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ABSTRACT
A drill-string is a slender structure that turns and drills into

the rock in search of oil. This paper aims to investigate uncer-
tainties on the weight-on-hook, which is the supporting force ex-
erted by the hook at the top. In a drilling operation there are
three parameters that can be continuously controlled: (1) the
weight-on-hook, (2) the drilling fluid inlet velocity and (3) the
rotational speed of the rotary table. The idea is to understand
how the performance of the system (which is measured by the
rate-of-penetration) if affected when the weight-on-hook is con-
sidered uncertain. A numerical model is developed using the
Timoshenko beam theory and discretized by means of the Finite
Element Method. The nonlinear dynamics presented includes
bit-rock interaction, fluid-structure interaction and impacts. The
probability theory is used to model the uncertainties. To con-
struct the probability density function of the random variable,
the Maximum Entropy Principle is employed, so that the prob-
ability distribution is derived from the mechanical properties of
the weight-on-hook.

∗Address all correspondence to this author.

NOMENCLATURE
Π potential energy.
T kinetic energy.
U strain energy.
W work done by nonconservative forces.
δ variation symbol or dispersion parameter, depending on the

context
σ standard deviation.
u displacement in x-direction.
v displacement in y-direction.
w displacement in z-direction.
θa rotation about a-axis.
N shape function.
v velocity vector.
ω angular velocity vector.
[I] cross section inertia matrix.
I cross section moment of inertia.
Ip cross section polar moment of inertia.
ρ density.
A area of the transversal section.
D diameter.
V volume.
ε strain tensor (in voigt notation).
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[E] complete strain tensor.
S stress tensor (in voigt notation).
E elasticity modulus.
G shear modulus.
X position in the non-deformed configuration.
p displacement in the non-deformed configuration.
F scalar force.
p pressure.
[M] mass matrix.
[C] damping matrix.
[K] stiffness matrix.
u displacement vector.
f force vector.
g acceleration of the gravity.
S Shannon entropy measure.
w0 weight-on-hook.
W0 random weight-on-hook.
1B(x) assumes value 1 if x belong to B and 0 otherwise.

Subscripts
br bit-rock.
e element.
f fluid.
g geometric (for [K]) and gravity (for f).
ip impact.
ke kinetic energy.
se strain energy.
NL nonlinear.
S static response.
ch channel (or borehole.
i inside.
o outside.

INTRODUCTION
In a drilling operation there are many sources of uncertain-

ties as, for instance: the material properties of the column and
the drilling fluid; the dimensions of the system, especially the
borehole; the fluid-structure interaction; the bit-rock interaction,
among others. This paper is concerned with the stochastic model
of the weight-on-hook because it is one of the three parameters
that are continuously controlled in a drilling operation (the other
two are the drilling fluid inlet velocity and the rotational speed of
the rotary table).

Figure 1 shows the general scheme of the system analyzed.
The forces taking into account are: the motor torque (as a con-
stant rotational speed at the top Ωx); a constant hanging force w0;
the torque tbit and force fbit at the bit; the weight of the column;
the fluid forces; the impact and rubbing between the column and
the borehole; the forces due to the stabilizer; plus the elastic and
kinetic forces due to the deformation and to the motion of the
structure.

Figure 1. General scheme.

The sources of nonlinearity of the problem are the impact
forces between the column and the borehole, and the bit-rock in-
teraction forces (which are usually modeled with a dry friction
model [1–4]). The nonlinear forces due to the finite strain are
simplified because the system is linearized about a prestressed
configuration. It is not obvious how uncertainties propagate in
the nonlinear dynamics of a drill-string. To investigate that, we
start by analyzing a random weight-on-hook which is a param-
eter that can be continuously controlled during a drilling opera-
tion. If we understand how uncertainties on the weight-on-hook
affect the rate-of-penetration of the drill-string we may try to op-
timize the system performance.

There are few articles treating the stochastic problem of the
drill-string dynamics, in special we might cite [5, 6]. In [5] the
weight-on-bit is modeled as random in a simple two degrees of
freedom drill-string model and in [6] lateral forces at the bit are
modeled as random. In this paper, the probability density func-
tion of the weight-on-hook is constructed by means of the Maxi-
mum Entropy Principle [7–9].

