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Abstract

Cortical bone and the surrounding soft tissues are attenuating media, which

might affect the radiofrequency signals measured with axial transmission de-

vices. Cortical bone is highly heterogeneous, due to a gradient of material prop-

erties from the outer to inner part of the cortical shell. The aim of this work

is to evaluate the effect of the acoustic absorption in bone and in soft tissues

on the ultrasonic response of the bone structure. Therefore, a two-dimensional

finite element time domain method is derived to model transient wave prop-

agation in a three-layer medium composed of an inhomogeneous transverse

isotropic viscoelastic solid layer sandwiched between two viscous fluid layers.

The model couples viscous acoustic propagation in both fluid media with the

anisotropic viscoelastic response of the solid. A constant spatial gradient of ma-

terial properties is considered for two values of bone thicknesses corresponding

to a relatively thick and thin bone. Viscous absorption in the surrounding

fluid tissues does not affect the results, whereas the viscoelastic properties of

bone have a significant effect on the velocity of the First Arriving Signal (FAS).

The component of the viscoelastic tensor affecting the results are the same as

that of the stiffness tensor found in Haiat et al. (2009). For a thin bone, the

FAS velocity is determined by the spatially averaged bone properties. For a

thick bone, the FAS velocity may be predicted using a simple signal processing

technique; the results allow the derivation of an equivalent penetration depth

in the case of a gradient of viscoelasticity, but not in the case of a gradient of

porosity.

PACS numbers: 43.80.Ev Acoustical measurement methods in biological systems

and media, 43.20.Mv Waveguides, wave propagation in tubes and ducts, 43.20.Px

Transient radiation and scattering, 43.40.Rj Radiation from vibrating structures

into fluid media, 43.35.Pt Surface waves in solids and liquids, 43.35.Mr Acoustics of

viscoelastic materials
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I. INTRODUCTION

Different metabolic diseases such as osteoporosis may affect bone quality (WHO Study

Group, 1994), resulting in a decrease of bone mass and micro-architectural deterioration of

bone tissue which implies an increase of bone fragility. Historically, most ultrasonic studies

in the bone field have focused on cancellous bone because the heel, which is mostly composed

of cancellous bone, constitutes the most frequently measured anatomical site in the clinic.

The diaphysis of long bones such as radius and femur is mainly constituted of cortical

bone. Investigating cortical bone quality is of interest (Rico, 1997) because it accounts for

about 80% of the skeleton, supports most of the load of the body and is mainly involved

in osteoporotic fractures (Seeley et al., 1991). Moreover, cortical bone quality has recently

been shown to be determinant for bone mechanical stability (Mayhew et al., 2005) at the

femur.

In axial transmission (AT) technique (which is particularly adapted to cortical bone evalu-

ation), both ultrasound emitter and receivers are placed in the same side of the investigated

skeletal site along a direction close to the long bone axis. The earliest event or wavelet

(usually called First Arriving Signal, FAS) of the multicomponent signal recorded by the

receivers has been the most widely investigated. The wave velocity associated with this

signal, which is measured in the time domain, can be used to discriminate healthy subjects

from osteoporotic patients and is therefore considered as a relevant index of bone status

(Barkmann et al., 2000; Hans et al., 1999; Stegman et al., 1995). Both experimental (Bossy

et al., 2004c; Raum et al., 2005) as well as simulation studies (Bossy et al., 2004b) have

shown that the FAS velocity was related to different bone properties (bone mineral density,

cortical thickness and bone elastic properties). Numerical simulations have been employed

to show that when the cortical thickness is comparable or larger than the wavelength, the

type of wave contributing to the FAS corresponds to a lateral wave, whereas when the wave-

length is larger than the cortical thickness divided by four, the received signal corresponding

to the FAS comes from the first symmetric Lamb wave mode (S0) guided by the cortical

thickness (Bossy et al., 2002).

Cortical bone is a complex medium from a biomechanical point of view. Its elastic behav-

ior has been described as transverse isotropic in different works (see for example Dong and

Guo (2004); Haiat et al. (2009)). At the macroscopic scale, porosity in the radial direction

4



Naili et al., JASA

(which is associated with the cross-section of the bone) is heterogeneous at all ages and for

both genders (Bousson et al., 2001; Thomas et al., 2005): the mean porosity in the endosteal

region (inner part of the bone) is significantly higher than in the periosteal region (outer

part of the bone). Moreover, cortical bone is affected by age-related bone resorption and

osteoporosis. It undergoes a thinning of the cortical shell, as well as an increase in porosity

mainly in the endosteal region (Bousson et al., 2001). An increase of porosity is likely to

affect bone material properties (mass density and elasticity) (Fritsch and Hellmich, 2007),

which may in turn impact bone quality (Ammann and Rizzoli, 2003). Similarly, a thinning

of the cortical shell is an important indicator of decreasing bone strength and of fracture risk

(Turner, 2002). Moreover, cortical bone is a strongly attenuating medium where ultrasonic

propagation occurs with losses (Han et al., 1996; Lakes et al., 1986; Langton et al., 1990;

Lees and Klopholz, 1992; Serpe and Rho, 1996). Ultrasonic attenuation may be due to the

viscoelastic behavior of the bone matrix as well as to the presence of the pores (through scat-

tering effects of the ultrasonic wave) (Sasso et al., 2007, 2008). The feasibility of frequency

dependent attenuation coefficient measurements has been demonstrated in bovine cortical

bone samples of a scale of the centimeter (Sasso et al., 2007). Interestingly, Broadband

Ultrasonic Attenuation (BUA, defined as the slope of the curve of the frequency dependent

attenuation coefficient) measurements have recently been shown to be significantly related

to the microstructure as well as to bone physical properties such as mass density and bone

mineral density (Sasso et al., 2008). Therefore, BUA has been evoked as a suitable param-

eter for cortical bone quality estimation. Similarly, human soft tissues such as skin, fat and

muscles (between the transducers and bone) or bone marrow (inside cortical bone) are also

media where ultrasonic attenuation has been measured.

The potential advantage of numerical simulation tools over experimental approaches is

that it can be used to determine the influence of each bone property independently, which is

difficult when working with real samples as all bone geometrical and mechanical properties

evolve in parallel. Modeling the FAS in AT experiment is a time-domain elasto-acoustic

problem. Time domain analytical methods have been used in the past to solve the elasto-

acoustic wave system in simple AT models (Grimal and Naili, 2006; Macocco et al., 2005,

2006). Bossy et al. (2004b) have assessed the influence of a gradient of longitudinal wave ve-

locity due to a heterogeneous distribution of porosity on the FAS velocity. More recently, our

group has determined (using the Comsol software (COMSOL Multiphysics, 2005)) the effect
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of heterogeneous material bone properties on the ultrasonic response and more specifically

on the FAS velocity using 2-D finite element model (FEM) (Haiat et al., 2009). Most models

of AT developed in the past have considered cortical bone and the surrounding soft tissues

as an elastic material. However, the influence of ultrasonic attenuation (in bone and/or in

the surrounding soft tissues) on the ultrasonic response of the investigated anatomical site

in the framework of the AT device remains unclear. Studying the influence of attenuation

in bone on the FAS velocity is of particular interest since BUA has been suggested as a

potential indicator of bone status. In addition, the determination of the sensitivity of the

ultrasonic response of bone to attenuation variation may be considered as a first step towards

the resolution of the inverse problem.

