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Abstract

This work deals with the computational and experimental identification of
two probabilistic models. The first one was recently proposed in the lit-
erature and provides a direct stochastic representation of the mesoscopic
elasticity tensor random field for anisotropic microstructures. The second
one, formulated in this paper, is associated to the volume fraction random
field at the mesoscale of reinforced composites. After having defined the
probabilistic models, we first address the question of the identification of
the experimental trajectories of the random fields. For this purpose, we in-
troduce a new methodology relying on the combination of a non destructive
ultrasonic testing with an inverse micromechanical problem. The parameters
involved in the probabilistic models are then identified and allows realiza-
tions of the random fields to be simulated by using Monte Carlo numerical
simulations. A comparison between simulated and experimental results is
provided and demonstrates the relevance of the identification strategy for
the chaos coefficients involved in the second model. Finally, we illustrate the
use of the first probabilistic model by performing a probabilistic parametric
analysis of the RVE size of the considered microstructure.
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1. Introduction

Within a micromechanical framework, the concept of a Representative
Volume Element (RVE) has been largely investigated over the past 20 years.
While there does not exist a precise definition of the RVE size, a general
and commonly used definition of the latter is that it has to be “sufficiently
large” with respect the size of the heterogeneities and “sufficiently small”
with respect to the size of the structure. When a homogenization procedure
is carried out with reference to this concept, one obtains estimates that are
(i) considered as effective, in the sense that they represent (in a determin-
istic way) the behavior of an associated (fictitious) homogeneous solid; (ii)
independent of the boundary condition type that is prescribed for the ho-
mogenization procedure. Such a homogenization framework is well adapted
when the size of the heterogeneities is very small in comparison to the one
defining the scale of interest (in industrial applications or experimental test-
ing, for instance). This is usually the case of polycrystalline materials or
composites reinforced by micrometric particles.
However, for other kind of materials, such as rock-like materials, concrete
or composites reinforced with long (or continuous) fibers, one may not face
samples whose size is sufficiently large in order the RVE concept to be used.
In this case, the volume under investigation is called Statistical Volume El-
ement (SVE). The associated mechanical properties are said to be apparent
and depend on the realization of the random media as well as on the pre-
scribed boundary conditions (see [7], [14] and [16]).
Several approaches have been proposed in the literature in order to take into
account the random dimension arising in the mechanics of heterogeneous
materials. At the microscale, the most widely used techniques are based on
a combination of a statistical analysis, used for a morphological description
of the media and generally performed on a set of digitalized microstruc-
tures, with numerical Monte-Carlo simulations (MCS) [10] [18] [25]. In
some cases however, the identification of probabilistic models at such a scale
may be problematic, because of a too noisy representation for instance [1].
Mesoscopic approximations, such as the Moving Window-GMC technique
(consisting in the combination of a statistical analysis performed on locally
homogenized properties at mesoscale, with MCS; see [1] [5]) may then be
considered. While such modeling clearly smoothes some probabilistic infor-
mation arising at finer scales, it may be more suitable in practice regarding
experimental identification (depending also on the case under consideration).
Within this framework, another kind of approach consists in constructing
probabilistic mathematical models (instead of statistical analysis) which en-
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sure, for instance, some key probabilistic features of the solution associated
to the stochastic boundary value problem. Thus, a mesoscopic probabilistic
model for random anisotropic elastic microstructures was recently proposed
by Soize (see [22] [23]) and used to investigate the RVE size by performing
a probabilistic parametric analysis. In particular, it was shown that the
characteristic length of the macroscopic scale could be defined with respect
to the spatial correlation lengths of the mesoscopic elasticity random field.
In this context of stochastic analysis, there are only a very few probabilistic
studies based on experimental identification and this lack of physically-based
modeling has been pointed out in many state-of-the-art reports in stochas-
tic mechanics [4]. In fact, most of previous analysis were based on assumed
probabilistic properties and focused on the uncertainty propagation. This
paper is precisely devoted to the computational and experimental identifica-
tion of two probabilistic models of the elasticity tensor random field at the
mesoscale of a fiber reinforced composite. The first model is the probabilistic
model for random anisotropic elastic microstructures relying on a minimal
parametrization introduced in [22] [23]. In addition to this approach, we
further propose a probabilistic model dedicated to the mesoscopic volume
fraction in reinforcement, with reference to the one defined in [6] (in the case
of the microscopic volume fraction). It relies on two classical representation
techniques of random fields (namely, the Karhunen-Loeve and Polynomial
Chaos expansions) and allows trajectories of the elasticity tensor to be sim-
ulated through a homogenization procedure.
The paper is organized as follows. The two probabilistic models are first
defined in section (2). The identification of the parameters involved in the
stochastic representations required the development of dedicated experimen-
tal methodology and setup. This point is precisely addressed in section (3).
Based on this identification, the determination of the experimental trajec-
tories of the random fields (from which some probabilistic features will be
characterized), as well as of the parameters involved in the probabilistic
models, is carried out. A comparison between the experimental and sim-
ulated realizations is also provided and allows one to discuss the relevance
of the strategy identification of the chaos coefficients involved in the prob-
abilistic model of the mesoscopic volume fraction. Finally, we illustrate, in
section (4), the use of the direct probabilistic model of the elasticity tensor
random field by performing a probabilistic parametric analysis of the RVE
size with respect to the spatial correlation lengths of the mesoscopic random
field.
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2. Probabilistic models