The paper is organized as follows. First, the mean model is
presented and the probabilistic model of the weight-on-hook is
developed. Then the numerical results are shown and the con-
cluding remarks are made.
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MODEL
In this work the Timoshenko beam theory (which considers

shear) is used because (1) it includes the Euler-Bernoulli theory
and (2) it allows us to inquire about the importance of shear in
the dynamics of this nonlinear system. A 3D beam model is
used with six degrees of freedom in each interpolation point: the
three translational displacements of the neutral line, axial u, lat-
eral in y-axis v, and lateral in z-axis w, and the three rotations
of the cross sections, about x-axis θx, about y-axis θy and about
z-axis θz. It is assumed small angles (θy and θz) which is justi-
fied because the vibration of the column is constrained inside the
borehole.

The equations of motion are derived using the extended
Hamilton Principle, i.e., the first variation of the potential Π must
vanish:

δΠ =
∫ t2

t1
(δU−δT −δW )dt = 0 , (1)

where U is the potential strain energy, T is the kinetic energy and
W is the work done by the nonconservative forces and any force
not accounted in the potential energy.

The system is discretized using the Finite Element
Method: ue(x, t) = Nu(x)ue(t), ve(x, t) = Nv(x)ue(t), we(x, t) =
Nw(x)ue(t), θxe(x, t) = Nθx(x) ue(t), θye(x, t) = Nθy(x)ue(t),
θze(x, t) = Nθz(x)ue(t). Where N are the shape func-
tions (see [10]) and ue =

(
u1 v1 θz1 w1 θy1 θx1 u2 v2

θz2 w2 θy2 θx2
)T .

Kinetic energy
The kinetic energy is written as

T =
1
2

∫ L

0
(ρAvT v+ρω

T [I]ω)dx , (2)

where ρ is the mass density, A is the cross sectional area, L is the
length of the column, v is the velocity vector, [I] is the cross sec-
tional inertia matrix and ω is the section angular velocity vector:

v =

 u̇
v̇
ẇ

 , [It ] =

 Ip 0 0
0 I 0
0 0 I

 , ω =

 θ̇x +θyθ̇z
cos(θx)θ̇y− sin(θx)θ̇z
sin(θx)θ̇y + cos(θx)θ̇z

 .

The time derivative (d/dt) is denoted by a superposed dot.
In the above expression I is the cross sectional moment of inertia
and Ip is the polar moment of inertia. The angular velocity vector

ω is written in the inertial frame and it is derived by first rotating
the inertial frame about the x-axis, θx, then rotating the result-
ing frame about the y-axis, θy and, finally, rotating the resulting
frame about the z-axis, θz. It was done under the hypothesis of
small angles θy and θz.

Note that θ̇x is not constant, therefore the discretization of
the kinetic energy yields a constant mass matrix matrix [M] and
a nonlinear force fke that couples axial, torsional and lateral vi-
brations.

Strain energy
The strain energy is written as:

U =
1
2

∫
V

ε
T SdV , (3)

where V is the volume, ε is the Green-Lagrange strain tensor and
S is the second Piola-Kirchhoff stress tensor. The stress-strain
relationship is given by S = [D]ε and may be written using the
components

σxx
τxy
τxz

=

E 0 0
0 ksG 0
0 0 ksG

 εxx
γxy
γxz

 . (4)

where E is the elasticity modulus, ks is the shearing factor and
G is the shear modulus. The complete strain tensor is obtained
through

[E] =
1
2

[(
dp
dX

)
+
(

dp
dX

)T

+
(

dp
dX

)T ( dp
dX

)]
, (5)

where εxx = [E]11, γxy = [E]21, γxz = [E]31. The position in the
non-deformed configuration is X = (x y z)T and the displace-
ments field p = (ux uy uz)T , in the non-deformed configuration,
is such that

ux = u− yθz + zθy ,

uy = v+ y(cos(θx)−1)− zsin(θx) ,

uz = w+ z(cos(θx)−1)+ ysin(θx) ,
(6)

The discretization of the linear terms yields the stiffness ma-
trix [K] and the discretization of the nonlinear terms yields the
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nonlinear force vector fse that couples axial, torsional and lateral
vibrations.

