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Abstract

This article is concerned with the identification of stochastic representations of ran-

dom variables and fields from experimental data. The data used for the identification

consist of measurements of several realizations of the uncertain quantities that must

be represented. The random variables and fields are approximated by a polynomial

chaos expansion, and the coefficients of this expansion are viewed as unknown pa-

rameters to be identified. It is shown how the Bayesian paradigm can be applied

to formulate and solve the inverse problem. The estimated polynomial chaos coef-

ficients are hereby themselves characterized as random variables whose probability

density function is the Bayesian posterior. This allows to quantify the impact of

missing experimental information on the accuracy of the identified coefficients, as

well as of subsequent predictions. An illustration in stochastic aeroelastic stability

analysis is provided to demonstrate the proposed methodology.
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1 Introduction

Validation is a critical requirement for physics-based prediction models to find useful

applications in prognosis and engineering design. The validation of a model involves

providing a quantitative description of the proximity between the model and the

reality that it purports to represent, with the objective of establishing the trustwor-

thiness of the predictions. Stochastic approaches to model validation aim at using

stochastic techniques to quantify the impact of missing data, modeling errors, and

discretization errors on predictions.

Several approaches for constructing stochastic models have been proposed in the

literature, see e.g. the reviews [1–4]. Parametric stochastic models accommodate

uncertainty by modeling local physical features of a model, such as its geometri-

cal parameters, fields of material properties and boundary conditions, by random

variables and/or fields, see e.g. [1, 5]. Non-parametric stochastic models incorporate

uncertainty by modeling global features of a model by random variables. An exam-

ple is the non-parametric approach proposed by Soize [6, 7], where reduced matrix

models are defined in terms of random matrices.

A key task in the construction of a stochastic model is the choice of the probabil-

ity distribution of the random variables, fields, or matrices. A frequently adopted

approach consists in choosing one of the ”labeled” probability distributions, such

as the Gaussian, lognormal or Wishart distribution, and in identifying the parame-

ters of that distribution from experimental data. An example is the modeling of a

scalar uncertain quantity by a Gaussian random variable, and the estimation of its

mean and variance from experimental data. An alternative approach has its roots in
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functional analysis, and consists in representing random variables or fields by a Poly-

nomial Chaos Expansion (PCE), see e.g. [5, 8–11], and in identifying the coefficients

of this expansion from experimental data. The latter approach is more versatile, in

that it allows to represent a wider class of random variables, and also permits fast

and efficient sampling from the identified random variables or fields.

Several methodologies for the identification of representations of random variables

and fields from experimental data have already been proposed. They mostly rely on

procedures from the theory of mathematical statistics, see e.g. [12, 13], such as the

method of moments [14, 15], maximum likelihood [15–19], Bayesian inference [20–

22], maximum entropy [23] and minimum relative entropy [14, 16].

A significant challenge associated with these identification approaches consists in

faithfully capturing the weight of available experimental data, and in developing er-

ror analysis capabilities to determine the value of additional data. In this context, the

main objective of this article is to develop a systhematic methodology for quantifying

the impact of missing experimental information on the accuracy of inferred PCEs

representing random variables or fields. Ghanem and Doostan [24] and Ghanem et al.

[18] have already proposed a methodology that relies on asymptotic properties of

the identification method (as more and more data become available) to characterize

uncertainties associated with limited data. However, many data sets encountered

in practice are rather small to invoke asymptotic properties. We complement the

previous work by developing an alternative methodology that relies on the Bayesian

paradigm and is suitable for both small and large data sets.

This article is organized as follows. First, Secs. 2 and 3 recall the representation

of random variables and fields using the Karhunen-Loeve and polynomial chaos

expansions. Then, Sec. 4 summarizes the specific setting in which the methodology
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will be developed together with a concise statement of the task to be undertaken.

Subsequently, Secs. 5 to 8, which constitute the core of this article, expound on the

Bayesian identification of PCEs. Section 9 provides details to assist the reader in

implementing the framework. Finally, Sec. 10 provides an illustration in stochastic

aeroelastic stability analysis to demonstrate the proposed methodology.

1.1 Notations

The following notations are frequently used in this article. Let N and R denote the

sets of respectively integers and real scalars. Any vector x = (x1, . . . , xn) ∈ R
n is

identified with the (n×1) column matrix of its components. Let x, y ∈ R
n be two real

vectors. Then, xTy denotes the Euclidean inner product such that xTy =
∑n

k=1 xkyk,

and ||x|| the Euclidean norm such that ||x|| =
√

xTx.

Let Mn(R) be the space of square (n × n) matrices X whose entries Xkℓ are in R.

Then, tr(X) denotes the trace of X such that tr(X) =
∑n

k=1 Xkk, and XT the

transpose of X. The tensor product x ⊗ y of x, y ∈ R
n is represented by the

matrix xyT ∈ Mn(R).

Throughout the article, (Ω,F , P ) is a probability measure space, where Ω is the

sample space of outcomes, F the σ-algebra of events and P : F → [0, 1] the proba-

bility measure. The symbol E {·} denotes the integral with respect to the probability

measure, i.e. the mathematical expectation. For instance, for a mapping ϕ : Ω → R:

E {ϕ} =
∫

Ω
ϕ(ω)dP (ω). (1)
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2 Representation of stochastic fields

This section briefly recalls the construction of finite-dimensional approximations of

stochastic fields by projection on Hilbertian bases. The reader is referred to [5] and

references therein for more details.