2.1. Probabilistic model of the elasticity tensor random field
Let us first recall some key features of the mesoscale probabilistic model

for random anisotropic elastic microstructures introduced in [22] [23]. Let
x→ C (x) be the fourth-order tensor-valued random field corresponding to
this model. In the sequel, we will consider the matrix representation C (x)
of the elasticity tensor C (x)1. For a given x in Ω, C (x) is a random variable
with values in M+

n (R) (the set of all the n×n real symmetric positive-definite
matrices). Let x → C (x) be the mean function of C (x) which is assumed
to be known. For a given x in Ω, let us introduce the normalized random
field x → G (x), defined on a probability space (Θ,F , P ), indexed by Rd

and with values in M+
n (R) (in the most general case, d = 3 and n = 6), such

that: {
C (x) = L (x)T G (x) L (x)
E {G (x)} = I

(1)

where I is the n × n identity matrix and L (x) is the upper triangular ma-
trix arising from the Cholesky factorization of the mean matrix (C (x) =
L (x)T L (x)).

2.1.1. Construction of the probability density function of random matrix
G (x)

For a given x, the probability distribution PG(x) of random matrix
G (x) is defined by a probability density function G → pG(x) (G) such
that PG(x) = pG(x) (G) d̃G with respect to d̃G = 2n(n−1)/4

∏
1≤i≤j≤n dGij

(where dGij is the Lebesgue measure on R). The probability density func-
tion can be constructed by using the Maximum Entropy Principle (see [8]
[9]). The approach relies on the notion of Entropy introduced by Shannon in
the context of Information Theory ([19]) and allows the probabilistic model
to be constructed with respect to the available information. It can then be
shown that:

pG(x) (G) = 1M+
n (R) (G) cG (det (G))(n+1)(1−δ2)/(2δ2) exp

{
−n+ 1

2δ2
tr (G)

}
where G→ 1M+

n (R) (G) = 1 if G ∈M+
n (R) (= 0 otherwise), cG is a positive

constant (whose expression is provided in [23]) and δ is a parameter that will

1The mapping is defined as follows: C (x)IJ = Cijkl (x), (I, J) ∈ (1..6)2 with I = (i, j),
J = (k, l) and where 1 = (1, 1), 2 = (2, 2), 3 = (3, 3), 4 = (1, 2), 5 = (1, 3), 6 = (2, 3).
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be defined below; det and tr are the determinant and the trace of matrices,
respectively.
From an algebraic standpoint, the normalized random field x→ G (x) is de-
fined as the non-linear mapping of n (n+ 1) /2 second-order centered homo-
geneous Gaussian random fields x→ Ujj′ (x) (with 1 ≤ j ≤ j′ ≤ n), defined
on (Θ,F , P ), indexed by Rd and with values in R. The explicit expression
of this non-linear mapping can be found in [22] [23]. The stochastic germs
are such that for all x in Rd, E

{
Ujj′ (x)

}
= 0 and E

{
Ujj′ (x)2

}
= 1 and

are then defined by the n (n+ 1) /2 autocorrelation functions RUjj′ (τ) =
E
{
Ujj′ (x + τ) Ujj′ (x)

}
(with τ ∈ Rd and RUjj′ (0) = 1). A minimal

parametrization can be obtained by choosing RUjj′ (τ) =
∏d
k=1 r

k
jj′ (τk)

with rkjj′ (τk) = 4
(
lkjj′
)2
/π2τ2

k · sin
2
(
πτk/2lkjj′

)
and where the spatial cor-

relation lengths
{
lkjj′
}

are real parameters of the model. The definition
of the normalized random field also depends on a real parameter δ (with
0 < δ <

√
(n+ 1)/(n+ 5)), independent of x and n, such that:

δ =

√
1
n
E
{
‖G (x)− I‖2F

}
(2)

where ‖·‖F is the Frobenius norm. This parameter allows the statistical
fluctuations of x → G (x) to be controlled. It can also be shown that
E
{
‖G (x)‖2F

}
= n

(
δ2 + 1

)
. Finally, let δC (x) be the parameter defined

by:

δC (x) =
E
{
‖C (x)−C (x)‖2F

}
‖C (x)‖2F

(3)

It can be shown that δC (x) = δ/
√
n+ 1 ·

{
1+(tr (C (x)))2 /tr (C (x))2

}1/2
.

Further details about the definition of random field x→ G (x) can be found
in the references given above.

In the homogeneous case, the dispersion parameter (3) does not depend
on x anymore and the model is then completely defined by (i) the mean
matrix C (ii) the dispersion parameter (either δ or δC) (iii) the spatial
correlation lengths of the stochastic germs. Let τ = (τx, τy, τz)→ rC(τ) be
the function defined from R3 into R by:

rC(τ) =
tr E {(C (x + τ)−C) (C (x)−C)}

E {‖C (x)−C‖}2F
(4)
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The spatial correlation length of random field x → C (x) associated with
direction u (u = x, y or z) is then given by luC =

∫ +∞
0 |rC(τu)|dτu (with

τx = (τx, 0, 0), τy = (0, τy, 0) and τ z = (0, 0, τz)).

