′
β
)

θ

��

G ×B θ
−1
0

(X′α)oo

��

G ×B X′
β

// G.X′
β

G ×B X′α
oo

by [H77, Ch. II, Proposition 4.1]. By Lemma 1.4, the horizontal arrows are projective morphisms. Indeed,

since a regular element is contained in finitely many Borel subalgebras, their fibers are finite so that they

are finite. Since B.h is an open subset of X′α and X′
β
, G ×B θ

−1
0

(X′
β
) and G ×B θ

−1
0

(X′α) have the same

field of rational functions. As a result, since these two varieties are normal, there exists a G-equivariant



COMMUTING VARIETY 39

isomorphism from G ×B θ
−1
0

(X′
β
) onto G ×B θ

−1
0

(X′α) by [H77, Ch. II, Proposition 4.1]. According to

Lemma 5.17,(ii), the restriction of θ0 to θ−1
0

(X′
β
) is an isomorphism so that the first down arrow in the

above diagram is an isomorphism. Moreover, the restriction to all fiber of G ×B θ
−1
0

(X′
β
) of the morphism

G ×B θ
−1
0 (X′β) −→ θ

−1(G.X′β)

is injective. Hence the restriction of θ0 to θ−1
0

(X′α) is injective since the restriction of θ to θ−1(G.X′
β
) is too

by (ii), whence the assertion. �

6. On the generalized isospectral commuting variety.

Let k ≥ 2 be an integer. Let denote by C(k) the closure of G.hk in gk with respect to the diagonal action

of G in gk and let set C
(k)
n := η−1(C(k)). The varieties C(k) and C

(k)
n are called generalized commuting variety

and generalized isospectral commuting variety respectively. For k = 2, C
(k)
n is the isospectral commuting

variety considered by M. Haiman in [Ha99, §8] and [Ha02, §7.2].

6.1. Let set:

E(k) := {(u, x1, . . . ,xk) ∈ X × bk | u ∋ x1, . . . ,u ∋ xk}

Lemma 6.1. Let denote by E(k,∗) the intersection of E(k) and U.h × (greg,ss ∩ b)
k and for w in W(R), let

denote by θw the map

E(k) −→ bk × hk (u, x1, . . . ,xk) 7−→ (x1, . . . ,xk,w(x1), . . . ,w(xk))

(i) Denoting by X0,k the image of E(k) by the projection (u, x1, . . . ,xk) 7→ (x1, . . . ,xk), X0,k is the closure

of B.hk in bk and C(k) is the image of G × X0,k by the map (g, x1, . . . ,xk) 7→ (g(x1), . . . ,g(xk)).

(ii) For all w in W(R), θw(E(k,∗)) is dense in θw(E(k)).

Proof. (i) Since X is a projective variety, X0,k is a closed subset of bk. The variety E(k) is irreducible of

dimension n + kℓ as a vector bundle of rank kℓ over the irreducible variety X. So, B.({h} × hk) is dense in

E(k) and X0,k is the closure of B.hk in bk, whence the assertion by Lemma 1.4.

(ii) Since U.h × (greg,ss ∩ b)
k is an open susbet of X × bk, E(k,∗) is an open subset of E(k). Moreover, it is

a dense open subset since E(k) is irreducible as a vector bundle over the irreducible variety X, whence the

assertion since θw is a morphism of algebraic varieties. �

6.2. Let s be in h and let Gs be the centralizer of s in G. According to [Ko63, §3.2, Lemma 5], Gs is

connected. Let denote by Rs the set of roots whose kernel contains s and let denote by W(Rs) the Weyl

group of Rs. Let zs be the centre of gs.

Lemma 6.2. Let x = (x1, . . . ,xk) be in C(k) verifying the following conditions:

(1) s is the semisimple component of x1,

(2) for z in Px, the centralizer in g of the semisimple component of z has dimension at least dimgs.

Then for i = 1, . . . , k, the semisimple component of xi is contained in zs.
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Proof. Since x is in C(k), [xi, x j] = 0 for all (i, j). Let suppose that for some i, the semisimple component

xi,s of xi is not in zs. One expects a contradiction. Since [x1, xi] = 0, for all t in k, s+ txi,s is the semisimple

component of x1 + txi. Moreover, after conjugation by an element of Gs, one can suppose that xi,s is in

h. Since R is finite, there exists t in k∗ such that the subset of roots whose kernel contains s + txi,s is

contained in Rs. Since xi,s is not in zs, for some α in Rs, α(s + txi,s) , 0 that is gs+txi,s is strictly contained

in gs, whence the contradiction. �

For w in W(R), let set:

Cw := GswB/B Bw := wBw−1

The following lemma results from [Hu95, §6.17, Lemma].

Lemma 6.3. Let B be the set of Borel subalgebras of g and let Bs be the set of Borel subalgebras of g

containing s.

(i) For all w in W(R), Cw is a connected component of Bs.

(ii) For (w,w′) in W(R) ×W(R), Cw = Cw′ if and only if w′w−1 is in W(Rs).

(iii) The variety Cw is isomorphic to Gs/(Gs ∩ Bw).

For x in B(k), let denote by Bx the subset of Borel subalgebras containing Px.

Corollary 6.4. Let x = (x1, . . . ,xk) be in C(k). Let suppose that x verifies Conditions (1) and (2) of

Lemma 6.2. Then the Cw ∩Bx’s, w in W(R) are the connected components of Bx.

Proof. Since a Borel subalgebra contains the semisimple component of its elements and since s is the

semisimple component of x1, Bx is contained in Bs. As a result, according to Lemma 6.3,(i), every

connected component of Bx is contained in Cw for some w in W(R). Let set xn := (x1,n, . . . ,xk,n). Since

[xi, x j] = 0 for all (i, j), Px is contained in gs. Let Bs be the set of Borel subalgebras of gs and for y in

(gs)k, let Bs
y be the set of Borel subalgebras of gs containing Py. According to [Hu95, Theorem 6.5], Bs

xn

is connected. Moreover, according to Lemma 6.2, the semisimple components of x1, . . . ,xk are contained

in zs so that Bs
xn
= Bs

x. Let w be in W(R). According to Lemma 6.3,(iii), there is an isomorphism from

Bs to Cw. Moreover, the image of Bs
x by this isomorphism equals Cw ∩Bx, whence the corollary. �

Corollary 6.5. Let x = (x1, . . . ,xk) be in C(k) verifying Conditions (1) and (2) of Lemma 6.2. Then η−1(x)

is contained in the set of the (x1, . . . ,xk,w(x1,s), . . . ,w(xk,s))’s with w in W(R).

Proof. Since γ = η◦γn, η−1(x) is the image of γ−1(x) by γn. Furthermore, γn is constant on the connected

components of γ−1(x) since η−1(x) is finite. Let C be a connected component of γ−1(x). Identifying

G ×B b
k with the subvariety of elements (u, x) of B × gk such that Px is contained in u, C identifies with

Cw ∩Bx × {x} for some w in W(R) by Corollary 6.4. Then for some g in Gs and for some representative

gw of w in NG(h), ggw(b) contains Px so that

γn(C) = {(x1, . . . ,xk, (ggw)−1(x1), . . . , (ggw)−1(xk))}

By Lemma 6.2, x1,s, . . . ,xk,s are in zs so that w−1(xi,s) is the semisimple component of (ggw)−1(xi) for

i = 1, . . . , k. Hence

γn(C) = {(x1, . . . ,xk,w
−1(x1,s), . . . ,w

−1(xk,s))}

whence the corollary. �



COMMUTING VARIETY 41

Proposition 6.6. The variety C
(k)
n is irreducible and equal to the closure of G.ιn(hk) in B

(k)
n .

Proof. Let denote by G.ιn(hk) the closure of G.ιn(hk) in B
(k)
n . Since η is G-equivariant, η(G.ιn(hk)) =

G.hk. Hence η(G.ιn(hk)) = C(k) since η is a finite morphism and since C(k) is the closure of G.hk in gk

by definition. Moreover, G.ιn(hk) is irreducible as the closure of an irreducible set. So, it suffices to

prove C
(k)
n = G.ιn(hk). In other words, for all x in C(k), η−1(x) is contained in G.ιn(hk). According to

Lemma 3.9,(ii), B
(k)
n is a GLk(k)-variety and η is GLk(k)-equivariant. As a result, since C(k) is invariant

under GLk(k), for x in C(k), η−1(x′) is contained in G.ιn(hk) for all x′ in Pk
x such that Px′ = Px if η−1(x)

is contained in G.ιn(hk). Then, according to Lemma 6.2, since η is G-equivariant, it suffices to prove that

η−1(x) is contained in G.ιn(hk) for x in C(k) ∩ bk verifying Conditions (1) and (2) of Lemma 6.2 for some

s in h.

