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COMPUTATIONAL ASPECTS FOR CONSTRUCTING REALIZATIONS OF
POLYNOMIAL CHAOS IN HIGH DIMENSION

C. SOIZE∗ AND C. DESCELIERS†

Abstract. This paper deals with computational aspects related to the construction of realizations of polyno-
mial chaos expansion in high dimension. The method proposed consists (1) in constructing the realizations of the
multivariate monomials using a generator of independent realizations of the germs whose probability distribution is
the given arbitrary measure and (2) in performing an orthogonalization of the realizations of the multivariate mono-
mials with an algorithm different from the Gram-Schmidt orthogonalization algorithm which is not stable in high
dimension. A brief review of polynomial chaos expansion with arbitrary measure is given. The statistically inde-
pendent realizations of multivariate monomials are introduced. The centered statistically independent realizations
of orthonormal multivariate polynomials are developed. Finally, a quantification of the errors induced by the usual
methods is given.
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1. Introduction. The Polynomial Chaos Expansion (PCE), firstly introduced by Wiener
[52] for stochastic processes, is a powerful tool for constructing a stochastic representation of
a random vector, of a random matrix or a random tensor, of a stochastic process or a random
field. A general methodology has been introduced in [17, 18] for the PCE construction of a
stochastic process or a random field (for such a construction of a polynomial chaos expansion
with respect to an arbitrary measure, see for instance [46]).

In the last decade, the polynomial chaos expansions of stochastic processes and random
fields have been used in many works to study stochastic boundary value problems (see for
instance, [1] to [16], [19] to [44], [47, 50, 51, 53, 54]). An excellent and exhaustive synthesis
of all the works on spectral methods for uncertainty quantification can be found in the recent
book [24].

This paper is devoted to the computational aspects related to the numerical calcula-
tion of realizations XN (θ�) =

∑N
j=1 xj Ψj(Ξ(θ�)) of a given polynomial chaos expan-

sion XN =
∑N

j=1 xj Ψj(Ξ) in high dimension and for an arbitrary measure. The ”high
dimension” terminology means that the family {Ψ j(Ξ), j = 1, . . . , N} of polynomials con-
tains polynomials having a high degree Nd (for instance 20) with simultaneously a signif-
icant value of the germ dimension Ng (for instance 4), inducing a high value of the total
dimension N . Such situation is encountered when a high value of N is required in order
to achieve convergence of the PCE. The ”arbitrary measure” terminology means that the
germ Ξ = (Ξ1, . . . , ΞNg ) is a vector-valued random variable whose probability distribution
PΞ(dξ) is arbitrary on R

Ng .
The main objective of the paper is not directly related to the construction of a polynomial

chaos expansion of stochastic processes or random fields in order to solve a stochastic equa-
tion by using the Galerkin method (spectral method) which requires, for instance, the use
of collocation methods. The objective of the manuscript is to propose a new methodology
to compute independent realizations (in preserving the orthogonality properties) of the poly-
nomial chaos expansion of a stochastic process or of a random field when the convergence
consideration implies a high dimension expansion and for an arbitrary probability measure
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of the germ. For instance, such a situation is met to identify (by solving stochastic inverse
problems) the polynomial chaos representation of unknown stochastic processes and random
fields. In such a case the coefficients are estimated using the maximum likelihood method
for which the probability density functions are estimated by the Monte Carlo method requir-
ing the calculation of independent realizations of the polynomial chaos expansion (see for
instance [1, 4, 7, 45]).

In this paper, the method proposed is very useful for analyzing the two following cases.
The first one corresponds to the case for which the system of orthogonal polynomials {Ψ j(ξ),
j = 1, . . . , N} is explicitly known (for instance, for the Gaussian measure, the system is
constituted of the Hermite polynomials). The second one corresponds to the case for which
the system of orthogonal polynomials {Ψj(ξ), j = 1, . . . , N} is not explicitly known because
the measure PΞ(dξ) does not correspond to a usual measure which is explicitly known.