The aim of this paper is to assess the effect of the viscoelastic nature of cortical bone and of

the viscous nature of the surrounding soft tissues on the ultrasonic response obtained with an

AT device. Here, bone is modeled as an anisotropic (transverse isotropic) heterogeneous (a

gradient of material properties in the radial direction is considered) viscoelastic material and

the surrounding soft tissues are modeled as homogeneous viscous liquids. More specifically,

we aim at investigating the potentiality of 2-D finite element numerical simulation tools to

assess the sensitivity of the FAS velocity to variations of different viscoelastic parameters.

With this introduction as background, a 2-D finite element model briefly described

in section II is used to compute the dependence of the FAS velocity on all viscoelastic

coefficients of cortical bone at the organ level as well as on the viscous nature of the

surrounding soft tissues. The models used for the viscoelastic tensor are presented and

discussed. Section III describes i) the sensitivity of the FAS velocity to changes of each

viscoelastic coefficient for homogeneous material properties, ii) the effect of a constant

gradient of each viscoelastic coefficient affecting the FAS velocity and iii) the effect of a

constant gradient of porosity. Results are then discussed in section IV.
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II. METHOD

A. Axial transmission configuration

The geometrical configuration used in the present study is the same as the one used in

Haiat et al. (2009). Briefly, cortical bone is modeled as a two-dimensional multilayer medium

composed of one heterogeneous viscoelastic transverse isotropic solid layer (corresponding to

cortical bone) sandwiched between two homogeneous viscous fluid layers as shown in Fig. 1.

The position x is specified through the Cartesian coordinates (x, z) and time coordinate is

denoted by t. The upper medium (z > 0) corresponds to soft tissues and the lower medium

(z < −h) corresponds to bone marrow. Both soft tissues and bone marrow are modelled by

viscous fluids. The cortical thickness is denoted h and the direction z corresponds to the

bone radial direction. The other sizes of all domains have been chosen in order to avoid any

effect of the wave reflected by the boundaries of the domain on all recorded radiofrequency

signals. The material properties of soft tissues, bone marrow and cortical bone will be

detailed in subsection IIC and their spatial variation in subsection II E.

In the simulation, a pressure source is positioned in the fluid and the excitation signal is

a Gaussian pulse with a center frequency of 1 MHz identical to the one given in Desceliers

et al. (2008). The 14 receivers are regularly spaced with a pitch of 0.8 mm and a distance of

emitter to closest receiver equal to 11 mm. The geometrical arrangement mimics that of an

actual probe developed by the ‘Laboratoire d’Imagerie Paramétrique’ (France) (Bossy et al.,

2004a). The FAS velocity is then determined following the procedure used in experiments

with the actual probe. Signals are collected for each one of the 14 receivers. The time of the

first maximum of the FAS is determined for each signal and inter-sensors delays are then

evaluated by computing the time difference between adjacent sensors (Bossy et al., 2004a).

The FAS velocity estimate is then given by the slope of the position of each sensor versus

time delays, obtained through a least-square linear regression.

B. Two-dimensional governing equations

In both fluid media, the formulation is written in terms of pressure. Neglecting the body

forces and assuming the irrotational motion, the equation of propagation in the viscous fluid
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is given by the wave propagation equation in a viscous media:

ρf p̈ = ηf ∆ṗ + K ∆p, (1)

where p(x; t) denotes the pressure field, ρf mass density, K the fluid compressibility and

ηf the bulk viscosity of the fluid. The shear viscosity of the fluid is assumed negligible

as compared to that bulk viscosity. Note that the acoustic wave velocity cf in absence of

viscosity (ηf = 0) is given by cf =
√

K
ρf
. The derivatives with respect to the time t are

denoted by superposed dot and the Laplace operator is designated by ∆.

In the solid media, the formulation is written in terms of displacement. If no body forces

are considered, the momentum conservation equation writes:

divσ = ρsü, (2)

where σ(x; t) is the stress tensor, ρs is the bone mass density, u(x; t) is displacement vector

and div designates the usual divergence operator acting on a second-order tensor.

Conversely, the formulation in the solid layer is given in terms of displacement. Cortical

bone is modeled as an heterogeneous material using the linear theory of viscoelastic without

memory. In this theory, the stress tensor σ is linearly related to the strain tensor ε(x; t)

and to the rate-of-deformation tensor ε̇(x; t):

σ = C ε + E ε̇, (3)

where C(x) is the stiffness tensor and E(x) is the viscoelastic tensor. For a 2-D transverse

isotropic medium and in the framework of planar deformations, the stiffness tensor writes:

C =




C11(z) C13(z) 0

C13(z) C33(z) 0

0 0 C55(z)


 , (4)

where all stiffness coefficients, written using the Voigt notation, only depend on z because

cortical bone is heterogeneous in the radial direction, similarly as what was done in Haiat

et al. (2009).

Cortical bone has been shown to be a significantly anisotropic medium in terms of ul-

trasonic attenuation as BUA values measured in the axial direction are significantly smaller
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than BUA values obtained in the radial and tangential directions (Sasso et al., 2007). More-

over, no significant difference was found between BUA values measured in the radial and

tangential directions (Sasso et al., 2007). Therefore, we have considered an anisotropic

(transverse isotropic) tensor E to describe this dissipative behavior.

Moreover, in a recent study (Sasso et al., 2008), BUA values were found to depend signif-

icantly on bone mineral density as well as on mass density, which are two quantities closely

related to the porosity. As the spatial distribution of porosity is heterogeneous in cortical

bone (Bousson et al., 2001), the viscoelastic properties of cortical bone are also expected

to be spatially dependent. Therefore, we have considered an heterogeneous behavior of the

viscoelastic tensor E similar to the one given in Eq. (4) and the viscoelastic tensor E writes:

E =




η11(z) η13(z) 0

η13(z) η33(z) 0

0 0 η55(z)


 , (5)

where all viscoelastic coefficients, written using the Voigt notation, only depend on z.

The boundary conditions at the limits of the simulation box are identical to the one used

in Desceliers et al. (2008), i.e. stress-free for the solid layer and Neumann conditions for the

fluid layers. At both interfaces between the fluid layers and the solid layer, the boundary

conditions in terms of displacement and normal stresses are taken into account. The model

therefore fully describes the fluid-structure interaction between the three sub-domains, ac-

counting for all reflection, refraction, and mode conversion effects. For each computation,

around 186, 000 triangular elements are used, resulting in about 393, 000 degrees of freedom.