2.1 Projection on Hilbertian basis

Consider a second-order and mean-square continuous stochastic field {a(x), x ∈ D}

defined on (Ω,F , P ), with values in R
m, and indexed by a bounded closed set D ⊂

R
n. Let {vj(x), 1 ≤ j ≤ +∞} be a Hilbertian basis of functions from D into R

m,

that is to say a complete collection of orthonormal functions that satisfy

∫

D
vj(x)Tvk(x)dx = δjk, (2)

where δjk is the Kronecker symbol, equal to 1 if j = k, and to 0 otherwise. The

stochastic field {a(x), x ∈ D} can be represented on this Hilbertian basis as

a(x) =
+∞
∑

j=1

ajvj(x), (3)

in which the random variables aj are defined on (Ω,F , P ), valued in R, of the second

order, and such that

aj =
∫

D
a(x)Tvj(x)dx. (4)
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2.2 Karhunen-Loeve expansion

The Karhunen-Loeve expansion is a projection of the stochastic field {a(x), x ∈ D}

onto a particular Hilbertian basis, which has the following form:

a(x) = a(x) +
+∞
∑

j=1

√

λjηjvj(x), (5)

in which a(x) = E {a(x)} is the mean field, and the functions vj(x) are the solutions

to the eigenvalue problem

∫

D
Ra(x, x′)vj(x

′)dx′ = λjvj(x), (6)

normalized such that

∫

D
||vj(x)||2 dx = 1, (7)

where Ra(x, x′) = E {(a(x) − a(x)) ⊗ (a(x′) − a(x′))} is the matrix-valued co-

variance function of {a(x), x ∈ D}. It can be shown that:

(i) Due to the mean-square continuity of {a(x), x ∈ D} and the boundedness of D,

the integral covariance operator in (6) is Hilbert-Schmidt. Due to the symmetry

of its kernel, i.e. ∀x, x′ ∈ D : Ra(x, x′) = Ra(x, x′)T, it is self-adjoint. Due to

the positivity of the covariance matrix, i.e. ∀x ∈ D : Ra(x, x) is positive, it is,

moreover, positive. Hence, the eigenfunctions vj(x) form a complete orthonormal

basis, the eigenvalues λj form a decreasing sequence of positive values λ1 ≥ . . . ≥

λj ≥ . . . → 0, and the series of eigenvalues is convergent:

∫

D
E
{

||a(x)||2
}

dx =
∫

D
tr (Ra(x, x)) dx =

+∞
∑

j=1

λj < +∞. (8)

(ii) The random variables ηj are of the second-order, centered, and orthonormal (how-
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ever, they are not, in general, independent):

∀j : E {ηj} = 0, (9)

∀j, k : E {ηjηk} = δjk, (10)

(iii) Representation (5) converges in the mean square sense, as well as uniformly.

Truncating expansion (5) after the d-th term results in the following approximation

of the stochastic field:

ad(x) = a(x) +
d
∑

j=1

√

λjηjvj(x), (11)

in which η is a random variable defined on (Ω,F , P ) with values in R
d, whose

components are the random variables ηj. The truncation error reads as

a(x) − ad(x) =
+∞
∑

j=d+1

√

λjηjvj(x). (12)

Based upon (7) and (10), the following estimate of the magnitude of the truncation

error is obtained:
∫

D
E
{

∣

∣

∣

∣

∣

∣a(x) − ad(x)
∣

∣

∣

∣

∣

∣

2
}

dx =
+∞
∑

j=d+1

λj. (13)

The Karhunen-Loeve expansion can be shown to be optimal, in the sense that basis

functions satisfying (6) minimize the magnitude of the truncation error.

3 Polynomial chaos expansion

The discretization of random variables by projection on polynomial chaos is recalled

next. The PCE provides for a second-order random variable a defined on (Ω,F , P )

with values in the finite dimensional space R
m a representation as

a =
+∞
∑

α,|α|=0

pαHα(ξ), (14)
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in which α = (α1, . . . , αd) ∈ N
m is a multi-index with modulus |α| = α1 + . . . + αm,

each pα a vector in R
m, ξ a second-order random variable defined on (Ω,F , P ) with

values in R
m, and the functions Hα form a complete set of orthonormal functions

that satisfy

E {Hα(ξ)Hβ(ξ)} = δαβ = δα1β1
× . . . × δαmβm

. (15)

The random variable ξ is often chosen to have independent components with ei-

ther a Gaussian, uniform, gamma, Chebyshev or beta probability distribution. The

function Hα is then a multi-dimensional polynomial of the form Hα(ξ) = hα1
(ξ1)×

. . .×hαm
(ξm), in which hαj

is respectively the one-dimensional normalized Hermite,

Legendre, Laguerre, Chebyshev or Jacobi polynomial of order αj. The extension to

the case of basic random variables with arbitrary probability distribution has been

completed in [8].

If random variable a is valued in a finite dimensional space, as we have assumed,

then representation (14) converges in the mean-square sense. However, it should be

stressed that, in the present state of the art in mathematics, the convergence of

a chaos expansion for a second-order random variable with values in an infinite-

dimensional space can be obtained only if the germ ξ is Gaussian [25].

Truncating expansion (14) after polynomials of order r results in the following ap-

proximation of a:

ar =
r
∑

α,|α|=0

pαHα(ξ), (16)

incurring the following truncation error:

a − ar =
+∞
∑

α,|α|=r+1

pαHα(ξ). (17)

Equation (15) enables the following estimate of its magnitude:

E
{

||a − ar||2
}

= E
{

||a||2
}

−
r
∑

α,|α|=0

||pα||2 . (18)
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It is noted that the number of terms in expansion (16) is equal to

|{α ∈ N
m, 0 ≤ |α| ≤ r}| =

r
∑

j=0

(j + m − 1)!

j!(m − 1)!
. (19)

4 Problem setting

It is assumed that a complex natural or engineered system is under study. The be-

havior of this system is assumed to exhibit variability, in the sense that each time the

system is polled to measure some quantity of interest, a different value is obtained,

as if it were sampled from a probability distribution. Let a stochastic model be built

of the behavior of the system under study. Let this stochastic model accommodate

variability by modeling its fields of material properties, geometrical characteristics

and/or boundary conditions by random variables or fields. We are interested here

in the identification of a probabilistic characterization of these random variables or

fields from experimental data.

We would like to point out that the present setting is quite different from the context

addressed in references [20–22]. The latter contributions deal with the characteriza-

tion of a system that is essentially perceived as deterministic. The objective of the

inverse problems considered in those works lies in the description of that system in

terms of ideally deterministic quantities, such as applied loadings or fields of material

properties. Bayesian inference techniques are applied for the purpose of regulariza-

tion, and involve the quantification of the uncertainty in the identified quantities

stemming from experimental noise or missing data. In contrast, the present paper

deals with the characterization of a system that is explicitly perceived as stochastic.