Sometimes, for � = 1, . . . , ν, realizations XN (θ�) =
∑N

j=1 xj Ψj(Ξ(θ�)) must be
computed for high polynomial degrees in order to achieve convergence of the PCE. Such
a situation can arise for the identification of the coefficients x1, . . . , xN of the PCE XN =∑N

j=1 xj Ψj(Ξ) corresponding to an unknown stochastic model for which N and coefficients
x1, . . . , xN are unknown and must be identified using observed data. For instance, this is
the case for a stochastic reduced-order model of a random field having a relatively short
correlation length with respect to the domain size.

In this paper, the method proposed has been developed in the context of a research re-
cently published [45] which was devoted to the identification of high dimensional polynomial
chaos expansions with random coefficients for non-Gaussian tensor-valued random fields us-
ing partial and limited experimental data. In this work, the number N of coefficients to be
identified were about seven millions corresponding to N g = 4 and Nd = 22 and allowing the
convergence of the polynomial expansion to be achieved. In [45], the computation of the real-
izations of the polynomial chaos for this high dimension case using either the computational
recurrence formula or the algebraic explicit representation did not give good results. This is
the reason why the new methodology presented below has been developed and has allowed
the computation of the case in high dimension to be carried out. This new methodology is
not presented in [45] but is developed and validated in the present paper.

It should be noted that such problems are not trivial at all. For instance, as it will be
shown in the last section, the use of the explicit algebraic formula (for instance, constructed
with a symbolic Toolbox) or the use of a recurrence relation with respect to the degree, to
evaluate the realizations {Ψj(Ξ(θ�)) for j = 1, . . . , N and for � = 1, . . . , ν} with high poly-
nomial degrees, induces important numerical noise and the orthogonality property defined by
E{Ψj(Ξ)Ψk(Ξ)} � 1

ν

∑ν
�=1 Ψj(Ξ(θ�))Ψk(Ξ(θ�)) = δjk is lost.

The main idea of the proposed method is based (1) on the construction of the realiza-
tions Mj(Ξ(θ�)) of the monomials Mj(Ξ) using a generator of independent realizations
Ξ(θ1), . . . ,Ξ(θν) of the germs whose probability distribution is the given arbitrary measure
PΞ(dξ) and (2) on the construction of a Gram-Schmidt orthogonalization of the family of
vectors made up of the realizations of the monomials. Unfortunately, when N and ν > N are
large (several ten thousands), the Gram-Schmidt algorithm is not stable. We then propose an
alternative way to perform the orthogonalization of the monomials.

With the method proposed, independent realizations are constructed in preserving the
orthogonality properties. It should be noted that, if an orthogonalization was performed on
the realizations constructed with the usual methods (computational recurrence formula or
algebraic explicit representation) in order to obtain the orthogonality properties, then the
statistical independence would be lost. With the new method proposed in this paper, the
realizations are statistically independent. Concerning the sources of the numerical noise, it
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seems that the major contribution is not due to the evaluation of the monomials (products) but
is due to the evaluation of the polynomials (summation of monomials of different degrees).

In a first section, a brief review on the polynomial chaos expansion with an arbitrary
measure is given. Then, the statistically independent realizations of multivariate monomials
are introduced. In the following section, the centered statistically independent realizations
of the orthonormal multivariate polynomials are developed. The last section deals with a
validation of the proposed method.

2. Brief review of the polynomial chaos expansion with respect to an arbitrary mea-
sure. Let N = {0, 1, 2, . . .} be the set of all the null and positive integers. Let R

Ng be the
Euclidean space for which the generic point is ξ = (ξ1, . . . , ξNg ). Let dξ = dξ1 . . . dξNg

be the Lebesgue measure on R
Ng . Let Ξ = (Ξ1, . . . , ΞNg ) be a R

Ng -valued random vector
defined on a probability space (Θ, T ,P) with probability distribution PΞ(dξ) on R

Ng . Let

{Ψα(ξ) , α = (α1, . . . , αNg ) ∈ N
Ng , |α| = α1 + . . . + αNg ∈ N} , (2.1)

be a family of multivariate orthonormal real polynomials Ψα(ξ) = Ψα1(ξ1)×. . .×ΨαNg
(ξNg )

with respect to the arbitrary probability measure PΞ(dξ) on R
Ng such that for all α and β in

N
Ng , ∫

R
Ng

Ψα(ξ)Ψβ(ξ)PΞ(dξ) = E{Ψα(Ξ)Ψβ(Ξ)} = δαβ . (2.2)

In Eq. (2.2), E is the mathematical expectation and δαβ = 0 if α �= β and = 1 if α �= β.
For α = 0, Ψ0(ξ) = 1 is the constant normalized polynomial.