According to Corollary 6.5,

η−1(x) ⊂ {(x1, . . . ,xk,w(x1,s), . . . ,w(xk,s)) | w ∈ W(R)} with x = (x1, . . . ,xk)

For s regular, Px is contained in h and xi = xi,s for i = 1, . . . , k. By definition,

(w(x1), . . . ,w(xk),w(x1), . . . ,w(xk)) ∈ ιn(hk)

and for gw a representative of w in NG(h),

g−1
w .(w(x1), . . . ,w(xk),w(x1), . . . ,w(xk)) = (x1, . . . ,xk,w(x1), . . . ,w(xk))

Hence η−1(x) is contained in G.ιn(hk). As a result, according to the notations of Lemma 6.1, for all w

in W(R), θw(E(k,∗)) is contained in G.ιn(hk). Hence, by Lemma 6.1,(ii), θw(E(k)) is contained in G.ιn(hk),

whence the proposition. �

6.3. According to Corollary 3.8,(iii), the variety ̟−1(B(k)) is invariant under the action of W(R)k in Xk

and according to Proposition 3.10, B
(k)
n is an irreducible component of ̟−1(B(k)) and η is the restriction

of ̟ to B
(k)
n .

Lemma 6.7. Let Φ be the restriction to S(h)⊗k of the canonical map from k[B
(k)
n ] to k[C

(k)
n ].

(i) The subvariety C
(k)
n of Xk is invariant under the diagonal action of W(R) in Xk.

(ii) The map Φ is an embedding of S(h)⊗k into k[C
(k)
n ]. Moreover, Φ(S(h)⊗k) equals k[C

(k)
n ]G .

(iii) The image of (S(h)⊗k)W(R) by Φ equals k[C(k)]G.

Proof. (i) For all w in W(R) and for all representative gw of w in W(R),

(x1, . . . ,xk,w(x1), . . . ,w(xk)) = g−1
w .(w(x1), . . . ,w(xk),w(x1), . . . ,w(xk))

for all (x1, . . . ,xk) in hk. As a result, for all w in W(R), w.ιn(hk) is contained in G.ιn(hk). Hence G.ιn(hk)

is invariant under the diagonal action of W(R) in Xk since the actions of G and W(R)k in Xk commute,

whence the assertion.

(ii) According to Corollary 3.12,(i), S(h)⊗k equals k[B
(k)
n ]G. Moreover, for all P in S(h)⊗k and for all x

in hk, P◦ιn(x) = P(x). Hence Φ is injective by Proposition 6.6. Since G is reductive, k[C
(k)
n ]G is the image

of k[B
(k)
n ]G by the quotient morphism, whence the assertion.

(iii) Since G is reductive, k[C(k)]G is the image of k[B(k)]G by the quotient morphism, whence the

assertion since (S(h)⊗k)W(R) equals k[B(k)]G by Corollary 3.12,(ii). �
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Let identify S(h)⊗k to a subalgebra of k[C
(k)
n ] by Φ.

Proposition 6.8. Let C̃
(k)
n and C̃(k) be the normalizations of C

(k)
n and C(k).

(i) The variety C(k) is the categorical quotient of Ck
n under the action of W(R).

(ii) The variety C̃(k) is the categorical quotient of C̃k
n under the action of W(R).

Proof. (i) According to Proposition 3.10,(iii), k[B
(k)
n ] is generated by k[B(k)] and S(h)⊗k. Since C

(k)
n =

η−1(C(k)) by Proposition 6.6, the image of k[B(k)] in k[C
(k)
n ] by the restriction morphism equals k[C(k)].

Hence k[C
(k)
n ] is generated by k[C(k)] and S(h)⊗k. Then, by Lemma 6.7,(iii), k[C

(k)
n ]W(R) = k[C(k)].

(ii) Let K be the fraction field of k[C
(k)
n ]. Since C

(k)
n is a W(R)-variety, there is an action of W(R) in K

and KW(R) is the fraction field of k[C
(k)
n ]W(R) since W(R) is finite. As a result, the integral closure k[C̃

(k)
n ]

of k[C
(k)
n ] in K is invariant under W(R) and k[C̃(k)] is contained in k[C̃

(k)
n ]. Let a be in k[C̃

(k)
n ]W(R). Then a

verifies a dependence integral equation over k[C
(k)
n ],

am + am−1am−1 + · · · + a0 = 0

whence

am + (
1

|W(R)|

∑

w∈W(R)

w.am−1)am−1 + · · · +
1

|W(R)|

∑

w∈W(R)

w.a0 = 0

since a in invariant under W(R) so that a is in k[C̃(k)], whence the assertion. �

7. Desingularization.

Let k ≥ 2 be an integer. Let X, X′, Xn, θ0 be as in Subsection 5.6. Let denote by X′n the inverse image

of X′ in Xn. According to Proposition 5.20, X′n is a smooth open subset of Xn and according to [Hir64],

there exists a desingularization (Γ, πn) of Xn such that the restriction of πn to π−1
n (X′n) is an isomorphism

onto X′n. Let set π = θ0◦πn so that (Γ, π) is a desingularization of X. Let recall that X0,k is the closure in bk

of B.hk and let set Xk := G ×B X0,k. Then Xk is a closed subvariety of G ×B b
k.

Lemma 7.1. Let E be the restriction to X of the tautological vector bundle of rank ℓ over Grℓ(b) and let

τ′ be the canonical morphism from E to b.

(i) The morphism τ′ is projective and birational.

(ii) Let ν be the canonical map from π∗(E) to E. Then τ := τ′◦ν is a B-equivariant birational projective

morphism from π∗(E) to b. In particular, π∗(E) is a desingularization of b.

Proof. (i) By definition, E is the subvariety of elements (u, x) of X × b such that x is in u so that τ′ is the

projection from E to b. Since X is a projective variety, τ′ is a projective morphism and τ′(E) is closed in

b. Moreover, τ′(E) is B-invariant since τ′ is a B-equivariant morphism and it contains h since h is in X. As

a result, τ′(E) = b. By (i), for x in hreg, (τ′)−1(x) = {(h, x)} since gx = h. Hence τ′ is a birational morphism

since B.hreg is an open subset of b.

(ii) Since E is a vector bundle over X and since π is a projective birational morphism, ν is a projective

birational morphism. Then τ is a projective birational morphism from π∗(E) to b by (i). It is B-equivariant

since ν and τ′ are too. Moreover, π∗(E) is a desingularization of b since π∗(E) is smooth as a vector bundle

over a smooth variety. �
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Let denote by ψ the canonical projection from π∗(E) to Γ. Then, according to the above notations, one

has the commutative diagram:

π∗(E)

τ

}}zz
zz
zz
zz

ψ
//

ν

��

Γ

π

��
b E

τ′oo // X

Lemma 7.2. Let E(k) be the fiber product π∗(E) ×ψ · · · ×ψ π
∗(E) and let τk be the canonical morphism

from E(k) to bk.

(i) The vector bundle E(k) over Γ is a vector subbundle of the trivial bundle Γ × bk. Moreover, E(k) has

dimension kℓ + n.

(ii) The morphism τk is a projective birational morphism from E(k) onto X0,k. Moreover, E(k) is a

desingularization of X0,k in the category of B-varieties.

Proof. (i) By definition, E(k) is the subvariety of elements (u, x1, . . . ,xk) of Γ × bk such that x1, . . . ,xk are

in π(u). Since X is the closure of B.h, X and Γ have dimension n. Hence E(k) has dimension kℓ + n since

E(k) is a vector bundle of rank kℓ over Γ.

(ii) Since Γ is a projective variety, τk is a projective morphism and τk(E(k)) = X0,k by Lemma 6.1,(i).

For (x1, . . . ,xk) in bkreg,ss, τ
−1
k

(x1, . . . ,xk) = {(gx1 , (x1, . . . ,xk))} since gx1 is a Cartan subalgebra. Hence τk

is a birational morphism, whence the assertion since E(k) is a smooth variety as a vector bundle over the

smooth variety Γ. �

Let set Y := G ×B (Γ × bk). The canonical projections from G × Γ × bk to G × Γ and G × bk define

through the quotients morphisms from Y to G ×B Γ and G ×B b
k. Let denote by ς and ζ these morphisms.

Then one has the following diagram:

Y
ζ

//

ς

��

G ×B b
k

γn

��

G ×B Γ B
(k)
n

The map (g, x) 7→ (g, τk(x)) from G × E(k) to G × bk defines through the quotient a morphism τk from

G ×B E(k) to Xk.

Proposition 7.3. Let set ξ := γn◦τk.

(i) The variety G ×B E(k) is a closed subvariety of Y.

(ii) The variety G ×B E(k) is a vector bundle of rank kℓ over G ×B Γ. Moreover, G ×B Γ and G ×B E(k)

are smooth varieties.

(iii) The morphism ξ is a projective birational morphism from G ×B E(k) onto C
(k)
n . Moreover G ×B E(k)

is a desingularization of C
(k)
n .

Proof. (i) According to Lemma 7.2,(i), E(k) is a closed subvariety of Γ × bk, invariant under the diagonal

action of B. Hence G × E(k) is a closed subvariety of G × Γ × bk, invariant under the action of B, whence

the assertion.
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(ii) Since E(k) is a B-equivariant vector bundle over Γ, G ×B E(k) is a G-equivariant vector bundle over

G×B Γ. Since G×B Γ is a fiber bundle over the smooth variety G/B with smooth fibers, G×BΓ is a smooth

variety. As a result, G ×B E(k) is a smooth variety.

