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Abstract. The aim of this paper is to use Bayesian statistics to update a probability
density function related to the tension parameter, which is one of the main parameters
responsible for the changing of the fundamental frequency of a voice signal, generated by a
mechanical/mathematical model for producing voiced sounds. We follow a parametric approach
for stochastic modeling, which requires the adoption of random variables to represent the
uncertain parameters present in the cited model. For each random variable, a probability
density function is constructed using the Maximum Entropy Principle and the Monte Carlo
method is used to generate voice signals as the output of the model. Then, a probability
density function of the voice fundamental frequency is constructed. The random variables are
fit to experimental data so that the probability density function of the fundamental frequency
obtained by the model can be as near as possible of a probability density function obtained from
experimental data. New values are obtained experimentally for the fundamental frequency and
they are used to update the probability density function of the tension parameter, via Bayes’s
Theorem.

1. Introduction

One can say that the production of voiced sounds (vowels are particular cases of voiced sounds)
starts with the contraction-expansion of the lungs causing an airflow, between the lungs and the
mouth due to the difference of pressure, which will induce the auto-oscillation of the vocal folds
(located in the larynx). After passing through the glottis and due to the movement of the vocal
folds, the airflow is transformed into pulses of air which are generated (quasi)-periodically. The
pressure signal created is so called the glottal signal, which will further be filtered and amplified
by the vocal tract generating the sound we hear. The fundamental frequency of the voice signal,
which is the frequency of the vocal folds oscillation, is the inverse of the period of the glottal
signal.

Some authors have modeled the vocal folds dynamics, mainly in a deterministic way
[8, 15, 7, ?]. One of these models is the well known model proposed by Ishizaka and Flanagan
[4] and it will be used here because it has provided a simple and effective representation of the
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system to study the underlying dynamics of voice production. A diagram of the model can be
seen in Fig 1.

Figure 1. Two-mass model of the vocal folds.

The dynamics of the system is given by Eqs. (1) and (2) [1]:

ψ1(w)u̇g + ψ2(w)|ug|ug + ψ3(w)ug +
1

c̃1

∫ t

0
(ug(τ) − u1(τ))dτ − y = 0 (1)

[M ]ẅ + [C]ẇ + [K]w + h(w, ẇ, ug, u̇g) = 0 (2)

where w(t) = (x1(t), x2(t), u1(t), u2(t), ur(t))
t, the functions x1 and x2 are the displacements

of the masses, u1 and u2 describe the air volume flow through the (two) tubes that model the
vocal tract and ur is the air volume flow through the mouth. The subglottal pressure is denoted
by y and ug is the function that represent the glottal pulses signal. The function output radiated

pressure pr is given by pr(t) = ur(t)rr, in which rr = 128ρvc

9π3y2

2

, ρ is the air density, vc is the sound

velocity, and y2 is the radius of the second tube. The equations of the other quantities that
appear in the equation, a detailed discussion of the model and its implementation can be found
in [1].

As we can see, the process to generate a voiced sound is complex and its modeling involves
and a lot of quantities which should be controlled. However, we are interested in the changing
of the fundamental frequency. The main parameters responsible for these changing, as discussed
in [4, 2, 1], are described in the following:

ag0: the area at rest between the vocal folds, called the neutral glottal area.

y: the subglottal pressure.

q: the tension parameter which controls the fundamental frequency of the vocal-fold vibrations
because vocal fold abduction and tension are the main factors used by a speaker to control
phonation. In order to control the fundamental frequency of the vocal folds, parameters m1,
k1, m2, k2, kc are written as m1 = m̂1/q, k1 = q k̂1, m2 = m̂2/q, k2 = q k̂2, kc = q k̂c, in

which m̂1, , k̂1, m̂2, k̂2, k̂c are fixed values.

These three parameters will be considered as uncertain and random variables will be associated
to them. It means that for each realization of the three random variables a different voice signal
is produced, characterizing that the voice production process generates a stochastic process.

The probability density functions associated to the random variables corresponding to the
chosen uncertain parameters will be constructed by using the Maximum Entropy Principle (or
better, the Jaynes’s Maximum Entropy Principle).
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The measure of uncertainty (entropy) used here was proposed by [11] and it is given by Eq.3:

S(pX) = −
∫ +∞

−∞

pX(x)ln ( pX(x) ) dx . (3)

The goal is to maximize the measure S(pX), subject to the constraints

∫ +∞

−∞

pX(x)dx = 1 and

∫ +∞

−∞

pX(x)gi(x)dx = ai , i = 1, . . . ,m (4)

where ai are usable information related to the functions gi.
Then, according to the first part of the principle, we should use only probability distributions

consistent with the constraints given. However, it may exist an infinity of probability
distributions compatible with the constraints. The second part of the principle enable us to
choose one among the many that satisfies the constraints, the (unique) probability distribution
that maximizes the entropy.

This principle can be used for parametric probabilistic approach and also for nonparametric
probabilistic approach [14].

