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Abstract This work proposes a strategy for the robust
optimization of the nonlinear dynamics of a drill-string,
which is a structure that rotates and digs into the rock
to search for oil. The nonparametric probabilistic ap-
proach is employed to model the uncertainties of the
structure as well as the uncertainties of the bit-rock in-
teraction model. This paper is particularly concerned
with the robust optimization of the rate of penetration
of the column, i.e., we aim to maximize the mathe-
matical expectation of the mean rate of penetration,
respecting the integrity of the system. The variables of
the optimization problem are the rotational speed at
the top and the initial reaction force at the bit; they
are considered deterministic. The goal is to find the
set of variables that maximizes the expected mean rate
of penetration, respecting, vibration limits, stress limit
and fatigue limit of the dynamical system.
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1 Introduction

In a drilling operation, a drill-string is used to dig into
the rock in search of oil. This process induces a com-
plex dynamic response of the column (drill-string) that
should be controlled to avoid accidents [1]. In addition,
a drill-string robust model should take into account un-
certainties, which play an important role in this prob-
lem. There are still many challenges involving the com-
plete understanding of the nonlinear dynamics of a drill-
string and the high cost of a drill-string failure justifies
the interest in developing better numerical models. It
should be noted that there are few works dealing with
the stochastic nonlinear dynamics of a drill-string (see,
[2,3]) and, at the best of the authors knowledge, this is
the first time that a robust optimization of the dynam-
ics of a drill-string is investigated.

The aim of this paper is to propose an optimiza-
tion procedure for the nonlinear dynamics of a drill-
string taken into account the uncertainties inherent in
the problem. An optimization procedure that considers
uncertainties is called robust optimization and its ap-
plication to dynamical systems is quite recent [4–8]. In
a drilling operation, the goal is to drill as fast as possi-
ble preserving the integrity of the system, i.e., avoiding
failures. In the optimization strategy proposed, the ob-
jective function is the mean rate of penetration, and the
constraint of the problem is its integrity limits. For the
integrity limits of the structure, we use the Von Mises
stress, the damage due to fatigue and a stick-slip sta-
bility factor. Fatigue is an important factor of failure in
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a drilling process [1,9]. The idea of this paper is to con-
sider fatigue as a constraint to the optimization analysis
without taking into account all the details (for fatigue
analysis of a drill-string, see [10,11]). Thus, the analysis
done here is more qualitative than quantitative.

There are many aspects that should be taken into
account in a drilling process concerning its dynamics
[12]. Some authors have proposed different models to
represent the dynamics of a drill-string as, for instance,
[13–21]. The model used in this paper takes into ac-
count the drive force at the top (as a constant rotational
speed), the support force at the top (known as weight-
on-hook) and the bit-rock interaction. We consider the
axial and torsional displacements of the column and the
discretization is done by means of the Finite Element
Method.

To model the uncertainties, the nonparametric prob-
abilistic approach [24,26,25,27] is used because (1) only
one parameter is necessary to control the uncertainty of
each operator of the dynamical system and (2) it takes
into account both system-parameter and model uncer-
tainties (which is important in this problem that uses
simplified physical models).

The three parameters that are usually employed to
control the drilling process are the rotational speed
of the rotary table, the reaction force at the bottom
(known as the weight-on-bit) and the fluid pump flow
(less important, therefore neglected in the analysis).
The value of the weight-on-bit fbit fluctuates; hence it
would be difficult to use fbit in the optimization proce-
dure. We propose then to use the initial reaction force
at the bit fc, which is used to calculate the initial pre-
stressed state. The drilling process is stopped after ev-
ery 10 meters of penetration to assemble another tube.
When the operation is going to re-start, we can choose
two parameters: the top speed and the static reaction
force at the bit fc (adjusting the supporting force at
the top). Then, the drilling process re-starts and the
value of the fbit (which was initially fc, when there was
no movement of the column) now fluctuates. Therefore,
the optimization variables used in the robust optimiza-
tion problem are the rotational speed at the top ωRPM

and the initial reaction force at the bit fc.

This paper is organized as follows. The determinis-
tic model is described in Section 2 and the probabilistic
model of uncertainties is presented in Section 3. In Sec-
tion 4 the robust optimization problem is presented,
stating the objective function and the constraints of
the problem. The numerical results are shown in Sec-
tion 5 and, finally, the concluding remarks are made in
Section 6.

2 Deterministic model

To derive the equations of motion, the extended Hamil-
ton Principle is applied. Defining the potential Π by

Π =
∫ t2

t1

(U − T − W )dt , (1)

where U is the potential strain energy, T is the kinetic
energy and W is the work done by the nonconservative
forces and any force not accounted for in the potential
energy. The first variation of Π must vanish:

δΠ =
∫ t2

t1

(δU − δT − δW )dt = 0 . (2)

In order to focus the attention on the robust opti-
mization problem (which is the objective of this paper),
a simple nonlinear dynamical model is introduced in ne-
glecting the lateral vibrations which are then assumed
to be sufficiently small.