(iii) According to Lemma 7.2,(ii), τk is a projective birational morphism from G×BE(k) to Xk. Since X0,k

is a B-invariant closed subvariety of bk, Xk is closed in G×B b
k. According to Lemma 6.1,(i), γ(Xk) = C(k).

Moreover, γn(Xk) is a closed subvariety of B
(k)
n since γn is a projective morphism by Lemma 1.4. Hence

γn(Xk) = C
(k)
n by Proposition 6.6. For all z in G.ιn(hkreg), |γ−1

n (z)| = 1. Hence the restriction of γn to Xk is

a birational morphism onto C
(k)
n since G.ιn(hkreg) is dense in C

(k)
n . Moreover, this morphism is projective

since γn is projective. As a result, ξ is a projective birational morphism from G ×B E(k) onto C
(k)
n and

G ×B E(k) is a desingularization of C
(k)
n by (ii). �

The following corollary results from Lemma 7.2,(ii), Proposition 7.3,(iii) and Lemma 1.1.

Corollary 7.4. Let X̃0,k and C̃
(k)
n be the normalizations of X0,k and C

(k)
n respectively. Then k[X̃0,k] and

k[C̃
(k)
n ] are the spaces of global sections of OE(k) and OG×BE(k) respectively.

8. Rational singularities

Let k ≥ 2 be an integer. Let X, X′, Xn, θ0, X′n, Γ, πn, π, E, E(k), ψ, ν, τ, τk be as in Section 7. One has

the commutative diagram:

E(k)
τk //

ψk

��

X0,k

Γ

π

66
πn // Xn

θ0 // X

with ψk the canonical projection from E(k) onto Γ.

8.1. According to the notations of Subsection 5.1, let denote by S α the closure of U(hα) in b. For β in Π,

let set:

uβ :=
⊕

α∈R+\{β}
gβ bβ := hβ ⊕ uβ

Lemma 8.1. For α in R+, let h′α be the set of subregular elements belonging to hα.

(i) For α in R+, S α is a subvariety of codimension 2 of b. Moreover, it is contained in b \ breg.

(ii) For β in Π, S β = bβ.

(iii) The S α’s, α ∈ R+, are the irreducible components of b \ breg.

Proof. (i) For x in h′α, bx = h + kxα. Hence U(h′α) has dimension n − 1 + ℓ − 1, whence the assertion since

U(h′α) is dense in S α and since h′α is contained in b \ breg.

(ii) For β in Π, U(h′
β
) is contained in bβ since bβ is an ideal of b, whence the assertion by (i).

(iii) According to (i), it suffices to prove that b \ breg is the union of the S α’s. Let x be in b \ breg.

According to [V72], for some g in G and for some β in Π, x is in g(bβ). Since bβ is an ideal of b, by
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Bruhat’s decomposition of G, for some b in B and for some w in W(R), b−1(x) is in w(bβ) ∩ b. By

definition,

w(bβ) = w(hβ) ⊕ w(uβ) = hw(β) ⊕
⊕

α∈R+\{β}

gw(α)

So,

w(bβ) ∩ b = hw(β) ⊕ u0 with u0 :=
⊕

α∈R+\{β}

w(α)∈R+

gw(α)

The subspace u0 of u is a subalgebra, not containing gw(β). Then, denoting by U0 the closed subgroup of

U whose Lie algebra is adu0,

U0(hw(β)) = w(bβ) ∩ b

since the left hand side is contained in the right hand side and has the same dimension. As a result, x is in

S w(β) since S w(β) is B-invariant, whence the assertion. �

Let g′reg be the set of regular elements x such that xs is regular or subregular and let set b′reg := g′reg ∩ b.

Lemma 8.2. (i) The subset b′reg of b is a big open subset of b.

(ii) The subset g′reg of g is a big open subset of g.

Proof. Let x be in g′reg \ greg,ss. Let W be the set of elements y of gxs such that the restriction of ady to

[xs, g] is injective. Then W is an open subset of gxs , containing x, and the map

G ×W −→ g (g, y) 7−→ g(y)

is a submersion. Let z be the centre of gxs and let set z′ := W∩z. For some open subset W ′ of W , containing

x, for all y in W ′, the component of y on z is in z′. Since [gxs , gxs ] is a simple algebra of dimension 3,

W ′ ∩ greg is contained in g′reg and G(W ′ ∩ greg) is an open set, contained in g′reg and containing x. As a

result, g′reg is an open subset of g and b′reg is an open subset of b.

(i) Let suppose that b \ b′reg has an irreducible component Σ of codimension 1 in b. One expects a

contradiction. Since Σ is invariant under B, Σ∩h is the image of Σ by the projection x 7→ x by Lemma 1.5.

Since Σ has codimension 1 in b, Σ ∩ h = h or Σ = Σ ∩ h + u. Since Σ does not contain regular semisimple

element, Σ∩ h is an irreducible subset of codimension 1 of h, not containing regular semisimple elements.

Hence Σ ∩ h = hα for some positive root and Σ ∩ (h′α + g
α) ∩ greg is not empty, whence the contradiction.

(ii) Since b \ b′reg is invariant under B, g \ g′reg = G(b \ b′reg) and

dimg \ g′reg ≤ n + dimb \ b′reg

whence the assertion by (i). �

Setting breg,0 := breg and breg,1 := b′reg, let Vk, j be the subset of elements x of X0,k such that Px ∩ breg, j is

not empty for j = 0, 1.

Proposition 8.3. For j = 0, 1, let V ′
k, j

be the subset of elements x = (x1, . . . ,xk) of X0,k such that x1 is in

breg, j.

(i) For j = 0, 1, V ′
k, j

is a smooth open subset of X0,k.

(ii) For j = 0, 1, Vk, j is a smooth open subset of X0,k.

(iii) For j = 0, 1, Vk, j is a big open subset of X0,k.
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Proof. (i) By definition, V ′
k, j

is the intersection of X0,k and the open subset breg, j × b
k−1 of bk. Hence

V ′
k, j

is an open subset of X0,k. For x1 in breg,0, (x1, . . . ,xk) is in V ′
k,0

if and only if x2, . . . ,xk are in gx1 by

Corollary 5.3,(ii) and Lemma 7.2,(ii) since gx1 is in X. According to [Ko63, Theorem 9], for x in breg,

ε1(x), . . . ,εℓ(x) is a basis of gx. Hence the map

breg ×Mk−1,ℓ(k)
θ
−→ V ′

k,0

(x, (ai, j, 1 ≤ i ≤ k − 1, 1 ≤ j ≤ ℓ)) 7−→ (x,
∑ℓ

j=1 a1, jε j(x), . . . ,
∑ℓ

j=1 ak−1, jε j(x))

is a bijective morphism. The open subset breg has a cover by open subsets V such that for some e1, . . . ,en

in b, ε1(x), . . . ,εℓ(x), e1, . . . ,en is a basis for all x in V . Then there exist regular functions ϕ1, . . . ,ϕℓ on

V × b such that

v −

ℓ∑

j=1

ϕ j(x, v)ε j(x) ∈ span(e1, . . . ,en)

for all (x, v) in V × b, so that the restriction of θ to V ×Mk−1,ℓ(k) is an isomorphism onto X0,k ∩ V × bk−1

whose inverse is

(x1, . . . ,xk) 7−→ (x1, ((ϕ1(x1, xi), . . . ,ϕℓ(x1, xi)), i = 2, . . . , k))

As a result, θ is an isomorphism and V ′
k,0

is a smooth variety, whence the assertion since V ′
k,1

is an open

subset of V ′
k,0

.

(ii) The subvariety X0,k of bk is invariant under the natural action of GLk(k) in bk and Vk, j = GLk(k).V ′
k, j

by Lemma 1.6, whence the assertion by (i).

(iii) Since Vk,1 is contained in Vk,0, it suffices to prove the assertion for j = 1. Let suppose that X0,k\Vk,1

has an irreducible component Σ of codimension 1. One expects a contradiction. Since X0,k and Vk,1 are

invariant under B and GLk(k), it is so for Σ. Since Σ has codimension 1 in X0,k, τ−1
k

(Σ) has codimension 1

in E(k). Let Σ0 be an irreducible component of codimension 1 of τ−1
k

(Σ) and let set T := π◦ψk(Σ0). Since Σ

is invariant under GLk(k), Σ0 is invariant under the action of GLk(k) so that the intersection of (π◦ψk)−1(T )

and the null section of E(k) is contained in Σ0. So, T is a closed irreducible subset of X. Moreover, T

is strictly contained in X. Indeed, if it is not so, for all u in U.h, {u} × uk ∩ Σ0 has dimension at most

k(l − 1) since Σ0 is invariant under Sk. Then T has codimension 1 in X and Σ0 = (π◦ψk)−1(T ). According

to Theorem 5.13,(ii), for some u in T , u ∩ breg,1 is not empty, whence the contradiction since for all x in

Σ, Px ∩ breg,1 is empty and since uk is contained in Σ for all u in T . �

Let X̃0,k be the normalization of X0,k and let λk be the normalization morphism whence a commutative

diagram

E(k)
τ̃k //

τk
!!B

BB
BB

BB
BB

X̃0,k

λk

��
X0,k

since (E(k), τk) is a desingularization of X0,k.