The simulation software is the 3.5 version of COMSOL Multiphysics (2005). Accurate dis-

cretization of the geometrical space is important when simulating wave propagation. The

internodal distance in both directions is chosen at least smaller than 0.15 mm in the fluid

and 0.25 mm in the solid, so that it is lower than the smallest wavelength divided by 6 in

all directions and both media. This condition leads to a spatially resolved wave propagation

(Moser et al., 1999). The time step used in the computation is of the order of 10−3 µs and

one computation takes about 5 hours on a desk workstation.
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C. Determination of a realistic range of variation of material properties

1. Viscosity of soft tissues and bone marrow

The mechanical properties of both fluid layers (soft tissues and bone marrow) were con-

sidered to be homogeneous in all computations. In addition, we assumed constant values for

the mass density ρf = 1 g.cm−3 and the compressibility K = 2.25 × 109 Pa corresponding

to an acoustic wave velocity cf of 1 500 m.s−1 in the absence of absorption (ηf = 0), close

to what has been measured in bone marrow (El Sariti et al., 2006) and in soft tissues.

Acoustic absorption data taken from the literature are used in order to define realistic

numerical values for the viscosity ηf of the soft tissues and of bone marrow. The viscous

coefficient ηf indicated in Eq. (1) is related to the frequency dependent attenuation coefficient

of a plane wave αf through the relation (Royer and Dieulesaint, 2000):

ηf =
2αf cf K

(ω2 − α2
f c2

f )
, (6)

where ω is the pulsation and αf is the frequency dependent attenuation coefficient. Note

that around f = 1 MHz, ω = 2π f À αf cf , so that Eq. (6) simply writes:

ηf =
2αf cf K

ω2
. (7)

In our time domain formulation, ηf is assumed to be independent of frequency and de-

termined by the value of αf at 1 MHz, which corresponds to the center frequency of the

frequency bandwidth of interest. The constant value of ηf leads to a squared frequency

dependence of the attenuation coefficient.

2. Stiffness tensor of cortical bone

In order to define realistic numerical values for the different components of the stiffness

tensor of cortical bone and for their variation, the same approach as the one used in Haiat

et al. (2009) is used and is briefly recalled in what follows.

We consider in vitro measurements published in Dong and Guo (2004) performed using

tensile and torsional tests with a mechanical testing system in 18 different human femoral

cortical bone specimens. The homogenized elastic coefficients of the stiffness tensor are

constrained to fully verify the thermodynamical conditions of stability. Here, we assume
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that cortical bone is transverse isotropic as this approximation has been shown to be realistic

experimentally by different authors (Dong and Guo, 2004; Reilly and Burnstein, 1974; Rho,

1996). Such approximation has been employed in different numerical studies of ultrasonic

wave propagation (Bossy et al., 2004b; Haiat et al., 2009; Protopappas et al., 2007).

The values of the stiffness coefficients corresponding to the mean values of the bone me-

chanical properties are referred to as “reference” set of parameters in what follows. The

maximum and minimum values of the stiffness coefficients are obtained by considering re-

spectively the maximum and minimum values of the elastic constants determined in Dong

and Guo (2004), after having verified that the thermodynamical stability conditions given

by Royer and Dieulesaint (2000) are enforced.

We choose a mean value of mass density ρs equal to 1.722 g.cm−3, following the value

taken in Haiat et al. (2009); Macocco et al. (2006). This value is chosen for the reference

mass density. In order to derive a realistic range of variation for mass density, we assume

that the reference value is given by a porosity of 7%, which corresponds approximately to

the mean porosity at the radius (Baron et al., 2007). The porosity was assumed to vary

between 3 and 15% (Bousson et al., 2001; Dong and Guo, 2004) and a rule of mixture leads

to the range of variation of mass density.

3. Viscoelastic tensor of cortical bone

The determination of realistic values of the components of the viscoelastic tensor E is

performed by considering the experimental results of ultrasonic attenuation measurements

obtained in the literature. To obtain the characteristic value of η11, we consider a longitudinal

plane wave mode propagating in the x-axis (axial direction). Then, the displacement u1 in

the x-axis writes:

u1(x, t) = A1 exp i(ωt− kx), (8)

where A1 is the amplitude of the wave at x = 0, k = kL,x− iαL,x is the complex wavenumber

and i is the imaginary unit. The real part of the complex wavenumber k writes:

kL,x =
ω

vφ
L,x

, where vφ
L,x =

√
C11

ρs

(
1 +

3ω2 η2
11

8C2
11

)
(9)

is the longitudinal phase velocity in the x-axis (Royer and Dieulesaint, 2000). The quantity

αL,x corresponds to the attenuation coefficient of the longitudinal wave mode in the x-axis.
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Inserting the relation (8) in (2) and considering an homogeneous transverse isotropic solid,

we obtain a simple relationship between the attenuation coefficient αL,x and the viscoelastic

coefficient η11 given by:

η11 =
2αL,xC11

ω2

√
C11

ρs

, (10)

under the approximation that ω À αL,xv
φ
L,x. Equation (10) is similar to Eq. (7).

The same results can be obtained by considering a wave propagation in the z direction

(radial direction) given by:

vφ
L,z =

√
C33

ρs

(
1 +

3ω2 η2
33

8C2
33

)
(11)

η33 =
2αL,z C33

ω2

√
C33

ρs

, (12)

where αL,z denotes the attenuation coefficient in the direction z and vφ
L,z is the longitudinal

phase velocity in the z-axis.

Using a similar approach, the relation between the attenuation coefficient of the shear

wave mode αT and the viscoelastic coefficient η55 can be obtained by considering a planar

transverse wave propagation in the direction x and writes:

η55 =
2αT C55

ω2

√
C55

ρs

, (13)

The transverse phase velocity is given by:

vφ
T =

√
C55

ρs

(
1 +

3ω2 η2
55

8C2
55

)
(14)

We could not find in the literature a simple way to determine the value of η13. Therefore,

the mean value of η13 is derived from the mean values of η11 and η55 by assuming an isotropic

behavior of viscoelasticity, which leads to the relation:

η13 = η11 − 2η55. (15)

In addition, the minimum and maximum values of η13 were obtained by verifying that the

following thermodynamical stability condition:

−η2
13 + η11 η33 > 0, (16)
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is always respected when varying each material property independently. This approach con-

stitutes a simple way of determining a realistic range of variation for η13. The physiological

range of variation of the other viscoelastic constants is obtained by considering the different

values of ultrasonic attenuation measured in the literature. In what follows, we will consider

a spatial variation of the different viscoelastic properties within this range of variation.

D. Lamb wave and bulk longitudinal wave

In previous analysis of wave propagation in idealized bone shapes (plate or tube) made

of an elastic transversely isotropic material (Bossy et al., 2002, 2004b; Haiat et al., 2009),

the FAS velocity was explicitly related to elastic properties in the limit of large and short

wavelength. When the thickness h is smaller than the wavelength λ (typically h/λ < 0.25)

the FAS velocity tends towards the so-called plate velocity which is the phase velocity of the

first symmetric Lamb wave mode S0 in the large wavelength limit, with the expression:

vp =

√
C11

ρs

×
(

1− C2
13

C11 × C33

)
, (17)

which is only valid in the case of an elastic material.

When the thickness h is large compared to wavelength, the FAS velocity tends towards

the bulk longitudinal wave velocity inside the material constituting the solid layer:

vb =

√
C11

ρs

, (18)

which is again only valid in the case of an elastic material.