In the numerical analysis, the dynamics is linearized about
a prestress configuration, so the nonlinear forces are zero fse = 0
and the geometric stiffness matrix [Kg(uS)] is used, where uS is
the prestressed configuration.

Impact, rubbing and stabilizers
The drill-string may impact the borehole. If the radial dis-

placement r =
√

v2 +w2 is large enough to hit the borehole
there is a reaction force, i.e., there is impact and rubbing if
(r−Rch−Ro) > 0, where Rch is the radius of the borehole and
Ro is the outer radius of the column. The impact is modeled as
an elastic force

Fyip =−kip(r−Rch−Ro)
v
r
,

Fzip =−kip(r−Rch−Ro)
w
r

,
(7)

where kip is the stiffness parameter of the impact. Rubbing be-
tween the column and the wall is modeled as a friction torque

Txip =−µipFn(Ro)sign(θ̇x) , (8)

where Fn =
√

Fy
2
ip +Fz

2
ip and µip is the friction coefficient.

Stabilizers are used in the BHA region to make the system
stiffer, thus diminishing the amplitude of the lateral vibrations.
Stabilizers are modeled as an elastic element and are located be-
tween the drill-pipes and the drill-collars:

Fy|x=stab = kstab v|x=stab and Fz|x=stab = kstab w|x=stab , (9)

where kstab is the stiffness parameter of the stabilizer and x = stab
is the location of the stabilizer.

Fluid-structure interaction
For short, the element equations are presented. These equa-

tions are an extension and an adaptation of the model developed

in [11].

[M f ](e) =
∫ 1

0
(M f +χρ f Ao)(NT

wNw +NT
v Nv)ledξ ,

[K f ](e) =
∫ 1

0

(
−M fU2

i −Ai pi +Ao po−χρ f AoU2
o
)
(N′TwN′w+

+N′Tv N′v) 1
le

dξ+
∫ 1

0

(
−Ai

∂pi

∂x
+Ao

∂po

∂x

)
(NT

θy
Nθy +NT

θz
Nθz)ledξ ,

[C f ](e) =
∫ 1

0
(−2M fUi +2χρ f AoUo)(NT

θy
Nθy +NT

θz
Nθz)ledξ+

+
∫ 1

0

(
1
2

C f ρ f DoUo + k
)

(NT
wNw +NT

v Nv)ledξ ,

f(e)f =
∫ 1

0

(
M f g−Ai

∂pi

∂x
− 1

2
C f ρ f DoU2

o

)
NT

u ledξ .

(10)
in which,

M f is the fluid mass per unit length,
ρ f is the density of the fluid,

χ =
(Dch/Do)2 +1
(Dch/Do)2−1

(> 1),

Dch is the borehole (channel) diameter,
Di,Do are the inside and outside diameters of the column,
Ui,Uo are the inlet and outlet flow velocities,
pi, po are the pressures inside and outside the drill-string,
Ai,Ao are the inside and outside cross sectional area of the
column,
C f ,k are the fluid viscous damping coefficients.

It is assumed that the inner and the outer pressures (pi and
po) vary linearly with x

pi = (ρ f g)x+ pcte , (11)

po =
(

ρ f g+
Ff o

Ao

)
x , (12)

where pcte is a constant pressure and Ff o is the friction force due
to the external flow given by

Ff o =
1
2

C f ρ f
D2

oU2
o

Dh
. (13)
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In the above equation, Dh is the hydraulic diameter
(=4Ach/Stot ) and Stot is the total wetted area per unit length
(πDch + πDo). Note that the reference pressure is po|x=0 = 0.
Another assumption is that there is no head loss when the fluid
passes from the drill-pipe to the drill-collar (and vice-versa). The
head loss due to the change in velocity of the fluid at the bottom
(it was going down, then it goes up) is given by

h =
1
2g

(Ui−Uo)2 . (14)

Note that if the geometry and the fluid characteristics are
given, only the inlet flow at x = 0 can be controlled because the
fluid speed is calculated using the continuity equation and the
pressures are calculated using the Bernoulli equation.