2.1.2. Fundamental property of the normalized random field
Let Ω be any bounded open domain of Rd and let Ω be its closure. It

can be shown that:

E

{(
supx∈Ω

∥∥∥G (x)−1
∥∥∥)2

}
< +∞ (5)

in which ‖·‖ denotes the operator norm. Eq. (5) allows one to define a
non-uniform ellipticity condition for the random bilinear form involved in
the weak formulation of the associated stochastic boundary value problem.

2.1.3. Numerical simulations of the stochastic germs [22]
Let Vjj′ be the vectorial representation of stochastic germ Ujj′ , i.e.

Vjj′ =
(
Ujj′ (x1) , . . . ,Ujj′ (xN )

)
. The numerical technique for simulating

homogeneous Gaussian vector-valued random fields has been largely ad-
dressed in the litterature (see the pioneering work from Shinozuka [20], as
well as [15] for instance) and is recalled in the sequel. For the sake of sim-
plicity, let us consider simulations in a given principal direction (i.e. d = 1)
and the case of the correlation function introduced in section (2.1.1). The
psim-order approximation of vector Vjj′ then reads [15]:

Vpsim

jj′ =
psim∑
i=1

√
2Si
√
−log (ψi)cos

(
Φi +

π

lkjj′
χixk

)
(6)

where lkjj′ is the spatial correlation length of the germ and xk is the vector
gathering the coordinates of the points, both associated to the considered di-
rection k (in case the germ is simulated in the x-direction, one has lkjj′ = lxjj′

and xk = (x1, . . . , xN ) for instance). For i ∈ {1, ..., psim}, one further de-
fines Si = q(χi) and χi = −1 + 2

(
i− 1

2

)
/psim, where χ → q(χ) is the

continuous function from R into R+, with compact support [0, 1], such that
q(χ) = 1−χ if χ ∈ [0, 1] and q(−χ) = q(χ). The N -dimensional vector Φi

is such that Φi = (φi, . . . , φi). The two sets of independent random variables
{ψi}p

sim

i=1 and {φi}p
sim

i=1 are such that ψi and φi are uniformly distributed re-
spectively on [0, 1] and [0, 2π]. It can then be shown that Vpsim

jj′ is a Gaussian
random vector whose covariance matrix converges to the covariance matrix
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of Vjj′ when psim goes to infinity.

Remark:
For moderate values of N , simulations of Vjj′ can be readily obtained by
writting the random vector as Vjj′ = [LV]T Ṽ, where [LV] is the upper tri-
angular matrix arising from the Cholesky factorization of the target covari-
ance matrix and Ṽ is a random vector whose components are independent
normalized Gaussian random variables. It should be mentionned that when
the random field has to be simulated on a fine grid, the covariance matrix
(which is a full matrix) becomes very large and in addition, it may become
ill-conditioned for the cholesky decomposition.

In some particular cases, the randomness exhibited by the mesoscopic
elasticity tensor random field may be mainly induced by a given microstruc-
tural parameter, such as volume fraction, fiber spatial distribution or orien-
tation. In this context, it is of interest to construct a probabilistic model of
this mesoscopic microstructural parameter. In the next section, we present
such a model, based on the one introduced in [6], the microstructural pa-
rameter being the fiber volume fraction.

2.2. Parametric probabilistic model of the mesoscopic volume fraction ran-
dom field

Let x→ f(x) be a random field defined on a probability space (Θ,F ,P),
indexed by a bounded set Ω in R2 with values in [0, 1]. It is assumed that f is
a second-order random field and is such that

∫
Ω

∫
Ω |Cf (x,x′)|2dxdx′ < +∞,

where (x,x′) → Cf (x,x′) is the covariance function of the random field,
defined from Ω× Ω into R. Let us consider the truncated Karhunen-Loeve
expansion of random field f (see [13]):

f(x) = f(x) +
M∑
k=1

√
λkηkψk(x) (7)

where x → f(x) denotes the mean function; {λk}Mk=1 and {ψk}Mk=1 are the
sets of eigenvalues and eigenfunctions of the linear integral operator with
covariance kernel, satisfying the integral equation:∫

Ω
Cf (x,x′)ψk(x′)dx′ = λkψk(x) (8)

The set {ηk}Mk=1 is a set of random variables such that E{ηi} = 0 and
E{ηiηj} = δij , where E is the mathematical expectation and δij is the Kro-
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necker symbol. The orthogonality of the basis {ψk}Mk=1 allows independent
realizations of the random variables to be computed from Eq. (7):

ηi(θj) =
1√
λi
< f(θj)− f, ψi >L2(Ω,R) (9)

where < ·, · >L2(Ω,R) is the inner product on Hilbert space L2(Ω,R). Next,
gathering the random variables η1, ..., ηM in a single random vector η, let us
consider the q−order polynomial Gaussian chaos expansion of η [3] [24] [26]:

η =
q∑

γ∈Nm,|γ|=1

zγH̃γ(ξ) (10)

where H̃γ(ξ) = Hγ(ξ)/
√
γ! (with |γ| =

∑m
k=1 γk and γ! =

∏m
k=1 γk!), {Hγ}γ

are multivariate Hermite polynomials, orthogonal with respect to the canon-
ical Gaussian probability measure; {zγ}γ is a set of deterministic vectors in
RM . The germ ξ is a m-dimensional zero-mean Gaussian vector such that
E
{
ξiξj