Let ξ �→ f(ξ) = (f1(ξ), . . . , fn(ξ)) be a measurable mapping from R
Ng into R

n such
that the R

n-valued random variable X = (X1, . . . , Xn) = f(Ξ) is a second-order random
variable, that is to say, is such that

E{‖X‖2} = E{‖f(Ξ)‖2} =
∫

R
Ng

‖f(ξ)‖2 PΞ(dξ) < +∞ , (2.3)

in which ‖X‖2 =
∑n

j=1 X2
j . Consequently, the random variable X = f(Ξ) admits the

following polynomial chaos expansion with respect to the probability measure P Ξ(dξ),

X =
∑

α∈N
Ng

xα Ψα(Ξ) , (2.4)

in which the family of vectors {xα}α∈N
Ng in R

n is such that

xα = E{f(Ξ)Ψα(Ξ)} . (2.5)

The right-hand side of Eq. (2.4) is mean-square convergent. In this paper, the summation
over the multi-index α, in Eq. (2.4), is renumbered in using a mono-index such that X =∑+∞

j=1 xj Ψj(Ξ) and Eq. (2.5) is rewritten as xj = E{f(Ξ)Ψj(Ξ)}.

3. Statistically independent realizations of multivariate monomials. Let Ξ = (Ξ1,
. . . , ΞNg) be the R

Ng -valued random vector of the independent centered random variables
Ξ1, . . . , ΞNg for which the probability density functions (with respect to the Lebesgue mea-
sure dξ on the real line) are denoted by pΞ1(ξ), . . . , pΞNg

(ξ). For all α = (α1, . . . , αNg) in

N
Ng (including the null multi-index (0, . . . , 0) ) and for all ξ = (ξ1, . . . , ξNg ) belonging to

R
Ng , the multivariate monomial Mα(ξ) is defined by

Mα(ξ) = ξα1
1 × . . . × ξ

αNg

Ng
. (3.1)
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Let us consider the set {Mα(ξ) , α ; |α| = 0, . . . , Nd} which contains N = (Nd + Ng)!/
(Nd! Ng!) multivariate monomials. This set of multivariate monomials is renumbered as
M1(ξ), . . . ,MN(ξ) such that the set {Mα(ξ) , α ; |α| = 0, . . . , Nd} of length N is iden-
tified to the set {M1(ξ), . . . ,MN (ξ)}. It is assumed that M1(ξ) = 1 is the constant mono-
mial. It should be noted that the random variables M1(Ξ), . . . ,MN(Ξ) are not normalized,
centered or orthogonal. Let ν be an integer such that ν > N . Let Ξ(θ 1), . . . , Ξ(θν) be
ν independent realizations of random vector Ξ. Then the ν independent realizations of the
N random multivariate monomials M1(Ξ), . . . ,MN (Ξ) are represented by the ν × N real
numbers {Mj(Ξ(θ�))}�j .

4. Centered statistically independent realizations of orthonormal multivariate poly-
nomials. We introduce the estimation {Mj , j = 1, . . . , N} of the mean values of the realiza-
tions {Mj(Ξ(θ�)), j = 1, . . . , N} such that M1 = 0 and such that, for all j in {2, . . . , N},
Mj = ν−1

∑ν
�=1 Mj(Ξ(θ�)). We then introduce the (ν × N) real matrix [M] of the cen-

tered realizations such that

[M]�j = Mj(Ξ(θ�)) −Mj . (4.1)

The main idea is to construct a (N×N) real matrix [A ] such that the independent realizations
[Ψ]�j = Ψj(Ξ(θ�)) of the polynomial chaos Ψj(Ξ) can be written as

[Ψ] = [M] [A ] . (4.2)

With such a construction, the realizations {Ψj(Ξ(θ�)), � = 1, . . . , ν} are independent, be-
cause [Ψ]�j =