The objective of the inverse problem lies, here, in the description of this system in

terms of stochastic quantities that are representative of the system variability.
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5 Data available for the identification

It is assumed that a probabilistic characterization of a finite number, say m, of

uncertain quantities needs to be identified. These can, for instance, be m scalar

material properties, geometrical characteristics or applied loadings. Or, they can

also be the values taken by fields of material properties, geometrical characteristics

or applied loadings, at m prescribed locations, or the projections of such fields on m

appropriate basis functions (cfr. Sec. 2).

It is assumed that a data set

{a(j), 1 ≤ j ≤ n} (20)

of n independent and identically-distributed realizations of the uncertain quantities

has been observed, each realization a(j) valued in R
m.

6 Maximum likelihood stochastic inversion

This and the next section are concerned with the identification, from the data, of

a probabilistic characterization of the uncertain quantities in terms of a random

variable a defined on (Ω,F , P ) with values in R
m. As an ingredient for the Bayesian

inverse method that will be elaborated in the next section, we address in this section

the maximum likelihood identification of a.

6.1 Discretization using a polynomial chaos expansion

Since a is a mapping from Ω into R
m, its identification constitutes a functional, hence

infinite-dimensional, inverse problem. It can be discretized by approximating a by
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a truncated PCE of dimension m and order r of the form

ar(p) =
r
∑

α,|α|=0

pαHα(ξ), (21)

and then viewing the coefficients p = {pα, 0 ≤ |α| < r} of this expansion as

unknown parameters that must be estimated.

It is emphasized that, here, the germ ξ is taken as a random variable with values

in R
m, i.e. the dimension of the space of values of ξ is taken equal to the dimension

of the space of values of a.

6.2 Identification of a polynomial chaos expansion

The method of maximum likelihood [12, 13] can readily be applied to the identifi-

cation of p. The likelihood of p given the data is defined as

L(p) =
n
∏

j=1

fa

(

a(j)|p
)

(22)

in which fa(·|p) denotes the Probability Density Function (PDF) of ar(p), which

depends on p. The method of maximum likelihood involves optimizing L(p):

p̂ = arg max
p

L(p). (23)

In other words, parameters are chosen for which the data are most likely.

6.3 Discretization using a reduced representation

A disadvantage of expansion (21) is that the dimension of p, that is to say the

number of scalar parameters to be estimated, increases quickly with m, cfr. (19).

Unfortunately, the computational cost associated with (23) increases quickly with
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the dimension of p. A methodology for the identification of representations of re-

duced dimension is therefore presented next.

With reference to (11), consider an approximation of a of the form:

ad(p0) = p0 +
d
∑

j=1

√

λ̂jηjv̂j, (24)

in which d is the reduced dimension, with 1 ≤ d ≤ m, and λ̂j and v̂j the d dominant

eigenvalues and eigenvectors of the sample covariance matrix Ĉa:

m̂a =
1

n

n
∑

j=1

a(j), (25)

Ĉa =
1

n − 1

n
∑

j=1

(

a(j) − m̂a

)

⊗
(

a(j) − m̂a

)

(26)

Let the random variables ηj in (24) be collected in a random vector η with values

in R
d. Let η be approximated by a PCE of dimension d and order r:

ηr(pδ) =
r
∑

α,|α|=1

pδ
αHα(ξ). (27)

Upon injecting (27) in (24), the following reduced representation is then obtained:

ad,r(p) = p0 +
d
∑

j=1

√

λ̂j

r
∑

α,|α|=1

pδ
αjHα(ξ)v̂j. (28)

The parameters p = {p0, pδ} are, this time, viewed as unknown parameters that

must be estimated from the data. They comprise the mean p0, as well as the coeffi-

cients pδ = {pδ
α, 1 ≤ |α| ≤ r} that control the fluctuating part of the expansion.

It is emphasized that the germ ξ is valued in R
d, with d < m usually. In other

words, the dimension d of the space of values of ξ is, this time, smaller than the

dimension m of the space of values of a.

It is crucial to choose d sufficiently large so as to limit the accuracy loss that may

occur due to the dimension reduction below an admissible tolerance. We recommend
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estimating the required dimension from the eigenvalue structure of Ĉa, namely

choosing d such that the following equation is satisfied for sufficiently small ǫ:

m
∑

j=d+1

λ̂j = ǫ
m
∑

j=1

λ̂j. (29)

In addition, convergence analyses can be performed to ensure that a sufficient num-

ber of dimensions is retained.

6.4 Identification of a reduced representation

The method of maximum likelihood cannot readily be applied to the identifica-

tion of p0 and pδ due to the following difficulty. Equation (28) defines the random

variable ad,r(p) with values in R
m as the transformation through a parameterized

deterministic mapping of a random variable ξ with values in R
d, with d < m usually.

For fixed p, the values taken by ad,r(p) therefore lie on a d-dimensional hypersurface

in R
m, and the PDF fa(·|p) vanishes everywhere in R

m, except on this hypersur-

face. The shape of this hypersurface depends on p. However, for a reasonably high

number n of observations and low order r of the PCE, it will generally be impossible

to find parameters p such that all observations a(j), being a priori arbitrary vectors

in R
m, lie on the hypersurface. In other words, it will generally be impossible to find

parameters p such that all a(j) belong to the support of fa(·|p). The likelihood

L(p) =
n
∏

j=1

fa

(

a(j)|p
)

, (30)

in which fa(·|p) denotes the PDF of ad,r(p), therefore generally vanishes for all p,

which renders the optimization problem

p̂ = arg max
p

L(p) (31)

meaningless.
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We propose a two-step identification procedure to overcome this difficulty. First, we

propose to identify pδ by invoking the maximum likelihood principle in terms of the

reduced coordinates of the representation. The likelihood of pδ is thus defined by

Lδ
(

pδ
)

=
n
∏

j=1

fη

(

η(j)|pδ
)

, (32)

in which fη(·|pδ) denotes the PDF of ηr(pδ), and the vectors η(j) are the projection

of the fluctuating part of the observations onto the reduction basis:

η
(j)
k =

(

a(j) − m̂a

)T
v̂k

√

λ̂k

. (33)

The parameters maximizing the likelihood are then selected:

p̂δ = arg max
pδ

Lδ
(

pδ
)

. (34)

The abovementioned difficulty is, in this way, avoided, since the germ ξ in (27), as

well as the vectors η(j) defined by (33), take their values in a d-dimensional space.