Bit-rock interaction model
The bit-rock interaction model chosen was the one devel-

oped in [2] basically for two reasons: (1) it is able to reproduce
the main phenomena (as stick-slip oscillations); (2) it describes
well the penetration of the bit into the rock (so we can analyze
the rate-of-penetration-ROP). Usually the bit is considered fixed,
[12–14], or an average rate of penetration is assumed, [1, 15].
The axial force and torque about the x-axis are written as

fbit =− u̇bit

a2Z(θ̇bit)2
+

a3θ̇bit

a2Z(θ̇bit)
− a1

a2
,

tbit =− u̇bita4Z(θ̇bit)2

θ̇bit
−a5Z(θ̇bit) ,

(15)

in which fbit is the axial force, tbit is the torque about the x-axis
and Z(θ̇bit) is the regularizing function.

In the above equation, the forces at the bit are written in
function of the axial speed and the rotational speed of the bit:
fbit = g1(u̇bit, θ̇bit) and tbit = g2(u̇bit, θ̇bit), where a1, . . . ,a5 are
positive constants which are related to the rock strength, the ori-
entation of the cutting force, the geometry of the bit and the co-
efficient of friction. In [4] we can find a similar relationship with
a detailed explanation about the constants of bit-rock interaction
model .

In this model, the bit exerts only an axial force ( fbit) and a
torque (tbit) about the x-axis. The force and torque exerted by
the rock at the bit depend on the axial speed (u̇bit) and the rota-
tional speed (θ̇bit) of the bit and they couple axial and torsional
vibrations.

Discretized system
The final discretized system (considering the prestressed

state) is written as [10]:

([M]+ [M f ]) ¨̄u+([C]+ [C f ]) ˙̄u+([K]+ [K f ]+ [Kg(uS)])ū =

= fNL(t, ū, ˙̄u, ¨̄u) ,
(16)

where ū (= u−uS) is the response around the displacement vec-
tor uS (= [K]−1(fg + fc + f f )) induced by the prestressed state.
ū is the Rm valued response in which m equals the number of
degrees of freedom of the system. fg is the gravity force; fc
is a concentrated reaction force at the bit; f f is the buoyancy
force; [M], [C] and [K] are the standard mass, damping and stiff-
ness matrices; [M f ], [C f ], [K f ] are the added fluid mass, damping
and stiffness matrices; [Kg(u)] is the geometric stiffness matrix;
fNL(t, ū, ˙̄u, ¨̄u) is the nonlinear force vector that is decomposed in:

fNL(t, ū, ˙̄u, ¨̄u) = fke(ū, ˙̄u, ¨̄u)+ fse(ū)+ fip(ū)+ fbr( ˙̄u)+g(t) .
(17)

where fke(ū, ˙̄u, ¨̄u) are the quadratic forces due to the kinetic en-
ergy; fse(ū) are the quadratic and higher order forces due to the
strain energy; fip(ū) are the forces due to the impact and rubbing
between the column and the borehole; fbr( ˙̄u) are the forces due to
the bit-rock interactions; and g(t) is the force due to the Dirichlet
boundary condition (imposed rotational speed at the top).

A reduced-order model is constructed from Eq. (16) using
the normal modes obtained in the prestressed configuration.

Reduced model
Usually the final discretized FE system have big matrices

(dimension m×m) and the dynamic analysis may be time con-
suming, which is the case of the present analysis. One way to
reduce the system is to project the nonlinear dynamical equation
on a subspace Vn ∈ Rm, with n << m, in which Vn is spanned
by an algebraic basis of Rn. In this paper, the basis used for
the reduction corresponds to the normal modes projection, but,
as it will be pointed out later, these normal modes have to prop-
erly be chosen (they can not be taken simply in the order that
they appear). The normal modes are obtained from the following
generalized eigenvalue problem,

([K]+ [K f ]+ [Kg(uS)])φ = ω
2([M]+ [M f ])φ , (18)

where φi is the i-th normal mode and ωi is the i-th natural fre-
quency. Using the representation

u = [Φ]q , (19)
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and substituting it in the equation of motion yields

([M]+ [M f ])[Φ]q̈+([C]+ [C f ])[Φ]q̇+

+([K]+ [K f ]+ [Kg(uS)])[Φ]q = fNL(t, ū, ˙̄u, ¨̄u) ,
(20)

where [Φ] is a (m×n) real matrix composed by n normal modes
obtained using the prestressed configuration. Projecting the
equation on the subspace spanned by these normal modes yields