∑N
k=1[M]�k [A ]kj shows that the rows stay independent. In addition, due

to Eq. (4.1), the estimation of the mean value of each polynomial chaos is zero except the
constant polynomial chaos. It should be noted that {[Ψ]T [Ψ]}jk/ν is the estimation of
E{Ψj(Ξ)Ψk(Ξ)} which has to be equal to the Kronecker symbol δ jk. Consequently, the
orthogonality of the polynomial chaos will be preserved if [Ψ]T [Ψ]/ν = [IN ] in which [IN ]
is the identity matrix. Substituting Eq. (4.2) into [Ψ]T [Ψ]/ν = [IN ] yields

[A ]T [M]T [M] [A ] = ν [IN ] . (4.3)

which shows that the matrix [A ] is related to the singular value decomposition of matrix
[M]. Below, we detail the algorithm for the direct construction of matrix [Ψ] without explic-
itly constructing matrix [A ] and then, without performing the product [M] [A ].

Let [M] = [U] [S] [V ]T be the singular value decomposition of matrix [M] in which
[U] is a (ν × ν) real unitary matrix, where [S] is a (ν × N) real matrix whose diagonal
elements are nonnegative and are ordered in decreasing values, and where [V ] is a (N × N)
real unitary matrix. Since ν > N , there are ν − N zero singular values that we remove
hereinafter. Therefore, let [U ] be the (ν × N) real matrix whose N columns are made up of
the N first columns of matrix [U]. We then have

[U ]T [U ] = [IN ] . (4.4)

Let [S] be the diagonal (N × N) real matrix made up of the block of the non zero singular
values of matrix [S]. We can then write

[M] = [U ] [S] [V ]T . (4.5)

Multiplying Eq. (4.5) by the invertible matrix ([S] [V ]T )−1 which is [V ] [S]−1 yields [M] [V ]
[S]−1 = [U ]. Substituting [U ] = [M] [V ] [S]−1 into Eq. (4.4) and multiplying the result by
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ν yield

(ν1/2 [V ] [S]−1)T [M]T [M] (ν1/2 [V ] [S]−1) = ν [IN ] . (4.6)

Comparing with Eq. (4.3) with Eq. (4.6) yields a solution for [A ] which can be written as

[A ] = ν1/2 [V ] [S]−1 . (4.7)

Substituting Eq. (4.7) into Eq. (4.2) yields [Ψ] = ν 1/2 [M] [V ] [S]−1. Finally, substituting
Eq. (4.5) into the last equation yields

[Ψ] =
√

ν [U ] . (4.8)

It should be noted that, in Eq. (4.8), matrix [U ] is directly constructed through the SVD of
matrix [M]. Summarizing, we have the following statistical estimations. Let j0 be the column
index such that |[Ψ]�j0 | = 1 for all � = 1, . . . , ν and corresponding to the ν independent
realizations of the constant chaos polynomial Ψj0(Ξ) = 1. We then have

E{Ψj0(Ξ)} � 1
ν

ν∑
�=1

[Ψ]�j0 = 1 . (4.9)

For j in {1, . . . , N} but different from j0, we have

E{Ψj(Ξ)} � 1
ν

ν∑
�=1

[Ψ]�j = 0 . (4.10)

For j and k in {1, . . . , N}, we also have

E{Ψj(Ξ)Ψk(Ξ)} � 1
ν

ν∑
�=1

[Ψ]�j [Ψ]�k = δjk . (4.11)

5. Quantification of the errors induced by the usual methods. The objective of this
section is to present a quantification of the errors induced by the usual methods concerning
the orthogonality properties while the proposed new method does not produce errors. This
proposed method is mathematically proven and a numerical application is not required. The
method is not proposed as an alternative method with respect to the existing methods but
is devoted to a field of applications for which no method is available today. This section
demonstrates that the use of the usual methods (computational recurrence formula or alge-
braic explicit representation of the polynomial chaos) are not efficient in high dimension with
respect to the orthogonality properties. The usual methods are sensitive to the numerical
noise, while the proposed method allows the numerical noise to be overcome (see the expla-
nations given in Section 1). In order to quantify the errors, two cases are considered. For
these two cases the germ is Gaussian and then the polynomials are the normalized Hermite
polynomials. The first one is the most simple case for which Ng = 1 and Nd = 1, . . . , 30,
therefore N = 1, . . . , 30. The number of independent realizations is ν = 10 6. The second
one corresponds to Ng = 5 and Nd = 1, . . . , 10, therefore N = 6, . . . , 3, 003. The number
of independent realizations is ν = 105.

