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Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model
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This work proposes a strategy for the robust optimization of the nonlinear dynamics of a drill-string, which is a structure that rotates and digs into the rock to search for oil. The nonparametric probabilistic approach is employed to model the uncertainties of the structure as well as the uncertainties of the bit-rock interaction model. This paper is particularly concerned with the robust optimization of the rate of penetration of the column, i.e., we aim to maximize the mathematical expectation of the mean rate of penetration, respecting the integrity of the system. The variables of the optimization problem are the rotational speed at the top and the initial reaction force at the bit; they are considered deterministic. The goal is to find the set of variables that maximizes the expected mean rate of penetration, respecting, vibration limits, stress limit and fatigue limit of the dynamical system.

Introduction

In a drilling operation, a drill-string is used to dig into the rock in search of oil. This process induces a complex dynamic response of the column (drill-string) that should be controlled to avoid accidents [START_REF] Macdonald | Failure analysis of drillstrings[END_REF]. In addition, a drill-string robust model should take into account uncertainties, which play an important role in this problem. There are still many challenges involving the complete understanding of the nonlinear dynamics of a drillstring and the high cost of a drill-string failure justifies the interest in developing better numerical models. It should be noted that there are few works dealing with the stochastic nonlinear dynamics of a drill-string (see, [START_REF] Spanos | Nonlinear stochastic drill-string vibrations[END_REF][START_REF] Ritto | Non-linear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF]) and, at the best of the authors knowledge, this is the first time that a robust optimization of the dynamics of a drill-string is investigated.

The aim of this paper is to propose an optimization procedure for the nonlinear dynamics of a drillstring taken into account the uncertainties inherent in the problem. An optimization procedure that considers uncertainties is called robust optimization and its application to dynamical systems is quite recent [START_REF] Ben-Tal | Robust optimizationmethodology and applications[END_REF][START_REF] Zang | A review of robust optimal design and its application in dynamics[END_REF][START_REF] Capiez-Lernout | Robust design optimization in computational mechanics[END_REF][START_REF] Soize | Robust updating of uncertain computational models using experimental modal analysis[END_REF][START_REF] Guedri | Robust tools for prediction of variability and optimization in structural dynamics[END_REF]. In a drilling operation, the goal is to drill as fast as possible preserving the integrity of the system, i.e., avoiding failures. In the optimization strategy proposed, the objective function is the mean rate of penetration, and the constraint of the problem is its integrity limits. For the integrity limits of the structure, we use the Von Mises stress, the damage due to fatigue and a stick-slip stability factor. Fatigue is an important factor of failure in a drilling process [START_REF] Macdonald | Failure analysis of drillstrings[END_REF][START_REF] Vaisberg | Fatigue of Drillstring: State of the Art[END_REF]. The idea of this paper is to consider fatigue as a constraint to the optimization analysis without taking into account all the details (for fatigue analysis of a drill-string, see [START_REF] Bertini | Resonant test rigs for fatigue full scale testing of oil drill string connections[END_REF][START_REF] Miscow | Techniques to characterize fatigue behaviour of full size drill pipes and small scale samples[END_REF]). Thus, the analysis done here is more qualitative than quantitative.

There are many aspects that should be taken into account in a drilling process concerning its dynamics [START_REF] Spanos | Oil and Gas Well Drilling: A Vibrations Perspective[END_REF]. Some authors have proposed different models to represent the dynamics of a drill-string as, for instance, [START_REF] Berlioz | Dynamic behavior of a drill-string: experimental investigation of lateral instabilities[END_REF][START_REF] Christoforou | Dynamic modeling of rotating drillstrings with borehole interactions[END_REF][START_REF] Christoforou | Fully coupled vibrations of actively controlled drillstrings[END_REF][START_REF] Khulief | Finite element dynamic analysis of drillstrings[END_REF][START_REF] Khulief | Vibration analysis of drillstrings with self excited stick-slip oscillations[END_REF][START_REF] Sampaio | Coupled axial/torsional vibrations of drilling-strings by mean of nonlinear model[END_REF][START_REF] Trindade | Karhunen-Loève decomposition of coupled axial/bending of beams subjected to impacts[END_REF][START_REF] Tucker | An integrated model for drillstring dynamics[END_REF][START_REF] Yigit | Coupled axial and transverse vibrations of oilwell drillstrings[END_REF]. The model used in this paper takes into account the drive force at the top (as a constant rotational speed), the support force at the top (known as weighton-hook) and the bit-rock interaction. We consider the axial and torsional displacements of the column and the discretization is done by means of the Finite Element Method.

To model the uncertainties, the nonparametric probabilistic approach [START_REF] Soize | A nonparametric model of random uncertities for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | A comprehensive overview of a nonparametric probabilistic approach of model uncertainties for predictive models in structural dynamics[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF][START_REF] Soize | Generalized Probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions[END_REF] is used because (1) only one parameter is necessary to control the uncertainty of each operator of the dynamical system and (2) it takes into account both system-parameter and model uncertainties (which is important in this problem that uses simplified physical models).