[Φ]T ([M]+ [M f ])[Φ]q̈+[Φ]T ([C]+ [C f ])[Φ]q̇+

+[Φ]T ([K]+ [K f ]+ [Kg(uS)])[Φ]q = [Φ]T fNL(t, ū, ˙̄u, ¨̄u) ,
(21)

which can be rewritten as

[Mr] q̈(t)+ [Cr] q̇(t)+ [Kr]q(t) = [Φ]T fNL(t, ū, ˙̄u, ¨̄u) , (22)

in which

[Mr] = [Φ]T ([M]+ [M f ])[Φ], [Cr] = [Φ]T ([C]+ [C f ])[Φ]

[Kr] = [Φ]T ([K]+ [K f ]+ [Kg(uS)])[Φ] (23)

are the reduced matrices.

PROBABILISTIC MODEL OF THE WEIGHT-ON-HOOK
The weight-on-hook w0 is modeled as a random variable

W0. The Maximum Entropy Principle [7, 8] which was intro-
duced in the framework of the Information Theory by [9] is used
to construct the probability density function. This principle con-
sists in finding the probability density function that maximizes
the entropy under the constraints defined by the available infor-
mation.

The available information is derived from the mechanical
properties of the weight-on-hook. These properties are: (1) the
column must penetrate the soil, i.e., W0 must be lower than the
weight w2 of the column; (2) bucking must not occur, i.e., W0
must be greater than the bucking limit w1; (3) the probability
must go to zero when W0 approaches w1; (4) the probability must
go to zero when W0 approaches w2.

Conditions (1) and (2) are expressed by setting the sup-
port of the probability density function as ]w1,w2[. Condi-
tions (3) and (4) are expressed by E{ln(W0−w1)} = c̃1 and
E{ln(w2−W0)}= c̃2, with |c̃1|< +∞ and |c̃2|< +∞. The rea-
son why (ln) is used is because it imposes a weak decreasing
of the probability density function in w+

1 and w−2 . To facilitate

the calculus, we introduce a normalized random variable X with
values in ]0,1[, such that:

W0 = w1(1−X)+w2X . (24)

The expected value of W0 is written as

E{W0}= w1(1−E{X})+w2E{X} . (25)

We introduce the notation w0 = E{W0} and x = E{X}. The
second moment of W0 may be written as

E{W2
0}= E{X2}(w2

1−2w1w2 +w2
2)+x(−2w2

1 +2w1w2)+w2
1 .

(26)
The available information is re-expressed in term of the new

random variable:

1. X ∈ ]0,1[.
2. E{ln(X)}= c1.
3. E{ln(1−X)}= c2.

(27)

with |c1| < +∞ and |c2| < +∞. The optimization problem is
finally written as:

maxize
pX∈C

SX(pX) , (28)

where C is the space of admissible probability density functions
satisfying the constraints given by Eq. (27) and the entropy mea-
sure is given by [9]:

SX(pX) =−
∫
R

pX (x) ln(pX (x))dx . (29)

The probability density function, solution of the optimiza-
tion problem defined by Eq. (28), is the Beta probability density
function which may be written as:

pX(x) = 1]0,1[(x)
Γ(α+β)
Γ(α)Γ(β)

xα−1(1−x)β−1 , (30)
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where the Gamma function Γ(y) =
∫ +∞

0 ty−1 exp(−t)dt for y > 0.
Also, α > 2 and β > 2 so that Eq. (27) holds. The random
generator of independent realizations of the random variable X is
already implemented in many computer codes. The mean value
of X is given by

x =
α

α+β
, (31)

and coefficient of variation is given by

δX =

√
β

α(α+β+1)
. (32)

where δX = σX/x, in which σX is the standard deviation.
The probability density function pW0 defined by Eq. (24)

and (30) depends on the four parameters (w1,w2,α,β). For ap-
plications, w1 and w2 will be fixed. Parameters α and β have no
physical meaning, consequently, we express them as function of
the physical meaningful parameters w0 and δ. After some ma-
nipulations we obtain:

x =
w0−w1

w2−w1
, (33)

