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SUMMARY

The paper is devoted to elliptic boundary value problems with uncertainties. Such a problem has
already been analyzed in the context of the parametric probabilistic approach of system parameters
uncertainties or for random media. Model uncertainties are induced by the mathematical-physical
process which allows the boundary value problem to be constructed from the design system. If
experiments are not available, the Bayesian approach cannot be used to take into account model
uncertainties. Recently, a nonparametric probabilistic approach of both the model uncertainties and
system parameters uncertainties have been proposed by the author to analyze uncertain linear and
nonlinear dynamical systems. Nevertheless, the use of this concept which has to be developed for
dynamical systems cannot directly be applied for elliptic boundary value problem, for instance for a
linear elastostatic problem relative to an elastic bounded domain. We then propose an extension of the
nonparametric probabilistic approach in order to take into account model uncertainties for strictly
elliptic boundary value problems. The theory and its validation are presented. Copyright c© 2007
John Wiley & Sons, Ltd.
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1. Introduction

Today it is well understood that uncertainties have to be taken into account in computational
sciences in order to improve the predictions of the computational models or to perform robust
design optimizations of complex systems. As soon as the probability theory can be used to
model the uncertainties, such a theory must be used because it is one of the most powerful
mathematical theory, without failure, allowing (1) finite and infinite dimensions problems to
be modeled, (2) finite approximations of stochastic boundary value problems and convergence
of the random solutions to be clearly constructed and analyzed, (3) the construction and the
experimental identification of the probability models to be carried out using information theory
and mathematical statistics.
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2 C. SOIZE

In general, a computational model is derived from a boundary value problem for which
the finite approximation is performed using appropriate methods such as the finite element
method. Such a computational model depends on parameters (data) relative to the geometry of
the domain, to the boundary conditions, to the coefficients of the partial differential equations
corresponding to the description of physical properties of the media. Such uncertain parameters
can also be defined as ”system parameters uncertainties” in the computational model. When
probability theory is used to model system parameters uncertainties, such an approach is
referenced as the ”parametric probabilistic approach of system parameters uncertainties” [?].
Such a parametric probabilistic approach of system parameters uncertainties has extensively
been developed in the last two decades and is still in development. The objective of this paper
is not to give a review of all the works produced in this area and we refer the reader to the
literature (see for instance [?] for uncertainty in structural dynamics, [?] for a recent overview
on computational methods in stochastic mechanics and in reliability analysis). In particular,
the use of the Gaussian Chaos representation for stochastic processes and random fields [?] has
been used to introduce useful and very efficient tools for analyzing stochastic systems using
stochastic finite elements (see [?, ?]) and to develop many extensions and applications (see
for instance [?] to [?]. Concerning the use of the parametric probabilistic approach of system
parameters uncertainties for elliptic boundary value problems, we refer the reader (1) to [?] for
aspects relative to the construction of approximations and convergence analysis concerning an
elliptic problem for which a relatively simple stochastic model is used to model uncertainties
and corresponds to a uniform elliptic condition and (2) to [?] for a complete construction of a
stochastic model of uncertainties corresponding to a non uniform elliptic condition.

The model uncertainties are induced by the mathematical-physical process used to construct
the boundary value problem and thus to construct the computational model. The model
uncertainties must carefully be distinguished from the system parameters uncertainties in a
computational model. If the parametric probabilistic approach is the most powerful method to
take into account system parameters uncertainties, such an approach cannot address the model
uncertainties as it is proved in [?, ?, ?]. In this context, a nonparametric probabilistic approach
of model uncertainties has been proposed [?] as a possible way to circumvent these difficulties.
This approach introduced a new concept with respect to the parametric approach in order
to be able to take into account model uncertainties. The construction of the nonparametric
probability model is based on the use of the information theory and the maximum entropy
principle [?, ?, ?, ?, ?] in the context of the random matrix theory [?, ?].

The concepts for the nonparametric probabilistic approach of uncertainties has been
introduced in [?]. Since this first paper, many works have been published in order to extend
the theory and to validate it. The developments concerning the algebraic closure of the
probabilistic model and its convergence as dimension goes to infinity can be found in [?] for
the transient linear stochastic elastodynamics. This paper shows that the theory is consistent
for the continuous systems in infinite dimension. The random eigenvalue problem and the
non adaptation of the Gaussian Orthogonal Ensemble (GOE) for low-frequency dynamics has
been analyzed in details in [?]. Recently, an extension of the theory has been proposed in [?]
for the nonparametric stochastic modeling of the linear systems for which the variances of
several eigenvalues are prescribed. Such an extension of the theory allows a more flexible
description of the dispersion levels of each positive definite random matrix. The linear
dynamical systems have also been studied in the medium-frequency range in taking into
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NONPARAMETRIC PROBABILISTIC APPROACH OF UNCERTAINTIES 3