}
= δij . The representation of random field f then reads:

f(x) = f(x) +
M∑
k=1

√
λk

{ q∑
γ∈Nm,|γ|=1

zγk H̃γ(ξ)
}
ψk(x) (11)

where zγk is the k-th component of vector zγ . From Eq. (11), it must be
emphasized that the identification of the random field consists in the identi-
fication of the deterministic coefficients involved in the chaos representation.
It should be noted that such an identification can be a major practical dif-
ficulty. For this purpose, let Z be the M × Q matrix whose columns are
the vectors zγ (where Q is the number of terms involved in the chaos ex-
pansion). Let

{
Ξ1,Ξ2, ...,Ξp

exp
}

be pexp experimental realizations of the

random vector η (with Ξij = ηj(θi)). It can be shown that the orthogonality
of the random variables involved in the Karhunen-Loeve expansion yields
the following algebraic constraint:

ZZT = IM (12)

where IM is the M ×M identity matrix. The identification of Z can be
achieved by using the formulation proposed in [2] which is based on the use
of the Maximum Likelihood Method [17] and which then consists in solving
the following optimization problem :

max L(Ξ1, ...,Ξp
exp

; Z) (13)
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with

L(Ξ1, ...,Ξp
exp

; Z) =
pexp∑
i=1

M∑
j=1

log10

{
pηj (Ξij ,Z)

}
(14)

under the constraint (12). The problem (13) can be solved by a random
search strategy, i.e. by randomly sampling the manifold defined by Eq. (12)
and by selecting the realization which maximizes the pseudo log-likelihood
function (14). The values of the marginal distributions can be computed by
using, for instance, a classical kernel estimate (see [21] for a survey):

p̂ηj (Ξij ,Z) =
1
Nh

N∑
k=1

K

(
Ξij − Ξsimk

j

h

)
(15)

where N and h are the number of simulation of the Gaussian germ ξ and
the bandwith respectively, Ξsimk

j is the j-th component of the k-th simulated
realization of random vector η (computed by using Eq. (10) for a given Z)
and x → K(x) is the kernel function, defined on R and such that ∀x ∈
R, K(x) > 0 and

∫
R K(x)dx = 1. In this study, a Gaussian kernel function

is used, K(x) = 1/
√

2π exp
(
−1/2 · x2

)
.

3. Computational and experimental identification

In this study, we consider the case of thin composite plates (with dimen-
sions 158× 98× 3 mm), made up of a thermoplastic matrix (polypropylene)
reinforced by E-glass long fibers (with a target volume fraction after pro-
cessing: f tgt = 10 %). Details about the experimental setup can be found
in Guilleminot et al. [6].

3.1. Definition of a mechanical inverse problem and identification of the
experimental trajectories

We now formulate the methodology that allows the experimental tra-
jectories of random fields x → f(x) and x → C (x) to be identified. Let
us recall first that the velocity of longitudinal waves propagating inside a
isotropic elastic medium can be written as:

Vl =

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(16)

where ρ, E and ν are the density, the Young’s modulus and Poisson ratio
of the material, respectively. Let (E, ν, ρ)→ Vl = A(E, ν, ρ) be the function
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defined by Eq. (16). Furthermore, since some microstructural features of
the medium are known a priori, a multi-scale analysis allows one to express
the mechanical properties (the density being defined by a rule of mixture)
as a function of the volume fraction in reinforcement inside the volume that
is considered. Let f → (E, ν) = M(f) be the function defining such a map-
ping. Finally, let f → Vl = Λ(f) be the composed function Λ = A◦M, where
both equivalence between dynamic and static moduli and local isotropy are
assumed. Note that for the sake of brevity, the mapping M then implicitely
integrates (by abuse of notation) the definition of the density. The function
Λ allows the longitudinal velocity to be predicted from the volume fraction
in reinforcement, as summarized on Fig. (1). The experimental realizations

Volume fraction f

- Two-phase material
- Random spatial distribution
- Random orientation

Micromechanics

Properties : (E, ν); Rule of mixture: ρ

Wave propagation theoryIsotropic elasticity

Longitudinal velocity Vl

Figure 1: Scheme of the direct mechanical problem.

of random fields x → f(x) and x → C (x) can then be determined by con-
structing the inverse mapping Vl → f = Λ−1(Vl), defined from SΛ ⊂ R+

into [0, 1]. This construction can be numerically achieved provided that
function M is known. From a micromechanical standpoint, the mesoscopic
approximation implies this function to be random (see the references [7],
[14] and [16]), so that the mapping is not one-to-one and Λ−1 can not be
defined. However, because the statistical fluctuations are mainly generated
by fiber clustering (roughly speaking, the volume fraction in the mesovol-

10



umes is either small or large), we assume that the randomness is only due
to volume fraction fluctuations, rather than to fluctuations of any other mi-
crostructural parameter (orientation of the fibers, etc.). In other words, the
local material symmetry is preserved over all locations, and we may now
consider a given realization of the random function, Mk = M(θk). In this
very particular context, it still remains to choose the mechanical solver to
be used for estimating Mk. Using a computational procedure would require
in the present case the 3D analysis of volumes containing tens of thousands
of fibers, leading to a prohibitive computational effort when no simplifying
assumptions are made. Thus, it is proposed to use a mean-field homogeniza-
tion technique (more precisely, the Mori-Tanaka scheme) in order to identify
the function M. While this choice is arbitrary (note however that the mi-
cromechanical scheme was choosen according to usual micromechanical con-
siderations, such as the “matrix-inclusion” morphology of the composite),
it benefits from its simple formulation. A discussion about this procedure
is provided in [6] (the plot of the mapping Vl → f = Λ−1(Vl) is depicted in
Appendix A). Finally, let Vexp be the set of experimental results obtained
by the ultrasonic testing:

Vexp =
{
V exp
l (xi, θj), i ∈ [1, ..., N exp], j ∈ [1, ..., pexp]

}
(17)

Let Sexp be the set corresponding to the experimental realizations of the
mesoscopic volume fraction random field, defined by:

Sexp =
{
fexp(xi, θj), i ∈ [1, ..., N exp], j ∈ [1, ..., pexp]

}
(18)

where for all (i, j) in [1, ..., N exp]× [1, ..., pexp] (with pexp = 110):

fexp(xi, θj) = Λ−1(V exp
l (xi, θj)) (19)

In the same way, let Cexp be the set corresponding the experimental trajec-
tories of the mesoscopic elasticity tensor random field, defined with respect
to Sexp by the following mapping:

Cexp =
{
Cexp(xi, θj), i ∈ [1, ..., N exp], j ∈ [1, ..., pexp]

}
(20)

with
Cexp(xi, θj) = M(fexp(xi, θj)) (21)

The set Sexp (resp. Cexp) will be used in section (3.3) (resp. section (3.2))
in order to identity the probabilistic model of the volume fraction (resp.
elasticity tensor) random field. The velocity random field was sampled on
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a grid composed of respectively 12 and 7 points in the directions x and y,
so that N exp = 84. It is worth noticing that in the case of the volume
fraction, the proposed methodology allows the sampling of 84× 110 = 9240
mesovolumes. Clearly, such a result would not have been possible by using
a classical technique (e.g. a resin burn-off).
The first experimental realization of random fields x → fexp(x), x →
Cexp

11 (x) and x→ Cexp
12 (x) is depicted on Figs (2), (3) and (4) respectively.

2
4

6
8

10
12

2

4

6

0

0.1

0.2

xy

fex
p (X

)

Figure 2: Graph of the first experimental realization x→ fexp(x, θ1).
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Figure 3: Graph of the first experimental realization x→ Cexp
11 (x, θ1).
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Figure 4: Graph of the first experimental realization x→ Cexp
12 (x, θ1).

These figures clearly illustrate the spatial fluctuations of both the meso-
scopic volume fraction and elastic properties.

3.2. Identification of the probabilistic model of the elasticity tensor random
field

In this section, we are interested in the identification of the parameters
involved in the probabilistic model of random field x → C(x) (see section
(2.1)), namely the mean matrix C, the fluctuation parameter δC (or equiv-
alently, δ) as well as the spatial correlation lengths of the stochastic germs{
lkjj′
}

.

3.2.1. Identification of the mean matrix
The mean matrix can be computed from the set Cexp (see section (3.1))

by using the classical statistical estimate, that is to say:

Ĉ ≈ 1
N exppexp

Nexp∑
i=1

pexp∑
j=1

Cexp (xi, θj) (22)

where pexp = 110. This yields:

Ĉ =



5.33 3.11 3.11 0 0 0
3.11 5.33 3.11 0 0 0
3.11 3.11 5.33 0 0 0

0 0 0 1.11 0 0
0 0 0 0 1.11 0
0 0 0 0 0 1.11

 (in GPa) (23)
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3.2.2. Identification of the spatial correlation lengths of the stochastic germs
The spatial correlation lengths lxC and lyC of the mesoscopic random

field can be estimated by approximating the correlation function by an
exponential-type correlation function, that is to say by solving the following
optimization problem:

Arg minlk∈R+

N∑
i=1

N∑
j=1

∣∣∣rsim
C (0, . . . , xik − x

j
k, . . . , 0)− exp

(
−
(
xik − x

j
k

)
/lkC

)∣∣∣
for the correlation length lkC (k = x or y). Here, the summation is performed
for xik−x

j
k ≥ 0 (where xik is the k−th coordinate of point xi, 1 ≤ k ≤ 3) and

τ → rsim
C (τ) is the correlation function defined by Eq. (4). This optimization

problem is solved by means of a stochastic pattern search algorithm (see for
instance [11] [12]). For each correlation length, the robustness of the solution
with respect to the initial guess of the algorithm is checked (in both cases,
four initializations have been tested: 10, 20, 30, 80 mm). The convergence
of the optimization algorithm is depicted on Fig. (5), in the case of lxC (here,
it should be mentionned that the algorithm converges quickly because the
initial guess is very close to the solution). Finally, the mesoscopic spatial
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Figure 5: Convergence of the pattern search algorithm, case of lxC with an initial guess
l0 = 10 mm: cost function (left) and adaptive mesh size (right).

correlation lengths are found to be:

lxC = 11.88 mm (24)

lyC = 8.26 mm (25)

Next, let us assume that the spatial correlation lengths of the stochastic
germs

{
lxjj′
}

16j6j′66
and

{
lyjj′
}

16j6j′66
are such that ∀(j, j′), lxjj′ = lxU and
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lyjj′ = lyU. In order to identify the two correlation lengths lxU and lyU, it
is proposed to numerically construct (for a given direction) the mapping
lU → lC and then to inverse this relation by considering the estimates (24)
and (25). The identification of the mesoscopic correlation lengths implies
the random field trajectories to be simulated over a sufficiently fine grid.
For this purpose, the technique introduced in section (2.1.3) was used and
required the parameter psim to be properly choosen2. The determination
of this order was performed by studying the convergence of the correlation
estimate for a target correlation function. The convergence of the correlation
estimate with respect to the number of Monte Carlo simulations is plotted
on Fig. (6) (for psim = 512), while the convergence with respect to psim is
reported on Fig. (7) (for 20000 simulations).