The three parameters that are usually employed to control the drilling process are the rotational speed of the rotary table, the reaction force at the bottom (known as the weight-on-bit) and the fluid pump flow (less important, therefore neglected in the analysis). The value of the weight-on-bit f bit fluctuates; hence it would be difficult to use f bit in the optimization procedure. We propose then to use the initial reaction force at the bit f c , which is used to calculate the initial prestressed state. The drilling process is stopped after every 10 meters of penetration to assemble another tube. When the operation is going to re-start, we can choose two parameters: the top speed and the static reaction force at the bit f c (adjusting the supporting force at the top). Then, the drilling process re-starts and the value of the f bit (which was initially f c , when there was no movement of the column) now fluctuates. Therefore, the optimization variables used in the robust optimization problem are the rotational speed at the top ω RPM and the initial reaction force at the bit f c . This paper is organized as follows. The deterministic model is described in Section 2 and the probabilistic model of uncertainties is presented in Section 3. In Section 4 the robust optimization problem is presented, stating the objective function and the constraints of the problem. The numerical results are shown in Section 5 and, finally, the concluding remarks are made in Section 6.

Deterministic model

To derive the equations of motion, the extended Hamilton Principle is applied. Defining the potential Π by

Π = t2 t1 (U -T -W )dt , ( 1 
)
where U is the potential strain energy, T is the kinetic energy and W is the work done by the nonconservative forces and any force not accounted for in the potential energy. The first variation of Π must vanish:

δΠ = t2 t1 (δU -δT -δW )dt = 0 . ( 2 
)
In order to focus the attention on the robust optimization problem (which is the objective of this paper), a simple nonlinear dynamical model is introduced in neglecting the lateral vibrations which are then assumed to be sufficiently small.

Finite element discretization

The finite element model is constructed using two-node elements with two degrees of freedom per node (axial and torsional). The finite element approximation of the displacement fields are then written as

u(ξ, t) = N u (ξ)u e (t) , θ x (ξ, t) = N θx (ξ)u e (t) , ( 3 
)
where u is the axial displacement, θ x is the rotation about the x-axis, ξ = x/l e is the element coordinate, N are the shape function

N u = [(1 -ξ) 0 ξ 0] , N θx = [0 (1 -ξ) 0 ξ] , (4) 
and

u e = [u 1 θ x1 u 2 θ x2 ] T , ( 5 
)
where exponent T means transposition.

Kinetic energy

The kinetic energy is written as

T = 1 2 L 0 ρA u2 + ρI p θ2 x dx , ( 6 
)
where the time derivative (d/dt) is denoted by a superposed dot, ρ is the mass density, A is the cross sectional area, I p is the cross sectional polar moment of inertia and L is the length of the column. The first variation of the kinetic energy, after integrating by parts in time, may be written as

δT = - L 0 ρAüδu + ρI p θx δθ x dx , ( 7 
)
which yields the constant mass matrix [M ]. The element mass matrix is written as:

[M ] (e) = 1 0 [ρA(N T u N u + ρI p (N T θx N θx )] l e dξ . ( 8 
)

Strain energy

The strain energy is given by

U = 1 2 V T S dV , ( 9 
)
where V is the domain of integration, = [ xx 2γ xy 2γ xz ] T is the vector of the Green-Lagrange strain tensor and S is the vector written in the Voigt notation of the second Piola-Kirchhoff tensor. Substituting the constitutive equation S = [D] and computing the first variation of the strain energy yield

δU = V δ T ⎡ ⎣ E 0 0 0 G 0 0 0 G ⎤ ⎦ dV . ( 10 
)
The position X of the reference configuration, the position x of the deformed configuration, and the displacement field p, all written in the inertial frame of reference, are such that

p = ⎡ ⎣ u x u y u z ⎤ ⎦ = x -X = ⎡ ⎣ x + u ycos(θ x ) -zsin(θ x ) ysin(θ x ) + zcos(θ x ) ⎤ ⎦ - ⎡ ⎣ x y z ⎤ ⎦ (11) then, ⎡ ⎣ u x u y u z ⎤ ⎦ = ⎡ ⎣ u ycos(θ x ) -zsin(θ x ) -y ysin(θ x ) + zcos(θ x ) -z ⎤ ⎦ . ( 12 
)
Figure 1 shows that u y and u z are related to the torsion of the drill-string; the lateral displacements of the neutral line of the column are zero (v = w = 0). Finite strains are considered, thus the components of the Green-Lagrange strain tensor are written as

xx = u x,x + 1 2 u 2 x,x + u 2 y,x + u 2 z,x , γ xy = 1 2
(u y,x + u x,y + u x,x u x,y + u y,x u y,y + u z,x u z,y ) ,

γ xz = 1 2 (u z,x + u x,z + u x,x u x,z + u y,x u y,z + u z,x u z,z ) , ( 13 
)
where u x,y = ∂u x /∂y and so on. Eq. ( 10) may be written as

δU = V (E δ xx xx +4G δγ xy γ xy +4G δγ xz γ xz )dV . ( 14 
)
The linear terms yield the stiffness matrix [K] and the higher order terms yield the geometric stiffness matrix [K g ]. The element stiffness matrix is written as