account the model uncertainties and the system parameters uncertainties (see [?]). The theory
has been extended to dynamical systems for which model uncertainties are not homogeneous
through the system. The dynamic substructuring techniques have thus been introduced (see
[?, ?, ?]). The model uncertainties in dynamical systems with cyclic symmetry have been
studied in [?, ?]. The construction of a probabilistic model for impedance matrices can be
found in [?, ?]. Recently, the nonparametric stochastic modeling has been used to propose
a methodology to analyze structural dynamic systems with uncertain boundary conditions
(see [?]). The capability of the nonparametric probabilistic approach to take into account
both the model uncertainties and the system parameters uncertainties (while the parametric
probabilistic approach can take into account only the system parameters uncertainties) has
been analyzed for several simple and complex dynamic systems in [?, ?, ?]. Some new ensembles
of random matrices for model uncertainties in coupled dynamical systems such as structural
acoustic systems have been introduced in [?]. Significant efforts have been performed to
develop experimental identifications of the nonparametric probabilistic approach and to obtain
experimental validations of the theory in structural dynamics (see [?, ?, ?, ?, ?, ?]) and in
structural acoustics (see [?, ?, ?, ?] and in particular, for the methodology and the experimental
validation see [?, ?, ?]). Finally, the nonparametric probabilistic approach has been extended
to analyze nonlinear elastodynamics with local nonlinear elements [?, ?] and with distributed
nonlinear elements or nonlinear geometrical effects [?].

The concept of the nonparametric probabilistic approach introduced in [?] consists in directly
constructing the probability distribution of each operator of the boundary value problem
[?, ?, ?, ?] instead of deducing the probability distribution of each random operator from
a deterministic transformation of random variables as used by the parametric probabilistic
approach of system parameters uncertainties. The construction of the probability distribution
of a random operator requires the introduction of a reduced model, that is to say the
introduction of a sequence of random operators with finite ranks corresponding to the
projections of this random operator on a sequence of finite subspaces of the space of admissible
functions of the boundary value problem. This sequence of finite subspaces are constructed
in choosing a basis of the admissible space of the boundary value problem. Using such a
basis, the sequence of random operators with finite ranks corresponds to a sequence of random
matrices. The probability distribution of each random matrix is then constructed using the
Maximum Entropy Principle (Information theory) for which the constraints are defined by
the available information. The convergence is analyzed for a dimension of the subspace going
to infinity. For instance, in linear elastodynamics, the basis is made up of the elastic modes
{�α, α ≥ 1} which are ordered by increasing eigenfrequencies and the stiffness random operator
� is projected on the finite dimension subspace spanned by {�1, . . . ,�N} and is represented
by a random matrix [KN ]. For any fixed N , the available information for random matrix [KN ]
is the following: (1) [KN ] is a random matrix with values in the set of all the positive-definite
(N × N) real matrices, (2) the mean value of [KN ] is equal to the corresponding generalized
stiffness matrix of the mean computational model and (3), the second-order moment of the
random variable ‖[KN ]}−1‖ is finite. For details concerning these developments, we refer the
reader to [?, ?, ?, ?].

As explained above, the nonparametric probabilistic approach of both system parameters
uncertainties and model uncertainties has mainly be developed and validated for linear and
nonlinear dynamical systems. In this paper, we present a new extension of the nonparametric
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4 C. SOIZE

probabilistic approach to analyze strictly elliptic boundary value problems with system
parameters and model uncertainties. The mean computational model is assumed to be derived
from the finite element discretization of a strictly elliptic boundary value problem and is
then written as [� ] y = f , in which the matrix [� ] is a sparse positive-definite (n × n) real
matrix, y is the unknown vector in �

n and where f is a given vector in �
n. In practice, the

mean computational model is used to construct the responses y1, . . . , yNf for Nf given vectors

denoted by f1, . . . , fNf with fj in �
n such that for all j in 1, . . . , Nf , we have [� ] yj = fj .

Let b1, . . . , bm with m ≤ Nf be the orthonormal family in �
n deduced from f1, . . . , fNf and

constructed, for instance, using the Gram-Schmid algorithm. Introducing the (n × Nf ) real
matrices [ y ] = [y1 . . . yNf ] and [ f ] = [f1 . . . fNf ] and the (n×m) real matrix [ b ] = [b1 . . . bm]
whose columns are �n vectors. We then have [ f ] = [ b ] [ q ] in which [ q ] is a (m × Nf ) real
matrix. Since [ b ]T [ b ] = [Im] in which [Im] is the (m × m) unity matrix, the (m × Nf ) real
matrix [ q ] is given by [ q ] = [ b ]T [ f ]. Therefore, we have to solve the equation [� ] [ y ] = [ f ]
that is equivalent to [ y ] = [ x ] [ q ] in which the (n × m) real matrix [ x ] is solution of the
following matrix equation

[� ] [ x ] = [ b ] . (1)