0 50 100 150 200
−0.2

0

0.2

0.4

0.6

0.8

1

τ

r(
τ)

 

 

Target
N=1 000
N=5 000
N=10 000
N=20 000

Figure 6: Convergence of the correlation function estimate with respect to the number of
Monte Carlo simulations for psim = 512.

It is seen that the order of expansion has to be choosen such that psim > 256.
The value psim = 512 was then used in the simulations. An example of
the estimated mesoscopic correlation function is plotted on Fig. (8). The
graph of mapping lxU → lxC, estimated from 20000 Monte Carlo simulations,
is plotted on Fig. (9). For a given direction, the relation between the
correlation lengths of the stochastic germs and the mesoscopic random field

2It can be shown that in the present case, psim is a power of 2.
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Figure 7: Convergence of the correlation function estimate with respect to the order psim.
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Figure 8: Graph of function τx → rC(τx) estimated for lxU = 9.76 mm.

can then be approximated as linear:

lkC ≈ 1.1 lkU (26)

where k stands either for x or y. Finally, Eq. (26) together with Eqs. (24)
and (25) allow the spatial correlation lengths of the stochastic germs to be
identified:

lxU = 10.8 mm (27)
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Figure 9: Graph of the mapping lxU → lxC.

lyU = 7.5 mm (28)

3.2.3. Identification of dispersion parameter
Since experimental trajectories of the random fields are known, the dis-

persion parameter could be identified from the following estimate:

δ̂C =
1∥∥∥Ĉ∥∥∥2

F

 1
N exppexp

Nexp∑
i=1

pexp∑
j=1

∥∥∥Cexp (xi, θj)− Ĉ
∥∥∥2

F


1/2

(29)

This yields:
δ̂C = 6.7 · 10−3 and δ̂ = 9.4 · 10−3 (30)

It is seen that the direct use of a statistical estimate results in very small
values of the dispersion parameters δC and δ. This is because the parame-
ter not only controls the level of the statistical fluctuations, but also, in a
sense, the degree of anisotropy of the microstructure. Then, identifying the
parameter by considering locally isotropic realizations provides an underes-
timation of the dispersion parameter. In order to tackle this difficulty, we
propose the following methodology. Let C→ ∆C(C) be the function defined
from M+

n (R) into R+ by:

∆C(C) =
1
|Ω|

∫
Ω

E
{
‖C (x)−C (x)‖2F

}
‖C (x)‖2F


1/2

dx (31)
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This function allows to characterize the level of statistical fluctuations of
random field x → C(x) over the domain Ω. It should be noted that when
applied to the elasticity tensor random field defined in section (2.1), in the
homogeneous case, Eq. (31) yields ∆C(C) = δC. The idea is to choose the
dispersion parameter such that the level of fluctuations (estimated from Eq.
(31)) of the tensor C∗ whose components are extracted from the anisotropic
tensor C and are such that C∗(i, j) = C(i, j) iff 1 ≤ i, j ≤ 3 or i = j ∈
{4, 5, 6} (C∗(i, j) = 0 otherwise), is the same as the level of fluctuations
of the experimental realizations. When the mean matrix and the spatial
correlation lengths of the stochastic germs are fixed (in the sequel, they are
defined by the experimental values (23), (27) and (28)), the mapping δ →
∆C(C∗) can be numerically computed. The plot of this function is shown on
Fig. (10), where the relation considering the initial anisotropic random field
is also depicted. It is seen that while the two mappings obviously digress

0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

δ

∆
 C

Figure 10: Graphs of the mapping δ → ∆C: (i) extracted random field x → C∗ (circle)
(ii) anisotropic random field x→ C (triangle-up).

as δ increases, the difference between the two estimates remains quite small
because of the isotropy of the mean matrix. The function δ → ∆C(C∗) is
then shown to be linear and such that: ∆C = 0.62782 ·δ. Next, applying Eq.
(31) to the experimental realizations yields: ∆C(Cexp) = 0.0595. Finally, it
can be deduced that:

δ̂∗C = 0.0674 and δ̂∗ = 0.0948 (32)
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The probabilistic model associated to the considered microstructure is then
completely defined by Eqs. (23), (27), (28) and (32).

3.3. Probabilistic properties of the identified volume fraction random field
and computational identification

3.3.1. Properties of the experimental trajectories
As a first result, kernel estimates of four experimental marginal density

functions are plotted on Fig. (11). All the experimental marginal densities
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Figure 11: Kernel estimates of the experimental marginal density functions in x1, x2, x3

and x4.

appear to be bimodal. A possible origin of this bimodality (and in partic-
ular, of the first mode) is that the thickness of the plates was assumed to
be homogeneous and constant in the experimental analysis. However, small
fluctuations were observed in practice and the thickness value retained in
the computation can be considered as an upper bound (corresponding to
the thickness of the injection mould), leading in some locations to the un-
derestimation of the longitudinal velocity and thus, of the volume fraction.