Corollary 8.4. For j = 0, 1, λ−1
k

(Vk, j) is a smooth big open susbset of X̃0,k and the restriction of τ̃k to

τ−1
k

(Vk, j) is an isomorphism onto λ−1
k

(Vk, j).
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Proof. According to Proposition 8.3, Vk, j is a smooth big open subset of X0,k. Hence the restriction of λk

to λ−1
k

(Vk, j) is an isomorphism onto Vk, j. For all x in Vk, j, τ
−1
k

(x) = (u, x) with u equal to the centralizer of

a regular element contained in Px. Hence, by Zariski Main Theorem [Mu88, /S 9], the restriction of τk to

τ−1
k

(Vk, j) is an isomorphism onto Vk, j since Vk, j is smooth, whence the corollary. �

8.2. By definition, the restriction of πn to π−1
n (X′n) is an isomorphism onto X′n. Let identify π−1

n (X′n) and

X′n by πn. Let denote by Ek the restriction of E(k) to X′n. According to Proposition 5.20,(ii), θ0 is a

homeomorphism from θ−1
0

(X′) to X′. Moreover, U.h identifies with an open subset of X′n since it is a

smooth open subset of X′.

Lemma 8.5. Let set En := θ∗
0
(E) and let denote by νn the canonical morphism from En to E.

(i) There exists a well defined projective birational morphism τn from π∗(E) to En such that ν = νn◦τn.

Moreover, En is normal.

(ii) The Oπ∗(E)-module Ωπ∗(E) is free.

(iii) The variety En is Gorenstein and has rational singularities.

Proof. (i) Since En is a vectore bundle over Xn, En is a normal variety. Moreover, it is the normalization

of E and νn is the normalization morphism, whence the assertion by Lemma 7.1,(ii).

(ii) Let ω be a volume form on b. According to Lemma 7.1,(ii), τ∗(ω) is a global section of Ωπ∗(E),

without zero, whence the assertion since Ωπ∗(E) is locally free of rank 1.

(iii) According to (ii), Oπ∗(E) is isomorphic to Ωπ∗(E). So, by Grauert-Riemenschneider Theorem

[GR70], Ri(τn)∗(Oπ∗(E)) = 0 for i > 0. Hence En has rational singularities by (i). Moreover, (τn)∗(Ωπ∗(E))

is free of rank 1 by (ii). In other words, the canonical module of En is isomorphic to OEn
, that is En is

Gorenstein. �

Let ρn be the canonical projection from En to Xn and let set E
(k)
n := En ×ρn

· · · ×ρn
En︸               ︷︷               ︸

k factors

.

Corollary 8.6. (i) The variety E(k) is a desingularization of E
(k)
n .

(ii) The variety E
(k)
n is Gorenstein and has rational singularities.

Proof. (i) Let ρ be the canonical projection from E to X and let set Ẽ(k) := E ×ρ · · · ×ρ E︸           ︷︷           ︸
k factors

. Since E
(k)
n is

a vector bundle over the normal variety Xn, E
(k)
n is a normal variety. Moreover, it is the normalization of

Ẽ(k) since Xn is the normalization of X, whence a commutative diagram

E(k) //

!!C
CC

CC
CC

C E
(k)
n

��

Ẽ(k)

According to Lemma 7.2,(ii), the diagonal arrow is a birational projective morphism. Hence the horizontal

arrow is birational and projective.

(ii) The variety E
(k)
n is a vector bundle over En. So, by Lemma 8.5,(iii), E

(k)
n is Gorenstein and has

rational singularities. �
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Theorem 8.7. The normalization X̃0,k of X0,k has rational singularities.

Proof. By definition, the morphism τ̃k from E(k) to X̃0,k factorizes through the morphism E(k) → E
(k)
n so

that there is a commutative diagram

E(k) //

τ̃k   B
BB

BB
BB

B E
(k)
n

��

X̃0,k

Moroeover, according to Lemma 7.2,(ii) and Corollary 8.6,(i), all the arrows are projective and birational.

According to the previous identifications, Ek is a smooth big open subset of E
(k)
n since X′n is a smooth

big open subset of Xn. According to Corollary 8.4, the open subset Vk,1 of X0,k identifies with its inverse

images in X̃0,k and Ek. Moreover, Vk,1 is a big open subset of X̃0,k. For all Cartan subalgebra c of g,

contained in b, ck \ Vk,1 is contained in (c \ greg)k so that it has codimension at least 2 in ck since k ≥ 2.

As a result, Vk,1 is a big open subset of E
(k)
n since for all u in X′ \ U.h, uk is not contained in Vk,1. Then,

according to Corollary 8.6 and Proposition C.2, with Y = E
(k)
n , X̃0,k has rational singularities. �

8.3. Let denote by E∗ the dual of the vector bundle π∗(E) over Γ.

Lemma 8.8. Let E∗ be the sheaf of local sections of E∗. For i > 0 and for j ≥ 0, Hi(Γ, S j(E∗)) = 0.

Proof. Since ψ is the canonical projection from π∗(E) to Γ, Oπ∗(E) equals ψ∗(S(E∗)) so that

(ψ)∗(Oπ∗(E)) = S(E∗)

As a result, for i ≥ 0,

Hi(π∗(E),Oπ∗(E)) = Hi(Γ, S(E∗)) =
⊕

j∈N

Hi(Γ, S j(E∗))

According to Lemma 7.1,(ii), π∗(E) is a desingularization of the smooth variety b. Hence by [El78],

Hi(π∗(E),Oπ∗(E)) = 0

for i > 0, whence

Hi(Γ, S j(E∗)) = 0

for i > 0 and j ≥ 0. �

According to the identification of g and g∗ by the Killing form, b− identifies with b∗. Let denote by E−

the orthogonal complement of π∗(E) in Γ × b− so that E− is a vector bundle of rank n over Γ. Let E− be

the sheaf of local sections of E−.

Corollary 8.9. Let J0 be the ideal of OΓ ⊗k S(b−) generated by E−. Then, for i ≥ 0, Hi(Γ, J0) = 0 and

Hi(Γ,E−) = 0.

Proof. Since E− is the orthogonal complement of π∗(E) in Γ × b−, J0 is the ideal of definition of π∗(E) in

OΓ ⊗k S(b−) whence a short exact sequence

0 −→ J0 −→ OΓ ⊗k S(b−) −→ S(E∗) −→ 0



COMMUTING VARIETY 49

and whence a cohomology long exact sequence

· · · −→ Hi(Γ, S(E∗)) −→ Hi+1(Γ, J0) −→ Hi+1(Γ,OΓ ⊗k S(b−)) −→ · · ·

Then, by Lemma 8.8, from the equality

Hi(Γ,OΓ ⊗k S(b−)) = S(b−) ⊗k Hi(Γ,OΓ)

for all i, one deduces Hi(Γ, J0) = 0 for i ≥ 2. Moreover, since Γ is an irreducible projective variety,

H0(Γ,OΓ) = k and since π∗(E) is a desingularization of b, H0(Γ, S(E∗)) = S(b−) so that the map

H0(Γ,OΓ ⊗k S(b−)) −→ H0(Γ, S(E∗))

is an isomorphism. Hence Hi(Γ, J0) = 0 for i = 0, 1. The gradation on S(b−) induces a gradation on

OΓ ⊗k S(b−) so that J0 is a graded ideal. Since E− is the subsheaf of local sections of degree 1 of J0, it is

a direct factor of J0, whence the corollary. �

Proposition 8.10. Let l,m be nonnegative integers.

(i) For all positive integer i, Hi(Γ, (E∗)⊗m) = 0.

(ii) For all positive integer i,

Hi+l(Γ,E
⊗l
− ⊗OΓ (E∗)

⊗m) = 0

Proof. (i) According to Lemma 8.8, one can suppose m > 1. Since E∗ is the dual of the vector bundle

π∗(E) over Γ, the fiber product E∗m := E∗ ×ψ · · · ×ψ E∗ is the dual of the vector bundle E(m) over Γ. Let

ψm be the canonical projection from E∗m to Γ and let E∗m be the sheaf of local sections of E
(∗)
m . Then OE(m)

equals ψ∗m(S(E∗m)) and since E(m) is a vector bundle over Γ, for all nonnegative integer i,

Hi(E(m),OE(m)) = Hi(Γ, S(E∗m)) =
⊕

q∈N

Hi(Γ, Sq(E∗m))

According to Theorem 8.7, for i > 0, the left hand side equals 0 since E(m) is a desingularization of X̃0,m

by Lemma 7.2,(iv). As a result, for i > 0,

Hi(Γ, Sm(E∗m))) = 0

The decomposition of E∗m as a direct sum of m copies isomorphic to E∗ induces a multigradation of S(E∗).

Denoting by S j1 ,..., jm the subsheaf of multidegree ( j1, . . . , jm), one has

Sm(E∗m) =
⊕

( j1 ,..., jm)∈Nm

j1+···+ jm=m

S j1,..., jm and S1,...,1 = (E∗)
⊗m

Hence for i > 0,

0 = Hi(Γ, Sm(S∗m)) =
⊕

( j1,..., jm)∈Nm

j1+···+ jm=m

Hi(Γ, S j1,..., jm )

whence the assertion.