In the present study, simulations were performed with two different solid layer thicknesses,

h = 0.6 mm and h = 4 mm because these two values of h corresponds to cases where the

behavior of the FAS velocity have been identified. Considering the dominant frequency of

the broadband ultrasonic pulse and the range of variation of C11, it means that h/λ varies

in the intervals defined from 0.14 to 0.19 and from 0.96 to 1.25 respectively for the thin and

thick solid layers.

For the thinnest layer, the propagation in the solid layer is analyzed on the basis of the

propagation of S0 wave in an immersed homogeneous plate after adjustment of the material

properties. Therefore, roots associated with the characteristic equation of the S0 wave for

homogenous transverse isotropic plate are calculated in the limit of large wavelengths.
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E. Modeling a gradient of material property

Similarly as what was done in Haiat et al. (2009), the impact of a controlled gradient

vector δ of a given material property S on the FAS velocity is investigated. In what follows,

the scalar S corresponds to one of the viscoelastic coefficients ηij defined in Eq. (5). In

each set of simulations, all the material properties (stiffness and viscoelastic coefficients) are

constant and equal to their reference value while S is subjected to a gradient defined below.

The gradient vector δ = grad S = δ z is assumed to be independent of x in all cases,

where z is an unit vector along z-axis and grad is the gradient operator acting on a scalar

field. The quantity δ is always taken negative because attenuation increases with porosity

(Sasso et al., 2008) and porosity is higher in the endosteal part than in the periosteal part of

the bone. Moreover, only the simple situation of affine spatial variations of S is considered,

corresponding to a constant value of δ. This affine spatial variation of S is chosen because

the actual physiological spatial dependence of S remains unknown. Two different affine

spatial dependencies of the studied viscoelastic property are considered and are illustrated

in Fig. 2. The associated gradient δ will be referred to as type 1 or 2.

Type 1. The gradient of type 1 is such that the physical property S takes the same value

Sm at the upper interface z = 0 of the solid plate for all values of the gradient δ. The

quantity S(z) is therefore given by:

S(z) = Sm + δ × z, (19)

where Sm is given by the minimal value of the material property S considered. The minimal

value δm of δ (which corresponds to its maximum in absolute value as δ < 0) is chosen so

that S(−h) is equal to SM , where SM is given by the maximal value of S. The gradient δm

is given by:

δm =
(Sm − SM)

h
< 0 (20)

Type 2. The gradient of type 2 is such that S takes the same value at the middle of

the solid plate (z = −h/2) for all values of gradient δ. Furthermore, the mean value of the

property S is identical for all δ and the quantity S(z) is given by:

S(z) =
(Sm + SM)

2
+ δ × (z +

h

2
). (21)

The minimal value of δ is also given by Eq. (20) so that all values of S(z) are again always

comprised between Sm and SM .
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For both types of spatial variation, five different values of δ regularly distributed between

δm and 0 are arbitrarily considered for each layer thickness. In what follows, the notations

δ11, δ13, δ33 and δ55 correspond to δ when S is defined by η11, η13, η33 and η55 respectively.

F. Modeling a gradient of porosity

In the case of bone, all material properties (mass density, stiffness and viscoelastic co-

efficients) are expected to exhibit coupled spatial variations because they are all related to

porosity, which increases from the periosteal to the endosteal part (Bousson et al., 2001).

When porosity increases, the values of the homogenized elastic constants and of mass den-

sity are expected to decrease, having opposite and competing effects on the wave velocity.

In addition, the viscoelastic constants are expected to increase with porosity (Sasso et al.,

2008). Here, spatial variations of types 1 and 2 are considered for the porosity (noted P ),

with the minimum and maximum values of porosity Pm and PM equal respectively to 3 and

15%. In the case of a spatial variation of types 1 and 2, the porosity writes respectively:

P (z) = PM + δP × z, (22)

P (z) =
(Pm + PM)

2
+ δP × (z +

h

2
). (23)

The dependence of mass density and of the stiffness coefficients is similar to what has

been done in Haiat et al. (2009) and is recalled in what follows. Following a simple rule of

mixture, a variation of porosity induces an affine variation of mass density given by:

ρs(z) = ρm + δρ × (P − 3). (24)

Here, we choose ρm in order to obtain a variation of mass density from 1.753 to 1.66 g.cm−3

when P varies from 3 and 15%, which leads to δρ = 7.7 × 10−3 g.cm−3. These values

correspond to a mass density equal to 1.722 g.cm−3 when P = 7%.

The variations of all material properties with porosity are taken from the literature. Affine

dependence of diagonal components of C with porosity was derived from Baron et al. (2007)

where a variation of porosity between 3 and 15% corresponds approximately to a change of

C11 and C33 of 7.8 and 4 GPa, respectively:

C11(z) = Cm
11 + δC × (P − 3), C33(z) = Cm

33 + δ′C × (P − 3). (25)
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The variations of C11 and C33 are centered on their reference value. Therefore, Cm
11 and

Cm
33 are respectively equal to 19.7 and 16.85 GPa; the quantities δC and δ′C are respectively

equal to 0.65 and 0.33 GPa. Note that taking into account a slight non linear variation of

C11 and C33 as a function of porosity should not modify significantly our results. Similarly

as what was done in Haiat et al. (2009), we did not consider any variation of C13 which was

taken equal to its reference value.

Although BUA has been shown to increase when mass density and bone mineral density

(which are both negatively correlated to porosity) increase (Sasso et al., 2008), the precise

relationship between porosity and attenuation remains unknown. Therefore, for each vis-

coelastic constant ηij, we assume i) a linear relation between the corresponding attenuation

at 1 MHz and porosity, ii) that the ultrasonic attenuation value at Pm (respectively PM)

corresponds to its minimal (respectively maximal) value within the physiological range. This

approach constitutes a simple mean of investigating the effect of viscoelasticity variations

due to heterogeneous porosity.

III. RESULTS

A. Range of realistic material properties

1. Fluid viscosity

The same approach as the one described in Haiat et al. (2008a) is used to derive the

attenuation coefficient in bone marrow because experimental measurements could not be

found in the literature. Therefore, we assumed that the absorption properties of bone

marrow are close to that of fat (soft tissue like behaviour) and the values of ηf used for the

soft tissues and for bone marrow are therefore similar. The attenuation coefficient at 1 MHz

measured by Dussik and Fritch (1956) in fresh human fat tissues is equal to 0.8 dB.cm−1

and that measured by Lehman and Johnson (1958) in subcutaneous pig fat tissue is equal

to 1.8 dB.cm−1 (these values are summed up in Goss et al. (1978)). As indicated in Table I,

the mean value of αL was taken equal to 1 dB.cm−1 and its minimum and maximum values

were arbitrarily chosen equal to 0 and 2 dB.cm−1 respectively. The corresponding values of

ηL were obtained using Eq. (7).
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2. Stiffness tensor of cortical bone

The values used for the stiffness tensor of cortical bone are the same as the one given

in Haiat et al. (2009). Table II shows the maximum, minimum and mean values of the

4 components (C11, C13, C33 and C55) of the stiffness tensor C and of mass density of

cortical bone. As described in Haiat et al. (2009), these values were obtained by considering

the results obtained in Dong and Guo (2004) and by verifying that the thermodynamical

stability equations are respected.

