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Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle,
FRE3160 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

In structural dynamics, the specification of the transient loads applied to equipment
(or to secondary subsystems) consists of a given shock response spectrum (SRS). The
transient dynamical analysis of such equipment is performed using a computational
nonlinear dynamical model. A generator of accelerograms satisfying the given SRS
is then required. Information theory is used to solve this challenging inverse problem
that has been looked at by others but not in the way presented. The maximum en-
tropy principle is used to construct the probability distribution of the non-stationary
stochastic process for which the available information is constituted of the mean SRS
and an additional information on the variance. A random generator of independent
realizations of the non-stationary stochastic process is developed using a new algo-
rithm based on the stochastic analysis. The method presented is validated with an
example.

1 INTRODUCTION

In transient linear or nonlinear structural dynamics, the response spectrum
method is often used to characterize the dynamical response in a point of a
structure (for instance on a floor of a building, in a point of the structure
where equipment are connected or in a small region of the structure where
secondary systems are connected, etc). In such an approach, a transient re-
sponse is characterized either by the displacement response spectrum, either
by the pseudo-velocity response spectrum (simply called the velocity response
spectrum (VRS)) or by the pseudo-acceleration response spectrum which can
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also be called the shock response spectrum. These quantities can directly be
constructed using the acceleration transient signals (accelerograms) calculated
in different points with the computational linear or nonlinear dynamical model
of the structure which is submitted to a given transient loads due, for instance,
to a shock wave or to an earthquake, etc. Such a response spectrum is often
used by engineering to specify the transient loads which is applied to equip-
ment or to secondary subsystems. If equipment or secondary subsystems have
a linear dynamical behavior, the use of the response spectrum is very efficient
to predict the maximum of the transient dynamical responses of equipment or
secondary subsystems. If equipment or secondary subsystems have a nonlinear
dynamical behavior, the situation is much more difficult and transient signal
accelerations (accelerograms) satisfying the given VRS (or SRS) must be con-
structed in order to analyze the transient responses using a computational
nonlinear dynamical model of equipment or secondary subsystems. This prob-
lem consisting in constructing acceleration transient signals (accelerograms)
from a given VRS (or SRS) is a challenging inverse problem which is not a
well-posed problem. Many works have been devoted to this inverse problems
and in this paper, we propose another way which allows this inverse problem
to be a well-posed problem in the context of information theory.

The response spectrum method was introduced by Biot in 1932 (see of in-
stance the article by Trifunac (2006)) in the context of earthquake engineer-
ing and has intensively been studied to extend its domain of applicability
to many different situations and applications in the domain of structural en-
gineering, mechanical engineering, earthquake engineering, civil engineering,
nuclear engineering, offshore engineering, as it can be shown in the articles
by Levy and Wilkinson (1976), Gupta and Chu (1977), Peters et al. (1977),
Kost et al. (1978), Sato et al. (1978), Anderson and Trifunac (1979), Hadjian
(1981), Unruh and Kana (1981), Scherer et al. (1982), Nouromid et al. (1983),
Preumont (1984), Gupta and Jaw (1986a, 1986b, 1986c), Sharma and Singh
(1986), Chan (1987), Khan (1987), Yang et al. (1990), Beck and Papadim-
itriou (1993), Chen (1993), Der Kiureghian and Nakaruma (1993), Smith and
Hollowell (1996), Gupta and Joshi (1998), Allam and Datta (2000), Lam et
al. (2001), Li and Li (2005), Su et al. (2006) and Jankowski (2006).