(ii) Let m be a nonnegative integer. Let prove by induction on j that for i > 0 and for l ≥ j,

Hi+ j(Γ,E
⊗ j
− ⊗OΓ (E∗)

⊗(m+l− j)) = 0(6)
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By (i) it is true for j = 0. Let suppose j > 0 and (6) true for j − 1 and for all l ≥ j − 1. From the short

exact sequence of OΓ-modules

0 −→ E− −→ OΓ ⊗k b− −→ E∗ −→ 0

one deduces the short exact sequence of OΓ-modules

0 −→ E
⊗ j
− ⊗OΓ (E∗)

⊗(m+l− j) −→ b− ⊗k E
⊗( j−1)
− ⊗OΓ (E∗)

⊗(m+l− j) −→ E
⊗( j−1)
− ⊗OΓ (E∗)

⊗(m+l− j+1) −→ 0

From the cohomology long exact sequence deduced from this short exact sequence, one has the exact

sequence

Hi+ j−1(Γ,E
⊗( j−1)
− ⊗OΓ (E∗)

⊗(m+l− j+1)) −→ Hi+ j(Γ,E
⊗ j
− ⊗OΓ (E∗)

⊗(m+l− j))

−→ Hi+ j(Γ, b− ⊗k E
⊗( j−1)
− ⊗OΓ (E∗)

⊗(m+l− j))

for all positive integer i. By induction hypothesis, the first term equals 0 for all i > 0. Since

Hi+ j(Γ, b− ⊗k E
⊗( j−1)
− ⊗OΓ (E∗)

⊗(m+l− j)) = b− ⊗k Hi+ j(Γ,E
⊗( j−1)
− ⊗OΓ (E∗)

⊗(m+l− j))

the last term of the last exact sequence equals 0 by induction hypothesis again, whence Equality (6) and

whence the assertion for j = l. �

The following corollary results from Proposition 8.10,(ii) and Proposition B.2.

Corollary 8.11. For m positive integer and for l = (l1, . . . ,lm) in Nm,

Hi+|l|(Γ,
∧l1 (E−) ⊗OΓ · · · ⊗OΓ

∧lm(E−)) = 0

for all positive integer i.

8.4. By definition, E(k) is a closed subvariety of Γ × bk. Let denote by ̺ the canonical projection from

Γ × bk to Γ, whence the diagram

E(k) �
�

//

ψk
##G

GG
GG

GG
GG

G Γ × bk

̺

��
Γ

For j = 1, . . . , k, let denote by S j,k the set of injections from {1, . . . , j} to {1, . . . , k} and for σ in S j,k, let

set:

Kσ :=M1 ⊗OΓ · · · ⊗OΓ Mk with Mi :=

{
OΓ ⊗k S(b−) if i < σ({1, . . . , j})

J0 if i ∈ σ({1, . . . , j})

For j in {1, . . . , k}, the direct sum of the Kσ’s is denoted by J j,k and for σ in S1,k, Kσ is also denoted by

Kσ(1),k.

Lemma 8.12. Let J be the ideal of definition of E(k) in OΓ×bk .

(i) The ideal ̺∗(J) of OΓ ⊗k S(bk−) is the sum of K1,k, . . . ,Kk,k.

(ii) There is an exact sequence of OΓ-modules

0 −→ Jk,k −→ Jk−1,k −→ · · · −→ J1,k −→ ̺∗(J) −→ 0

(iii) For i > 0, Hi(Γ × bk, J) = 0 if Hi+ j(Γ, J
⊗ j

0
) = 0 for j = 1, . . . , k.
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Proof. (i) Let Jk be the sum of K1,k, . . . ,Kk,k. Since J0 is the ideal of OΓ ⊗k S(b−) generated by E−, Jk is a

prime ideal of OΓ ⊗k S(bk−). Moreover, E− is the sheaf of local sections of the orthogonal complement of

E in Γ × b−. Hence Jk is the ideal of definition of E(k) in OΓ ⊗k S(bk−), whence the assertion.

(ii) For a a local section of J j,k and for σ in S j,k, let denote by aσ(1),...,σ( j) the component of a on Kσ.

Let d be the map J j,k → J j−1,k such that

dai1 ,...,i j
=

j∑

l=1

(−1)l+1ai1 ,...,il−1,il+1,...,i j

Then by (i), one has an augmented complex

0 −→ Jk,k

d
−→ Jk−1,k

d
−→ · · ·

d
−→ J1,k −→ ̺∗(J) −→ 0

Let J the the subbundle of the trivial bundle Γ×S(b−) such that the fiber at x is the ideal of S(b−) generated

by the fiber E−,x of E− at x. Then J0 is the sheaf of local sections of J and the above augmented complex

is the sheaf of local sections of the augmented complex of vector bundles over Γ,

0 −→ C
(k)

k
(Γ × S(b−), J) −→ · · · −→ C

(k)

1
(Γ × S(b−), J)→ J −→ 0

According to Lemma B.3 and Remark B.4, this complex is acyclic, whence the assertion by Nakayama

Lemma since J and S(b−) are graded.

(iii) Let i be a positive integer such that Hi+ j(Γ, J
⊗ j

0
) = 0 for j = 1, . . . , k. Then for j = 1, . . . , k and for

σ in S j,k, Hi+ j(Γ,Kσ) = 0 since Kσ is isomorphic to a sum of copies of J
⊗ j

0
. Moreover, Hi(Γ,Kl,k) = 0

for l = 1, . . . , k since Hi(Γ, J0) = 0 by Corollary 8.9. Hence by (ii), since H• is an exact δ-functor,

Hi(Γ, ̺∗(J)) = 0, whence the assertion since ̺ is an affine morphism. �

8.5. For m positive integer, for j nonnegative integer and for l = (l1, . . . ,lm) in Nm, let set:

M j,l := J
⊗ j

0
⊗OΓ
∧l1 (E−) ⊗OΓ · · · ⊗OΓ

∧lm (E−)

Lemma 8.13. Let j,m be positive integers and let l be in Nm.

(i) The OΓ-module J0 is locally free.

(ii) There is an exact sequence

0 −→ S(b−) ⊗kM j−1,(n,l) −→ S(b−) ⊗kM j−1,(n−1,l) −→ · · ·

−→ S(b−) ⊗kM j−1,(1,l) −→M j,l −→ 0

(iii) For i > 0, Hi+ j+|l|(Γ,M j,l) = 0.

Proof. (i) Let x be in Γ and let E−,x be the fiber at x of the vector bundle E− over Γ. Then E−,x is a

subspace of dimension n of b−. Let M be a complement of E−,x in b−. Since the map y 7→ E−,y is a regular

map from Γ to Grn(b−), for all y in an open neighborhood V of x in Γ,

b− = E−,x ⊕ M

Denoting by E−,V the restriction of E− to V , one has

OV ⊗k b− = E−,V ⊕ OV ⊗k M
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so that

OV ⊗k S(b−) = S(E−,V) ⊗k S(M)

whence

J0 |V = S+(E−,V ) ⊗k S(M)

As a result, J0 is locally free since E− is locally free.

(ii) Since J0 is the ideal of OΓ ⊗k S(b−) generated by the locally free module E− of rank n and since E−

is locally generated by a regular sequence of the algebra OΓ ⊗k S(b−), having n elements, one has an exact

Koszul complex

0 −→ S(b−) ⊗k
∧n(E−) −→ · · · −→ S(b−) ⊗k E− −→ J0 −→ 0

whence a complex

0 −→ S(b−) ⊗k
∧n(E−) ⊗OΓ M j−1,l −→ · · · −→ S(b−) ⊗k E− ⊗OΓ M j−1,l

−→ J0 ⊗OΓ M j−1,l −→ 0

According to (i), M j−1,l is a locally free module. Hence this complex is acyclic.

(iii) Let prove the assertion by induction on j. According to Corollary 8.11, it is true for j = 0. Let

suppose that it is true for j − 1. According to the induction hypothesis, for all positive integer i and for

p = 1, . . . , n,

Hi+ j−1+p+|l|(Γ, S(b−) ⊗kM j−1,(p,l)) = S(b−) ⊗k Hi+ j−1+p+|l|(Γ,M j−1,(p,l)) = 0

Then, according to (ii), Hi+ j+|l|(Γ,M j,l) = 0 for all positive integer i since H• is an exact δ-functor. �

Proposition 8.14. The variety X0,k has rational singularities and its ideal of definition in OΓ×bk is the

space of global sections of J.

Proof. From the short exact sequence,

0 −→ J −→ OΓ×bk −→ OE(k) −→ 0

one deduces the long exact sequence

· · · −→ Hi(Γ × bk, J) −→ S(b−)
⊗k ⊗k Hi(Γ,OΓ) −→ Hi(E(k),OE(k)) −→ Hi+1(Γ × bk, J) −→ · · ·

According to Lemma 8.8, Hi(Γ,OΓ) = 0 for i > 0 and according to Lemma 8.12,(iii) and Lemma 8.13,(iii),

Hi(Γ × bk, J) = 0 for i > 0. Hence, Hi(E(k),OE(k)) = 0 for i > 0, whence the short exact sequence

0 −→ H0(Γ × bk, J) −→ S(b−)
⊗k −→ H0(E(k),OE(k)) −→ 0

Since the image of S(b−)⊗k is contained in k[X0,k], k[X0,k] = k[X̃0,k] by Corollary 7.4, whence the propo-

sition by Theorem 8.7 since E(k) is a desingularization of X0,k by Lemma 7.2,(iii). �

Corollary 8.15. (i) The normalization morphism of C
(k)
n is a homeomorphism.