For αj = 0, we introduce Ψαj (ξj) = H0(ξj) = 1 and for αj = 1, 2, . . ., we intro-
duce Ψαj (ξj) = Hαj−1(ξj)/

√
(αj − 1)! in which the polynomials Hαj (ξj) are the Hermite
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polynomials which are not normalized. Let Ξ(θ1), . . . , Ξ(θν) be ν independent realizations
of the normalized Gaussian R

Ng -valued random variable Ξ with ν > N . Let Ψalg
αj

(Ξj)
be the polynomial Ψαj (Ξj) for which the realization Ψalg

αj
(Ξj(θ�)) is computed using the

usual explicit algebraic formula of the polynomial Ψαj(Ξj) (constructed, for instance, with
a symbolic toolbox). Let Ψrecur

αj
(Ξj) be the polynomial Ψαj(Ξj) for which the realization

Ψrecur
αj

(Ξj(θ�)) = Hrecur
αj−1 (Ξj(θ�))/

√
(αj − 1)! is computed using the usual recurrence for-

mula which is written as

Hrecur
αj+1 (Ξj(θ�)) = Ξj(θ�)Hrecur

αj
(Ξj(θ�)) − αj Hrecur

αj−1 (Ξj(θ�)) . (5.1)

with, for αj = 0, Hrecur
αj

(Ξj(θ�)) = 1 and for αj = 1, Hrecur
αj

(Ξj(θ�)) = Ξj(θ�). Finally,
let Ψcomp

αj
(Ξj) be the polynomial Ψαj(Ξj) for which the realization Ψcomp

αj
(Ξj(θ�)) is com-

puted using the new method presented in Sections 3 and 4.

Below, the multivariate polynomials are obtained by performing the tensorial product and,
as explained at the end of Section 2, the multivariate polynomials are renumbered in using a
mono-index j which belongs to {1, . . . , N}.

Let [Coralg(N)], [Correcur(N)] and [Corcomp(N)] be the (N×N) matrices measuring
the orthonormality of the polynomial chaos Ψalg

j (Ξ), Ψrecur
j (Ξ) and Ψcomp

j (Ξ) defined and
estimated by

[Coralg(N)]jk = E{Ψalg
j (Ξ)Ψalg

k (Ξ)} � 1
ν

ν∑
�=1

Ψalg
j (Ξ(θ�))Ψalg

k (Ξ(θ�)) , (5.2)

[Correcur(N)]jk = E{Ψrecur
j (Ξ)Ψrecur

k (Ξ)} � 1
ν

ν∑
�=1

Ψrecur
j (Ξ(θ�))Ψrecur

k (Ξ(θ�)) .

(5.3)

[Corcomp(N)]jk = E{Ψcomp
j (Ξ)Ψcomp

k (Ξ)} � 1
ν

ν∑
�=1

[Ψ]�j [Ψ]�k , (5.4)

for which Eq. (4.11) has been used. By construction of the proposed new method, for any
ν > N , we have [Corcomp(N)]jk = δjk which corresponds to the orthonormality property.
For ν sufficiently large, one could expect that [Coralg(N)]jk � [Correcur(N)]jk � δjk . In
fact, it is not the case. The orthonormality property is lost and we propose below to quantify
the errors.

Let ‖.‖F be the Frobenius norm of matrices. Let

N �→ erralg(N) = ‖[IN ] − [Coralg(N)]‖F /‖[IN ]‖F , (5.5)

N �→ errrecur(N) = ‖[IN ] − [Correcur(N)]‖F /‖[IN ]‖F , (5.6)

N �→ errcomp(N) = ‖[IN ] − [Corcomp(N)]‖F /‖[IN ]‖F , (5.7)

be the error functions which measure the loss of the orthonormality property of the two usual
methods (algebraic explicit representation and computational recurrence formula) and of the
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proposed new method referenced as ”comp”. It should be noted that the error err comp(N)
must be 0 for all N due to the orthonormality property which is preserved.