3. Viscoelastic tensor of cortical bone

The values of the different components of the viscoelastic tensor E were obtained by

considering the measurement of different attenuation coefficients given in the literature.

The values of the longitudinal attenuation coefficients corresponding to the axial and radial

directions (αL,x and αL,z) at 1 MHz were obtained from the axial and radial BUA values

respectively, assuming a linear frequency dependence of the attenuation coefficient within

the entire frequency bandwidth. The values of αL,x and αL,z given in Table III were taken

from Table 1 of Sasso et al. (2007). The mean value of αT indicated in Table III was taken

from Garcia et al. (1978). The corresponding values of η55 was obtained using Eq. (13) by

considering the reference values of the material properties indicated in Table II. The mean

value of η13 was obtained using Eq. (15) and the maximum and minimum values of η13

were obtained by verifying that the thermodynamical stability condition given by Eq. (16)

is always respected when η11 and η33 vary within their physiological range.

B. Analytical validation of the finite element model

In order to validate our simulation code in the framework of a viscoelastic constitutive law,

the results obtained numerically in a simple geometrical situation (planar propagation) are

compared to analytical results. Therefore, a through transmission experiment was simulated

using the numerical simulation tool in order to verify that the material properties used as

input parameters could be retrieved in the simulation. Briefly, a 2-D plane wave propagation

was considered in a rectangular simulation domain (10×5 mm) in the x-axis. A linear emitter

was positioned at x = 0, generating a broadband ultrasonic signal similar to that described in
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subsection IIA. A linear receiver is located at the other end of the simulation domain (at x =

10 mm) to record the ultrasonic wave after its propagation in the viscoelastic domain where

the mean stiffness coefficient indicated in Table II and the viscoelastic parameters indicated

in Table III were considered. Longitudinal and transverse wave modes were successively

tested by considering a time-dependent displacement in the x and z directions at the emitter

as boundary conditions.

Meanwhile, the propagation of a longitudinal ultrasonic wave in water was simulated

using the formulation in terms of pressure, leading to the reference signal, which is necessary

in the framework of a through transmission configuration. The black solid lines in Fig. 3

show the behavior of the frequency dependent attenuation coefficient and of phase velocity

within the frequency bandwidth of interest, obtained using the ratio of the spectra of the

reference signal and of the signal transmitted in the simulation domain for the longitudinal

and transverse wave modes (Haiat et al., 2008b; Sasso et al., 2008).

These last simulation results were compared to analytical results obtained by considering

a plane wave propagation in a viscoelastic medium under the same assumptions of weak ab-

sorption given in subsection II C 3 where i) the attenuation coefficient varies has a f-square

dependence, as indicated by Eqs. (10) and (13) and ii) the longitudinal and transverse phase

velocity vφ
L,x and vφ

T varies as a second order polynomial as a function of frequency, as indi-

cated by Eqs. (9) and (14). The gray dashed lines in Fig. 3 shows the frequency dependencies

of the attenuation coefficient and of phase velocity obtained using the analytical model de-

scribed above. A good agreement between analytical and numerical results is obtained for

the frequency dependence of αL,x and αT as the maximum difference between the two results

is equal to 0.01 dB.cm−1 for αL,x and 0.012 dB.cm−1 for αT . Slightly more important dis-

crepancies are obtained between the analytical and the numerical model for the frequency

dependence of phase velocity as the difference between the two results slightly increases with

frequency and its maximum value is equal to 0.7 m.s−1 for vφ
L,x and to 0.3 m.s−1 for vφ

T . This

discrepancy may be explained by effects related to numerical dispersion in the simulation

code.
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C. Effect of viscous and viscoelastic absorption on the amplitude of the first

arriving wavefront

In order to assess the qualitative effect of viscous properties of both fluids and of the

viscoelastic properties of the solid on the FAS, Fig. 4 shows the amplitude of the first

maximum of each signal recorded by the 14 receivers corresponding to the computation of

the FAS velocity for a bone thickness equal to 4 mm. The values of the components of the

stiffness tensor were taken equal to their reference value indicated in Table II. The solid

line corresponds to the normalized amplitude of the signal obtained without any absorption

neither in the fluid nor in the solid. The dashed line corresponds to the normalized amplitude

of the signal obtained by considering absorption in both fluids and in the solid, the viscous

and viscoelastic parameters being equal to their reference values given in Table I and III.

The difference between the dashed and solid lines illustrates the influence of viscous and

viscoelastic effects on the amplitude of the FAS. For both configurations (elastic and viscous

case), the amplitude of the signal is shown to decrease as a function of the position of the

receiver, which can be explained by the fact that the wave radiates in water while it propa-

gates in the bone structure, leading to a loss of energy. As shown in Fig. 4, including viscous

and viscoelastic absorption in the simulation model leads to a decrease of the amplitude of

the first arriving wavefront.

The FAS velocity obtained without absorption is equal to 3630 m.s−1 whereas it is equal

to 3732 m.s−1 when absorption is taken into account. Note that The FAS velocity is deter-

mined by the spatially averaged bone properties. The difference between these two values

is significant and will be investigated in what follows.

D. Dependence of the FAS velocity to changes of viscous properties of the

surrounding fluids

From the analysis of numerical simulations, the variation of the FAS velocity due to

changes of viscous properties of the soft tissues and of bone marrow within a realistic range

was assessed for h = 0.6 and 4 mm and for homogeneous material properties. The material

properties of cortical bone were taken equal to their reference values as given in Table II

for the stiffness tensor C and in Table III for the viscoelastic tensor E. The minimal (m)
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and maximal (M) values of ηf are tested for the soft tissues and for bone marrow, the other

material properties remaining equal to their reference values.

Table IV shows that the FAS velocity is independent of the viscous properties of the soft

tissues as well as of marrow within the physiological range. Therefore, the soft tissues as

well as bone marrow will be considered as non viscous fluids in what follows.

E. Dependence of the FAS velocity to changes of homogeneous bone

viscoelastic properties

The variation of the FAS velocity due to changes of the viscoelastic parameters of cortical

bone within a realistic range was assessed for h = 0.6 and 4 mm and for homogeneous

material properties in order to determine which viscoelastic parameters play a role in the

FAS velocity and must thus be considered for spatial variations. Therefore, the material

properties of the surrounding soft tissues and of the stiffness tensor were taken equal to

their reference values as indicated in Tables I and II. The minimal (m) and maximal (M)

values of each component of the viscoelastic tensor E of cortical bone indicated in Table III

were tested, the other material properties remaining equal to their reference values. Table V

shows the FAS velocity variations corresponding to a variation of each material property.

According to the value of h and to the considered viscoelastic property S, two situations

may be distinguished: the difference of the FAS velocities obtained when considering the

maximum and minimum value of S may be relatively “large” (above 70 m.s−1) or relatively

“small” (lower than 3 m.s−1). Considering the thick solid layer (h = 4 mm), Table V

shows that small differences of the FAS velocity is obtained, when η13, η33 and η55 take

their minimum or maximum values defined above. On the contrary, the FAS velocity varies

significantly when η11 varies within the limits defined above.