It should be noted that the matrix [ b ] has only been introduced to reduce the number
of computations to be carried out but that the construction of the random matrix will
be independent of [ b ]. Below we will only consider Eq. (1). Note that the nonparametric
probabilistic approach cannot directly be implemented for the matrix [� ]. A reduced model
has to be introduced and the probability model has to be constructed for the generalized
matrix of the reduced model. The main reason is the following. For such a strictly elliptic
boundary value problem, the use of the finite element method yields a sparse random matrix
[� ] for which zeros are present in the matrix. It should be noted that it is not clear if a
zero could or could not be replaced by a non zero random variable in the context of model
uncertainties. In an other hand, some zeros are due to the topology of the geometry of the
domain. Consequently, a direct construction of the probability distribution of such random
matrices would be very difficult and would require to have solved the two following problems.
The first one would consist in defining the zeros in a sparse matrix resulting from the finite
element mesh of a given domain for general complex systems and that must remain zeros in the
presence of model uncertainties. The second one would consist in constructing the probability
distribution of a sparse random matrix [� ] with values in the set of all the positive-definite
(n × n) real matrices (1) for which the zeros are given, (2) for which the mean value [� ] is
given and (3) for which the second-order moment of the random variable ‖[� ]}−1‖ is finite
in order that the second-order moment of the random response [ X ] such that [� ] [ X ] = [ b ]
be finite. This problem is still an open problem and the mathematical difficulties induced for
high values of n (several millions of degrees of freedom) are considerable. Finally, it should
be noted that the substitution of the sparse matrix of the mean computational model by a
full random matrix [� ] would absolutely be not reasonable for large computational model
(note that if n = 107, then [� ] would have 0.5 × 1014 non zero elements !). This is the reason
why we propose to extend the nonparametric probabilistic approach developed for dynamical
systems to the computational models of strictly elliptic boundary value problems in order to
take into account both the system parameters uncertainties and the model uncertainties. This
means that an efficient reduced mean model must be constructed. It is well known that the
modal analysis is very efficient to reduce the computational model in dynamics but is not at
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all efficient for static problem (elliptic problem) due to a slow rate of convergence with respect
to the dimension of the reduction. We then propose another approach.

2. Implementation of the nonparametric probabilistic approach for strictly elliptic boundary
value problem

2.1. Algebraic notations

In this paper, the following algebraic notations are used.

Matrix sets. Let �µ,ν(�) be the set of all (µ× ν) real matrices and �µ(�) = �µ,µ(�) be the set
of all square (µ×µ) real matrices. Let �S

µ(�) be the set of all (µ×µ) real symmetric matrices
and �+

µ (�) be the set of all (µ × µ) real symmetric positive-definite matrices.

Euclidean space. Any vector v = (v1, . . . , vµ) in �µ is represented by the column matrix v in
�µ,1(�) of its components. If v and w are in �µ, we denote by <v , w>µ= v1w1 + . . . + vµwµ

the Euclidean inner product and by ‖v‖µ =<v , w>
1/2
µ the associated Euclidean norm.

Matrix operations. The determinant of a matrix [A ] belonging to �µ(�) is denoted by det[A ]
and its trace by tr[A ] =

∑n
j=1[A ]jj . If [A ] belongs to �µ,ν(�) and if v belongs to �µ, then

their transpose are [A ]T in �ν,µ(�) and vT in �1,µ. If [A ] is in �µ(�) and is invertible, then
[A ]−1 is the inverse which is in �µ(�).

Norms and usual operators. The operator norm of a matrix [A ] belonging to �µ,ν(�) is
‖A‖ = sup‖v‖ν≤1 ‖[A ] v‖µ in which v is in �ν . This norm is such that ‖[A ] v‖µ ≤ ‖A‖ ‖v‖ν for
all v in �ν . If [A ] belongs to �µ,ν(�), the Frobenius norm (or Hilbert-Schmidt norm) is ‖A‖F

of [A ] is such that ‖A‖2
F = tr{[A ]T [A ]}. If [A ] belongs to �µ(�), then ‖A‖ ≤ ‖A‖F ≤ √

µ ‖A‖.

2.2. Ensemble SG+ of random matrices

For the implementation of the nonparametric probabilistic approach we need to introduce the
ensemble which has been constructed in [?, ?]. We recall this construction in this subsection.

(i)- Definition of the ensemble SG+. This ensemble is defined as the second-order
random matrices [GN ], defined on a probability space (A, T ,P), with values in �

+
N (�),

such that E{[GN ]} = [GN ] = [IN ] where [IN ] is the (N × N) unity matrix
and such that E

{
‖[GN ]−1‖2

F

}
< +∞. The level of statistical fluctuations of such

a random matrix is controlled by the dispersion parameter δ > 0 defined by δ =
{E{‖ [GN ] − [GN ] ‖2

F}/‖ [GN ] ‖2
F }1/2 = {E{‖ [GN ] − [IN ] ‖2

F}/N}1/2 and which must be such
that δ ∈ [0 , δ0[ with δ0 = (N + 1)1/2(N + 5)−1/2.