(ii) The normalization morphism of C(k) is a homeomorphism.
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Proof. (i) According to Proposition 3.10, one has the commutative diagram

G ×B X0,k
�

�

//

��

G ×B b
k

γn

��

C
(k)
n

�

�

// B
(k)
n

Since B
(k)
n is a normal variety and since G ×B b

k is a desingularization of B(k) and B
(k)
n , the fibers of γn

are connected by Zariski Main Theorem [Mu88, /S 9]. Then the fibers of the restriction of γn to G ×B X0,k

are too since G ×B X0,k is the inverse image of C
(k)
n . According to Proposition 8.14, G ×B X0,k is a normal

variety. Moreover, the restriction of γn to G ×B X0,k is projective and birational, whence the commutative

diagram

G ×B X0,k

γ̃n //

γn
##G

GG
GG

GG
GG

G
C̃

(k)
n

µ��~~
~~
~~
~~

C
(k)
n

with µ the normalization morphism. For x in C
(k)
n , µ−1(x) = γ̃n(γ−1

n (x)). Hence µ is injective since the

fibers of γn are connected, whence the assertion since µ is closed as a finite morphism.

(ii) One has a commutative diagram

C̃
(k)
n

η̃
��

µ
// C

(k)
n

η

��

C̃(k)
µ0

// C(k)

with µ0 the normalization morphism. According to Proposition 6.8, all fiber of η or η̃ is one single W(R)-

orbit and by (i), µ is bijective. Hence µ0 is bijective, whence the assertion since µ0 is closed as a finite

morphism. �

8.6. In this subsection k = 2. The open subset E2 of E(2) identifies with an open subset of E
(2)
n and it is

B-invariant so that G ×B E2 is an open subset of G ×B E(2) and G ×B E
(2)
n .

Lemma 8.16. (i) The variety G ×B X0,2 has rational singularities.

(ii) The set G ×B V2,1 is a smooth big open subset of G ×B X0,2.

(iii) The set G.ιn(V2,1) is a smooth big open subset of C
(2)
n .

(iv) A global section of ΩG.ιn(V2,1) has a regular extension to the smooth locus of G ×B X0,2.

Proof. (i) According to Proposition 8.14, X0,2 has rational singularities, whence the assertion since G ×B

X0,2 is a fiber bundle over the the smooth variety G/B with fibers isomorphic to X0,2.

(ii) According to Proposition 8.3,(iii), V2,1 is a smooth big open subset of X0,k. Then G ×B V2,1 is a

smooth big open subset of G ×B X0,2 since G/B is smooth.

(iii) Since γ−1
n (G.ιn(V2,1)) equals G ×B V2,1 and since γn is projective and birational, G.ιn(V2,1) is a big

open subset of C
(2)
n . Moreover, G ×B V2,1 is contained in the open subset γ−1

n (W2) of G ×B b
2 and the



54 J-Y CHARBONNEL AND M. ZAITER

restriction of γn to γ−1
n (W2) is an isomorphism onto W2 by Proposition 3.10,(iv) so that the restriction of

γn to G ×B V2,1 is an isomorphism onto G.ιn(V2,1), whence the assertion.

(iv) The assertion results from (iii) and Lemma C.1,(v). �

Corollary 8.17. The varieties C̃
(2)
n and C̃(2) have rational singularities.

Proof. According to the proof of Corollary 8.15, one has the following commutative diagram:

G ×B X0,2

γ̃n //

γn
##G

GG
GG

GG
GG

G
C̃

(2)
n

µ~~~~
~~
~~
~~

C
(2)
n

with µ the normalization morphism. Moreover, γ̃n is a projective and birational morphism. By

Lemma 8.16,(iii), µ−1(G.ιn(V2,1)) is a smooth big open subset of C̃
(2)
n and the restriction of µ to

µ−1(G.ιn(V2,1)) is an isomorphism onto G.ιn(V2,1). So, by Lemma 8.16,(iv), all global section of

Ωµ−1(G.ιn(V2,1)) has a regular extension to the smooth locus of G ×B X0,2. According to Proposition 7.3,(ii),

G×B E(2) is a desingularization of C
(2)
n and E(2) is a desingularization of X0,2 with a B-equivariant desingu-

larization morphism by Lemma 7.2,(ii). Hence G ×B E(2) is a desingularization of C̃
(2)
n and G ×B X0,2. As

a result by Lemma 8.16,(i) and [KK73, p.50], all global section of Ωµ−1(G.ιn(V2,1)) has a regular extension

to G ×B E(2). According to Proposition 6.6, C̃
(2)
n is the normalization of the isospectral commuting variety

and according to [Gi11, Theorem 1.3.4], C̃
(2)
n is Gorenstein. Hence by [KK73, p.50], C̃

(2)
n has rational

singularities. By Proposition 6.8,(ii), C̃(2) is the categorical quotient of C̃
(2)
n under the action of W(R). So,

by [El81, Lemme 1], C̃(2) has rational singularities. �

Appendix A. Notations.

In this appendix, V is a finite dimensional vector space. Let denote by S(V) and
∧

(V) the symmetric

and exterior algebras of V respectively. For all integer i, Si(V) and
∧i(V) are the subspaces of degree i for

the usual gradation of S(V) and
∧

(V) respectively. In particular, Si(V) and
∧i(V) are equal to zero for i

negative.

• For l positive integer, let denote by Sl the group of permutations of l elements.

• For m positive integer and for l = (l1, . . . ,lm) in Nm, let set:

|l| := l1+ · · ·+lm

Sl(V) := Sl1(V) ⊗k · · · ⊗k Slm(V)
∧l(V) :=

∧l1 (V) ⊗k · · · ⊗k
∧lm (V)

• For k positive integer and for l = (l1, . . . ,lm) in Nm such that 1 ≤ |l| ≤ k, let denote by V⊗k the k-th

tensor power of V and let denote bySl the direct product Sl1× · · · ×Slm . The group Sl has a natural action
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on V⊗k given by

(σ1, . . . ,σm).(v1⊗ · · · ⊗vk) = vσ1(1)⊗ · · · ⊗vσ1(l1)⊗vl1+σ2(1)⊗ · · · ⊗vl1+σ2(l2)

⊗ · · · ⊗v|l|−lm+σm(1)⊗ · · · ⊗v|l|−lm+σm(lm)⊗v|l|+1⊗ · · · ⊗vk

The map

a 7−→ πk,l(a) :=

m∏

j=1

1

l j!

∑

σ∈Sl

σ.a

is a projection of V
⊗k onto (V⊗k)Sl . Moreover, the restriction to (V⊗k)Sl of the canonical map from V

⊗k to

Sl(V) ⊗k V⊗(k−|l|) is an isomorphism of vector spaces.

Appendix B. Some complexes.

Let X be a smooth algebraic variety. For M a coherent OX-module and for k positive integer, let denote

by M
⊗k the k-th tensor power of M. According to Notations A, for all l in Nm such that |l| ≤ k, there is an

action of Sl on M
⊗k. Moreover, Sl(M) and

∧l(M) are coherent modules defined by the same formulas as

in Notations A.

B.1. Let D(V) be the algebra S(V) ⊗k
∧

(V) and let d be the
∧

(V)-derivation of D(V) such that dv⊗a =

1⊗(v ∧ a) for all (v, a) in V ×
∧

(V). The gradation of
∧

(V) induces on D(V) a gradation so that D(V) is

a graded cohomology complex denoted by D•(V). For k positive integer, let denote by D•
k
(V) the graded

subcomplex of D•(V) whose space of degree i is Sk−i(V) ⊗k
∧i(V):

D•k(V) :=

k⊕

i=0

Di
k(V) =

k⊕

i=0

Sk−i(V) ⊗k
∧i(V)

Lemma B.1. Let k be a positive integer.

(i) The cohomology of D•(V) equals k.

(ii) For k positive, the subcomplex D•
k
(V) of D•(V) is acyclic.

Proof. (i) We prove the assertion by induction on dim V . Let denote by d the differential of D•(V). The

cohomology in degree 0 of D•(V) equals k. For dim V = 1, D•(V) has no cohomology in positive degree

since dvm
⊗1 = mvm−1

⊗v for all v in V . Let suppose that it is true for all vector space of dimension at most

dim V − 1. Let a be an homogeneous cocycle of positive degree d, let W be a subspace of codimension 1

of V and let v be in V \W . Then a has a unique expansion

a = vm(a′m + a′′m ∧ v) + · · · + a′0 + a′′0 ∧ v,

with a′
i

and a′′
i

in Dd(W) and Dd−1(W) respectively for i = 0, . . . ,m. From the equality

da =

m∑

i=0

vi(da′i + (da′′i ) ∧ v) +

m∑

i=1

(−1)divi−1a′i ∧ v

one deduces that a′m and a′′m are cocycles of degree d and d − 1 respectively of D•(V) since a is a cocycle.