The solid line of Fig. 5 shows the variation of the FAS velocity as a function of η11 in the

case of homogeneous bone properties, the other components of E and C remaining constant

and equal to their reference value. The FAS velocity is shown to be an increasing function

of η11 within the physiological range.

When considering the thin solid layer (h = 0.6 mm), changes in η55 weakly affects the

FAS velocity while variations of η11, η13 and η33 lead to significantly larger changes in the

FAS velocity. As shown in Fig. 6, the FAS velocity is an increasing function of η11 and
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η33 and a decreasing function of η13 within the physiological range. The component of the

viscoelastic tensor (η11, η13 and η33) which influence the FAS velocity are the same than the

components of the stiffness tensor (C11, C13 and C33) having an effect on the FAS velocity

(Haiat et al., 2009) and determining the plate velocity vp (see Eq. (17)).

Figure 7 shows the variation the FAS velocity for homogeneous cortical bone where the

porosity is assumed to vary within the physiological range, inducing a simultaneous variation

of mass density and of the components of C and of E. The black line of Fig. 7 shows that

the FAS velocity is a decreasing function of the porosity for a thick and a thin bone width

and that the dependence of the FAS velocity on the porosity is approximately similar.

In what follows, the effect of a gradient of viscoealstic property playing a role in the

determination of the FAS velocity will be investigated for each value of the bone thickness.

F. Effect of a gradient of bone viscoelastic properties

1. Case of thick solid layer

Figure 8 shows the dependence of the FAS velocity on the gradient of η11 in the case of

a thick solid layer (h = 4 mm).

When the gradient is of type 1, the FAS velocity increases when δ11 increases, whereas

when gradient is of type 2, the FAS velocity slightly decreases with δ11. The dashed lines of

Fig. 8 show the FAS velocity obtained when considering a constant homogeneous value of

η11 equal to its spatially averaged values, which corresponds to the value of η11 at z = −0.5h.

The dashed lines of Fig. 8 were derived from the results shown in Fig. 5. A poor agreement

is obtained between the dashed and solid lines, which shows that in the case of a thick bone

width with heterogeneous bone properties, the FAS velocity can not be obtained by simply

spatially averaging η11. These results will be discussed in subsection IVB.

2. Case of thin solid layer

When considering the thin solid layer (h = 0.6 mm), the effect of a gradient of η11, η13

and η33 was investigated according to the results presented in subsection III E and the results

are shown in Fig. 9.

When the gradient is of type 1, the FAS velocity is shown to increase when δ11 and δ33
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increases whereas it decreases when δ13 increases. When the gradient is of type 2, the FAS

velocity stays approximately constant with δ11, δ13 and δ33.

The dashed lines of Fig. 9 show the FAS velocity obtained when considering a constant

homogeneous value of η11, η33 and η13 equal to its spatially averaged values, which corre-

sponds to the value of η11, η33 and η13 at z = −0.5h. The dashed lines of Fig. 8 were derived

by considering the results shown in Fig. 5. For both types of gradient, the FAS velocity is

shown to be accurately predicted by considering the spatially averaged values of η11, η33 and

η13, which show that in the case of a thin bone width with heterogeneous bone properties,

the FAS velocity is governed by the spatially averaged values of the viscoelastic properties

η11, η13 and η33.

G. Effect of a gradient of porosity

Figure 10(a) and (b) shows the variation of the FAS velocity obtained for h = 0.6 and

4 mm respectively when considering a gradient of porosity δP . The black and gray solid

lines show the FAS velocity obtained numerically for a gradient of porosity of types 1 and

2, respectively. Note that the porosity induces a variation of mass density as well as of the

stiffness and viscoelastic coefficients, as described in section II F. The dashed lines of Fig. 10

reproduces the results obtained in Haiat et al. (2009) corresponding to the results obtained

by only accounting for variations of stiffness coefficients and of mass density due to changes

of porosity.

As shown in Fig. 10, taking into account the viscoelastic behavior of cortical bone induces

a significant increase of the FAS velocity compared to the elastic case. In the case of a thin

bone width (see Fig. 10(a)), the FAS velocity does not depend on δP for a gradient of

type 2, which is a result similar to what has been obtained in the elastic case. However, for

a gradient of type 1, the FAS velocity decreases with δP with a slope approximately divided

by two compared to the elastic case. The thin dotted line in Fig. 10(a) shows the FAS

velocity obtained when considering a constant homogeneous value of the porosity equal to

its spatially averaged values, which corresponds to the value of the porosity at z = −0.5h. A

good agreement is obtained between the results obtained with a gradient and with spatially

averaged material properties, which confirms that in the case of a thin bone width with

heterogeneous porosity, the FAS velocity is governed by the spatially averaged value of the
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porosity.

In the case of a thick bone width (see Fig. 10(b)), the FAS velocity increases with δP for

a gradient of type 2, with a slope slightly lower than what is obtained in the elastic case.

However, for a gradient of type 1, the FAS velocity slightly increases with δP whereas it

decreases with δP in the elastic case. These results will be discussed in subsection IVB.

IV. DISCUSSION

To the best of our knowledge, this study is the first one to focus on the effect of ultrasonic

attenuation on the FAS velocity estimated with an axial transmission configuration for

different solid layer thicknesses.

Recently, a study where attenuation was neglected has shown that the overlying soft

tissue significantly influence the ultrasonic response of cortical bone in axial transmission

(Moilanen et al., 2008). The present study shows that ultrasonic attenuation effects are not

likely to modify their conclusions. However, as shown in Fig. 4, attenuation effects strongly

influence the amplitude of the signal corresponding to the FAS velocity, which is determined

using an appropriate threshold. This threshold is usually chosen empirically, by finding a

compromise between the noise level and the amplitude of the FAS. Our results show that

in the case of bone with strong attenuation, the amplitude of the FAS may be significantly

reduced compared to the elastic case (a factor 3 may be expected). This decrease might

lead to wrong estimation of the time of the FAS velocity if the FAS amplitude crosses the

threshold, which is more likely for the receivers located far from the emitter because losses

of amplitude are comparatively more important.

The results shown in Table V show that the effect of changes of viscoelastic properties

within their estimated physiological range may be of the same order of magnitude as the

effect of changes of the stiffness coefficient or mass density within the physiological range

(Haiat et al., 2009). These results indicate that attenuation is an important property which

should be accounted for when modeling the ultrasonic propagation in cortical bone in the

context of axial transmission.
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A. Prediction of the influence of viscoelasticity using a signal processing

technique

In order to understand the increase of the FAS velocity as a function of the longitudi-

nal attenuation for both values of bone thickness h, an approach using signal processing

techniques similar to what has been developed in Haiat et al. (2006) has been applied by as-

suming the propagation of a single contribution. This approach is based on results obtained

in the context of trabecular bone studies showing that speed of sound values measured using

a marker in the time domain increases when BUA increases (Haiat et al., 2005). This phe-

nomenon is due to a spreading of the normalized signal when BUA increases (Haiat et al.,

2006; Wear, 2000, 2001).