2. Probabilistic model of the uncertain parameters

The three parameters ag0, y, and q are modeled by random variables Ag0, Y , and Q.
Consequently, parameters m1, k1, m2, k2, and kc become random variables denoted by M1,
K1, M2, K2, and Kc given by M1 = m̂1/Q, K1 = Qk̂1, M2 = m̂2/Q, K2 = Qk̂2, and Kc = Qk̂c.
The probability models derived here are particular cases of those ones described in [12, 13]. Since
no information is available concerning cross statistical moments between random variables Ag0,
Y , Q, the random variable will be considered independent. The details related to the construction
of the probability density functions related to these three random variables can be found in [1].
The expressions of the probability density functions will be described in the following.

The probability density function for the neutral glottal area is given by Eq.( 5):

pAg0
(ag0) = 1]0,+∞[e

−λ0−λ1ag0
−λ2(ag0

)2 , (5)

where λ0, λ1 and λ2 are the solution of the three equations defined by Eq.( 8).

∫ +∞

−∞

pAg0
(ag0) dag0 = 1 , (6)

∫ +∞

−∞

ag0 pAg0
(ag0) dag0 = Ag0 , (7)

∫ +∞

−∞

a2
g0 pAg0

(ag0) dag0 = c, (8)

Since the constant c is unknown, we introduce a new parametrization expressing c as a
function of the coefficient of variation δAg0

of the random variable Ag0 which is such that

δA2

g0

= E{A2
g0}/A2

g0 − 1 which proves that c = Ag0
2
(
1 + δ2Ag0

)
.

The probability density function for the subglottal pressure is given by Eq.( 9):

pY (y) = 1]0,+∞[(y)
1

Y

(
1

δ2Y

) 1

δ2
Y × 1

Γ
(
1/δ2Y

)
(
y

Y

) 1

δ2
Y

−1

exp

(
− y

δ2Y Y

)
, (9)

in which δY = σY /Y is the coefficient of variation of the random variable Y such that
0 ≤ δY < 1/

√
2 and where σY is the standard deviation of Y . In this equation α 7→ Γ(α)
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is the Gamma function defined by Γ(α) =

∫ +∞

0
tα−1e−tdt. From Eq. (9), it can be verified that

Y is a second-order random variable.
and the probability density function for the tension parameter is given by Eq.( 10):

pQ(q) = 1]0,+∞[(q)
1

Q

(
1

δ2Q

) 1

δ2
Q

× 1

Γ
(
1/δ2Q

)
(
q

Q

) 1

δ2
Q

−1

exp

(
− q

δ2QQ

)
, (10)

where the positive parameter δQ = σQ/Q is the coefficient of variation of the random variable

Q such that δQ < 1/
√

2 and where σQ is the standard deviation of Q. From Eq. (10), it can be
verified that Q is a second-order random variable and that E{1/Q2} < +∞.

3. Stochastic system

The equations for the deterministic case have been developed, the uncertain parameters have
been identified and their probability density functions have been constructed. As explained
above, the stochastic system is deduced from the deterministic one substituting ag0, y, q by
random variables Ag0, Y , Q. Consequently, the random fundamental frequency F0 is given
by F0 = M(Ag0, Y,Q). However, the nonlinear mapping M is not explicitly known and it is
implicitly defined by Eqs. (1) and (2) substituting ag0, y, q by random variables Ag0, Y , Q. It
will be calculated from the glottal signal, given by ug, finding the inverse of its period.

In order to validate the development presented here, voice signals produced by one person
have been analyzed and their statistics have been compared with simulations.

A voice signal corresponding to a sustained vowel /a/ has been recorded from one person and
the function fxrapt, from MATLAB, was used to compute all of the time intervals corresponding to
the opening and closure of the vocal folds were evaluated. For each time interval, a corresponding
fundamental frequency was calculated as the inverse of the corresponding time interval. So, we
can construct a corresponding probability density function that we will call experimental. Our
goal is to solve an inverse problem in order to construct, from simulations, a probability density
function similar to the experimental one. That is, we want to identify the mean values Ag0,
Y , Q, and also the coefficients of dispersion δAg0

, δY , δQ such that we can achieve the same
experimental mean value of the fundamental frequency mF0

= 120.7694 Hz and also the same

experimental coefficient of dispersion of the fundamental frequency δF0
=
mF0

δF0

= 0.0173. We

want also to compare the shapes of the distributions: experimental and constructed. This inverse
problem has not necessarily an unique solution. So, we will present an example, considering two
different possible solutions of the inverse problem. The strategy used will be described in the
following:

Step 1: Values of ag0
, y, and q are chosen, in the corresponding deterministic problem, such

that an output radiated pressure signal with fundamental frequency f0 = 120.7694 Hz is
obtained.

Step 2: The values of ag0
, y, and q found in Step 1 are used as the mean values Ag0

, Y , and
Q in the corresponding stochastic problem.

Step 3: With the mean values described in Step 2, values of δAg0
, δY , and δQ are chosen such

that the value of δF0
=
mF0

σF0

= 0.0173. A Monte Carlo method is used.