2.1 Finite element discretization

The finite element model is constructed using two-node
elements with two degrees of freedom per node (axial
and torsional). The finite element approximation of the
displacement fields are then written as

u(ξ, t) = Nu(ξ)ue(t) , θx(ξ, t) = Nθx(ξ)ue(t) , (3)

where u is the axial displacement, θx is the rotation
about the x-axis, ξ = x/le is the element coordinate, N
are the shape function

Nu = [(1 − ξ) 0 ξ 0] ,

Nθx = [0 (1 − ξ) 0 ξ] ,
(4)

and

ue = [u1 θx1 u2 θx2]
T , (5)

where exponent T means transposition.
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2.2 Kinetic energy

The kinetic energy is written as

T =
1
2

∫ L

0

(
ρAu̇2 + ρIpθ̇

2
x

)
dx , (6)

where the time derivative (d/dt) is denoted by a super-
posed dot, ρ is the mass density, A is the cross sectional
area, Ip is the cross sectional polar moment of inertia
and L is the length of the column. The first variation
of the kinetic energy, after integrating by parts in time,
may be written as

δT = −
∫ L

0

(
ρAüδu + ρIpθ̈xδθx

)
dx , (7)

which yields the constant mass matrix [M ]. The ele-
ment mass matrix is written as:

[M ](e) =
∫ 1

0

[ρA(NT
u Nu + ρIp(NT

θx
Nθx)] ledξ . (8)

2.3 Strain energy

The strain energy is given by

U =
1
2

∫
V

εT S dV , (9)

where V is the domain of integration, ε = [εxx 2γxy

2γxz]T is the vector of the Green-Lagrange strain ten-
sor and S is the vector written in the Voigt notation
of the second Piola-Kirchhoff tensor. Substituting the
constitutive equation S = [D]ε and computing the first
variation of the strain energy yield

δU =
∫

V

δεT

⎡
⎣E 0 0

0 G 0
0 0 G

⎤
⎦ ε dV . (10)

The position X of the reference configuration, the posi-
tion x of the deformed configuration, and the displace-
ment field p, all written in the inertial frame of refer-
ence, are such that

p =

⎡
⎣ux

uy

uz

⎤
⎦ = x − X =

⎡
⎣ x + u

ycos(θx) − zsin(θx)
ysin(θx) + zcos(θx)

⎤
⎦ −

⎡
⎣x

y

z

⎤
⎦

(11)

then,

⎡
⎣ux

uy

uz

⎤
⎦ =

⎡
⎣ u

ycos(θx) − zsin(θx) − y

ysin(θx) + zcos(θx) − z

⎤
⎦ . (12)

Figure 1 shows that uy and uz are related to the tor-
sion of the drill-string; the lateral displacements of the
neutral line of the column are zero (v = w = 0).

Fig. 1 Displacement field.

Finite strains are considered, thus the components
of the Green-Lagrange strain tensor are written as

εxx = ux,x +
1
2

(
u2

x,x + u2
y,x + u2

z,x

)
,

γxy =
1
2

(uy,x + ux,y + ux,xux,y + uy,xuy,y + uz,xuz,y) ,

γxz =
1
2

(uz,x + ux,z + ux,xux,z + uy,xuy,z + uz,xuz,z) ,

(13)

where ux,y = ∂ux/∂y and so on. Eq. (10) may be writ-
ten as

δU =
∫

V

(E δεxx εxx+4Gδγxy γxy+4Gδγxz γxz)dV . (14)

The linear terms yield the stiffness matrix [K] and
the higher order terms yield the geometric stiffness ma-
trix [Kg]. The element stiffness matrix is written as

[K](e) =
∫ 1

0

[
EA

le

(
N′T

u N′
u

)
+

GIp

le

(
N′T

θx
N′

θx

)]
dξ ,

(15)

where the space derivative (d/dξ) is denoted by (′). The
element geometric stiffness matrix is written as
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[Kg](e) =
∫ 1

0

[(
N′T

u N′
u

) (
3EAu′ + 1.5EAu′2+

+0.5EIpθ
′2
x

)
+

(
N′T

u N′
θx

)
(EIpθ

′
x + EIpθ

′
xu′)+

+
(
N′T

θx
N′

u

)
(EIpθ

′
x + EIpθ

′
xu′) +

(
N′T

θx
N′

θx

)
(EIpu

′+

+0.5EIpu
′2 + 1.5EIp4θ

′2
x + 3EI22θ

′2
x

)] 1
le

dξ ,

(16)

where u′ = N′
uue/le, θ′x = N′

θx
ue/le, I22 =

∫
A(y2z2)dA

and Ip4 =
∫

A
(y4 +z4)dA. It should be noted that u and

θx are the axial displacement and the angular rotation
and consequently, there are no terms related to trans-
verse vibration in Eq. (16).