Briefly, we employed a filter with a quadratic frequency dependent attenuation coefficient.

Signal simulation was performed in order to understand the effects of the frequency depen-

dent attenuation coefficient on the artifacts in velocity measurements. For a given quadratic

frequency-dependent attenuation coefficient in bone α(f) = βf 2, a transfer function was

determined so that the effect of the propagation in bone could be modeled as a quadratic

filter. In this last relation, β is a constant.

In the model, the simulated signal ss(t) (with Fourier transform Ss(f)) corresponding to

a propagation in bone over a distance of L, was derived from the emitted signal e(t) (Fourier

transform E(f)) through:

Ss(f) = E(f) exp (−β f 2 L) exp (−2iπ f
L

vφ
L,x(f)

), (26)

where the transfer function H1(f) = exp (−β f 2 L) accounts for the attenuation in bone

(attenuation in water was taken to be negligible as it does not impact the FAS velocity) and

H2(f) = exp (−2iπ f L

vφ
L,x(f)

) accounts for the time delay corresponding to the propagation in

bone. Following Eqs. (9) and (10) together with the expression of the attenuation coefficient,

we have:

vφ
L,x(f) =

√
C11

ρs

(
1 +

3C11β

8π2 ρs

)
. (27)

For each value of β, the approach described above allows to construct a set of 14 signals

by varying the value of L accordingly to the position of the receivers. A value of L = 0 was

arbitrarily chosen for the receiver located at the left of Fig. 1. Note that choosing another

value would not impact the results presented below as the FAS velocity is derived from the
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comparison between the 14 receivers and does not depend on the shape of the first signal.

The FAS velocity was derived following the same method as described in subsection IIA.

The relationship between the parameter β and the bone viscoelastic properties depends

on the bone thickness considered. In the case of a large bone thickness, the situation is

relatively simple because only η11 impacts the FAS velocity and using Eq. 10 leads to:

β = 2
η11 ω2

C11

√
ρs

C11

(28)

The dotted line of Fig. 5 shows the variation of the FAS velocity as a function of η11. A

reasonable agreement is shown between the results obtained using finite element analysis

and this signal processing approach, the discrepancy being related to the simplicity of the

model. Note that similar results are obtained in the case of a thin bone width (data not

shown) when considering an isotropic behavior of C and E, which is necessary in order to

apply this simple model a simple relationship between β and the bone material properties

is difficult to obtain in the anisotropic case.

B. Contributing depth for thick solid layer

In a previous study (Haiat et al., 2009), we have shown that an equivalent penetration

depth corresponding to the average thickness investigated by the lateral wave could be

determined in the case of a large bone thickness. For spatial variations of C11 or ρs, the

equivalent penetration depth was shown to be independent from the type of gradient, but

to depend on the material property considered.

1. Spatial variation of η11

In the case of a thick layer (h > λ), the variation of the FAS velocity as a function

of a spatial gradient of η11 obtained in Fig. 8 was analyzed. For this purpose, the notion

of contributing depth H11 is introduced by adapting the method described in Haiat et al.

(2009).

The method described hereafter aims at estimating the value of this equivalent depth

Hx in the case of a linear spatial variation of η11, which is the only viscoelastic parameter

affecting the FAS velocity when h = 4 mm (see Table V). The determination of Hx is
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important in order to determine which part of the bone is assessed when employing axial

transmission techniques.

The methods employed to define the contributing depth Hx uses the relationship between

the FAS velocity and η11 in the case of homogeneous material properties, noted vx
F (η11) in

what follows. The function v11
F is given in Fig. 5.

In the case of a gradient of types 1 and 2, η11 depends on z (see Eqs. (19) and (21)), so

that we can define a function va of the variables δ11 and z given by:

va(δ11, z) = vx
F(η11(z)). (29)

Note that va can be completely determined within the physiological range for each type of

gradient using Fig. (5) and Eqs. (19) and (21).

The contributing depth Hx is defined as the depth at which the rate of variation of va

computed at the depth Hx and of the FAS velocity (obtained numerically) versus δ11 are

equal. This condition writes:

α ≡ dvF
dδ11

(δ11) =
∂va
∂δ11

(δ11, H11), (30)

where vF denotes the FAS velocity plotted in Fig. 8.

This method is similar to the one developed in Haiat et al. (2009), except that we previ-

ously used an analytical model to determine va, which is not possible in the present work.

In the case of a spatial variation of types 1 and 2 of η11, Eq. (30) yields respectively:

H1
x = α

(
dvx

F

dη11

)−1

(31)

H2
x =

h

2
+ α

(
dvx

F

dη11

)−1

, (32)

where H1
x and H2

x are the equivalent penetration depths for a spatial variation of η11 corre-

sponding to a variation of types 1 and 2 respectively. The value of α is determined graphically

as the slope of the FAS velocity versus δ11 in Fig. 8. The value of dvx
F/dη11 is determined

from the plots shown in Fig. 5.

Table VI compares the results obtained in the present study with those obtained in Haiat

et al. (2009). The values obtained for H11 for a gradient of types 1 and 2 are of the same

order of magnitude, which constitutes a further validation of our approach. The results

show that the contributing depth corresponding to a gradient of η11 is higher than that

corresponding to a gradient of C11 and ρs.
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2. Spatial variation of porosity

Similarly as what was done in Haiat et al. (2009), we tried to compute an equivalent

penetration depth HP in the case of a gradient of porosity, which induces a simultaneous

spatial variation of η11, C11 and ρs. The computation of HP may be performed similarly as

in the last paragraph and requires using the relationship between the FAS velocity and P

for homogeneous materials shown in Fig. 7 which is denoted vP
F (P ) in what follows.

In the case of a gradient of types 1 and 2, P depends on z (see Eq. (23)), so that it is

possible to formally define a function va of δP and z given by:

va(δP , z) = vP
F (P (z)). (33)

Note that va is known within the physiological range from the curves plotted in Fig. 7.

The contributing depth HP is defined as the depth at which the rate of variation of va

computed at the depth HP and of the FAS velocity (obtained numerically) versus P are

equal. This condition writes:

α ≡ dvF
dP

(δP ) =
∂va
∂δP

(δP , H), (34)

where vF denotes the FAS velocity plotted Fig. 10(b).

In the case of a spatial variation of types 1 and 2 of P , Eq. ((34)) yields respectively:

H1
P = α

(
dvP

F

dP

)−1

, (35)

H2
P =

h

2
+ α

(
dvP

F

dP

)−1

, (36)

where H1
P and H2

P are the equivalent depths for a spatial variation of porosity corresponding

to a variation of types 1 and 2 respectively. The value of α is determined graphically as the

slope of the FAS velocity versus δP in Fig. 10. The value of dvP
F/dP is determined from the

results shown in Fig. 7.