[K] (e) = 1 0 EA l e N T u N u + GI p l e N T θx N θx dξ , ( 15 
)
where the space derivative (d/dξ) is denoted by ( ). The element geometric stiffness matrix is written as

[K g ] (e) = 1 0 N T u N u 3EAu + 1.5EAu 2 + +0.5EI p θ 2 x + N T u N θx (EI p θ x + EI p θ x u ) + + N T θx N u (EI p θ x + EI p θ x u ) + N T θx N θx (EI p u + +0.5EI p u 2 + 1.5EI p4 θ 2 x + 3EI 22 θ 2 x 1 l e dξ , ( 16 
)
where u = N u u e /l e , θ x = N θx u e /l e , I 22 = A (y 2 z 2 )dA and I p4 = A (y 4 + z 4 )dA. It should be noted that u and θ x are the axial displacement and the angular rotation and consequently, there are no terms related to transverse vibration in Eq. ( 16).

Bit-rock interaction model

The model used in this work for the bit-rock interaction is the one developed in [START_REF] Tucker | Torsional vibration control and cosserat dynamics of a drill-rig assembly[END_REF], which can be written as

ubit = -a 1 -a 2 f bit + a 3 ω bit , t bit = - ubit ω bit a 4 -a 5 , ( 17 
)
where f bit is the axial force (also called weight-on-bit), t bit is the torque about the x-axis, ubit is the axial speed of the bit (rate of penetration) and ω bit is the rotational speed of the bit. The positive constants a 1 , . . . , a 5 depend on the bit and rock characteristics as well as on the average weight-on-bit. Equation ( 17) is rewritten as

f bit = - ubit a 2 Z(ω bit ) 2 + a 3 ω bit a 2 Z(ω bit ) - a 1 a 2 , t bit = - ubit a 4 Z(ω bit ) 2 ω bit -a 5 Z(ω bit ) , ( 18 
)
where e is the regularization parameter and Z is the regularization function.

Gravity

The work done by gravity is written as

W = L 0 ρgAu dx , ( 19 
)
where g is the gravity acceleration. The variation of Eq. [START_REF] Trindade | Karhunen-Loève decomposition of coupled axial/bending of beams subjected to impacts[END_REF] gives

δW = L 0 ρgA δu dx , ( 20 
)
and the discretization by means of the finite element method yields the force element vector

f (e) g = 1 0 N T u ρgA l e dξ . ( 21 
)

Initial prestressed configuration

Before starting the rotation about the x-axis, the column is put down through the channel until it reaches the soil. At this point, the forces acting on the structure are: the reaction force at the bit, the weight of the column and the supporting force at the top. In this equilibrium configuration, the column is prestressed (see Fig. 2). Above the neutral point the structure is tensioned and below is compressed. As it can be seen in Fig. 2, if the reaction force increases, the neutral point moves up, increasing the length of the compressed part. To calculate the initial prestressed state, the column is clamped at the top and consequently,

u S = [K] -1 (f g + f c ) . ( 22 
)
where f g is the force induced by the gravity, f c is the vector related to the reaction force at the bit. Note that

f c = [0 0 . . . -f c 0] T in which f c is the initial reaction force at the bit.
To verify if an element is compressed or tensioned, the element axial displacements of u S is checked. If (u 2u 1 ) > 0 the element is tensioned, if u 2 = u 1 there is no stress and if (u 2u 1 ) < 0 the element is compressed.

Final computational dynamical model

Small vibrations about the initial prestressed configuration defined by u S are assumed. Therefore, the geometric stiffness matrix [K g (u S )] is constant. Introducing u = u -u S , the computational dynamical model can then be written as

[M ] ü(t) + [C] u(t) + ([K] + [K g (u S )])u(t) = = g(t) + f bit ( u) , u(0) = u 0 , u(0) = v 0 , ( 23 
)
in which [M ] and [K] are the mass and stiffness matrices. The proportional damping matrix

[C] = α [M ] + β [K]
(α and β are positive constants) is added a posteriori in the computational model. The constant α is strictly positive. This yields that the damping matrix is positive definite although there are two rigid body modes. Such a damping model is chosen because it is assumed that there is an additional external dissipations when the dynamical system move in the two rigid body modes. The initial conditions are defined by u 0 and v 0 . The force vector related to the bit-rock interaction is f bit and the imposed rotation at the top (dirichlet boundary condition) is expressed by g.

Reduced computational model

To speed up the numerical simulations, the computational model is reduced in projecting the nonlinear dynamical equation on a subspace spanned by an appropriated basis. In the present paper, the basis used is made up of suitable normal modes. The normal modes are constructed from the following generalized eigenvalue problem

([K] + [K g (u S )])φ = ω 2 [M ]φ , ( 24 
)
where φ i is the i-th normal mode and ω i is the corresponding natural frequency. The reduced model is written as

u(t) = [Φ] q(t) , [M r ]q(t)+[C r ] q(t)+[K r ]q(t) = [Φ] T (g(t)+f bit ([Φ] q)) , q(0) = q 0 , q(0) = v 0 , (25) 
in which q 0 and v 0 are the initial conditions and where [Φ] is the (m × n) real matrix composed by n normal modes and

[M r ] = [Φ] T [M ][Φ], [C r ] = [Φ] T [C][Φ] , [K r ] = [Φ] T ([K] + [K g (u S )])[Φ] (26) 
are the reduced matrices.