δX =

√
w2

0(δ2 +1)− (w0−w1)2−2w1(w0−w1)−w2
1

(w0−w1)2 , (34)

and

α =
x
δ2

(
1
x
−δ

2
X−1

)
, (35)

β =
x

δ2
X

(
1
x
−δ

2
X−1

)(
1
x
−1
)

. (36)

Using the probabilistic model of the weight-on-hook, the
deterministic reduced model defined by Eqs. (19) and (22) is
replaced by the following stochastic equations:

Ū = [Φ]Q ,

([M]+ [M f ])Q̈+([C]+ [C f ])Q̇+([K]+ [K f ]+ [Kg(uS)])Q =

= [Φ]T (fNL(t, Ū, ˙̄U, ¨̄U)+FW0) ,
(37)

where Ū is the random response and FW0 is a vector for which the
only nonzero component is related to the axial d.o.f. of the first
node FW0(1) = (W0−w0). Note that w0 was subtracted because
the response is calculated in the prestressed configuration.

NUMERICAL RESULTS
The drill-string was discretized using 56 finite elements. For

the dynamics analysis it was used 10 lateral modes, 10 torsional
modes, 10 axial modes and also the two rigid body modes of the
structure (axial and torsional), so matrix [Φ] is composed by 32
modes. For the time integration procedure, a routine based on the
Newmark integration scheme was implemented with a predictor
and a fix point procedure to equilibrate the system response at
each time step. The data used in the simulations is found in the
Appendix.

The nonlinear forces fke and fse are important to the dynamic
response of the system (especially to the lateral vibrations),
but the torsional and axial displacements are not very affected
when fke = fse = 0 in the first twenty seconds of simulations.
The torsional and axial displacements are mainly dictated by
the bit-rock interaction model. Moreover, the time to perform
the numerical simulation is around: 60 minutes when fke and fse
are considered; and 80 seconds when fke = fse = 0. As we want
to investigate the influence of the probabilistic model of the
weight-on-hook (axial force) on the rate-of-penetration (axial
speed) we will set fke = fse = 0 for the next simulations, knowing
that it is an approximation of the problem analyzed.

Response of the stochastic system
For the system considered w1 = 408 kN, w2 = 1078 kN and

w0 = 978 kN. Fig. 2 shows the 95% envelope (that is to say the
confidence region constructed with a probability level of 0.95)
for the rate-of-penetration and the rotational speed of the bit for a
standard deviation σ = 1000 N, which means δ = σ/w0 ∼ 0.001.
The envelopes (the upper and lower envelopes of the confidence
region) are calculated using the method of quantiles [16].

We are plotting two important variables: the rate-of-
penetration (ROP) and the rotational speed at the bit (ωbit). So,
we analyze the influence of the random weight-on-hook in the
system performance. Fig. 3 shows the stochastic response of the
torque and force on the bit.
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Figure 2. 95% envelope for σ = 1000 N. Upper: rate-of-penetration,
ROP. Bottom: rotational speed of the bit.

It is noted that for σ = 1000 N, the response changes just a
little, therefore σ will be increased in the next analysis. In our
analysis we can not increase σ too much because the model used
for the bit-rock interaction assumes a weight-on-bit fbit ∼−100
kN, so the standard deviation σ of the W0 is increased in a way
that the fbit has a maximum variation around 5%, that is to say
that σmax = 5000N and therefore δmax ∼ 0.005 (0.5% variation),
which is a constraint to our analysis. But, as it will be seen, a
small variation on the W0 may cause a big variation in the system
response.

Fig. 4 shows the system response for σ = 5000 N (δ ∼
0.005). As expected, as σ increases the envelope of the response
gets wider. We want to investigate how uncertainties on the
weight-on-hook affects the performance of the system, so, Fig.
5 shows the evolution of the dispersion of the response for the:
ROP, rotational speed of the bit, torque-on-bit and force-on-bit.
The dispersion of the response is calculated by taken the square
root of the variance divided by the value of the mean response
for each time instant.