Table VI shows the results derived from Fig. 10 for H1
P and H2

P , which are significantly

different. In addition, the value of H1
P is negative, which is not a physically acceptable

results. These results show that the approach described above is not adapted to define an

equivalent penetration depth in the case of a gradient of porosity when taking into bone

viscoelastic behavior. Note that in the elastic case, the values of H1
P and H2

P were also
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different, but to a lesser extent. These results can be explained by the fact that the method

described above is based on a first order approximation, which is not valid when all three

parameters (η11, C11 and ρs) vary simultaneously. In particular, the negative value obtained

for H1
P can be explained by the fact that the FAS velocity decreases with porosity in the

homogeneous case, whereas it slightly increases with a gradient of type 1 of porosity. In

the case of a gradient of type 1, the contribution of spatial variations of η11 (corresponding

to an increase of the FAS velocity) dominates that of the elastic properties C11 and ρs

(corresponding to an decrease of the FAS velocity). This result can be explained by the fact

that H1
P in the elastic case is lower than H1

x, leading to a stronger dependence of the FAS

velocity on spatial variations of η11 than on C11 and ρs. In addition, the increase of the FAS

velocity versus porosity obtained in the case of a gradient of type 1 can be predicted when

averaging the FAS velocity obtained when only η11 varies and when C11 and ρs vary (data

not shown).

C. Limitations

This study has limitations. First, the determination of homogenized viscoelastic material

properties of cortical bone is a complex problem due to the multiscale nature of bone. Bone

material properties depend on the microstructure (e.g. porosity, shape and distribution of

the pores) as well as on the material properties of the bone matrix at smaller scales (e.g.

mineralization, orientation of collagen fibrils, etc.). Both porosity and material properties

of bone tissue may depend on the radial position in bone and result in a gradient of all

components of C, E and in ρs. Therefore multiscale models, coupled with structural and

stiffness measurements at lower scales (such as nanoindentation (Zysset et al., 1999) or

scanning acoustic microscopy (Raum et al., 2006)) are needed in order to derive more realistic

spatial variations of homogenized material properties.

Second, although the range of variation chosen for each component of the viscoelastic

tensor was determined from the experimental results obtained by the group of some of the

authors Sasso et al. (2007, 2008) for bovine cortical bone samples at 4 MHz, the precise

relationship between the attenuation coefficient and porosity in human cortical bone around

1 MHz remains poorly understood. The values of η11 and η33 were obtained by consider-

ing BUA values measured at 4 MHz and a linear dependence of the attenuation coefficient
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between 0 and 4 MHz. However, the dependence of the attenuation coefficient has been

shown to be slightly non linear over a wide frequency bandwidth (see Fig. 5 of Sasso et al.

(2007)). Moreover, as shown by Eq. (10), our time model approximation leads to a f-square

dependence of the attenuation coefficient, which is not necessarily the case for real corti-

cal bone samples. In order to account for other frequency dependence of the attenuation

coefficient in the framework of a time-domain model, would need to be used, similarly as

what was done in fluids using a fractional time derivative (Wismer, 2006) or a causal con-

volution wave equation (Cobbold et al., 2004). However, the frequency dependence of the

attenuation coefficient in cortical remains poorly understood. Ultrasonic attenuation has

been shown to be related to scattering effects due to the presence of the pores (Sasso et al.,

2008). However, viscoelastic properties of the bone matrix are also expected to influence

ultrasonic attenuation, but this dependence remains to be quantified. The coupling of scat-

tering and viscous absorption effects makes the prediction of the frequency dependence of

the attenuation coefficient difficult. The development of homogenization models capable of

predicting bone attenuation and/or dispersive effects, such as the ones developed in the con-

text of trabecular bone would be of great interest to predict the evolution of bone ultrasonic

response with age or thickness.
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Table I. Mean, maximum and minimum values of the attenuation coefficient at 1 MHz and of the

corresponding viscosity of bone marrow and of soft tissues considered in the present study. These

values are taken from Dussik and Fritch (1956); Goss et al. (1978); Lehman and Johnson (1958).

Physical αL (1 MHz) ηL

property (dB.cm−1) (Pa.s)

Mean value (reference) 1 1.97

Minimum value 0 0

Maximum value 2 3.94
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Table II. Mean, maximum and minimum values of the four homogenized elastic constants and of

mass density affecting the ultrasonic propagation in the framework of the 2-D model of Fig. 1.

Mechanical C11 C13 C33 C55 = GL ρs

quantity (GPa) (GPa) (GPa) (GPa) (g.cm−3)

Mean

value 23.05 8.7 15.1 4.7 1.722

(reference)

Minimum 17.6 5.1 11.8 3.3 1.66

Maximum 29.6 11.1 25.9 5.5 1.753
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Table III. Mean, maximum and minimum values of the four homogenized elastic constants and

of mass density affecting the ultrasonic propagation in the framework of the 2-D model of Fig. 1.

These values are derived from Dong and Guo (2004).

Mechanical αL,x αL,z αT η11 η33 η55 η13

quantity (dB.cm−1) (dB.cm−1) (dB.cm−1) (Pa.s) (Pa.s) (Pa.s) (Pa.s)

Mean

value 3.2 4.2 4 157 168 18.1 121.8

(reference)

Minimum 0.8 1.7 0 39.3 67.8 0 54

Maximum 10.6 12.8 8 521 502 36.2 154
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Table IV. Sensitivity of the FAS velocity to changes of the viscous properties of the soft tissues and

of bone marrow for two values of the cortical thickness and homogeneous bone material properties.

The computed FAS velocity is indicated for the minimal and maximal values of each variable

corresponding to the realistic range of variation shown in Table II.

Material ηf in soft tissues ηf in bone marrow

property S (Pa.s) (Pa.s)

Cortical

thickness h 0.6 4 0.6 4

(mm)

FAS velocity

for Sm 3494 3731 3495 3731

(m.s−1)

FAS velocity

for SM 3495 3732 3495 3731

(m.s−1)
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Table V. Sensitivity of the FAS velocity to changes of the viscoelastic properties of cortical bone

for two values of the cortical thickness and homogeneous bone material properties. The computed

FAS velocity is indicated for the minimal and maximal values of each variable corresponding to the

realistic range of variation shown in Table II.

Material η11 η13 η33 η55

property S (Pa.s) (Pa.s) (Pa.s) (Pa.s)

Cortical

thickness h 0.6 4 0.6 4 0.6 4 0.6 4

(mm)

FAS velocity

for Sm 3406 3654 3541 3738 3475 3732 3494 3734

(m.s−1)

FAS velocity

for SM 3747 3956 3468 3735 3545 3734 3494 3733

(m.s−1)
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Table VI. Contributing depths corresponding to spatial variations of different parameters. Results

are shown for both types of gradient. The six last column corresponds to results obtained in Haiat

et al. (2009). The values in bold correspond to non physical results (see text for explanations).

Material η11 P (%) C11 ρs P (%)

property S (Pa.s) (viscoelastic case) (GPa) (g.cm−3) (elastic case)

Type of

gradient 1 2 1 2 1 2 1 2 1 2

Contributing

length (mm) 1.68 1.55 -0.04 1.8 0.59 0.66 1.03 1.04 0.46 0.63
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Figure 10.
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