Probabilistic model of uncertainties

The nonparametric probabilistic approach is used to model the uncertainties in the computational model. First, the probabilistic model for the structure is presented and then the probabilistic model for the bit-rock interaction model is developed. Note that a probabilistic model that takes into account both parameter and model uncertainties is necessary to better represent the uncertainties of the problem analyzed.

Model uncertainties for the structure

The physical theory used to model the mechanical system (for instance, beam theory for the column) is a simplification of the real system. Therefore, it is necessary to take into account model uncertainties induced by the model errors. One way to take into account model uncertainties is to use the nonparametric probabilistic approach [START_REF] Soize | A nonparametric model of random uncertities for reduced matrix models in structural dynamics[END_REF][START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF][START_REF] Soize | Generalized Probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions[END_REF] for which applications with experimental validation can be found in [START_REF] Chen | Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels[END_REF][START_REF] Duchereau | Transient dynamics in structures with nonhomogeneous uncertainties induced by complex joints[END_REF][START_REF] Durand | Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF].

To construct the random reduced matrices, the ensembles SE +0 and SE + of random matrices defined in [START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF] are used. The first step is to decompose the matrices of the deterministic model applying the Cholesky decomposition

[M r ] = [L M ] T [L M ], [C r ] = [L C ] T [L C ], [K r ] = [L K ] T [L K ]. (27) Matrices [M r ], [C r ], [K r ], [L M ] and [L C ] have di- mension n × n. The matrix [L K ] has dimension p × n in which p is equal to (n -μ rig )
where μ rig is the dimension of the null space of [K r ] (note that μ rig = 2 for the problem considered). The nonparametric probabilistic approach consists in substituting the matrices of the reduced deterministic model by the following three independent random matrices

[M r ] = [L M ] T [G M ][L M ], [C r ] = [L C ] T [G C ][L C ], [K r ] = [L K ] T [G K ][L K ], (28) 
in which [G M ], [G C ] and [G K ] are random matrices belonging to the ensemble SE + defined in [START_REF] Soize | Random matrix theory for modeling uncertainties in computational mechanics[END_REF]. Matrices

[G M ] and [G C ] have dimension n × n and matrix [G K ] has dimension p × p. The probability distribution of [G A ] (for A ∈ {M, C, K}
) is completely defined and the generator of its independent realizations is given in Appendix A.

The level of statistical fluctuations of random matrix [G A ] is controlled by the dispersion parameter δ A defined by

δ A = 1 p E{||[G A ] -[I]|| 2 F } 1 2 , ( 29 
)
where E{•} denotes the mathematical expectation and

||[A]|| F = (trace{[A][A] T }) 1/2 denotes the Frobenius norm.
Consequently, the level of uncertainties for quantity A is controlled by dispersion parameter δ A .

Model uncertainties for the bit-rock interaction

The probabilistic model introduced in [START_REF] Ritto | Non-linear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF] to take into account uncertainties in the bit-rock interaction forces is briefly summarized. Again, the nonparametric probabilistic approach is used to model the uncertainties. It consists in modeling the operator of the constitutive bit-rock interaction equation by a random operator. Let the generalized forces at the bit f bit ( ẋ(t)) and ẋ(t) be such that

f bit ( ẋ(t)) = f bit ( ẋ(t)) t bit ( ẋ(t)) and ẋ(t) = ubit (t) ω bit (t) . ( 30 
)
The deterministic constitutive equations of the bit-rock interaction can be written as

f bit ( ẋ(t)) = -[A b ( ẋ(t))] ẋ(t) , ( 31 
)
in which

[A b ( ẋ(t))] 11 = a 1 a 2 ubit (t) + 1 a 2 Z(ω bit (t)) 2 - a 3 ω bit (t) a 2 Z(ω bit (t)) ubit (t) , [A b ( ẋ(t))] 22 = a 4 Z(ω bit (t)) 2 ubit (t) ω bit (t) 2 + a 5 Z(ω bit (t)) ω bit (t) , [A b ( ẋ(t))] 12 = [A b ( ẋ(t))] 21 = 0 . ( 32 
)
For all ẋ(t), [A b ( ẋ(t))] is positive-definite. This matrix is substituted by a random matrix [A b ( ẋ(t))] with values in the set M + 2 (R) of all the positive-definite symmetric (2×2) real matrices. Thus, the constitutive equation defined by Eq. ( 31) becomes a random constitutive equation which can be written as

F bit ( ẋ(t)) = -[A b ( ẋ(t))] ẋ(t) . ( 33 
)
The probability distribution of random variable

[A b ( ẋ(t))]
is constructed for all fixed vector ẋ(t). Using the Cholesky decomposition, the mean value of [A b ( ẋ(t))] is written as

[A b ( ẋ(t))] = [L b ( ẋ(t))] T [L b ( ẋ(t))] . ( 34 
)
The random matrix [A b ( ẋ(t))] is defined by

[A b ( ẋ(t))] = [L b ( ẋ(t))] T [G b ][L b ( ẋ(t))] , ( 35 
)
in which [G b ] belongs to the same ensemble that for [G A ] defined in the last subsection for which the dispersion parameter is defined by Eq. ( 29). It should be noted that, in the construction proposed, random matrix [G b ] neither depends on ẋ nor on t.