(ii)- Probability distribution of a random matrix in ensemble SG+. The probability distribution
P[GN ] of the random matrix [GN ] is defined by a probability density function [GN ] �→
p[GN ]([GN ]) from �

+
N (�) into �+ = [0 , +∞[, with respect to the measure (volume element)

d̃GN on the set �
S
N (�) such that d̃GN = 2N(N−1)/4 Π1≤i≤j≤N d[GN ]ij . We then have

P[GN ] = p[GN ]([GN ]) d̃GN with the normalization condition
∫
�

+
N (�)

p[GN ]([GN ]) d̃GN = 1. The

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–22
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6 C. SOIZE

probability density function p[GN ]([GN ]) is then written as

p[GN ]([GN ]) = �
�

+
N

(�)([GN ])×CGN
×

(
det [GN ]

)(N+1) (1−δ2)

2δ2 ×exp

{
− (N + 1)

2δ2
tr [GN ]

}
, (2)

in which �
�

+
N

(�)([GN ]) is equal to 1 if [GN ] ∈ �
+
N (�) and is equal to zero if [GN ] /∈ �

+
N (�) and

where positive constant CGN
is such that

CGN
=

(2π)−N(N−1)/4
(

N+1
2δ2

)N(N+1)(2δ2)−1

{
ΠN

j=1Γ
(

N+1
2δ2 + 1−j

2

)} , (3)

where Γ(z) is the gamma function defined for z > 0 by Γ(z) =
∫ +∞

0
tz−1 e−t dt. Equation (??)

shows that {[GN ]jk, 1 ≤ j ≤ k ≤ N} are dependent random variables. If (N + 1)/δ2

is an integer, then the probability distribution defined by Eqs. (??) and (??) is a usual
Wishart distribution. In general, (N +1)/δ2 is not an integer and consequently, the probability
distribution defined by Eqs. (??) and (??) is not a usual Wishart distribution.

(iii)- Algebraic representation for Monte Carlo simulation. The following algebraic
representation of the random matrix [GN ] allows a procedure for the Monte Carlo numerical
simulation of random matrix [GN ] to be defined. The random matrix [GN ] can be written
as [GN ] = [LN ]T [LN ] in which [LN ] is an upper triangular random matrix with values
in �N (�) such that: (1) the random variables {[LN ]jj′ , j ≤ j′} are independent; (2) for
j < j′, the real-valued random variable [LN ]jj′ can be written as [LN ]jj′ = σNUjj′ in which
σN = δ(N + 1)−1/2 and where Ujj′ is a real-valued Gaussian random variable with zero mean
and variance equal to 1; (3) for j = j′, the positive-valued random variable [LN ]jj can be
written as [LN ]jj = σN

√
2Vj in which σN is defined above and where Vj is a positive-valued

gamma random variable whose probability density function pVj
(v) with respect to dv is written

as pVj
(v) = ��+(v){Γ

(
N+1
2δ2 + 1−j

2

)
}−1 v

N+1

2δ2 − 1+j
2 e−v.

(iv)- Convergence property of a random matrix in ensemble SG+ when dimension goes
to infinity. It is mathematically proved that E{‖ [GN ]−1‖2

F } < +∞ and therefore that
E{‖ [GN ]−1‖2} < +∞. In addition, the following fundamental property is proved: for all
N ≥ 2, we have E{‖[GN ]−1‖2} ≤ Cδ < +∞ in which Cδ is a positive finite constant that is
independent of N but that depends on δ. This inequality means that N �→ E{‖[GN ]−1‖2} is
a bounded function from {N ≥ 2} into �+.

2.3. Effective construction of the probability model

Let N ≤ n be a positive integer. Let �1, . . . ,�N be the N orthonormal eigenvectors of the
matrix [� ] associated with the N first positive eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λN such that
[� ]�α = λα �

α. We then have <�α,�β >= δαβ in which δαβ = 0 if α 
= β and δαα = 1. Let
[ΦN ] be the matrix in �n,N(�) whose columns are �1, . . . ,�N . We have

[ΦN ] = [�1 . . .�N ] , [ΦN ]T [ΦN ] = [IN ] , (4)

in which [IN ] is the (N × N) unity matrix. Note that [ΦN ] [ΦN ]T 
= [In]. Let [X] be the
�n,m(�)-valued random variable which is the solution of the stochastic computational model
associated with the mean computational model defined by Eq. (??) and which is written as

[� ] [ X ] = [ b ] , (5)

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–22
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NONPARAMETRIC PROBABILISTIC APPROACH OF UNCERTAINTIES 7

in which the probability model of the random matrix [� ] with values in �
+
n (�) must be

constructed. Let [ x ] ∈ �n,m(�) be the unique solution of the mean computational model
[� ] [ x ] = [ b ] (formally, we have [x ] = [� ]−1 [ b ]). The nonparametric probabilistic approach
of both system parameters uncertainties and model uncertainties consists in introducing a
family {[�N ], N = 1, . . . , n} of random matrices with values in �

+
n (�) such that (1) for all

N in {1, . . . , n}, the �n,m(�)-valued random matrix [XN ] which is solution of the stochastic
equation

[�N ] [ XN ] = [ b ] , (6)

must be such that E{‖ [XN ] ‖2
F } = c < +∞ and (2) in the mean-square sense, we must have

limN→n[XN ] = [X] which means that

lim
N→n

E{‖ [XN ] − [X] ‖2
F} = 0 , (7)

in which [X] is the second-order solution of Eq. (??). We then propose as the family of
symmetric random matrices the following one

[�N ] =
{
[ΦN ]([ KN ]−1 − [ KN ]−1)[ΦN ]T + [� ]−1

}−1
, (8)

in which [KN ] is the diagonal matrix belonging to �+
N (�) and such that

[ KN ]αβ = ([ΦN ]T [� ] [ΦN ])αβ = λα δαβ , (9)

which admits the following Cholesky decomposition

[ KN ] = [LN ]T [LN ] , [LN ]αβ =
√

λα δαβ . (10)

Following the construction proposed in [?, ?, ?], the random matrix [ KN ] with values in �+
N (�)

is written as
[ KN ] = [LN ]T [GN ] [LN ] , (11)

in which [GN ] is a random matrix with values in �
+
N (�), belonging to the ensemble SG+ of

random matrices defined in Section 2.2. We then have E{[ KN ]} = [ KN ].

Comments on the construction proposed. Introducing the subspace of �n spanned by
�1, . . . ,�N , the projection of Eq. (??) yields

[ X̃N ] = [ΦN ] [QN ] , [ KN ] [QN ] = [ΦN ]T [ b ] , (12)

where [ KN ] is the random matrix with values in �
+
N (�) given by [ KN ] = [ΦN ]T [� ] [ΦN ]

and defined by Eq. (??) for which the probability model is completly defined. For N ≤ n,

when δ → 0, [ KN ]−1 → [ KN ]−1 in probability and consequently, [ X̃N ] → [ xN ] =
[ΦN ] [ KN ]−1[ΦN ]T [ b ] which differs from the solution [x ] of Eq. (??). We then introduce
a corrective term allowing the convergence with respect to N to be increased in writting
[ XN ] = [ X̃N ] − [ X̃N ]δ=0 + [ x ]. In this condition, for any value of N , limδ=0[ XN ] = [ x ] in
probability and [ XN ] = [ΦN ] [ KN ]−1[ΦN ]T [ b ] − [ΦN ] [ KN ]−1[ΦN ]T [ b ] + [ x]. Taking into
account that [ x ] = [� ]−1 [ b ], Eq. (??) with Eq. (??) can easily be deduced. As it is proven
in Section 2.5 devoted to the fundamental properties of the stochastic model, the introduction
of this corrective term allows the rate of convergence to be considerably increased without
modifying the fundamental properties of the random matrix.

Copyright c© 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 00:1–22
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8 C. SOIZE

2.4. Effective computation of the random solution

Let [ x ] be the solution of Eq. (??). The random solution [X] = limN→n[XN ] of Eq. (??) is
constructed by using the Monte Carlo method. For N fixed, let [GN (a1)], . . . , [GN (ans

)] be
ns independent realizations of random matrix [GN ] and constructed with the generator given
in Section 2.2-(iii). For every ℓ fixed in {1, . . . , ns}, the realization [ XN(aℓ)] is constructed by
solving the following deterministic equations derived from Eqs. (??) and (??) to (??),

[�N (aℓ)] [ XN (aℓ)] = [ b ] , (13)

[�N (aℓ)] =
{
[ΦN ]([ KN (aℓ)]

−1 − [ KN ]−1)[ΦN ]T + [� ]−1
}−1

, (14)

[ KN(aℓ)] = [LN ]T [GN (aℓ)] [LN ] . (15)

The matrix [�N (aℓ)] which is a full matrix is never assembled and the algorithm to compute
[ XN(aℓ)] is the following:

Step 1 (outside the Monte Carlo loop on ℓ): Compute [ x ] in solving the deterministic
linear matrix equation [� ] [ x ] = [ b ]. Then compute [xN ] = [ΦN ] [ qN ] in which [ qN ] is

calculated in solving the deterministic equation [KN ] [ qN ] = [ΦN ]T [ b ] which is such that

[ qN ]αj = λ−1
α

∑
k=1[Φ

N ]kα[ b ]kj for α = 1, . . . , N and for j = 1, . . . , m.