Since no boundary effect on the experimental trajectories was observed, we
assume that random field x → f(x) can be considered as the restriction
to Ω of a homogeneous random field. As a result, the mean function of
f does not depend on x anymore and correlation between two points only
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depends on the distance between them. The consequence of this approxi-
mation on the mean function can be illustrated by considering the function
x → εSmod(x) = 1 − f(x)/f̂ (where f̂ denotes the overall mean value com-
puted over all locations) whose graph is reported on Fig. (12). It is seen
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Figure 12: Graph of x→ εSmod(x).

that the mean function can be reasonably considered as constant over the
composite plate, with an overall mean value f̂ = 0.0936 very close to the
target value f tgt (= 10 %). Moreover, based on this assumption, the mean
ergodicity assumption can be readily tested. We recall that this assumption
consists in substituting the spatial mean estimate, computed for a given re-
alization, for the statistical mean estimate. The convergence of the spatial
mean estimate for the first ten experimental realizations is depicted on Fig.
(13). It is seen that spatial estimates basically reach convergence for a rather
small number of sampling points (around 60). The convergence for the 110
experimental realizations, as well as the probability density function of the
converged estimates, are depicted on Figs. (25) and (26) in Appendix B.
Moreover, the coefficient of variation of the spatial mean estimate (computed
from the 110 converged values) is about 5.7 %. Consequently, the mean er-
godicity assumption may seem acceptable in the present case, depending
on whether or not the value of the coefficient of variation is considered as
negligible.
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Figure 13: Convergence of the spatial mean estimate for the first ten experimental real-
izations of the random field.

3.3.2. Statistical reduction and Projection
Making use of a collocation method, Eq. (8) can be converted into a

classical eigenvalue problem which can be numerically solved. The graph of
the first eigenfunction is plotted on Fig. (14). An optimal order of expansion
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Figure 14: Graph of the first eigenfunction x→ ψ1(x).

in the KL-representation (see Eq. (7)) can be determined by characterizing
the convergence of the function p → εConv-KL(p) = 1 −

∑p
i=1 λi/

∑Nexp

i=1 λi,
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where N exp is the number of experimental sampling points (N exp = 84).
As shown in [6], one has εConv-KL(41) ≈ 0.1 in the present case and then,
M = 41 (see Appendix C). It should be noted that because of the exper-
imental analysis, this value is much higher than typical values used in the
litterature (a 5th-order approximation was used in [2] in the case of a fully
simulated database, for instance).
The parallel computations dedicated to the random search procedure (in-
volved in the identification of the chaos coefficients, see section (2.2)) have
been performed on a 8-node cluster (108 matrices have been tested). Re-
sults are illustrated on Figs. (15) and (16), where the convergence of the
marginal densities for random variables η1 and η6 and with respect to the
order of expansion has been reported (for m = 5). As expected, the sim-
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Figure 15: Plot of the experimental and simulated marginal density function of η1 for
different order of Chaos expansion.

ulated marginal densities converge towards the experimental ones as the
order of the representation q increases. Moreover, it is seen that a third
order approximation yields accurate results, so that the final representation
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Figure 16: Plot of the experimental and simulated marginal density function of η6 for
different order of Chaos expansion.

of random field x→ f(x) can be written as:

f(x) = f +
41∑
k=1

√
λk

{ 3∑
γ∈Nm,|γ|=1

zγk H̃γ(ξ)
}
ψk(x) (33)

In practice, numerical Monte Carlo simulations of the Gaussian germ ξ, to-
gether with Eq. (33), allow trajectories of the random field to be simulated.
A comparison between experimental and simulated (with 50000 simulated
realizations of ξ) marginal densities is provided on Figs. (17) and (18), for
points x1 and x2 respectively. Since the stationary approximation may in-
troduce a shift in the mean value, note that the graphs have been centered
in order to make the comparison of the statistical fluctuations easier.
It is seen that while there is a good match between the experimental data
and the simulated realizations, the bimodality is not predicted by the prob-
abilistic model (and in particular, by the chaos expansion). This result may
be explained by noticing that the experimental marginal distributions of
random variables ηi are unimodal (see Figs. (15) and (16)).
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Figure 17: Comparison between the experimental and the model-based simulated marginal
density function at x1.

−0.2 −0.1 0 0.1 0.2
0

10

20

30

40

50

60

f(x
2
)−E[f(x

2
)]

P
.D

.F
.

 

 

Exp.
Sim.

Figure 18: Comparison between the experimental and the model-based simulated marginal
density function at x2.

4. Probabilistic parametric analysis of the RVE size

We now illustrate the use of the stochastic mesoscopic modeling in the
definition of the RVE size. For this purpose, we will consider the proba-
bilistic model introduced in section (2.1) and simulated with the parameters
identified in the previous section.
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Let ei(θ) be the random norm defined by:

ei(θ) =
∥∥∥C̃i(θ)

∥∥∥ = sup‖x‖≤1

∥∥∥C̃i(θ)x
∥∥∥ , x ∈ R6 (34)

where C̃i(θ) is the apparent (random) matrix computed for realization θ and
considering a volume Vi containing i2 mesovolumes (see Fig. (19), where the
definition of the growing volumes is depicted). Following [23], a probabilistic
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Figure 19: Schematic of the size increase for the parametric analysis of the RVE size.