Stochastic reduced computational model

The deterministic reduced computational model defined by Eq. ( 25) is then replaced by the following stochastic reduced computational model

U(t) = [Φ] Q(t) , [M r ] Q(t) + [C r ] Q(t) + [K r ]Q(t) = = [Φ] T {g(t) + F bit ([Φ] Q(t))} , Q(0) = q 0 , Q(0) = v 0 , (36) 
where [M r ], [K r ] and [C r ] are the random matrices defined by Eq. ( 28), Q is the stochastic process of the generalized coordinates, U is the stochastic process of the response of the system and F bit is the random force related to the bit-rock interaction probabilistic model defined by Eq. ( 33).

Optimization problem

In this section, the objective function of the optimization problem is defined, the constraints related to the integrity limits of the mechanical system are presented and the robust optimization is defined.

Objective function

The goal of the optimization problem is to find the set of values s = (ω RPM , f c ) that maximizes the expected mean rate of penetration (mean in time), respecting the integrity limits of the mechanical system. The objective function is defined by

J(s) = E {R(s)} , ( 37 
)
where J is the mathematical expectation of the random mean rate R of penetration which is such that

R(s) = 1 t 1 -t 0 t1 t0 Ubit (s)dt , ( 38 
)
in which (t 0 , t 1 ) is the time interval analyzed and Ubit is the random rate of penetration. The constraints related to the integrity limits of the mechanical system are discussed in the next section.

Constraints of the problem (integrity limits)

Three constraints are proposed to represent the integrity of the mechanical system. The first one is the maximum stress value that the structure may resist. If the structure is submitted to a stress greater than the maximum admissible stress, it will fail. The second constraint is the damage cumulated by fatigue. If the damage is greater than one, a crack will occur, what is not desired. The third constraint is a stick-slip factor, since we want to avoid torsional instability and stick-slip. The first constraint is the maximum Von Mises stress σ (see Appendix B) that must be below the ultimate stress σ max of the material,

max x,t {σ(s, x, t)} ≤ σ max , ( 39 
)
where x = (x, y, z) belongs to the domain Ω c of the problem (the column). For the stochastic problem this constraint must be true with probability (1 -P risk ).

Prob max

x,t {S(s, x, t)} ≤ σ max ≥ 1 -P risk , ( 40 
)
where S is the random variable modeling the stress σ in presence of uncertainties in the computational model and P risk represents the risk we are willing to take. The more conservative we are, the lower we set P risk . The second constraint is the damage cumulated due to fatigue d that must be below a given limit d max .

max x {d(s, x)} ≤ d max , ( 41 
)
where d is the cumulated damage related to p r meters of penetration. The damage d is computed for (t 0 , t 1 ) (see Appendix C) and then, this damage is extrapolated to consider p r meters of penetration,

d = d p r p d , ( 42 
)
where p d is how much it was drilled in (t 0 , t 1 ). For the stochastic problem this constraint must be true with probability (1 -P risk ).

Prob max

x {D(s, x)} ≤ d max ≥ 1 -P risk . ( 43 
)
where D(s, x) is the random variable modeling d(s, x). Sometimes, in the field, engineers use a constraint related to the stick-slip instability. So, finally, the third constraint is the stick-slip stability factor ss that must be below a given limit ss max ,

ss(s) ≤ ss max . ( 44 
)
Factor ss is defined by

ss(s) = ω bmax (s) -ω bmin (s) ω bmax (s) + ω bmin (s) . ( 45 
)
where ω bmax is the maximum rotational speed of the bit and ω bmin is the minimum rotational speed of the bit for a given time period (t 0 , t 1 ):

ω bmin (s) = min t∈(t0,t1) {ω bit (s, t)} , ω bmax (s) = max t∈(t0,t1) {ω bit (s, t)} . ( 46 
)
where ω bit is the rotational speed of the bit. As the amplitude of the torsional vibrations increases, ss increases, augmenting the risk of stick-slip (when ω bit = 0 and then the bit slips). This type of oscillations must be avoided. For the stochastic problem this constraint must be true with probability (1 -P risk ).

Prob {S(s) ≤ ss max } ≥ 1 -P risk , ( 47 
)
where S(s) is the random variable modeling ss(s).

In the present analysis, the lateral displacement of the column is neglected. If lateral vibrations were taken into account, a constraint to the radial displacement r = √ v 2 + w 2 should be considered in which v and w would be the lateral displacements of the neutral line. For example, the column should have radial displacements below a given limit r max , thus max x,t {r(s, x, t)} ≤ r max . For the stochastic problem, this constraint should be true with probability (1-P risk ), hence we would have Prob {max x,t {R(s, x, t)} ≤ r max } ≥ (1 -P risk ), where R would be the random variable modeling r.