2.4 Bit-rock interaction model

The model used in this work for the bit-rock interaction
is the one developed in [30], which can be written as

u̇bit = −a1 − a2fbit + a3ωbit ,

tbit = − u̇bit

ωbit
a4 − a5 , (17)

where fbit is the axial force (also called weight-on-bit),
tbit is the torque about the x-axis, u̇bit is the axial speed
of the bit (rate of penetration) and ωbit is the rotational
speed of the bit. The positive constants a1, . . . , a5 de-
pend on the bit and rock characteristics as well as on
the average weight-on-bit. Equation (17) is rewritten as

fbit = − u̇bit

a2Z(ωbit)2
+

a3ωbit

a2Z(ωbit)
− a1

a2
,

tbit = − u̇bita4Z(ωbit)2

ωbit
− a5Z(ωbit) ,

(18)

where e is the regularization parameter and Z is the
regularization function.

2.5 Gravity

The work done by gravity is written as

W =
∫ L

0

ρgAu dx , (19)

where g is the gravity acceleration. The variation of
Eq. (19) gives

δW =
∫ L

0

ρgA δu dx , (20)

and the discretization by means of the finite element
method yields the force element vector

f (e)
g =

∫ 1

0

NT
u ρgA ledξ . (21)

2.6 Initial prestressed configuration

Before starting the rotation about the x-axis, the col-
umn is put down through the channel until it reaches
the soil. At this point, the forces acting on the structure
are: the reaction force at the bit, the weight of the col-
umn and the supporting force at the top. In this equilib-
rium configuration, the column is prestressed (see Fig.
2). Above the neutral point the structure is tensioned
and below is compressed. As it can be seen in Fig. 2,
if the reaction force increases, the neutral point moves
up, increasing the length of the compressed part.

Fig. 2 Initial prestressed configuration of the system.

To calculate the initial prestressed state, the column is
clamped at the top and consequently,

uS = [K]−1(fg + fc) . (22)

where fg is the force induced by the gravity, fc is the
vector related to the reaction force at the bit. Note that
fc = [0 0 . . .−fc 0]T in which fc is the initial reaction
force at the bit.
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To verify if an element is compressed or tensioned,
the element axial displacements of uS is checked. If
(u2 − u1) > 0 the element is tensioned, if u2 = u1

there is no stress and if (u2 − u1) < 0 the element is
compressed.

2.7 Final computational dynamical model

Small vibrations about the initial prestressed configura-
tion defined by uS are assumed. Therefore, the geomet-
ric stiffness matrix [Kg(uS)] is constant. Introducing
u = u − uS, the computational dynamical model can
then be written as

[M ]ü(t) + [C]u̇(t) + ([K] + [Kg(uS)])u(t) =

= g(t) + fbit(u̇) ,

u(0) = u0 , u̇(0) = v0 ,

(23)

in which [M ] and [K] are the mass and stiffness matri-
ces. The proportional damping matrix [C] = α [M ] +
β [K] (α and β are positive constants) is added a pos-
teriori in the computational model. The constant α is
strictly positive. This yields that the damping matrix
is positive definite although there are two rigid body
modes. Such a damping model is chosen because it is
assumed that there is an additional external dissipa-
tions when the dynamical system move in the two rigid
body modes. The initial conditions are defined by u0

and v0. The force vector related to the bit-rock interac-
tion is fbit and the imposed rotation at the top (dirichlet
boundary condition) is expressed by g.

2.8 Reduced computational model

To speed up the numerical simulations, the computa-
tional model is reduced in projecting the nonlinear dy-
namical equation on a subspace spanned by an appro-
priated basis. In the present paper, the basis used is
made up of suitable normal modes. The normal modes
are constructed from the following generalized eigen-
value problem

([K] + [Kg(uS)])φ = ω2[M ]φ , (24)

where φi is the i-th normal mode and ωi is the corre-
sponding natural frequency. The reduced model is writ-
ten as

u(t) = [Φ]q(t) ,
[Mr]q̈(t)+[Cr]q̇(t)+[Kr]q(t) = [Φ]T (g(t)+fbit([Φ] q̇)) ,

q(0) = q0 , q̇(0) = v0 ,
(25)

in which q0 and v0 are the initial conditions and where
[Φ] is the (m × n) real matrix composed by n normal
modes and

[Mr] = [Φ]T [M ][Φ], [Cr] = [Φ]T [C][Φ] ,

[Kr] = [Φ]T ([K] + [Kg(uS)])[Φ] (26)

are the reduced matrices.

3 Probabilistic model of uncertainties

The nonparametric probabilistic approach is used to
model the uncertainties in the computational model.
First, the probabilistic model for the structure is pre-
sented and then the probabilistic model for the bit-rock
interaction model is developed. Note that a probabilis-
tic model that takes into account both parameter and
model uncertainties is necessary to better represent the
uncertainties of the problem analyzed.