convergence analysis can be performed by considering the convergence of
the mapping i → CV [ei], where CV [z] denotes the coefficient of variation
of random variable z. Since we are more interested in characterizing the
global probabilistic convergence rather than on an accurate estimation of
the apparent elasticity tensor, the realizations of the overall tensors are
computed by using a simple Voigt estimate, that is to say:

C̃i(θ) =
1
i2

i2∑
j=1

C(xj , θ) (35)

The convergence of the statistical estimate of the coefficient of variation (of
the random norm) with respect to the number of Monte Carlo simulations
is depicted on Fig. (20). It is seen that the convergence is reached for
500 simulations. Next, the convergence of the coefficient of variation with
respect to the size of the volume under investigation is reported on Fig.
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Figure 20: Convergence of the coefficient of variation of the random norm with respect to
the number of Monte Carlo simulations, for all configurations of mesovolumes.

(21). It is seen that the coefficient of variation is less than 1 % (resp. 0.5 %)
when the volume contains 62 = 36 (resp. 132 = 169) mesovolumes. In order
to improve this very first parametric analysis, let us consider the normalized
random variable:

Z =
ei

E[ei]
(36)

Let β → P(β) be the function defined by:

P(β) = P {1− β < Z ≤ 1 + β} = E {1Z≤1+β} − E {1Z≤1−β} (37)

where 1Z≤z∗ = 1 if Z ≤ z∗, = 0 otherwise. The graphs of function β → P(β)
for different sizes of the considered volume are shown on Fig. (22). For
instance, in the case of a volume containing 25 mesovolumes (see the dashed
line on Fig. (22)), it is seen that the level of statistical fluctuations is
respectively less than 2 %, 2.4 % and 3.1 % with probability 0.9, 0.95 and
0.99. From these results, it is then possible to extract the convergence
of the level of statistical fluctuations for a given probability level: such a
convergence is illustrated on Fig. (23), for probability 0.9, 0.95 and 0.99.
From Fig. (23), it can be deduced that if one defines the RVE size with
respect to a level of fluctuations less than 1 %, then the characteristic size
(in one direction) of the RVE is about 10 (resp. 12 and 16) times the size
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Figure 21: Convergence of the coefficient of variation of the random norm with respect to
the size of the volume under investigation.
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(the dashed line corresponds to the volume V5).
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Figure 23: Convergence of the level of statistical fluctuations with respect to the size of the
considered volume, for probability 0.9 (square marker), 0.95 (circle) and 0.99 (triangle-up).

of a mesovolume with probability 0.9 (resp. 0.95 and 0.99). These ratios
can also be expressed in terms of the spatial correlation lengths and remain
approximately the same, since the correlation lenghts are roughly equal to
the size of a mesovolume. These orders of magnitude for the definition of
the RVE size are in agreement with the ones provided in [23] and [27].

5. Conclusion

This paper is devoted to the computational and experimental identifica-
tion of two probabilistic models that can be used for modelling the elasticity
tensor random field at the mesoscale of fiber reinforced composites. These
two models were first recalled. Then, a innovative methodology allowing the
experimental trajectories of the volume fraction and elasticity tensor ran-
dom fields to be identified was introduced and is based on the combination
of an ultrasonic testing with the formulation and numerical resolution of an
inverse (micro-)mechanical problem.
The parameters of the probabilistic model for the elasticity tensor random
field were identified by using either a statistical estimate (for the mean
matrix) or a stochastic optimization algorithm (for the mesoscopic spatial
correlation lenghts). Based on these estimations, the correlation lengths of
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the stochastic germs were identified in turn. A methodology to estimate
physically consistent dispersion parameters was also introduced. All these
identified parameters allow trajectories of the stiffness tensor random field
to be easily simulated and may be used as a reference for uncertainty prop-
agation (when using a Stochastic Finite Elements Method for instance).
Considering the mesoscopic volume fraction, the random field was consid-
ered as the restriction of a homogeneous random field, allowing the mean
ergodicity assumption to be tested. In particular, the scatter resulting from
all the spatial mean estimates was characterized and can be used to dis-
cuss the relevance of such an assumption. Next, the parameters involved in
the model (that are, the coefficients of the Chaos expansion) were identi-
fied making use of the Maximum Likelihood Principle. Simulated marginal
densities (with a third order Chaos expansion) are then shown to be in
agreement with the experimental ones, demonstrating the relevance of both
the probabilistic model and strategy of identification.
Finally, the use of such models in order to investigate the size of the RVE
is illustrated through a probabilistic parametric analysis. It is shown that
the characteristic length of the macroscale may be defined with respect to
the mesoscopic correlation lengths, depending on the choice of an admissible
level of statistical fluctuations. The order of magnitude for the definition of
the RVE size is in agreement with values provided in the literature.
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A. Mapping between the velocity and the volume fraction
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Figure 24: Plot of the mapping Vl → f = Λ−1(Vl) computed by using the Mori-Tanaka
and dilute estimates (see [6]).
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B. Convergence analysis of the spatial mean estimate
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Figure 25: Convergence of the spatial mean estimate for the 110 experimental realizations
of the elasticity tensor random field.
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mean estimates.
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C. Error arising from the KL expansion truncature

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p

εC
o
n
v
−
K
L
(
p
)

εConv−KL(41) ≈ 0.1

Figure 27: Graph of function p→ εConv-KL(p).
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