Robust optimization problem

The proposed robust optimization problem aims to maximize the expected mean rate of penetration of the drillstring (see Section 4.1), respecting the integrity limits of the mechanical system (see Section 4.2). It is written as

s optm = arg max s ∈ C J(s) , s.t. Prob max j,t {S j (s, t)} ≤ σ max ≥ 1 -P risk , Prob max j {D j (s)} ≤ d max ≥ 1 -P risk , Prob {S(s) ≤ ss max } ≥ 1 -P risk , ( 48 
)
where the admissible set

C = {s = (ω RPM , f c ) : ω min ≤ ω RPM ≤ ω max , f min ≤ f c ≤ f max }.
The index j represents the points (x j , y j , z j ) chosen for the analysis.

This robust optimization problem is not convex and it does not exist any algorithm which allows the global optimum to be surely reached with a finite number of operations. For such an optimization problem, the objective is to improve a given initial solution with an appropriate algorithm and the level of improvement got is proportional to the CPU time spent. Several techniques can be used such as random search algorithms [START_REF] Solis | Minimization by random search techniques[END_REF] (for instance, Latin hypercube sampling type), genetic algorithms [START_REF] Goldberg | Genetic Algorithms in Search, Optimization, and Machine Learning[END_REF], local search with random restart points, etc.). Presently, since the dimension of the parameter space is small (2 parameters), a trial approach (which surely allows the initial solution to be improved) is used and is very efficient. The algorithm is then the following. A grid is generated in the parameter space and the stochastic problem is solved for each point of the grid. The points of the grid that do not satisfy the constraints of the optimization problem are eliminated. Then, the optimal point is chosen in the set of all the retained points. The identified region containing this first optimum point can be reanalyzed introducing a new refine grid around this point to improve the solution.

Application of the optimization problem

The data (geometry, material, etc.) used in the application are representative values of a drilling system, see Appendix D. The integrity limits are given by σ max = 650 MPa, d max = 1 and ss max = 1.20. The damage d and the maximum stress value σ are calculated in the critical region of the drill-pipe, close to the drillcollar: x = 1400 m and y = z = r 0 cos (π/4) (where r 0 is the outer radius of the drill-pipe). The damage d is calculated using p r = 2000 m, which means that we allow damage equals to one after 2000 m of penetration. The nonlinear dynamical system analyzed is sensitive to model uncertainties [START_REF] Ritto | Non-linear dynamics of a drill-string with uncertain model of the bit-rock interaction[END_REF], therefore, the probabilistic model is fixed with δ G = 0.005 and δ M = δ C = δ K = 0.001. The drill-string is discretized with 120 finite elements. For the construction of the reduced dynamical model, 7 torsional modes, 4 axial modes and also the two rigid body modes of the structure (axial and torsional) are used. For the time integration procedure, the implicit Newmark integration scheme has been implemented with a predictor and a fix point procedure to equilibrate the system response at each time step. All the numerical results presented below correspond to the stationary response for which the transient part of the response induced by the initial conditions has vanished, (t 0 , t 1 ) = (60, 100) s.

Deterministic response

Some deterministic responses are presented in this Section. Figure 3(a) shows the axial displacement of the bit and Fig. 3(b) shows the rate of penetration for ω RPM =100 RPM and f c =100 kN. Figure 4 shows the rotational speed of the bit for f c =100 kN, comparing ω RPM =80 RPM, ω RPM =120 RPM and ω RPM =450 RPM. No stick phase is observed (when ω bit =0), but there are significant oscillations on the rotational speed of the bit (for ω RPM =80 and 120 RPM) that can be dangerous for the system, since it might cause stickslip and crack initiation due to fatigue. The dynamic response of the bit depends on the bit-rock interaction as well as on the characteristics of the column (length, cross sectional area, material, etc). It should be noticed that for high top speeds (for example, ω RPM =450 RPM, see Fig. 4), the torque at the bit is almost constant and the oscillations of the rotational speed of the bit are small. However, as a consequence, for high top speeds the lateral vibrations (which are not considered in the analyzed model) will increase, what augment the risk of lateral instability and impacts between the column and the borehole. Figure 5 shows the force at the bit for ω RPM =100 RPM, comparing f c =100 kN with f c =105 kN. Note that the force at the bit fluctuates about the value of f c . The last result presented is the Von Misses stress for f c =100 kN and ω RPM =100 RPM (see Fig. 6).

In the next two sections the deterministic and the stochastic responses are going to be used to solve the deterministic and the robust optimization problem, respectively. 

Results of the deterministic optimization problem

In this section, the deterministic optimization problem is analyzed. For the deterministic problem, Eq. ( 48) is written as where the admissible set

s optm = arg max s ∈ C J det (s) , s.t. max j,t {σ j (s, t)} ≤ σ max , max j {d j (s)} ≤ d max , ss(s) ≤ ss max , (49) 
C = {s = (ω RPM , f c ) : 80RP M ≤ ω RPM ≤ 120RP M , 90kN ≤ f c ≤ 110kN } and J det (s) = 1 t 1 -t 0 t1 t0 ubit (s) dt , ( 50 
)
where ubit is the rate of penetration. Figure 7 shows the variation of J det with ω RPM for some values of f c which are 90, 95, 100, 105 and 110 kN. When ω RPM and f c increase, J det also increases. Of course, there are side effects: (1) the neutral point will move upwards, (2) the column will be more flexible and (3) the dynamical response is more likely to be unstable.