Subsequently, we propose to identify p0 by invoking the maximum likelihood princi-

ple using the first-order marginal PDFs fak
(·|p0, p̂δ) of the components ad,r

k (p0, p̂δ)

of ad,r(p0, p̂δ). The likelihood of p0 is thus defined by

L0
(

p0
)

=
m
∏

k=1

fak

(

a
(j)
k

∣

∣

∣p0, p̂δ
)

. (35)

The parameters maximizing the likelihood are then selected:

p̂0 = arg max
p0

L0
(

p0
)

. (36)

The abovementioned difficulty is avoided by using only the first-order marginal PDFs

since the dimension of the space of values of the germ ξ is at least 1.
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7 Bayesian stochastic inversion

A perfect probabilistic characterization of uncertain quantities cannot, in general,

be deduced from a data set of only a finite number of realizations. It is shown next

how the Bayesian method, see e.g. [26–29], can be applied to quantify the incomplete

knowledge of a due to the finite length of the data set.

7.1 Identification of a polynomial chaos expansion

The Bayesian method can readily be applied to the identification of the param-

eters p of the PCE approximation (21) of a. The Bayesian approach uses PDFs

to represent available information on imperfectly known parameters. First, a prior

PDF ρ(p) is constructed representing whichever information is available on p in

advance of acquiring the data. Then, the posterior PDF σ(p), representing all in-

formation available after making the observations, is obtained as follows:

σ(p) = c ρ(p)L(p) (37)

= c ρ(p)
n
∏

j=1

fa

(

a(j)|p
)

,

in which c is a normalization constant, L(p) still denotes the likelihood of p, and fa(·|p)

still denotes the PDF of ar(p).

7.2 Identification of a reduced representation

The Bayesian method can be applied as follows to the identification of the parame-

ters p0 and pδ of the reduced approximation (28) of a. Let the PDF ρ(pδ) represent
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the prior information available on pδ. The posterior on pδ then reads as

σ
(

pδ
)

= cδ ρ
(

pδ
)

n
∏

j=1

fη

(

η(j)|pδ
)

, (38)

in which cδ is a normalization constant, fη(·|pδ) still denotes the PDF of ηr(pδ),

and each η(j) is still defined by (33).

Similarly, letting PDF ρ(p0) represent the prior information available on p0, the

posterior on p0 reads as

σ
(

p0|pδ
)

= c0(pδ) ρ
(

p0
)

n
∏

j=1

m
∏

k=1

fak

(

a
(j)
k

∣

∣

∣p0, pδ
)

, (39)

in which c0(pδ) is a normalization constant, and fak
(·|p0, pδ) the PDF of ad,r

k (p0, pδ).

Finally, the posterior on p = {p0, pδ} is obtained as

σ(p) = σ
(

p0|pδ
)

σ
(

pδ
)

(40)

= c0(pδ)cδ ρ
(

p0
)

ρ
(

pδ
)

n
∏

j=1

m
∏

k=1

fak

(

a
(j)
k

∣

∣

∣p0, pδ
)

n
∏

j=1

fη

(

η(j)|pδ
)

.

It should be noted that the posterior (38) on pδ is independent of p0. In contrast,

the posterior (39) on p0 depends on pδ since the likelihood (35) of p0 depends on pδ.

7.3 Selection of the prior PDF

Gaussian [22], noninformative [26], conjugate [27], reference [28], and maximum en-

tropy [29] priors have been proposed and used in the literature. We recommend

using the improper uniform PDF as a noninformative prior on the polynomial co-

efficients if no information is available concerning these coefficients in advance of

observing the data. And we suggest using a maximum entropy prior when informa-

tion concerning their mean, covariance or other generalized moments is available. A

maximum entropy prior can be constructed following e.g. the approach by [30].
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7.4 Remark concerning uncertainty in the covariance estimate

It should be noted that, while the random variables ηj in the Karhunen-Loeve ex-

pansion (5) are orthonormal, neither our maximum likelihood procedure (Sec. 6.4),

nor our Bayesian procedure (Sec. 7.2) enforces the random variables ηj in (24) to be

orthonormal. In other words, the coefficients pδ
α in (27) are not required to be such

that random vector ηr(pδ) in (27) has orthonormal components.

The reason is the following. Due to the finite length of the data set, the sample

covariance matrix Ĉa is only an approximation of the covariance matrix that would

ideally represent the covariance of the uncertain quantities to be characterized. The

scalars λ̂j and the vectors v̂j in (24) are chosen as the eigenvalues and eigenvectors

of Ĉa. Hence, if we had required the random variables ηj in (24) to be orthonormal,

then we would effectively have enforced Ĉa to be the covariance matrix of a (up

to a small discrepancy due to the dimension reduction), and we would not have

accommodated in the posterior PDF (40) the uncertainty in the covariance due to the

finite length of the data set. By not enforcing orthonormality, we allow the Bayesian

machinery to accommodate the aforementioned uncertainty in the posterior.

8 Polynomial chaos expansion with random coefficients

The uncertainty in the coefficients of the representation of a, which is represented

by the Bayesian posterior, can explicitly be accommodated in this representation by

modeling these coefficients themselves by random variables, see e.g [9, 18, 24, 31].

To be specific, let the methodology outlined in Section 7.1 have been followed to
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approximate the random variable a by a PCE of the form

ar(p) =
r
∑

α,|α|=0

pαHα(ξ1, . . . , ξm), (41)

and obtain a posterior σ(p) of form (37). Let p collect m̃ scalar parameters, with

m̃ = m
p
∑

j=0

(j + m − 1)!

j!(m − 1)!
. (42)

Consider then the PCE of dimension m̃ and order r̃ of the form

pr̃ =
r̃
∑

β,|β|=0

qβHβ(ξm+1, . . . , ξm+m̃), (43)

where the the coefficients q = {qβ, 0 ≤ |β| ≤ r̃} and the order r̃ are such that the

PDF of pr̃ is a sufficiently accurate approximation of σ(p) on R
m̃.