3.1 Model uncertainties for the structure

The physical theory used to model the mechanical sys-
tem (for instance, beam theory for the column) is a sim-
plification of the real system. Therefore, it is necessary
to take into account model uncertainties induced by
the model errors. One way to take into account model
uncertainties is to use the nonparametric probabilistic
approach [24,25,27] for which applications with exper-
imental validation can be found in [31–33].

To construct the random reduced matrices, the en-
sembles SE+0 and SE+ of random matrices defined in
[25] are used. The first step is to decompose the matri-
ces of the deterministic model applying the Cholesky
decomposition

[Mr] = [LM ]T [LM ],
[Cr ] = [LC ]T [LC ],
[Kr] = [LK ]T [LK ].

(27)

Matrices [Mr], [Cr], [Kr], [LM ] and [LC ] have di-
mension n × n. The matrix [LK ] has dimension p × n

in which p is equal to (n − μrig) where μrig is the di-
mension of the null space of [Kr] (note that μrig = 2
for the problem considered). The nonparametric proba-
bilistic approach consists in substituting the matrices of
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the reduced deterministic model by the following three
independent random matrices

[Mr] = [LM ]T [GM ][LM ],
[Cr] = [LC ]T [GC ][LC ],
[Kr] = [LK ]T [GK ][LK ],

(28)

in which [GM ], [GC ] and [GK ] are random matrices
belonging to the ensemble SE+ defined in [25]. Matrices
[GM ] and [GC ] have dimension n×n and matrix [GK ]
has dimension p × p. The probability distribution of
[GA] (for A ∈ {M, C, K}) is completely defined and
the generator of its independent realizations is given in
Appendix A.

The level of statistical fluctuations of random ma-
trix [GA] is controlled by the dispersion parameter δA

defined by

δA =
{

1
p
E{||[GA] − [I]||2F }

} 1
2

, (29)

where E{·} denotes the mathematical expectation and
||[A]||F = (trace{[A][A]T })1/2 denotes the Frobenius
norm. Consequently, the level of uncertainties for quan-
tity A is controlled by dispersion parameter δA.

3.2 Model uncertainties for the bit-rock interaction

The probabilistic model introduced in [3] to take into
account uncertainties in the bit-rock interaction forces
is briefly summarized. Again, the nonparametric prob-
abilistic approach is used to model the uncertainties.
It consists in modeling the operator of the constitutive
bit-rock interaction equation by a random operator. Let
the generalized forces at the bit fbit(ẋ(t)) and ẋ(t) be
such that

fbit(ẋ(t)) =
(

fbit(ẋ(t))
tbit(ẋ(t))

)
and ẋ(t) =

(
u̇bit(t)
ωbit(t)

)
.

(30)

The deterministic constitutive equations of the bit-rock
interaction can be written as

fbit(ẋ(t)) = −[Ab(ẋ(t))]ẋ(t) , (31)

in which

[Ab(ẋ(t))]11 =
a1

a2u̇bit(t)
+

1
a2Z(ωbit(t))2

− a3ωbit(t)
a2Z(ωbit(t))u̇bit(t)

,

[Ab(ẋ(t))]22 =
a4Z(ωbit(t))2u̇bit(t)

ωbit(t)2
+

a5Z(ωbit(t))
ωbit(t)

,

[Ab(ẋ(t))]12 = [Ab(ẋ(t))]21 = 0 .

(32)

For all ẋ(t), [Ab(ẋ(t))] is positive-definite. This matrix
is substituted by a random matrix [Ab(ẋ(t))] with val-
ues in the set M

+
2 (R) of all the positive-definite sym-

metric (2×2) real matrices. Thus, the constitutive equa-
tion defined by Eq. (31) becomes a random constitutive
equation which can be written as

Fbit(ẋ(t)) = −[Ab(ẋ(t))]ẋ(t) . (33)

The probability distribution of random variable [Ab(ẋ(t))]
is constructed for all fixed vector ẋ(t). Using the Cholesky
decomposition, the mean value of [Ab(ẋ(t))] is written
as

[Ab(ẋ(t))] = [Lb(ẋ(t))]T [Lb(ẋ(t))] . (34)

The random matrix [Ab(ẋ(t))] is defined by

[Ab(ẋ(t))] = [Lb(ẋ(t))]T [Gb][Lb(ẋ(t))] , (35)

in which [Gb] belongs to the same ensemble that for
[GA] defined in the last subsection for which the dis-
persion parameter is defined by Eq. (29). It should be
noted that, in the construction proposed, random ma-
trix [Gb] neither depends on ẋ nor on t.

3.3 Stochastic reduced computational model

The deterministic reduced computational model defined
by Eq. (25) is then replaced by the following stochastic
reduced computational model

U(t) = [Φ]Q(t) ,
[Mr]Q̈(t) + [Cr]Q̇(t) + [Kr]Q(t) =

= [Φ]T {g(t) + Fbit([Φ] Q̇(t))} ,
Q(0) = q0 , Q̇(0) = v0 ,

(36)

where [Mr], [Kr] and [Cr] are the random matrices
defined by Eq. (28), Q is the stochastic process of the
generalized coordinates, U is the stochastic process of
the response of the system and Fbit is the random force
related to the bit-rock interaction probabilistic model
defined by Eq. (33).
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4 Optimization problem

In this section, the objective function of the optimiza-
tion problem is defined, the constraints related to the
integrity limits of the mechanical system are presented
and the robust optimization is defined.