To proceed with the optimization problem, we eliminate the points (ω RPM , f c ) that do not satisfy the in- tegrity limits of the system. For the points simulated, the maximum stress is always below the established limit of σ max = 650 MPa. Figure 8 shows ω RPM versus the value of the stick-slip factor ss and Fig. 9 shows ω RPM versus the damage cumulated due to fatigue d for some values of f c . It can be seen that some points present values greater than the established limits of ss max = 1.20 and d max = 1.

The points that do not respect the integrity limits of the system are eliminated. Figure 10 summarizes the analysis. The points that are crossed are the ones that do not respect the constraint limits and the best point of the deterministic analysis is identified: s optm = (ω RPM =120 RPM, f c =110 kN), which gives J det optm = 3.92 × 10 -3 m/s ∼ 14.11 m/h. In the next section, the results of the robust optimization problem are presented. It will be seen that the results are quite different from the ones presented in this section. The robust analysis considers the 90% percentile of the stick-slip factor, for instance. Therefore, we expect more points to be eliminated in the robust analysis, for example points (ω RPM =120 RPM, f c =105 kN) and (ω RPM =120 RPM, f c =110 kN) (see Fig. 8), because they are already bearing the limit in the deterministic analysis. Figure 12 shows some random realizations of the rotational speed of the bit.

Results of the robust optimization problem

Figure 13 shows the variation of J with ω RPM for some values of f c which are 90, 95, 100, 105 and 110 kN. As in deterministic case, when ω RPM and f c increase, J also increases, but the results are different.

To proceed with the optimization problem, we eliminate the points (ω RPM , f c ) that do not satisfy the integrity limits of the system. The constraints are considered in the analysis with P risk = 10%. For the points simulated, the maximum stress is always below the established limit of σ max = 650 MPa. Figure 14 shows ω RPM versus the value of the stick-slip factor S 90% for some values of f c , where S 90% is the 90% percentile of random variable S. Figure 15 shows ω RPM versus the damage cumulated due to fatigue D 90% , where D 90% is the 90% percentile of random variable D. As in the deterministic analysis, it can be seen that some points present values greater than the established limits, but now there are more points in this situation. It can be seen (Figs. 14 and15) that the constraints are not respected for high values of ω RPM f c . Note that we would like to ω RPM and f c to have a J, but to respect the integrity limits these parameters are constrained.

The points that do not respect the integrity limits of the system are eliminated. Figure 16 summarizes the analysis. The points that are crossed are the ones that do not respect the constraint limits and the best point of the robust analysis is identified: s optm = (ω RPM =110 RPM, f c =105 kN), which gives J optm = 3.54 × 10 -3 m/s ∼ 12.76 m/h.

It can be concluded that the robust optimization generates different results comparing to the deterministic optimization. If uncertainties are important in the dynamical analysis, we should always proceed with the robust optimization problem, instead of the deterministic optimization problem.

Concluding remarks

This paper has proposed a methodology for the robust optimization of the nonlinear dynamics of a drill-string system. Applications of robust optimization in dynamical systems are quite recent. This is the first time a robust optimization problem is proposed and investigated for the nonlinear dynamics of a drill-string system. It has been shown that the robust analysis gives different results comparing to the deterministic optimization analysis. The aim of the proposed optimization problem is to maximize the expected mean rate of penetration of the drill-string, respecting the integrity limits. Three constraints have been proposed to represent the integrity of the system: (1) the ultimate stress of the material, (2) the damage cumulated by fatigue (3) a stick-slip factor.

Uncertainties are modeled using the nonparametric probabilistic approach, which takes into account both system-parameter and model uncertainties. This feature of the probabilistic approach used is important because a simplified mechanical model is employed in the analysis. The mass, damping and stiffness of the system, as well as the bit-rock interaction forces are considered uncertain.

The parameters of the optimization problem, which are the initial reaction force at the bit and the rotational speed at the top, have been considered deterministic. The optimization problem is solved for two cases: the computational model does not have any uncertainties and the computational model has uncertainties (robust optimization). For these two cases, the best combination of the two parameters has been found and shows that the robust optimization must be used instead of a non robust optimization.

A Algorithm for the realizations of the random germ [G A ]

The p×p random matrix [G A ] can be written as

[G A ] = [L A ] T [L A ]
in which [L A ] is an upper triangular real random matrix such that:

1. The random variables {[L A ] jj , j ≤ j } are independents. 2. For j < j the real-valued random variable [L A ] jj = σV jj , in which σ = δ(p + 1) -1/2 and V jj is a real-valued gaussian random variable with zero mean and unit variance. 3. For j = j real-valued random variable [L A ] jj = σ(2V j ) 1/2 .