Step 2 (inside the Monte Carlo loop on ℓ): Compute [ X̃N(aℓ)] = [ΦN ] [QN(aℓ)] in which
[QN (aℓ)] is calculated in solving the deterministic matrix equation [ KN(aℓ)] [QN (aℓ)] =

[ΦN ]T [ b ]. Then compute [ XN(aℓ)] = [ X̃N (aℓ)] − [ xN ] + [ x ].

Step 3 (outside the Monte Carlo loop on ℓ): Perform the mean-square convergence analysis
with respect to the order N of the reduction and with respect to the number ns of realizations
in constructing the graph of the function (N, ns) �→ Conv(N, ns) such that

Conv(N, ns) =

{
n−1

s

ns∑

ℓ=1

‖ [XN(aℓ)] ‖2
b

}1/2

, ‖ [XN(aℓ)] ‖2
b = m−1‖ [XN(aℓ)] ‖2

F . (16)

2.5. Fundamental properties of the stochastic model

The fundamental mathematical properties of the stochastic model constructed are summarized
in the four following propositions.

Proposition 1. The random matrix [�N ] is a symmetric matrix and is a random variable with
values in �+

n (�).

Proof. It can easily be verified that the random matrix [�N ] is symmetric. To prove the second
part of this proposition, it is sufficient to prove that [� ] = [�N ]−1 is a random matrix with
values in �+

n (�) in which [� ] = [ΦN ]([ KN ]−1−[ KN ]−1)[ΦN ]T +[� ]−1 and where [ KN ] = [ λN ]
with [ λN ]αβ = λα δαβ. From Eq. (??), it can be deduced that

[Φn]T [� ] [Φn] = [ λn] =

[
[ λN ] [ 0 ]
[ 0 ] [ λn−N ]

]
,

in which [λn−N ] is the diagonal matrix of the positive eigenvalues λN+1 ≤ . . . ≤ λn. In
addition, if the random matrix [� ] = [Φn]T [� ] [Φn] is with values in �+

n (�), then [� ] will be
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in values in �+
n (�). Since [ΦN ]T [Φn] = [ [ IN ] [ 0N,n−N ] ] in which [ 0N,n−N ] is the (N×(n−N))

zero matrix, it can easily be verified that

[� ] =

[
[ KN ]−1 [ 0 ]

[ 0 ] [ λn−N ]−1

]
.

Since [ KN ]−1 is a random matrix with values in �
+
N (�) and since [ λn−N ]−1 belongs to

�
+
n−N (�), it can be deduce that [� ] is a random matrix with values in �+

n (�).

Proposition 2. The random matrix [�N ] being a random variable with values in �+
n (�), [�N ]

is almost surely invertible but in addition, for any N in {1, . . . , n} and for any δ in [0 , δ0[,
there is a positive finite constant cN,δ depending on N and δ such that

E{‖ [�N ]−1‖2} = cN,δ < +∞ . (17)

Proof. Eq. (??) yields [�N ]−1 = [ΦN ]([ KN ]−1 − [ KN ]−1)[ΦN ]T + [� ]−1. From Eq. (??),
it can be deduced that [ KN ]−1 = [LN ]−1[GN ]−1 [LN ]−T . Since [GN ] belongs to SG+,
we have E{‖ [ GN ]−1‖2} = cδ < +∞ in which the constant cδ depends on δ but is
independent of N . From the inequalities ‖ [ KN ]−1‖ ≤ ‖ [LN ]−1‖ ‖ [GN ]−1‖ ‖ [LN ]−T ‖2

and ‖ [�N ]−1‖ = ‖ [ΦN ] ‖ ‖ [ΦN ]T ‖ (‖ [ KN ]−1 ‖ + ‖ [ KN ]−1 ‖) + ‖ [� ]−1‖, we deduce that
‖ [�N ]−1‖ ≤ αN‖ [GN ]−1‖ + βN in which αN and βN are two positive finite constants which
depend on N . Then the inequality (a + b)2 ≤ 2(a2 + b2) for a ≥ 0 and b ≥ 0 yields
‖ [�N ]−1‖2 ≤ 2(α2

N‖ [GN ]−1‖2 + β2
N ) and consequently, we obtain Eq. (??).

Proposition 3. For any N in {1, . . . , n} and for any δ in [0 , δ0[, the random equation
[�N ] [ XN ] = [ b ] has a unique second-order solution [ XN ], that is to say, there is a positive
finite constant c̃N,δ depending on N and δ such that

E{‖ [ XN ] ‖2
F} = c̃N,δ < +∞ . (18)

Proof. From Proposition 1, [�N ] is invertible almost surely and consequently, [ XN ] =
[�N ]−1 [ b ] which yields ‖ [ XN ] ‖2

F = ‖ [�N ]−1‖2 ‖ [ b ]‖2
F . Using Eq. (??), we deduce Eq. (??)

with c̃N,δ = cN,δ ‖ [ b ]‖2
F .