4.1 Objective function

The goal of the optimization problem is to find the set
of values s = (ωRPM, fc) that maximizes the expected
mean rate of penetration (mean in time), respecting the
integrity limits of the mechanical system. The objective
function is defined by

J(s) = E {R(s)} , (37)

where J is the mathematical expectation of the random
mean rate R of penetration which is such that

R(s) =
1

t1 − t0

∫ t1

t0

U̇bit(s)dt , (38)

in which (t0, t1) is the time interval analyzed and U̇bit

is the random rate of penetration. The constraints re-
lated to the integrity limits of the mechanical system
are discussed in the next section.

4.2 Constraints of the problem (integrity limits)

Three constraints are proposed to represent the integrity
of the mechanical system. The first one is the maximum
stress value that the structure may resist. If the struc-
ture is submitted to a stress greater than the maximum
admissible stress, it will fail. The second constraint is
the damage cumulated by fatigue. If the damage is
greater than one, a crack will occur, what is not de-
sired. The third constraint is a stick-slip factor, since
we want to avoid torsional instability and stick-slip.

The first constraint is the maximum Von Mises stress
σ (see Appendix B) that must be below the ultimate
stress σmax of the material,

max
x,t

{σ(s,x, t)} ≤ σmax , (39)

where x = (x, y, z) belongs to the domain Ωc of the
problem (the column). For the stochastic problem this
constraint must be true with probability (1 − Prisk).

Prob
{

max
x,t

{S(s,x, t)} ≤ σmax

}
≥ 1 − Prisk , (40)

where S is the random variable modeling the stress σ

in presence of uncertainties in the computational model
and Prisk represents the risk we are willing to take. The
more conservative we are, the lower we set Prisk. The
second constraint is the damage cumulated due to fa-
tigue d that must be below a given limit dmax.

max
x

{d(s,x)} ≤ dmax , (41)

where d is the cumulated damage related to pr meters
of penetration. The damage d̃ is computed for (t0, t1)
(see Appendix C) and then, this damage is extrapolated
to consider pr meters of penetration,

d = d̃

(
pr

pd

)
, (42)

where pd is how much it was drilled in (t0, t1). For the
stochastic problem this constraint must be true with
probability (1 − Prisk).

Prob
{
max

x
{D(s,x)} ≤ dmax

}
≥ 1 − Prisk . (43)

where D(s,x) is the random variable modeling d(s,x).
Sometimes, in the field, engineers use a constraint re-
lated to the stick-slip instability. So, finally, the third
constraint is the stick-slip stability factor ss that must
be below a given limit ssmax,

ss(s) ≤ ssmax . (44)

Factor ss is defined by

ss(s) =
ωbmax(s) − ωbmin(s)
ωbmax(s) + ωbmin(s)

. (45)

where ωbmax is the maximum rotational speed of the
bit and ωbmin is the minimum rotational speed of the
bit for a given time period (t0, t1):

ωbmin(s) = mint∈(t0,t1){ωbit(s, t)} ,

ωbmax(s) = maxt∈(t0,t1){ωbit(s, t)} .
(46)

where ωbit is the rotational speed of the bit. As the
amplitude of the torsional vibrations increases, ss in-
creases, augmenting the risk of stick-slip (when ωbit = 0
and then the bit slips). This type of oscillations must
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be avoided. For the stochastic problem this constraint
must be true with probability (1 − Prisk).

Prob {S(s) ≤ ssmax} ≥ 1 − Prisk , (47)

where S(s) is the random variable modeling ss(s).
In the present analysis, the lateral displacement of

the column is neglected. If lateral vibrations were taken
into account, a constraint to the radial displacement
r =

√
v2 + w2 should be considered in which v and w

would be the lateral displacements of the neutral line.
For example, the column should have radial displace-
ments below a given limit rmax, thus maxx,t{r(s,x, t)} ≤
rmax. For the stochastic problem, this constraint should
be true with probability (1−Prisk), hence we would have
Prob {maxx,t{R(s,x, t)} ≤ rmax} ≥ (1 − Prisk), where
R would be the random variable modeling r.

4.3 Robust optimization problem

The proposed robust optimization problem aims to max-
imize the expected mean rate of penetration of the drill-
string (see Section 4.1), respecting the integrity limits
of the mechanical system (see Section 4.2). It is written
as

soptm = arg max
s ∈ C

J(s) ,

s.t. Prob
{

max
j,t

{Sj(s, t)} ≤ σmax

}
≥ 1 − Prisk ,

Prob
{

max
j

{Dj(s)} ≤ dmax

}
≥ 1 − Prisk ,

Prob {S(s) ≤ ssmax} ≥ 1 − Prisk ,

(48)

where the admissible set C = {s = (ωRPM, fc) : ωmin ≤
ωRPM ≤ ωmax , fmin ≤ fc ≤ fmax}. The index j repre-
sents the points (xj , yj , zj) chosen for the analysis.