The random variables {ξj, m+1 ≤ j ≤ m+ m̃} in PCE (43) are independent of the

random variables {ξj, 1 ≤ j ≤ m} in PCE (41) to reflect the fact that the variability

in the observables, which is a property of the system under study, is independent of

the incomplete knowledge of this variability, which is a property of the analyst.

Upon introducing (43) in (41), a random variable

ar,r̃ =
r
∑

α,|α|=0

r̃
∑

β,|β|=0

qβαHβ(ξm+1, . . . , ξm+m̃)Hα(ξ1, . . . , ξm), (44)

is obtained, which represents the variability in the system under study, as well as

the incomplete knowledge of this variability.

This reasoning can readily be extended to the reduced representations of the form (28),

and this extension is therefore not explicitly further elaborated here.
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9 Implementation

Algorithm 1 lists step by step how the likelihood L(p) defined by (22) can be com-

puted efficiently. This algorithm can readily be adapted to obtain strategies to cal-

culate the likelihoods defined by (32) and (35).

Algorithm 1: computation of likelihood L(p) defined by (22):

• Step 1: initialization:

Choose a number MC of Monte Carlo samples.

• Step 2: Monte Carlo simulation:

Simulate a set {ξs, 1 ≤ s ≤ MC} of MC independent realizations of ξ.

For each s ∈ {1 ≤ s ≤ MC}, use (21) to compute the realization

ar
s(p) =

r
∑

α,|α|=0

pαHα(ξs). (45)

• Step 3: likelihood approximation:

Estimate a PDF fMC
a (·|pδ) from the samples {ar

s(p), 1 ≤ s ≤ MC}.

Compute the likelihood as

LMC(p) =
n
∏

j=1

fMC
a

(

a(j)|pδ
)

. (46)

Algorithm 1 requires in step 2 the computation of realizations of random variables.

Methods for the simulation of random variables are surveyed in [32]. Step 3 requires

the estimation of a PDF from a set of samples. The kernel density estimation method

is used in this work [33–35]. We use the product kernel density estimation method

for multivariate density estimation. And we use Scott’s data-based rule-of-thumb
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for the estimation of the anisotropic kernel bandwidths, see e.g. Sec. 6.3 in [35].

Considering that the likelihood functions to be maximized in (23), (34) and (36)

may have multiple local maxima and that it may be difficult to accurately calcu-

late gradients with respect to the parameters, we suggest applying a global-search

gradient-free optimization method. The simulated annealing [32, 36, 37] and the

genetic optimization method [38, 39] are natural choices. The latter is used here.

Algorithm 2 lists step by step how samples from the posterior PDF σ(p) defined

by (40) can be generated using the Gibbs Markov Chain Monte Carlo (MCMC)

method, see e.g. [32]. This algorithm can readily be adapted to obtain a strategy to

sample from posterior PDF σ(p) defined by (37).

Algorithm 2: MCMC sampling from σ(p) defined by (40):

• Step 1: initialization:

Choose a number MCMC of MCMC samples and an initial value p(0) = {p0(0), pδ(0)}.

• Step 2: given {p0(k), pδ(k)}, generate {p0(k+1), pδ(k)}:

For each ℓ ∈ {1 ≤ ℓ ≤ m}, sample p
0(k+1)
ℓ , with reference to (39), from

σ
(

p
0(k+1)
1 , . . . , p

0(k+1)
ℓ−1 , ·, p0(k)

ℓ+1 , . . . , p0(k)
m |pδ(k)

)

. (47)

• Step 3: given {p0(k+1), pδ(k)}, generate {p0(k+1), pδ(k+1)}:

For each ℓ ∈ {1 ≤ ℓ ≤ |pδ|}, sample p
δ(k+1)
ℓ , with reference to (38), from

σ
(

p
δ(k+1)
1 , . . . , p

δ(k+1)
ℓ−1 , ·, pδ(k)

ℓ+1 , . . . , p
δ(k)

|pδ |

)

. (48)

• Step 4: Repeat steps 2 and 3 for k ∈ {1 ≤ k ≤ MCMC}.
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Algorithm 2 requires in step 1 the choice of an initial value. We use the maximum

likelihood estimate as starting point. Steps 2 and 3 involve the generation of samples

from one-dimensional PDFs. Inverse transform sampling, see e.g. [32], is applied

in this work. The required cumulative distribution function is hereby obtained by

numerical integration of the PDF over a suitable subinterval of the real line.

Finally, it is noted that the coefficients q of PCE (43) can be estimated following

a two-step procedure. First, samples from posterior PDF σ(p) can be generated

following algorithm 2. Then, the coefficients can in principle be estimated from

these samples using the method of maximum likelihood.

10 Illustration

This section demonstrates the proposed methodology on a case history in stochastic

aeroelastic stability analysis. The reader is referred to [40, 41] and references therein

for more details concerning deterministic and stochastic aeroelastic stability analysis.

10.1 Problem setting

[Fig. 1 about here.]

Consider a collection of similar, but not perfectly identical, panels, each occupying

at static equilibrium a box-shaped region

D =

{

− ℓ

2
< x1 <

ℓ

2
, −w

2
< x2 <

w

2
, −h

2
< x3 <

h

2

}

, (49)

in a Cartesian reference frame (x1, x2, x3) (Fig. 1). All panels are assumed to have

identical in-plane dimensions ℓ and w, and thickness h. Let D be the middle plane
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such that D = D×] − h
2
, h

2
[. Let Γ = ∂D×] − h

2
, h

2
[ denote the lateral boundary.

We are interested in the dynamical behavior of the panels while clamped along Γ

and immersed in a supersonic flow in direction x1. Since the panels are not perfectly

identical, the flow velocity above which aerodynamic flutter instabilities occur is

different for each panel. This illustration is concerned with the prediction of this

scatter in the onset of flutter.