For the first case (Ng = 1 and Nd = 30), the estimations of quantities [Coralg(N)],
[Correcur(N)] and [Corcomp(N)] presented in the figures are converged with respect to
ν. Fig. 1 displays the graphs of the functions N �→ erralg(N), N �→ errrecur(N), N �→
errcomp(N) and N �→ errtheory(N) = 0 corresponding to the theoretical values. It can
be seen that the level of the errors is the same for the two usual methods represented by
the thin lines with circles. For N = 5, N = 20 and N = 30, the errors are about 7%,
72% and 80%. Consequently, for N = Nd ≥ 5, the loss of the orthonormality property is
very important for the usual methods (thin line with circles) while there is no error with the
proposed new method (thick line) for which the computed error is 2.9×10 −14 for N = Nd =
30. The new method coincides with the theoretical value which is zero (thick line). In order to
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1
Graphs of the functions erralg(N),  errrecur(N), errcomp(N) and errtheory(N)
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FIG. 5.1. Graph of the error functions N �→ erralg(N) (thin line with circles), N �→ errrecur(N) (thin line
with circles), N �→ errcomp(N) (thick line) and N �→ errtheory(N) (thick line) for Ng = 1 and for Nd = 1 to
30 with N = (Nd + Ng)!/ (Nd! Ng !)

quantify more precisely the loss of the orthonormality property, we introduce the eigenvalue
problems [Corname(N)] xj = λname

j xj for name = {alg, recur, comp, theory} and for

N = Nd = 30. Fig. 2 displays the graphs of the functions j �→ λalg
j , j �→ λrecur

j , j �→
λcomp

j and j �→ λtheory
j = 1 corresponding to the theoretical values. It can be seen that

the level of the errors is the same for the two usual methods(thin lines with circles). For
these two usual methods, this figure shows that 6 eigenvalues have a value less that 10−6

instead of 1. For the second case (Ng = 5 and Nd = 10), the computation has been carried
out with ν = 105 independent realizations. We also have verified that, for N = (Nd +
Ng)!/ (Nd! Ng!) = 3, 003, the estimations of quantities [Coralg(N)], [Correcur(N)] and
[Corcomp(N)] shown in the figures are converged with respect to ν. Fig. 3 displays the
graphs of the functions N �→ erralg(N), N �→ errrecur(N), N �→ errcomp(N) and N �→
errtheory(N) = 0 corresponding to the theoretical values. It can be seen that the level of
the errors is not any more the same for the two usual methods represented by the thin lines
with circles and squares. For N = 56 (Ng = 5, Nd = 3), N = 792 (Ng = 5, Nd = 7)
and N = 3, 003 (Ng = 5, Nd = 10), the errors are about 365%, 299% and 351% for
the computational recurrence formula, and the errors are about 5.32%, 156% and 669% for
the algebraic explicit representation. Consequently, the loss of the orthonormality property is
very important for the usual methods (thin line with circles and squares) while there is no error
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with the proposed new method (thick line) for which the computed error is 1.2 × 10 −14 for
N = 3, 003 (Ng = 5, Nd = 10). The new method coincides with the theoretical value which
is zero (thick line). Similarly to the first case, in order to quantify more precisely the loss
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FIG. 5.3. Graph of the error functions N �→ erralg(N) (thin line with circles), N �→ errrecur(N) (thin
line with circles), N �→ errcomp(N) (thick line) and N �→ errtheory(N) (thick line) for Ng = 5 and for Nd = 1
to 10 with N = (Nd + Ng)!/ (Nd! Ng!)