This robust optimization problem is not convex and
it does not exist any algorithm which allows the global
optimum to be surely reached with a finite number of
operations. For such an optimization problem, the ob-
jective is to improve a given initial solution with an ap-
propriate algorithm and the level of improvement got is
proportional to the CPU time spent. Several techniques
can be used such as random search algorithms [34] (for
instance, Latin hypercube sampling type), genetic al-
gorithms [35], local search with random restart points,
etc.). Presently, since the dimension of the parameter
space is small (2 parameters), a trial approach (which
surely allows the initial solution to be improved) is used

and is very efficient. The algorithm is then the follow-
ing. A grid is generated in the parameter space and the
stochastic problem is solved for each point of the grid.
The points of the grid that do not satisfy the constraints
of the optimization problem are eliminated. Then, the
optimal point is chosen in the set of all the retained
points. The identified region containing this first opti-
mum point can be reanalyzed introducing a new refine
grid around this point to improve the solution.

5 Application of the optimization problem

The data (geometry, material, etc.) used in the appli-
cation are representative values of a drilling system, see
Appendix D. The integrity limits are given by σmax =
650 MPa, dmax = 1 and ssmax = 1.20. The damage
d and the maximum stress value σ are calculated in
the critical region of the drill-pipe, close to the drill-
collar: x = 1400 m and y = z = r0 cos (π/4) (where r0

is the outer radius of the drill-pipe). The damage d is
calculated using pr = 2000 m, which means that we al-
low damage equals to one after 2000 m of penetration.
The nonlinear dynamical system analyzed is sensitive
to model uncertainties [3], therefore, the probabilistic
model is fixed with δG = 0.005 and δM = δC = δK =
0.001. The drill-string is discretized with 120 finite el-
ements. For the construction of the reduced dynamical
model, 7 torsional modes, 4 axial modes and also the
two rigid body modes of the structure (axial and tor-
sional) are used. For the time integration procedure, the
implicit Newmark integration scheme has been imple-
mented with a predictor and a fix point procedure to
equilibrate the system response at each time step. All
the numerical results presented below correspond to the
stationary response for which the transient part of the
response induced by the initial conditions has vanished,
(t0, t1) = (60, 100) s.

5.1 Deterministic response

Some deterministic responses are presented in this Sec-
tion. Figure 3(a) shows the axial displacement of the
bit and Fig. 3(b) shows the rate of penetration for
ωRPM=100 RPM and fc=100 kN. Figure 4 shows the
rotational speed of the bit for fc=100 kN, compar-
ing ωRPM=80 RPM, ωRPM=120 RPM and ωRPM=450
RPM. No stick phase is observed (when ωbit=0), but
there are significant oscillations on the rotational speed
of the bit (for ωRPM=80 and 120 RPM) that can be
dangerous for the system, since it might cause stick-
slip and crack initiation due to fatigue. The dynamic
response of the bit depends on the bit-rock interaction
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Fig. 3 (a) axial displacement of the bit and (b) rate of penetra-
tion, for ωRPM=100 RPM and fc=100 kN.

as well as on the characteristics of the column (length,
cross sectional area, material, etc). It should be noticed
that for high top speeds (for example, ωRPM=450 RPM,
see Fig. 4), the torque at the bit is almost constant and
the oscillations of the rotational speed of the bit are
small. However, as a consequence, for high top speeds
the lateral vibrations (which are not considered in the
analyzed model) will increase, what augment the risk
of lateral instability and impacts between the column
and the borehole. Figure 5 shows the force at the bit for
ωRPM=100 RPM, comparing fc=100 kN with fc=105
kN. Note that the force at the bit fluctuates about the
value of fc. The last result presented is the Von Misses
stress for fc=100 kN and ωRPM=100 RPM (see Fig. 6).

In the next two sections the deterministic and the
stochastic responses are going to be used to solve the
deterministic and the robust optimization problem, re-
spectively.
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Fig. 4 Rotational speed of the bit for fc=100 kN, comparing
ωRPM=80 RPM, ωRPM=120 RPM and ωRPM=450 RPM.
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5.2 Results of the deterministic optimization problem

In this section, the deterministic optimization problem
is analyzed. For the deterministic problem, Eq. (48) is
written as

soptm = arg max
s ∈ C

Jdet(s) ,

s.t. max
j,t

{σj(s, t)} ≤ σmax ,

max
j

{dj(s)} ≤ dmax ,

ss(s) ≤ ssmax ,

(49)
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Fig. 6 Von Misses stress for ωRPM=100 RPM and fc=100 kN.
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where the admissible set C = {s = (ωRPM, fc) : 80RPM ≤
ωRPM ≤ 120RPM , 90kN ≤ fc ≤ 110kN} and

Jdet(s) =
1

t1 − t0

∫ t1

t0

u̇bit(s) dt , (50)

where u̇bit is the deterministic rate of penetration.
Figure 7 shows the variation of Jdet with ωRPM for

some values of fc which are 90, 95, 100, 105 and 110
kN. When ωRPM and fc increase, Jdet also increases.
Of course, there are side effects: (1) the neutral point
will move upwards, (2) the column will be more flexible
and (3) the dynamical response is more likely to be
unstable.