10.2 Simulated data

Data are synthetically generated using a stochastic model. The Kirchhoff-Love the-

ory is used to represent the dynamical panel behavior, and the piston theory is

applied to represent the forces exerted by the flow on the panel. Variability is ac-

commodated by modeling fields of material properties by random fields.

The material is assumed elastic and isotropic. The Young’s modulus is modeled by

a lognormal random field {Y (x1, x2), (x1, x2) ∈ D} defined on (Ω,F , P ), indexed

by D and with values in R
+
0 such that

Y (x1, x2) = Y exp
(

√

log(δ2 + 1)g(x1, x2) −
1

2
log(δ2 + 1)

)

, (50)

in which Y is the mean, δ the coefficient of variation, and {g(x1, x2), (x1, x2) ∈ D}

a Gaussian random field with zero mean and autocorrelation function

Rg(y1, y2) = E {g(x1, x2)g(x1 + y1, x2 + y2)} (51)

=
4L2

π2y2
1

sin2
(

πy1

2L

)

4L2

π2y2
2

sin2
(

πy2

2L

)

,

where L is the spatial correlation length of the Gaussian random field. The Pois-

son ratio, denoted by ν, is taken deterministic and homogeneous. Let the random

field {D(x1x2), (x1, x2) ∈ D} represent the corresponding plate bending rigidity
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field such that

D =
Y h3

12(1 − ν2)
. (52)

Let ρ denote the deterministic and homogeneous mass density.

Let [0, T ] be the time interval of interest. Let u0(x1, x2) and u1(x1, x2) be prescribed

initial displacement and velocity fields. For a fixed realization, i.e. for a fixed ω ∈ Ω,

the dynamical behavior of the panel is then described by an initial boundary value

problem, which consists in finding the position- and time-dependent displacement

field u(x1, x2; t, ω) such that

(

∂2

∂x2
1

+
∂2

∂x2
2

)(

D

(

∂2u

∂x2
1

+
∂2u

∂x2
2

))

− q = −ρ h
∂2u

∂t2
in D×]0, T [, (53)

with the boundary conditions

u = 0 on ∂D×]0, T [, (54)

∂u

∂x1

= 0 on ∂D
(

x1 = ± ℓ

2

)

×]0, T [, (55)

∂u

∂x2

= 0 on ∂D
(

x2 = ±w

2

)

×]0, T [, (56)

and with the initial conditions

u(x1, x2; 0) = u0(x1, x2) in D, (57)

∂u

∂t
(x1, x2; 0) = u1(x1, x2) in D. (58)

Equation (53) is the classical Kirchhoff-Love plate equation. The piston theory mod-

els the force field excerted by the flow as

q = − ρ∞v2
∞

√

M2
∞ − 1

(

M2
∞ − 2

M2
∞ − 1

1

v∞

∂u

∂t
+

∂u

∂x1

)

, (59)

in which ρ∞, v∞, a∞ and M∞ = v∞/a∞ are respectively the mass density, flow

velocity, sound velocity and Mach number of the freestream flow.
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For a fixed realization, the weak formulation of (53)-(58) consists in finding the

position- and time-dependent displacement field u(x1, x2; t; ω) such that for all suffi-

ciently regular displacement fields w(x1, x2) satisfying the boundary conditions (54)-

(56) and ∀t ∈]0, T [:

∫

D
ρh

∂2u

∂t2
wdS +

∫

D
D

(

∂2u

∂x2
1

∂2w

∂x2
1

+ 2
∂2u

∂x1∂x2

∂2w

∂x1∂x2

+
∂2u

∂x2
2

∂2w

∂x2
2

)

dS =
∫

D
qwdS,

(60)

and the initial conditions (57)-(58) are fulfilled.

The Finite Element (FE) method is the natural choice for the spatial discretiza-

tion of (60). Let the real and virtual displacement fields be expanded on FE basis

functions vj as

uh(x1, x2; t; ω) =
∑

j

uj(t; ω)vj(x1, x2), (61)

wh(x1, x2) =
∑

j

wjvj(x1, x2). (62)

For a fixed realization, the Galerkin projection of (60) reads as

M
d2u

dt2
+ Ku + A(v∞)

du

dt
+ B(v∞)u = 0, (63)

in which the mass matrix M , stiffness matrix K, aerodynamic damping matrix A(v∞)

and aerodynamic stiffness matrix B(v∞) are defined by

Mjk =
∫

D
ρ h vkvjdS, (64)

Kjk =
∫

D
D

(

∂2vk

∂x2
1

∂2vj

∂x2
1

+ 2
∂2vk

∂x1x2

∂2vj

∂x1x2

+
∂2vk

∂x2
2

∂2vj

∂x2
2

)

dS, (65)

Ajk(v∞) =
ρ∞v2

∞
√

M2
∞ − 1

M2
∞ − 2

M2
∞ − 1

1

v∞

∫

D
vkvjdS, (66)

Bjk(v∞) =
ρ∞v2

∞
√

M2
∞ − 1

∫

D

∂vk

∂x1

vjdS. (67)

The stability of system (63) can be explored using an eigenvalue approach. Equa-
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tion (63) is, for this purpose, rewritten in the following first-order form:

















M 0

0 M

































d2u
dt2

du
dt

















+

















A(v∞) K + B(v∞)

−M 0

































du
dt

u

















=

















0

0

















, (68)

to which the following eigenvalue problem is associated:

−

















A(v∞) K + B(v∞)

−M 0

















ϕj = λj

















M 0

0 M

















ϕj. (69)

The eigenvalues λj can be shown to occur in complex conjugate pairs. If the real part

of an eigenvalue pair is positive, then the coupled fluid-structure system is unstable.

Numerical results are presented for ℓ = 1.25 m, w = 1 m, h = 0.003 m, Y = 70 GPa,

δ = 0.1, L = 0.25 m, ν = 0.33, ρ = 2700 kg/m3, ρ∞ = 0.45 kg/m3, and a∞ =

295 m/s. The FE model is constituted of 25 × 20 plate elements of equal size.

[Fig. 2 about here.]

Figure 2 shows one realization of the random Young’s modulus field.

[Fig. 3 about here.]