It is noted that, even for a small variation of W0 (δ∼ 0.5%),
there is a big dispersion in the response. See for instance the rate-
of-penetration: the mean dispersion is 4.3%, which is more than
eight times greater than the dispersion of the W0. It gets worse if

Figure 3. 95% envelope for σ = 1000 N. Upper: torque-on-bit. Bottom:
force-on-bit.

we take the maximum dispersion, which is 16%. It means that if
the W0 has a dispersion of half percent, the variation in the ROP
may achieve sixteen percent and the variation of the rotational
speed of the bit may achieve twenty six percent!

CONCLUDING REMARKS
In this paper a stochastic model of the drill-string dynamics

was analyzed. The main efforts that the column is subjected to
were considered: rotation at the top; hanging force at the top;
bit-rock interaction; fluid-structure interaction that takes into ac-
count the drilling fluid that flows downwards the column then
goes upwards in the annulus; impact and rubbing between the
column and the borehole; and the own weight of the column.

The weight-on-hook was modeled as a random variables
with probability density function constructed using the Maxi-
mum Entropy Principle. This probability model is well suited
for a random variable that assumes values in a finite interval [a,b]
and the only further information given is that the probability must
go to zero when the random variable approaches each limit (a and
b). It was noted that a small variation of the weight-on-bit (half
percent) induces a considerable variation on the system response,
for example: 6% on the force-on-bit, 12% on the torque-on-bit,
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16% on the ROP and 26% on the ωbit (these are the maximum
dispersions observed). The system response is very sensitive to
a dispersion of the weight-on-hook.

There are many sources of uncertainties in this problem, so
more stochastic analysis should be done to identify the uncer-
tainties that affect the most the performance of the system.
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DATA USED IN THE SIMULATION
Ωx = 100 [RPM] (imposed rotational speed about x-axis

at x = 0 m), fc = 100 [kN] (initial reaction force at the bit),
Ld p = 1400 [m] (length of the drill pipe), Ldc = 200 [m] (length
of the drill collar), Dod p = .127 [m] (outside diameter of the drill
pipe), Dodc = .2286 [m] (outside diameter of the drill collar),
Did p = .095 [m] (inside diameter of the drill pipe), Didc = 0.0762
[m] (inside diameter of the drill collar), Dch = 0.3 [m] (diame-
ter of the borehole (channel)), xstab = 1400 [m] (location of the
stabilizer), kstab = 17.5 [MN/m] (stiffness of the stabilizer per
meter), E = 210 [GPa] (elasticity modulus of the drill string ma-
terial), ρ = 7850 [kg/m3] (density of the drill string material), ν =
.29 [-] (poisson coefficient of the drill string material), ks = 6/7
[-] (shearing correcting factor), c1 = 0.05 [N.s/m] (friction coeffi-
cient for the axial rigid body motion), c2 = 0.05 [N.s/m] (friction
coefficient for the rotation rigid body motion), kip = 1e8 [N/m]
(stiffness per meter used for the impact), µip = 0.0005 [-] (fric-
tion coefficient between the string and the borehole), Ui = 1.5
[m/s] (flow velocity in the inlet), ρ f = 1200 [kg/m3] (density
of the fluid), C f = .0125 [-] (fluid viscous damping coefficient),
k = 0 [-] (fluid viscous damping coefficient), g = 9.81 [m/s2]
(gravity acceleration), a1 = 3.429e−3 [m/s] (constant of the bit-
rock interaction model), a2 = 5.672e− 8 [m/(N.s)] (constant of
the bit-rock interaction model), a3 = 1.374e−4 [m/rd] (constant
of the bit-rock interaction model), a4 = 9.537e6 [N.rd] (constant
of the bit-rock interaction model), a5 = 1.475e3 [N.m] (constant
of the bit-rock interaction model), e = 2 [rd/s] (regularization pa-
rameter). The damping matrix is constructed using the relation-
ship [C] = α([M]+[M f ])+β([K]+[K f ]+[Kg(uS)]) with α = .01
and β = .0003.
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(a)

(b)

(c)

(d)

Figure 4. 95% envelope for σ = 5000 N. (a) rate-of-penetration, ROP;
(b) rotational speed of the bit; (c) torque-on-bit; and (d) force-on-bit.

(a)

(b)

(c)

(d)

Figure 5. Dispersion of the response for σ = 5000 N. (a) rate-of-
penetration, ROP; (b) rotational speed of the bit; (c) torque-on-bit; and
(d) force-on-bit.
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