To proceed with the optimization problem, we elim-
inate the points (ωRPM, fc) that do not satisfy the in-
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Fig. 8 Rotational speed at the top versus S90% for different fc

(90, 95, 100, 105 and 110 kN). The dashed line shows the limit
ssmax = 1.20.
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Fig. 9 Rotational speed at the top versus D90% for different fc

(90, 95, 100, 105 and 110 kN). The dashed line shows the limit
dmax = 1.

tegrity limits of the system. For the points simulated,
the maximum stress is always below the established
limit of σmax = 650 MPa. Figure 8 shows ωRPM ver-
sus the value of the stick-slip factor ss and Fig. 9 shows
ωRPM versus the damage cumulated due to fatigue d

for some values of fc. It can be seen that some points
present values greater than the established limits of
ssmax = 1.20 and dmax = 1.

The points that do not respect the integrity lim-
its of the system are eliminated. Figure 10 summa-
rizes the analysis. The points that are crossed are the
ones that do not respect the constraint limits and the
best point of the deterministic analysis is identified:



11

80 90 100 110 120

90

95

100

105

110

rotational speed at the top (RPM)

re
ac

tio
n 

fo
rc

e 
at

 th
e 

bi
t (

kN
)

Best point
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crossed points do not respect the integrity limits.

soptm = (ωRPM =120 RPM, fc =110 kN), which gives
Jdet

optm = 3.92 × 10−3 m/s ∼ 14.11 m/h.
In the next section, the results of the robust opti-

mization problem are presented. It will be seen that
the results are quite different from the ones presented
in this section. The robust analysis considers the 90%
percentile of the stick-slip factor, for instance. There-
fore, we expect more points to be eliminated in the
robust analysis, for example points (ωRPM =120 RPM,
fc =105 kN) and (ωRPM =120 RPM, fc =110 kN) (see
Fig. 8), because they are already bearing the limit in
the deterministic analysis.

5.3 Results of the robust optimization problem

Figure 11 shows the convergence of the stochastic anal-
ysis, where conv(ns) = 1

ns

∑ns

j=1

∫ t1
t0

||U(t, sj)||2dt (ns

is the number of Monte Carlo simulations).
Figure 12 shows some random realizations of the

rotational speed of the bit.
Figure 13 shows the variation of J with ωRPM for

some values of fc which are 90, 95, 100, 105 and 110 kN.
As in deterministic case, when ωRPM and fc increase,
J also increases, but the results are different.

To proceed with the optimization problem, we elim-
inate the points (ωRPM, fc) that do not satisfy the in-
tegrity limits of the system. The constraints are consid-
ered in the analysis with Prisk = 10%. For the points
simulated, the maximum stress is always below the es-
tablished limit of σmax = 650 MPa. Figure 14 shows
ωRPM versus the value of the stick-slip factor S90% for
some values of fc, where S90% is the 90% percentile of
random variable S. Figure 15 shows ωRPM versus the
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Fig. 12 Random rotation speed of the bit for ωRPM=100 RPM
and fc=100 kN.

damage cumulated due to fatigue D90%, where D90%
is the 90% percentile of random variable D. As in the
deterministic analysis, it can be seen that some points
present values greater than the established limits, but
now there are more points in this situation.

It can be seen (Figs. 14 and 15) that the constraints
are not respected for high values of ωRPM and fc. Note
that we would like to increase ωRPM and fc to have
a higher J , but to respect the integrity limits these
parameters are constrained.

The points that do not respect the integrity limits
of the system are eliminated. Figure 16 summarizes the
analysis. The points that are crossed are the ones that
do not respect the constraint limits and the best point
of the robust analysis is identified: soptm = (ωRPM =110
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Fig. 14 Rotational speed at the top versus S90% for different fc

(90, 95, 100, 105 and 110 kN). The dashed line shows the limit
ssmax = 1.20.

RPM, fc =105 kN), which gives Joptm = 3.54 × 10−3

m/s ∼ 12.76 m/h.
It can be concluded that the robust optimization

generates different results comparing to the determin-
istic optimization. If uncertainties are important in the
dynamical analysis, we should always proceed with the
robust optimization problem, instead of the determin-
istic optimization problem.