For this realization, Fig. 3 shows the real and imaginary part of the 20 lowest (by

magnitude) eigenvalues of eigenproblem (69) as a function of the velocity of the

freestream flow. It is observed that the real part of all eigenvalues is negative for

velocities lower than about 580m/s. However, beyond about 580m/s, the real part

of one pair of eigenvalues becomes positive. Hence, the system becomes unstable.

The critical flow velocity is referred to as the flutter onset.

[Fig. 4 about here.]
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To illustrate this dynamic instability, Fig. 4 compares the response to an initial per-

turbation of the panel while submersed in a flow of velocity 500m/s to its response

to the same initial perturbation while submersed in a flow of velocity 600m/s. The

below critical flow at 500 m/s is observed to dampen the vibratory panel motion. In

contrast, the above critical flow at 600 m/s results in panel motion growing expo-

nentially with time.

[Fig. 5 about here.]

A Monte Carlo analysis has been performed, which involved the calculation of the

onset of flutter for a large number of realizations of the stochastic model. Figure 5

shows the PDF of the onset of flutter estimated from a sufficiently large number of

those samples. This PDF is viewed as the PDF which ideally represents the scatter

in the onset of flutter in the collection of panels under study.

[Table 1 about here.]

Three different data sets of the form (20) are generated using the stochastic model

described above. They respectively collect n = 10, n = 25, and n = 500 realizations

of the eigenfrequencies of the 5 lowest-order longitudinal bending eigenmodes of the

panel, solving the structural eigenproblem

Kϕj = λ2
jMϕj. (70)

With reference to (20), each a(j) is valued in (R+)5 and collects 5 eigenfrequencies.

Table 1 lists the data set of length n = 10 (to allow the reader to reproduce results).
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10.3 Stochastic model to be identified

Let a deterministic FE model be built based upon the Kirchhoff-Love plate theory

and the piston theory of the form

M
d2u

dt2
+ K u + A(v∞)

du

dt
+ B(v∞)u = 0, (71)

to describe the aerodynamical behavior of a panel with dimensions ℓ = 1.25 m,

w = 1 m and h = 0.003 m, Young’s modulus Y = 70 GPa, Poisson ratio ν = 0.33,

and mass density ρ = 2700 kg/m3, clamped along its lateral boundary, and sub-

mersed in a supersonic flow of velocity v∞, mass density ρ∞ = 0.45 kg/m3, and

sound velocity a∞ = 295 m/s. Let this model be projected onto the 5 lowest-order

longitudinal bending eigenmodes of the structural eigenproblem

Kϕj = λ2
jMϕj, (72)

to obtain a deterministic Reduced-Order Model (ROM) of the form

M redd2q

dt2
+ Kredq + Ared(v∞)

dq

dt
+ Bred(v∞)q = 0, (73)

u = Tq, (74)

where the transformation matrix T defines the reduction basis, matrices M red =

T TMT , Kred = T TKT , Ared(v∞) = T TA(v∞)T T and Bred(v∞) = T TB(v∞)T

are the reduced mass, stiffness, aerodynamic damping and aerodynamic stiffness

matrices, and, for a fixed t, q(t) is the vector of the generalized coordinates.

Let uncertainty be accommodated by modeling the structural eigenfrequencies by

random variables aj, while keeping the structural eigenmodes deterministic, to ob-
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tain a stochastic ROM of the form:

M redd2q

dt2
+ Diag

(

(2πaj)
2
)

q + Ared(v∞)
dq

dt
+ Bred(v∞)q = 0, (75)

u = Tq, (76)

in which Diag((2πaj)
2) is a diagonal random matrix with diagonal elements (2πaj)

2,

and the matrices T , M red, Ared(v∞) and Bred(v∞) are deterministic.

Let the random variables aj be collected in a random vector a with values in (R+)5.

A reduced representation of a will be identified from each data set next.

10.4 Maximum likelihood stochastic inversion

The methology presented in Sec. 6.3 is followed to approximate, for each data set,

random variable a by a reduced representation of the form

ad,r(p) = exp



p0 +
d
∑

j=1

√

λ̂j

r
∑

α,|α|=1

pδ
αjHα(ξ)v̂j



 , (77)

in which λ̂j and v̂j denote the eigenvalues and eigenvectors of the sample covariance

matrix, random variable ξ with values in R
d is chosen to have independent standard

Gaussian components, and Hα is the multidimensional Hermite polynomial of multi-

index α. The exponential serves to ensure positivity.

[Fig. 6 about here.]

Figure 6 shows the eigenvalues of the sample covariance matrices, suggesting that,

for each data set, a reduced representation of dimension d = 2 is able to represent

more than 95% of the variability in the eigenfrequencies. All results to follow have

been obtained with dimension d = 2 and order r = 1.

[Fig. 7 about here.]
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[Table 2 about here.]

The methodology presented in Sec. 6.4 is followed to infer, from each data set,

optimal coefficients p̂0 and p̂δ using the method of maximum likelihood. This in-

volves the numerical approximation of the PDFs fη(·|pδ) and fak
(·|p0, p̂δ) by the

kernel density estimation method from samples generated by Monte Carlo simula-

tion. Figure 7 shows the loglikelihood log Lδ(pδ) defined by (32) as a function of the

number MC of Monte Carlo samples for the data set of length 25 and a specified

value of pδ. Reasonable convergence is obtained for MC = 10000. All results to

follow have been obtained using MC = 10000 samples. Table 2 lists the optimal

coefficients identified from the data set of length 10.

[Fig. 8 about here.]

Each of the three identified sets of optimal coefficients defines via (75)-(76) and (77)

a stochastic ROM. Each of these ROMs has been used to predict a PDF for the

onset of flutter by Monte Carlo simulation. Figure 8 compares the three PDFs thus

obtained to the ideal PDF predicted by the data-generating model.

As the length of the data set increases to infinity, the PDF predicted by the identified

stochastic ROM can be expected to converge to some asymptotic PDF. However,

the latter should be expected to differ from the ideal PDF predicted by the data-

generating model due to modeling errors associated with the dimension reductions

performed while constructing the stochastic ROM.
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10.5 Bayesian stochastic inversion

The methodology presented in Sec. 7.2 will now be followed to construct posterior

PDFs over p0 and pδ. The improper uniform PDF over the coefficients is hereby

used as a noninformative prior.