Hence by induction hypothesis, a′m = db′m for some element b′m of Dd−1(W). If d > 1, by induction
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hypothesis again, a′′m = db′′m for some element b′′m of Dd−2(W). As a result,

a − dvm(b′m + b′′m ∧ v) = (−1)dmvm−1b′m ∧ v +

m−1∑

i=0

vi(a′i + a′′i ∧ v).

So by induction on m, a is a coboundary. Let suppose d = 1. Since a′′m is a cocycle, it is in k. Then

a − d(vmb′m +
1

m + 1
a′′mvm+1) = −mvm−1b′m ∧ v +

m−1∑

i=0

vi(a′i + a′′i ∧ v).

So by induction on m, a is a coboundary, whence the assertion.

(ii) Since D•(V) is the direct sum of the subcomplexes D•
k
(V), k ∈ N, the assertion results from (i). �

B.2. Let E and M be locally free OX-modules.

Proposition B.2. Let i be a positive integer and let suppose that

Hi+ j(X,E
⊗k ⊗OX

M) = 0

for all nonnegative integers j, k.

(i) For all positive integers m and k and for all l in Nm such that |l| ≤ k,

Hi(X, Sl(E) ⊗OX
E
⊗(k−|l|) ⊗OX

M) = 0

(ii) For all positive integers n1, n2, k and for all (l,m) in Nn1 × Nn2 such that |l| + |m| ≤ k,

Hi(X, Sl(E) ⊗OX

∧m(E) ⊗OX
E
⊗(k−|l|−|m|) ⊗OX

M) = 0

Proof. (i) Let U be an affine open cover of X so that the cohomology of the Čech complexes C•(U,E⊗k)

and C•(U, Sl(E)⊗OX
E
⊗(k−|l|)) are the cohomology of the OX-modules E⊗k and Sl(E)⊗OX

E
⊗(k−|l|) respectively.

The action of Sl on E
⊗k induces an action on C•(U,E⊗k ⊗OX

M) commuting with its derivation denoted

by d. Let ϕ be a cocycle of degree i of

C•(U, Sl(E) ⊗OX
E
⊗(k−|l|) ⊗OX

M)

and let ϕ be the representative of ϕ in C j(U,E⊗k⊗OX
M)Sl . Then ϕ is a cocycle of degree i of C•(U,E⊗k⊗OX

M). By hypothesis, for some ψ in Ci−1(U,E⊗k ⊗OX
M), ϕ = dψ. Then, since ϕ is invariant under Sl and

since d commutes with the action of Sl, ϕ = dψ#. Hence ϕ is the coboundary of the image of ψ# in

Ci−1(U, Sl(E) ⊗OX
E
⊗(k−|l|) ⊗OX

M), whence the assertion.

(ii) Let suppose n2 = 1 and let prove the assertion by induction on m. Since E is a locally free module,

according to Lemma B.1,(ii), one has a long exact sequence of OX-modules,

0 −→ Sm(E) −→ Sm−1(E) ⊗OX
E −→ · · · −→ E ⊗OX

∧m−1(E) −→
∧m(E) −→ 0

whence an exact sequence

0 −→ Sl(m)

(E) ⊗OX
E
⊗(k−|l|−m) ⊗OX

M −→ Sl(m−1)

(E) ⊗OX
E ⊗OX

E
⊗(k−|l|−m) ⊗OX

M −→ · · ·

−→ Sl(1)

(E) ⊗OX

∧m−1(E) ⊗OX
E
⊗(k−|l|−m) ⊗OX

M

−→ Sl(E) ⊗OX

∧m(E) ⊗OX
E
⊗(k−|l|−m) ⊗OX

M −→ 0
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with l( j) = (l, j) in Nn1+1 for all j in N, since Sl(E) ⊗OX
E
⊗(k−|l|−m) and M are locally free modules.

According to the induction hypothesis for j > 0,

Hi+ j−1(X, Sl( j)

(E) ⊗OX

∧m− j(E) ⊗OX
E
⊗(k−|l|−m) ⊗OX

M) = 0

Then,

Hi(X, Sl(E) ⊗OX

∧m(E) ⊗OX
E
⊗(k−|l|−m) ⊗OX

M) = 0

since H• is an exact δ-functor.

Let suppose the assertion true for n2 − 1 and let prove the assertion by induction on mn2
. According

to the induction hypothesis, it is true for mn2
= 0. According to Lemma B.1,(ii), one has a long exact

sequence of OX-modules,

0 −→ Smn2 (E) −→ Smn2
−1(E) ⊗OX

E −→ · · · −→ E ⊗OX

∧mn2
−1(E) −→

∧mn2 (E) −→ 0

Tensoring this sequence by the locally free module

Sl(E) ⊗OX

∧m′(E) ⊗OX
E
⊗(k−|l|−|m| ⊗OX

M

with m′ = (m1, . . . ,mn2−1) and arguing as before, we deduce the equality

Hi(X, Sl(E) ⊗OX

∧m(E) ⊗OX
E
⊗(k−|l|−|m| ⊗OX

M) = 0

from the induction hypothesis, whence the assertion. �

B.3. Let W be a subspace of V and let set E := V/W . Let C
(n)
• (V,W), n = 1, 2, . . . be the sequence of

graded spaces over N defined by the induction relations:

C
(1)

0
(V,W) := V C

(1)

1
(V,W) := W C

(1)
i

(V,W) := 0

C
(n)

0
(V,W) := V

⊗n C
(n)

j
(V,W) := C

(n−1)

j
(V,W) ⊗k V ⊕C

(n−1)

j−1
(V,W) ⊗k W

for i ≥ 2 and j ≥ 1.

Lemma B.3. Let n be a positive integer. There exists a graded differential of degree −1 on C
(n)
• (V,W)

such that the complex so defined has no homology in positive degree.

Proof. Let prove the lemma by induction on n. For n = 1, d is given by the canonical injection of W in

V . Let suppose that C
(n−1)
• (V,W) has a differential d verifying the conditions of the lemma. For j > 0, let

denote by δ the linear map

C
(n)
j

(V,W) −→ C
(n)

j−1
(V,W) (a⊗v, b⊗w) 7−→ (da⊗v + (−1) jb⊗w, db⊗w)

with a, b, v,w in C
(n−1)

j
(V,W), C

(n−1)

j−1
(V,W), V , W respectively. Then δ is a graded differential of degree

−1. Let c be a cycle of positive degree j of C
(n)
• (V,W). Then c has an expansion

c = (

d∑

i=1

ai⊗vi,

d′∑

i=1

bi⊗vi)
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with v1, . . . ,vd a basis of V such that v1, . . . ,vd′ is a basis of W and with a1, . . . ,ad and b1, . . . ,bd′ in

C
(n−1)

j
(V,W) and C

(n−1)

j−1
(V,W) respectively. Since c is a cycle,

d∑

i=1

dai⊗vi + (−1) j
d′∑

i=1

bi⊗vi = 0

Hence bi = (−1) j+1dai for i = 1, . . . , d′ so that

c + δ(

d′∑

i=1

(−1) jai⊗vi, 0) = (

d∑

i=1

ai⊗vi +

d′∑

i=1

ai⊗vi,

d′∑

i=1

(bi⊗vi + (−1) jdai⊗vi)) = (

d∑

i=1

ai⊗vi +

d′∑

i=1

ai⊗vi, 0)

So one can suppose b1, . . . ,bd′ all equal to 0. Then a1, . . . ,ad are cycles of degree j of C
(n−1)
• (V,W). By

induction hypothesis, they are boundaries of C
(n−1)
• (V,W) so that c is a boundary of C

(n)
• (V,W), whence

the lemma. �

Remark B.4. The results of this subsection remain true for V or W of infinite dimension since a vector

space is an inductive limit of finite dimensional vector spaces.

Appendix C. Rational Singularities.

Let X be an affine irreducible normal variety and let X′ be a smooth big open subset of X.

Lemma C.1. Let Y be an irreducible Gorenstein variety Y and let π be a projective birational morphism

from Y to X. Let denote by K the canonical module of Y. Let suppose that the following conditions are

verified:

(1) the open subset π−1(X′) of Y is big,

(2) the restriction of π to π−1(X′) is an isomorphism onto X′.

Let denote by J the space of global sections of K and let J be the localization of J on X.

(i) The algebra k[X] is the space of global sections of OY and Y is a normal variety.

(ii) For all open subset O of X and for all local section a of J over O∩ X′, a is the restriction to O∩ X′

of one and only one local section of J over O.

(iii) The OY -modules π∗(J) and K are equal.

(iv) For all injective k[X]-module I, the canonical morphism

J ⊗k[X] Homk[X](J, I) −→ I

is an isomorphism.

(v) All regular form of top degree on X′ has a unique regular extension to the smooth locus of Y.

Proof. (i) If Y ′ → Y is a desingularization of Y , Y ′ → X is a desingularization of X since π is projective

and birational. Moreover, all global section of OY is a global section of OY′ , whence, by Lemma 1.1, k[X]

is the space of global sections of OY since X is normal. According to Conditions (1) and (2), π−1(X′) is

a smooth big open subset of Y . So, by Serre’s normality criterion [Bou98, §1, no 10, Théorème 4], Y is

normal since Y is Gorenstein.