of the orthonormality property, we introduce the eigenvalue problems [Cor name(N)] xj =
λname

j xj for name = {alg, recur, comp, theory} and for N = 3, 003 (Ng = 5, Nd =
10). Fig. 4 displays the graphs of the functions j �→ λalg

j , j �→ λrecur
j , j �→ λcomp

j and

j �→ λtheory
j = 1 corresponding to the theoretical values. It can be seen that the level of the

errors is not any more the same for the two usual methods(thin line and medium thick line).
For these two usual methods, this figure shows that 2, 251 eigenvalues have a value less that
2× 10−13 instead of 1 for the computational recurrence formula and 1, 128 eigenvalues have
a value less that 10−1 instead of 1 for the algebraic explicit representation.
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j (thin line with circles), j �→ λcomp
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line) and j �→ λtheory
j = 1 (thick line) corresponding to the theoretical values (for Ng = 5 and for Nd = 10)

6. Additional comments about the proposed method. It should be noted that the pro-
posed method allows the numerical calculation of realizations of a given polynomial chaos
expansion in high dimension and for an arbitrary measure to be effectively performed. For
such a case, the use of the algebraic explicit representation or the use of a recurrence relation
to compute the realizations with high polynomial degrees, induces an important numerical
noise and the orthogonality property is lost. For this case of the high dimension, there is in
fact no alternative concerning the choice between the proposed method and the two usual
methods. The proposed method has not been developed to replace the usual methods when
there are available but proposes a new way to solve the cases for which the usual methods are
not available. Consequently, the computational cost introduced by the proposed method with
respect to the computational cost induced by the usual methods is not a criterium to evaluate
the efficiency of the proposed method. Nevertheless, the computational cost induced by the
proposed method is small enough with respect to the others computational costs induced by
stochastic modeling in high dimension. For instance, for N g = 3 and Nd = 20 yielding
N = 1, 770 and for ν = 2, 000, the total CPU time is 110 seconds using 1 processor; for
Ng = 4 and Nd = 20 yielding N = 10, 626 and for ν = 11, 000, the total CPU time is 4,800
seconds using 1 processor; finally, for Ng = 5 and Nd = 20 yielding N = 53, 130 and for
ν = 60, 000, the total CPU time is 6,600 minutes using 1 processor. It should be noted that the
realizations can be computed as an initial step and can be used at any time of the computation.

7. Conclusion. This paper proposed a new methodology to compute a large number
of independent realizations of a polynomial chaos expansion with respect to an arbitrary
measure for the high dimension case and in preserving the orthogonality properties. Such a
new tool is necessary to develop stochastic modeling in high dimension. For instance, the
high dimension is required to construct the stochastic models of microstructures made up of
complex materials and more generally, in order to construct stochastic multi-scale models
of complex mechanical systems. Nowadays, this PCE range is perfectly attainable for many
engineering applications. With the method proposed, the orthogonality properties are exactly
satisfied for any value of the order of the polynomial chaos expansion. So, the convergence
of polynomial chaos expansion can be analyzed. For the high dimension cases, it is proven
that the computational recurrence formula and the algebraic explicit representation fail while
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the new method proposed does not fail.
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[49] G. STEFANOU, A. NOUY, A. CLÉMENT, Identification of random shapes from images through polynomial
chaos expansion of random level set functions, International Journal for Numerical Methods in Engineer-
ing, 79(2) (2009), pp. 127–155.

[50] J.B. WANG, N. ZABARAS, A Bayesian inference approach to the inverse heat conduction problem, Interna-
tional Journal of Heat and Mass Transfer, 47(17-18) (2004), pp. 3927–3941.

[51] J.B. WANG, N. ZABARAS, Hierarchical Bayesian models for inverse problems in heat conduction, Inverse
Problems, 21(1) (2005), pp. 183–206.

[52] N. WIENER, The homogeneous chaos, Amer. J. Math. 60 (1938), pp. 897–936.
[53] X.F. XU, A multiscale stochastic finite element method on elliptic problems involving uncertainties, Computer



12 CHRISTIAN SOIZE AND CHRISTOPHE DESCELIERS

Methods in Applied Mechanics and Engineering, 196(25-28) (2007), pp. 2723–2736.
[54] N. ZABARAS, B. GANAPATHYSUBRAMANIAN, A scalable framework for the solution of stochastic inverse

problems using a sparse grid collocation approach, Journal of Computational Physics, 227(9) (2008),
pp. 4697–4735.