Proposition 4. The random matrix [� ] in equation [� ] [ X ] = [ b ] (see Eq. (??)) is defined
as [� ] = [�n] = limN→n[�N ] and consequently, we have [ X ] = [ Xn] = limN→n[ XN ] and
limN→n E{‖ [ XN ] − [ X ] ‖2

F } = 0 (see Eq. (??)). For any fixed value of N in {1, . . . , n}, we
have [ XN ] → [ x ] in probability when δ → 0.

Proof. For N = n, Eq. (??) yields [�n] [ Xn] = [ b ]. Defining the random matrix [� ] as
[� ] = [�n], we deduce that [� ] [ Xn] = [ b ]. Since [ X ] is such that [� ] [ X ] = [ b ] (see Eq. (??)),
we then deduce that [ X ] = [ Xn] almost surely. Since [� ] = [�n], the equation [� ] [ X ] = [ b ]
(see Eq. (??)) has a unique second-order solution and since for all N in {1, . . . , n}, [ XN ] is
a second-order random variable (see Eq. (??)), then Eq. (??) holds. The last fundamental
property can directly be deduced from the comment given at the end of Section 2.3 which is
[ KN ]−1 → [ KN ]−1 in probability when δ → 0 and then [�N ]−1 → [� ]−1 in probability when
δ → 0.
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10 C. SOIZE

3. Application and validation

In this Section, we present a validation of the previous theory for a strictly elliptic boundary
value problem corresponding to a linear elastostatic problem of a three-dimensional bounded
medium.

3.1. Geometry, material, boundary conditions and external loads

The computational domain is a thick circular cylindrical shell referred to a cartesian reference
system (0, x, y, z) and to the associated cylindrical coordinate system (0, r, θ, z) as shown in
Fig. 1. The internal radius is r1 = 3 m, the external radius is r2 = 6 m and the length
is Lz = 4 m. This domain is occupied by a material whose mean model is a linear elastic
isotropic and homogeneous material with Young’s modulus 2 × 109 N/m2 and Poisson’s
coefficient 0.15. The displacement field is locked (zero Dirichlet conditions) on the surface
S0 defined by S0 = {(r, θ, z) : r = r2 , θ ∈ [−2π/64 , +2π/64] , z ∈ [0 , Lz]}. Let S1

be the external lateral surface of the cylinder on which external static loads are applied
and which is defined by S1 = {(r, θ, z) : r = r2 , θ ∈]2π/64 , 2π − 2π/64[ , z ∈ [0 , Lz]}.
The external static loads are constitued of the Nf = 64 forces fields defined for all
j = 1, . . . , Nf by gj(r, θ, z) = (gj

x(r, θ, z), gj
y(r, θ, z), gj

z(r, θ, z)) with (r, θ, z) ∈ S1 in which

gj
x(r, θ, z) = c(θ, z, j) cos(θ), gj

y(r, θ, z) = c(θ, z, j) sin(θ) and gj
z(r, θ, z) = c(θ, z, j) with

c(θ, z, j) = cos(πz/Lz − pj) cos(2(θ − pj)) and where pj = 2π(j − 1)/Nf .

1

z

O

θ

r

r

r
y

x

Lz

2

X

Y

Z

X

Y

Z

Figure 1. Geometry of the domain and coordinate systems (left figure). Finite element mesh of the
domain (right figure).

3.2. Computational model

The mean computational model is made up of a 6 × 64 × 12 finite element mesh in (r, θ, z)
(see Fig. 1) with 3D 8-nodes solid finite elements, 5824 nodes, 39 nodes with zero Dirichlet
conditions and has a total of n = 17, 355 degrees of freedom. The finite element discretization
of the external static fields gj for j = 1, . . . , Nf yields the Nf static loads f1, . . . , fNf . These
static loads belong to the vector space of dimension m = 4 spanned by the orthonormal
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vectors b1, . . . , bm in �n deduced from the use of the Gram-Schmid algorithm on the family
f1, . . . , fNf . The stochastic computational model is constructed with the theory presented in
Section 2. Five calculations have been carried out for the values 0.1, 0.2, 0.3, 0.4 and 0.5 of the
dispersion parameter δ which control the level of uncertainties. The Monte Carlo method is
used with ns = 20, 000 for which the mean-square convergence is reached for all the considered
values of δ. Let W(a1), . . . , W(ans

) be ns independent realizations of any random variable W
defined on the probability space (A, T ,P) and relative to the random response of the stochastic
system. We then use the following statistical estimation E{W} ≃ n−1

s

∑ns

ℓ=1 W(aℓ) and the
mean-square convergence is analyzed in studying the function ns �→ n−1

s

∑ns

ℓ=1 ‖W(aℓ)‖2.