In which V j is a real-valued gamma random variable whose probability density function is written as

p V j (v) = 1 R + (v) 1 Γ " p+1 2δ 2 + 1-j 2 " v p+1 2δ 2 -1+j 2 e -v ,

B Stress calculation

The numerical simulations give the axial displacement u and the section area rotation θx. With Eqs. ( 12) and ( 13), the displacement field and the strain are computed. Finally, the stress components are calculated doing (51)

The Von Mises stress is computed as:

σ(t) = q (k f σxx(t)) 2 + 3((k f τxy(t)) 2 + (k f τxz(t)) 2 )) , ( 52 
)
where k f is the stress concentration factor for fatigue. The value of k f might vary a lot depending on several factors, such as the type of joint, tip radius, etc, [START_REF] Vaisberg | Fatigue of Drillstring: State of the Art[END_REF]. In this work the value used is k f = 3.

C Damage calculation

In this section we explain how the damage caused by fatigue is calculated. We use the Goodman-Wohler-Miner model.

(1) Goodman to calculate the equivalent alternate stress (σeq) that causes a crack initiation.

σa σeq + σm σmax = 1 -→ σeq = σa 1 - σm σmax ( 53 
)
where σmax is the ultimate stress limit of the material, σa is the alternate Von Mises stress and σm is the mean Von Mises stress, calculated as: (3) Miner to calculate the damage cumulation.

d = n N = n c (σ eq ) b . ( 56 
)
where n is the number of cycles that the structure has been subjected to. 
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 1 Fig. 1 Displacement field.

Fig. 2

 2 Fig. 2 Initial prestressed configuration of the system.

Fig. 3

 3 Fig.3(a) axial displacement of the bit and (b) rate of penetration, for ω RPM =100 RPM and fc=100 kN.

Fig. 4 Fig. 5

 45 Fig.4Rotational speed of the bit for fc=100 kN, comparing ω RPM =80 RPM, ω RPM =120 RPM and ω RPM =450 RPM.

Fig. 6

 6 Fig.6Von Misses stress for ω RPM =100 RPM and fc=100 kN.

Fig. 7

 7 Fig. 7 Rotational speed at the top versus J det for different fc (90, 95, 100, 105 and 110 kN).

Fig. 8 Fig. 9

 89 Fig. 8 Rotational speed at the top versus S 90% for different fc (90, 95, 100, 105 and 110 kN). The dashed line shows the limit ssmax = 1.20.

  Fig.10Graphic showing the best point (ω RPM , fc) (circle); the crossed points do not respect the integrity limits.

Figure 11

 11 Figure 11 shows the convergence of the stochastic analysis, where conv(n s ) = 1 ns ns j=1 t1 t0 ||U(t, s j )|| 2 dt (n s is the number of Monte Carlo simulations).Figure12shows some random realizations of the rotational speed of the bit.Figure13shows the variation of J with ω RPM for some values of f c which are 90, 95, 100, 105 and 110 kN. As in deterministic case, when ω RPM and f c increase, J also increases, but the results are different.To proceed with the optimization problem, we eliminate the points (ω RPM , f c ) that do not satisfy the integrity limits of the system. The constraints are considered in the analysis with P risk = 10%. For the points simulated, the maximum stress is always below the established limit of σ max = 650 MPa. Figure14shows ω RPM versus the value of the stick-slip factor S 90% for some values of f c , where S 90% is the 90% percentile of random variable S. Figure15shows ω RPM versus the

  Fig. 11 Convergence function.

Fig. 12

 12 Fig.12Random rotation speed of the bit for ω RPM =100 RPM and fc=100 kN.

Fig. 14

 14 Fig. 14 Rotational speed the top versus S 90% for different fc (90, 95, 100, 105 and 110 kN). The dashed line shows the limit ssmax = 1.20.

Fig. 15 Fig. 16

 1516 Fig. 15 Rotational speed at the top versus D 90% for different fc (90, 95, 100, 105 and 110 kN). The dashed line shows the limit dmax = 1.

  σxx = xxE , τxy = G(2γxy ) , τxz = G(2γxz) .

( 2 )

 2 Wohler (or σeqN ) to model the relationship between the stress (σeq) and the number of cycles (N ) that cause a crack initiation.Nσ b eq = c , (55)where b and c are two positive constants that are obtained fitting experiments. We use c = 4.16 × 10 11 and b = 3,[START_REF] Netto | Fatigue performance of pre-strained pipes with girth weld defects: Full-scale experiments and analysis[END_REF]. Note that the stress value is written in MPa (b and c will have different values for different units).

L

  dp = 1400 m (length of the drill pipe), L dc = 200 m (length of the drill collar), D i = 0.095 m (inside diameter of the column), Do dp = 0.12 m (outside diameter of the drill pipe), Do dc = 0.15 m (outside diameter of the drill collar), E = 210 GPa (elasticity modulus of the drill string material), ρ = 7850 kg/m 3 (density of the drill string material), ν = 0.29 (poisson coefficient of the drill string material), g = 9.81 m/s 2 (gravity acceleration), a 1 = 3.429 × 10 -3 m/s, (constants of the bit-rock interaction model) a 2 = 5.672 × 10 -8 m/(N.s), a 3 = 1.374 × 10 -4 m/rd, a 4 = 9.537 × 10 6 N.rd, a 5 = 1.475 × 10 3 N.m, e = 2 rd/s (regularization parameter). The damping matrix is constructed using [C] = α[M ] + β([K] + [Kg(u S )]) with α = 0.1 and β = 0.00008.
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