6 Concluding remarks

This paper has proposed a methodology for the robust
optimization of the nonlinear dynamics of a drill-string
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Fig. 15 Rotational speed at the top versus D90% for different fc
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dmax = 1.
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Fig. 16 Graphic showing the best point (ωRPM, fc) (circle).

system. Applications of robust optimization in dynam-
ical systems are quite recent. This is the first time a ro-
bust optimization problem is proposed and investigated
for the nonlinear dynamics of a drill-string system. It
has been shown that the robust analysis gives differ-
ent results comparing to the deterministic optimization
analysis. The aim of the proposed optimization prob-
lem is to maximize the expected mean rate of penetra-
tion of the drill-string, respecting the integrity limits.
Three constraints have been proposed to represent the
integrity of the system: (1) the ultimate stress of the
material, (2) the damage cumulated by fatigue (3) a
stick-slip factor.

Uncertainties are modeled using the nonparametric
probabilistic approach, which takes into account both
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system-parameter and model uncertainties. This fea-
ture of the probabilistic approach used is important
because a simplified mechanical model is employed in
the analysis. The mass, damping and stiffness of the
system, as well as the bit-rock interaction forces are
considered uncertain.

The parameters of the optimization problem, which
are the initial reaction force at the bit and the rotational
speed at the top, have been considered deterministic.
The optimization problem is solved for two cases: the
computational model does not have any uncertainties
and the computational model has uncertainties (robust
optimization). For these two cases, the best combina-
tion of the two parameters has been found and shows
that the robust optimization must be used instead of a
non robust optimization.

A Algorithm for the realizations of the random
germ [GA]

The p×p random matrix [GA] can be written as [GA] = [LA]T [LA]
in which [LA] is an upper triangular real random matrix such
that:

1. The random variables {[LA]jj′ , j ≤ j′} are independents.
2. For j < j′ the real-valued random variable [LA]jj′ = σVjj′ ,

in which σ = δ(p + 1)−1/2 and Vjj′ is a real-valued gaussian
random variable with zero mean and unit variance.

3. For j = j′ the real-valued random variable [LA]jj = σ(2Vj )1/2.
In which Vj is a real-valued gamma random variable whose
probability density function is written as

pVj
(v) = 1R+ (v) 1

Γ
“

p+1
2δ2 + 1−j

2

” v
p+1
2δ2 − 1+j

2 e−v ,

B Stress calculation

The numerical simulations give the axial displacement u and the
section area rotation θx. With Eqs. (12) and (13), the displace-
ment field and the strain are computed. Finally, the stress com-
ponents are calculated doing

σxx = εxxE ,

τxy = G(2γxy) ,

τxz = G(2γxz) .

(51)

The Von Mises stress is computed as:

σ(t) =
q

(kf σxx(t))2 + 3((kf τxy(t))2 + (kf τxz(t))2)) , (52)

where kf is the stress concentration factor for fatigue. The value
of kf might vary a lot depending on several factors, such as the
type of joint, tip radius, etc, [9]. In this work the value used is
kf = 3.

C Damage calculation

In this section we explain how the damage caused by fatigue is
calculated. We use the Goodman-Wohler-Miner model.
(1) Goodman to calculate the equivalent alternate stress (σeq)
that causes a crack initiation.

σa

σeq
+

σm

σmax
= 1 −→ σeq =

σa

1 − σm

σmax

(53)

where σmax is the ultimate stress limit of the material, σa is the
alternate Von Mises stress and σm is the mean Von Mises stress,
calculated as:

σa =
max {σ} − min {σ}

2
, σm =

max {σ} + min {σ}
2

. (54)

(2) Wohler (or σeqN) to model the relationship between the stress
(σeq) and the number of cycles (N) that cause a crack initiation.

Nσb
eq = c , (55)

where b and c are two positive constants that are obtained fitting
experiments. We use c = 4.16 × 1011 and b = 3, [36]. Note that
the stress value is written in MPa (b and c will have different
values for different units).
(3) Miner to calculate the damage cumulation.

d̃ =
n

N
=

n

c
(σeq )b . (56)

where n is the number of cycles that the structure has been sub-
jected to.

D Data used in the simulation

Ldp = 1400 m (length of the drill pipe),
Ldc = 200 m (length of the drill collar),
Di = 0.095 m (inside diameter of the column),
Dodp = 0.12 m (outside diameter of the drill pipe),
Dodc = 0.15 m (outside diameter of the drill collar),
E = 210 GPa (elasticity modulus of the drill string material),
ρ = 7850 kg/m3 (density of the drill string material),
ν = 0.29 (poisson coefficient of the drill string material),
g = 9.81 m/s2 (gravity acceleration),
a1 = 3.429 × 10−3 m/s, (constants of the bit-rock interaction
model)
a2 = 5.672 × 10−8 m/(N.s),
a3 = 1.374 × 10−4 m/rd,
a4 = 9.537 × 106 N.rd,
a5 = 1.475 × 103 N.m,
e = 2 rd/s (regularization parameter).
The damping matrix is constructed using [C] = α[M ] + β([K] +
[Kg(uS)]) with α = 0.1 and β = 0.00008.
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