(ii) Since J is the localization of J on X, it suffices to prove the assertion for O = X. Let a be a local

section of J over X′. According to (2), π∗(a) is a local section of K over π−1(X′). Since Y is Gorenstein,
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K is locally free of rank 1. So, there is an affine open cover V1, . . . ,Vl of Y such that the restriction of K

to Vi is a free OVi
-module of rank 1. Let pi be a generator of this module. Setting V ′

i
:= Vi ∩ π

−1(X′),

for some regular function a′
i

on V ′
i
, a′

i
pi is the restriction of π∗(a) to V ′

i
. According to (i), a′

i
has a regular

extension to Vi since V ′
i

is a big open subset of Vi by Condition (1). Let denote by ai this extension. Then,

for 1 ≤ i, j ≤ l, the restrictions of ai pi and a j p j to Vi ∩ V j are two local sections of K over Vi ∩ V j which

are equal on V ′
i
∩ V ′

j
. Hence ai pi and a j p j have the same restriction to Vi ∩ V j since K is torsion free as

a locally free module. As a result, π∗(a) is the restriction to π−1(X′) of a unique global section of K since

K is torsion free.

(iii) Let a be in k[Vi]⊗k[X] J. By condition (2), for some regular function a′ on V ′
i
, a′pi is the restriction

of a to V ′
i
. Since Vi is normal and since V ′

i
is a big open subset of Vi, a′ has a regular extension to Vi so

that a is in Γ(Vi,K). Conversely, let a be in Γ(Vi,K). Since V ′
i

is a big open subset of Vi, for some open

subset V ′′
i

of X, Vi is contained in π−1(V ′′
i

) and X′ ∩ V ′′
i

equals π(V ′
i
). By Condition (2), for some a′ in

Γ(π(V ′
i
), J), π∗(a′) is the restriction of a to V ′

i
. According to (ii), a′ is the restriction to π(V ′

i
) of a unique

local section a′′ of J over V ′′
i

. Then the restriction of π∗(a′′) to Vi equals a since a and π∗(a′′) have the

same restriction to V ′
i

and since K is torsion free, whence the assertion.

(iv) Let denote by ψ the canonical morphism

J ⊗k[X] Homk[X](J, I) −→ I a⊗ϕ 7−→ ϕ(a)

Let x be in I and let a be in J \ {0}. Since I is an injective module, I is divisible so that x = bx′ for some

x′ in I. Denoting by ϕ the morphism c 7→ cx′ from J to I, ψ(b⊗ϕ) = x. So, ψ is surjective.

Let denote by K the kernel of ψ and let suppose K different from 0. One expects a contradiction. Let ϕ

be in K. For i = 1, . . . , l, let set:

Ji := k[Vi] ⊗k[X] J Ii := k[Vi] ⊗k[X] I

so that

k[Vi] ⊗k[X] J ⊗k[X] Homk[X](J, I) = Ji ⊗k[Vi] Homk[Vi](Ji, Ii)

and let denote by ψi the canonical morphism

Ji ⊗k[Vi] Homk[Vi](Ji, Ii) −→ Ii

so that the restriction of π∗(ϕ) to Vi is in the kernel of ψi. According to (iii), Ji is the free k[Vi]-module

generated by pi so that the morphism

Ii −→ Ji ⊗k[Vi] Homk[Vi](Ji, Ii) x 7−→ pi⊗ϕx with ϕx(api) = ax

is an isomorphism equals to the inverse of ψi. Hence the restriction of π∗(ϕ) to Vi equals 0. As a result,

π∗(ϕ) = 0. Hence π∗(OX ⊗k[X] K) = 0. Since K is different from 0, K contains a finitely generated

submodule K′, different from 0. Then, for some locally closed subvariety XK′ of X, OXK′
⊗k[X] K′ is a

free OXK′
-module different from 0. Denoting, by πK′ the restriction of π to π−1(XK′), π

∗
K′

(OXK′
⊗k[X] K′)

is different from zero, whence the contradiction since it is the restriction to π−1
K′

(XK′) of π∗(OX ⊗k[X] K′).

(v) Let Y ′ be the smooth locus of Y . According to Condition (2), π−1(X′) is a dense open subset of

Y ′. Moreover, π−1(X′) identifies with X′. Let ω be a differential form of top degree on X′. Since ΩY′ is

a locally free module of rank one, there is an affine open cover O1, . . . ,Ok on Y ′ such that restriction of

ΩY′ to Oi is a free OOi
-module generated by some section ωi. For i = 1, . . . , k, let set O′

i
:= Oi ∩ X′. Let
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ω be a regular form of top degree on X′. For i = 1, . . . , k, for some regular function ai on O′
i
, aiωi is the

restriction of ω to O′
i
. According to Condition (1), O′

i
is a big open subset of Oi. Hence ai has a regular

extension to Oi since Oi is normal. Denoting again by ai this extension, for 1 ≤ i, j ≤ k, aiωi and a jω j

have the same restriction to O′
i
∩ O′

j
and Oi ∩ O j since ΩY′ is torsion free as a locally free module. Let

ω′ be the global section of ΩY′ extending the aiωi’s. Then ω′ is a regular extension of ω to Y ′ and this

extension is unique since X′ is dense in Y ′ and since ΩY′ is torsion free. �

Proposition C.2. Let suppose that there exist an irreducible Gorenstein variety Y, with rational singular-

ities, and a projective birational morphism π from Y to X verifying Conditions (1) and (2) of Lemma C.1.

Then X has rational singularities.

Proof. Let Y ′ be the smooth locus of Y . According to [Hir64], there exists a desingularization Z of

Y , with morphism τ, such that the restriction of τ to τ−1(Y ′) is an isomorphism onto Y ′. According

to Lemma C.1,(v), all regular differential form of top degree on the smooth locus of X has a regular

extension to Y ′. Since Y has rational singularities and since Z is a desingularization of Y , all regular

differential form of top degree on the smooth locus of Y has a regular extension to Z by [KK73, p.50].

Hence all regular differential form of top degree on the smooth locus of X has a regular extension to Z.

Since Z is a desingularization of Y and since π is projective and birational, Z is a desingularization of X.

So, by [KK73, p.50] again, it remains to prove that X is Cohen-Macaulay.

Since Z, Y , X are varieties over k, one a has the commutative digrams

Z
τ //

p ##F
FF

FF
FF

FF
Y

q{{xx
xx
xx
xx
x

Spec(k)

Y
π //

q ##F
FF

FF
FF

FF
X

r{{ww
ww
ww
ww
w

Spec(k)

According to [Hi91, 4.3,(iv)], p!(k), q!(k), r!(k) are dualizing complexes over Z, Y , X respectively.

Furthermore, by [Hi91, 4.3,(ii)], p!(k)[−dim Z] equals ΩZ and since Y is Gorenstein, the cohomology

of q!(k)[−dim Z] is concentrated in degree 0 and equals the canonical module K of Y . Let set D :=

r!(k)[−dim Z] so that π!(D) = K and (π◦τ)!(D) = ΩZ by [Hi91, 4.3,(iv)]. Since τ and π are projective

morphisms, one has the isomorphisms

R(τ)∗(RHomZ(ΩZ ,ΩZ)) −→ RHomY (R(τ)∗(ΩZ),K)

R(π)∗(RHomY(K,K)) −→ RHomX(R(τ)∗(K),D)

by [Hi91, 4.3,(iii)]. Since ΩZ and K are locally free of rank 1,

Hi(RHomZ(ΩZ ,ΩZ)) =

{
OZ if i = 0

0 if i > 0

Hi(RHomY(K,K)) =

{
OY if i = 0

0 if i > 0

the left hand sides can be identified to R(τ)∗(OZ) and R(π)∗(K) respectively, whence an isomorphism

R(π)∗(OY ) −→ RHomX(R(π)∗(K),D)
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Let J be the space of global sections of K. According to Grauert-Riemenschneider Theorem [GR70],

denoting by J the localization of J on X,

R(τ)∗(ΩZ) = K R(π◦τ)∗(ΩZ) = J

whence R(π)∗(K) = J and one has an isomorphism

R(π)∗(OY) −→ RHomX(J,D)

According to Lemma C.1,(iv), there is an isomorphism

J ⊗L RHomX(J,D) −→ D

in the derived category D+(X) of complexes bounded below of OX-modules, whence an isomorphism

J ⊗L R(π)∗(OY) −→ D

According to Lemma C.1,(iii), π∗(J) = K. Then, since J = R(π)∗(K), one has an isomorphism

J ⊗L R(π)∗(OY ) −→ R(π)∗(K ⊗ OY )

by the projection formula [Mebk89, Appendice B]. So, since the right hand side equals J, there is an

isomorphism

J −→ D

in D+(X). As a result, the cohomology of the dualizing complex D of X is concentrated in degree 0.

Hence X is Cohen-Macaulay [El78]. �
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[El81] R. Elkik, Rationalité des singularités canoniques, Inventiones Mathematicae 64 (1981), p. 1–6.
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