Clearly, in order to identify the parameters as described many tests were made. If the number
of cases is large, a strategy to solve this inverse problem, for example, creating an adequate cost
function, might be more effective.

The values obtained for each step were:
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Step 1: ag0 = 5 × 10−2 m2, y = 750Pa, and q = 0.66.

Step 2: The values Ag0 = 5×10−2 m2, Y = 750Pa, and Q = 0.66 are used in the corresponding
stochastic problem.

Step 3: With the mean values described in Step 2, the mean value of the fundamental
frequency obtained, considering 700 realizations and using the Monte Carlo method, was
mF0

= 120.9525Hz. With the values of the coefficients of dispersion δAg0
= 0.03, δY = 0.02,

δQ = 0.02, the value obtained for the coefficient of dispersion of the fundamental frequency
was δF0

= 0.0171.

Figure 2 shows the probability density function constructed from experimental signals (top)
and the probability density function constructed from simulations (bottom).
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Figure 2. Histogram of the fundamental frequency distribution: experimental (top) and
simulated (bottom).

Then, it shows that the mean values and the dispersion values used for the random variables
Q, Ag0 and Y were coherent. From the histograms, it can be constructed the probability density
functions. It will be used the function ksdensity from MATLAB and the plots are shown in Fig 3.

In order to better fit the data, it will be used bayesian statistics to update the probability
density function of the fundamental frequency.

4. Bayesian statistics applied to the problem

It is used the parametric probabilistic approach to take into account the uncertainties related
to the parameters of the model. The probabilistic model is constructed in two steps: first, it is
constructed the prior probabilistic model using the Maximum Entropy Principle in the context of
Information Theory. Second, it is constructed a posterior probabilistic model using experimental
data and the Bayes method.

The idea is to update the probability distribution of the random variable Q. Only one
parameter was chosen because the results can be better controlled and analyzed. This parameter,
Q, is the most important by the changing of the fundamental frequency and this was the reason
for what it was chosen. Moreover, it is a parameter that describes the tension of the vocal folds
and it is very difficult to obtain experimental data for it.

Let F0 be the fundamental frequency of the voice signal, h(q) the prior density probability
function for Q and f(f0|q) the likelihood function. Then, using the Bayes’s theorem for
probability density functions one can write the Eq. 11.
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Figure 3. Probability density functions: experimental (dashed line) and simulated (continuous
line).

h(q|f0) =
f(f0|q)h(q)∫

Q

f(f0|q)h(q)dq
. (11)

The the prior probability density function h(Q) is given by Eq. 12.

h(q) = 1]0,+∞[(q)
1

Q

(
1

δ2Q

) 1

δ2
Q 1

Γ
(
1/δ2Q

)
(
q

Q

) 1

δ2
Q

−1

exp

(
− q

δ2QQ

)
. (12)

Figure 4 shows the plot of the prior probability density function h(Q), considering the values
Q = 0.66 and δQ = 0.02.
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Figure 4. Prior probability density function for Q.

The likelihood function f(f0|θ) is the one obtained numerically, by simulation, considering
the values discussed above.

IOP Conf. Series: Materials Science and Engineering 10 (2010) 012195 doi:10.1088/1757-899X/10/1/012195

6



Then, a new experimental value was obtained for the fundamental frequency (it was 122 Hz).
With this value, the prior density probability function for Q was updated, using Eq.( 11) and its
plot is shown in Fig.( 5).
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Figure 5. Prior probability density function (h(q)) (full line) and Posterior probability density
function (h(q|f0) (dashed line).

Another value is get for the experimental fundamental frequency (at this time, 122.5 Hz)
and once more the prior probability density function for Q is updated. The plots for the
approximations of the three density probability functions for Q are showed in the Fig. 6.
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Figure 6. Third iteration for the posterior probability density function (line with points, the
higher).

With the new probability density function found for Q, new values were simulated for the
fundamental frequency and another probability density function for the fundamental frequency
was generated. Its plot is added to the Fig. 3 and showed in the Fig. 7.

5. Conclusions

Using Bayesian statistics, the probability density function of the random variable Q related to
an important parameter which takes part in a mathematical model for producing voice, was
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Figure 7. Probability density functions: experimental (dashed line), first simulation (continuous
line) and second simulation (line with points, the higher).

updated after obtaining new experimental data. It should be observed that the first prior
probability density function for Q was obtained using the Maximum Entropy Principle, and there
is difficulty to obtain real values for this parameter, because it is related to a biological quantity.
Using Bayes’s Theorem it was possible to update the probability density function without getting
values directly for this parameter, but from other quantity (the fundamental frequency) which
can be easily observed. From the posterior probability density function obtained for Q, it was
possible to simulate voice signals and to construct a posterior probability density function for
the fundamental frequency. This new p.d.f. was compared with the probability density function
of the fundamental frequency obtained experimentally and, as observed, the both p.d.f.’s were
nearer, better fitted.
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