3.3. Convergence analysis with respect to parameter N

For each given value of the parameter N , let [XN ] be the solution of the stochastic
computational equation which is a random matrix defined on (A, T ,P) with values in
�n,m(�). The mean convergence and the mean-square convergence are analyzed with respect to
parameter N . We then introduce the following functions N �→ Conv1(N) = m−1/2‖E{[XN ]}‖F

and N �→ Conv2(N) = m−1/2{E{‖ [XN ] ‖2
F}1/2. It should be noted that the mean-square

convergence (Conv2) implies the convergence in mean (Conv1). Using the above statistical
estimation of the mathematical expectation with ns independent realizations, we have
Conv2(N) = Conv(N, ns) in which Conv(N, ns) is defined by Eq. (??). In addition, the
speed of the mean-square convergence decreases with δ is increasing. We then present the
convergence analysis for the largest value of δ, that is to say for δ = 0.5. Figure 2 displays the
graph of N �→ Conv1(N) in log10 scale for N and the graph of N �→ Conv2(N). These two
figures show that a reasonable convergence is reached for N ≥ 300.
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Figure 2. Mean convergence and mean-square convergence with respect to parameter N : graph of
N �→ Conv1(N) (left figure) and graph of N �→ Conv2(N) (right figure)

3.4. Stochastic response analysis

In this section, the stochastic response analysis is presented for N = 500. Let [XN ] be the
random solution with values in �n,m(�) for this fixed value of N . First we introduce two real
random observations and then we present the probability distributions of these two random
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12 C. SOIZE

variables for the five values of δ.

Let [XN ] = E{[XN ]} ∈ �n,m(�) be the mean value of the random solution [XN ]. Let

j1 and k1 be the integers such that (j1, k1) = arg maxj,k [XN ]jk. We then introduce the
first random observation as the real-valued random variable U = [XN ]j1k1 . The random
variable U represents the component of the random response for which the mean value is
the largest. The cumulative distribution function of the random variable U is the function
u �→ FU (u) = Proba{U ≤ u} and its probability density function is u �→ pU (u) = dFU (u)/du.

Let [σN ] be the matrix in �n,m(�) such that for all j and k we have [σN ]2jk = E{[XN ]2jk −
[XN ]2jk}. Let j2 and k2 be the integers such that (j2, k2) = argmaxj,k [σN ]jk. We then introduce

the second random observation as the real-valued random variable V = [XN ]j2k2 . The random
variable V represents the component of the random response for which the standard deviation
is the largest. The cumulative distribution function of the random variable V is the function
v �→ FV (v) = Proba{V ≤ v} and its probability density function is v �→ pV (v) = dFV (v)/dv.

Let U(a1), . . . , U(ans
) and V (a1), . . . , V (ans

) be ns independent realizations of the random
variables U and V calculated with the stochastic computational model. The cumulative
distributions functions FU and FV , and the probability density functions pU and pV are
usually estimated with the mathematical statistics (see [?]). Figure 3 displays the graphs
of functions u �→ log10 pU (u) and v �→ log10 pV (v) for δ = 0.1, 0.2, 0.3, 0.4 and 0.5. These
figures show that the random variables U and V are closed to Gaussian random variables but
are not Gaussian. For instance, Figure 4 shows the comparison of v �→ log10 pV (v) with a
fitted Gaussian probability density function v �→ log10 pGauss

V (v) for δ = 0.1. Finally, Figure 5
displays the graphs of functions u �→ log10 FU (u) and v �→ log10 FV (v) for δ = 0.1, 0.2, 0.3, 0.4
and 0.5.
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Figure 3. Graph of u �→ log
10

pU (u) (left figure) and graph of v �→ log
10

pV (v) (right figure) for δ = 0.1
(solid line without symbol), δ = 0.2 (x-mark symbol), δ = 0.3 (square symbol), δ = 0.4 (down triangle

symbol), δ = 0.5 (up triangle symbol).
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Figure 4. For δ = 0.1, graphs of v �→ log
10

pV (v) (solid line) and v �→ log
10

pGauss

V (v) (dashed line).
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Figure 5. Graph of u �→ log
10

FU (u) (left figure) and graph of v �→ log
10

FV (v) (right figure) for δ = 0.1
(solid line without symbol), δ = 0.2 (x-mark symbol), δ = 0.3 (square symbol), δ = 0.4 (down triangle

symbol), δ = 0.5 (up triangle symbol).

4. Conclusions

We have presented an extension of the nonparametric probabilistic approach of both system
parameters uncertainties and model uncertainties for strictly elliptic boundary value problem.
The method proposed introduces two parameters. The first one is the dispersion parameter
which allows the level of uncertainties to be controlled. This parameter must be (1) either
identified with experiments, for instance using the methodology proposed in [?] (2) or fixed
to a given value relative to an expertise (3) or considered as a super parameter to carry out
a sensitivity analysis (as we have presented in Section 3). The second parameter is N and is
relative to the construction of the probabilistic approach. The value of N must be derived
from a convergence analysis for each given application. The application presented shows that
the convergence is speed enough and that the additional numerical cost is low. Finally, the
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theory presented can be extended without any difficulties to elliptic boundary value problems
(for instance the linear elastostatic problem with rigid body displacements).
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