[Fig. 9 about here.]

For each data set, algorithm 2 is implemented to sample from the posterior by

MCMC simulation. Low-order marginal posterior PDFs can efficiently be estimated

from these samples by kernel density estimation. Figure 9 shows the first-order

marginal posterior PDF thus obtained over p0
1 for the data set of length 25 as

a function of the number MCMC of samples. Reasonable convergence is obtained

for MCMC = 5000. All results to follow have been obtained using respectively 10000,

5000 and 250 samples for the inferences from the data sets of lengths 10, 25 and 500.

[Fig. 10 about here.]

Figure 10 shows for each data set the first-order marginal posterior PDF over p0
1.

This PDFs is interpreted as a quantitative description of the undertainty in p0
1 due

to the finite length of the data set. It is observed that better knowledge of p0
1 is

acquired as more data is collected.

[Table 3 about here.]

[Fig. 11 about here.]

Table 3 lists 5 realizations of p0 and pδ sampled from the posterior associated

with the data set of length 10. Each of these realizations corresponds via (75)-

(76) and (77) to a stochastic ROM, which has been used to predict a PDF for the
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onset of flutter by Monte Carlo simulation. Figure 11(a) compares the PDFs thus

obtained to the ideal PDF predicted by the data-generating model. Figures 11(b)

and 11(c) are similar figures for the data sets of lengths 25 and 500.

[Fig. 12 about here.]

Figure 12 shows, for each data set, a Bayesian posterior 99%-confidence region for

the PDF for the onset of flutter. It is such that the realizations of the latter PDF

corresponding to realizations of p0 and pδ sampled from the posterior PDF (cfr.

Fig. 11) lie within this region with a probability exceeding 99%. This confidence

region is interpreted as a quantitative description of the undertainty in the predicted

PDF for the onset of flutter due to the finite length of the data set. Better knowledge

of this PDF is acquired as more data is gathered.

11 Conclusion

We have developed a Bayesian inverse methodology for the identification of PCEs

from experimental data. The procedure provides a quantitative characterization of

the impact of missing experimental information on the accuracy of the identified

PCEs, and can hence be used to estimate the value of additional data, as required

for resource allocation aimed at improving predictions.
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Fig. 1. Problem setting: schematic representation of the panel in the supersonic flow.
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of eigenproblem (69) as a function of the freestream flow velocity v∞.
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Fig. 4. Simulated data: transient vertical response at the center of the panel due to an
initial perturbation for freestream flow velocity (a) 500 m/s and (b) 600m/s.
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Fig. 5. Simulated data: ideal PDF for the onset of flutter.
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Fig. 8. Maximum likelihood stochastic inversion: PDF for the onset of flutter predicted by
the stochastic ROM identified from the data set of length (a) 10, (b) 25 and (c) 500 (dashed
line), and ideal PDF predicted by the data-generating model (solid line).
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Fig. 9. Bayesian stochastic inversion: first-order marginal posterior PDF over p0
1 for the

data set of length 25 estimated from 10 (dotted line), 100 (dash-dotted line), 1000 (dashed
line), and 5000 (solid line) MCMC samples.
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Fig. 10. Bayesian stochastic inversion: first-order marginal posterior PDF over p0
1 associ-

ated with the data set of length (a) 10, (b) 25 and (c) 500.
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Fig. 11. Bayesian stochastic inversion: 5 PDFs for the onset of flutter predicted by 5
stochastic ROMs corresponding to 5 sets of coefficients sampled from the posterior PDF
associated with the data set of length (a) 10, (b) 25 and (c) 500 (dashed lines), and ideal
PDF predicted by the data-generating model (solid line).
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Fig. 12. Bayesian stochastic inversion: posterior 99%-confidence region for the PDF for
the onset of flutter for the data set of length (a) 10, (b) 25 and (c) 500 (filled), and ideal
PDF predicted by the data-generating model (solid line).
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j [-] a
(j)
1 [Hz] a

(j)
2 [Hz] a

(j)
3 [Hz] a

(j)
4 [Hz] a

(j)
5 [Hz]

1 22.0644 38.7277 65.6377 102.7264 149.1156

2 22.1918 39.3277 66.7944 104.3363 151.4071

3 22.3315 38.9836 67.0343 103.7631 150.5413

4 21.7841 38.1275 64.5681 100.6018 146.1258

5 22.7409 40.4047 68.7806 107.0412 155.2916

6 22.5119 40.0706 68.4612 106.8598 155.1919

7 21.9770 38.6460 65.4526 102.1728 148.2193

8 22.0674 38.7597 65.5012 102.6038 148.8000

9 22.5796 39.5998 67.1365 105.1058 152.9256

10 21.5810 37.6697 63.8471 99.9416 145.1024

Table 1
Simulated data: data set of length 10.
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p̂0
1 p̂0

2 p̂0
3 p̂0

4 p̂0
5 p̂δ

101 p̂δ
102 p̂δ

011 p̂δ
012

3.0993 3.6641 4.1937 4.6396 5.0126 -0.9837 -0.0209 -0.0035 -0.8734

Table 2
Maximum likelihood stochastic inversion: optimal coefficients identified from the data set
of length 10.
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p0
1 p0

2 p0
3 p0

4 p0
5 pδ

101 pδ
102 pδ

011 pδ
012

3.1005 3.6678 4.1879 4.6357 5.0029 0.2100 -1.1100 1.9800 0.0300

3.0977 3.6587 4.1819 4.6495 5.0087 0.1800 0.8400 -0.6600 0.5400

3.1056 3.6610 4.1949 4.6405 4.9979 0.2100 0.8700 -1.5600 0.9600

3.0977 3.6610 4.2001 4.6299 4.9954 0.9600 -0.6900 0.4200 1.4400

3.0926 3.6617 4.1819 4.6291 5.0162 0.9600 -0.3600 0.2100 -1.0800

Table 3
Bayesian stochastic inversion: 5 realizations of p0 and pδ obtained by MCMC sampling
from the posterior associated with the data set of length 10.
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