For a given deterministic transient signal {γ(t), t ∈ J } (accelerogram in a
given direction) with a finite duration T and where J = [0 , T ], the construc-
tion of the VRS consists following the book of Clough and Penzien (1975) in
evaluating the maximum of the dynamical response of a family of single degree
of freedom (SDOF) linear damped oscillators excited at their bases with this
transient signal. Let m, ω and ξ be the mass, the natural frequency (pulsation
in rad/s) and the damping ratio of an oscillator of this family. Let {x(t), t ∈
J } be the displacement of the mass with respect to the base. For all t in ]0 , T ],
the displacement x is such that mẍ(t) + 2 ξ mω ẋ(t) + mω2 x(t) = −mγ(t)
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with the initial condition x(0) = ẋ(0) = 0. Let Ω = [ωmin , ωmax] be the fre-
quency band of analysis for the natural frequency ω with 0 < ωmin < ωmax.
Let Ξ = [ξmin , ξmax] be the admissible domain for the damping ratio ξ with
0 < ξmin < ξmax < 1. The deterministic transient signal is then characterized
by the displacement response spectrum sd(ω, ξ) which is defined by

sd(ω, ξ) = max
t∈[0 ,T ]

|x(t)| , (1)

where the displacement x(t) is written as

x(t) =

t∫

0

h(t− τ) γ(τ) dτ , (2)

in which the impulse response function h is such that

h(t) = −1[0,+∞[(t)
1

ω
√
1− ξ2

e−ξωt sin(ω
√
1− ξ2 t) . (3)

In the equation above, 1[0,+∞[(t) = 1 if t ≥ 0 and = 0 if t < 0. The
pseudo-velocity response spectrum denoted by sv(ω, ξ) (so called the Velocity
Response Spectrum (VRS)) and the pseudo-acceleration response spectrum
sa(ω, ξ) are such that ω2 sd(ω, ξ) = ω sv(ω, ξ) = sa(ω, ξ) which shows that the
VRS is such that

sv(ω, ξ) = ω sd(ω, ξ) . (4)

1.1 Formulation for the direct problem

The direct problem is usually formulated as follows for the deterministic and
for the random cases.

(i) Concerning the deterministic case, the direct problem is simple. For a given
deterministic transient signal {γ(t), t ∈ J }, the velocity response spectrum
sv(ω, ξ) is calculated using Eqs. (1) to (4).

(ii) We now introduce the more realistic situation corresponding to the usual
stochastic case that we consider in this paper. The deterministic transient
signal {γ(t), t ∈ J } is then replaced by a real-valued non-stationary second-
order centered stochastic process {Γ(t), t ∈ J } defined on a probability space
(Θ, T ,P). For general notions on stochastic processes, we refer the reader to
the books of Doob (1953), Gikhman and Skorokhod (1979), Priestley (1981) or

3



Kree and Soize (1986). Since the random variable Γ(t) is centered, its variance
σ2
Γ(t) is equal to its second-order moment and we have,

E{Γ(t)} =
∫
Θ Γ(t, θ) dP(θ) = 0 ,

σ2
Γ(t) = E{Γ(t)2} =

∫
Θ Γ(t, θ)2 dP(θ) ,

(5)

in which E denotes the mathematical expectation. Equations (1), (2) and (4)
then define a random variable Sv(ω, ξ) such that

Sv(ω, ξ) = ω max
t∈[0 ,T ]

|X(t)| , X(t) =

t∫

0

h(t− τ) Γ(τ) dτ . (6)

Consequently, the family {Sv(ω, ξ) , ω ∈ Ω , ξ ∈ Ξ} of random variables defines
a real-valued stochastic process Sv indexed by Ω×Ξ. The mean value sv(ω, ξ)
of the random variable Sv(ω, ξ) is such that

sv(ω, ξ) = E{Sv(ω, ξ)} =
∫

Θ

Sv(ω, ξ, θ) dP(θ) . (7)

It should be noted that the mapping Γ �→ Sv is a nonlinear transformation. As
soon as the system of the marginal probability distributions of the stochastic
process Γ is known, then the system of the marginal probability distributions
of the stochastic process Sv is completely defined (Gikhman and Skorokhod,
1979; Kree and Soize, 1986). In general, the system of the marginal probability
distributions of the stochastic process Sv cannot exactly be determined but
only an estimation of it can be calculated either by using adapted stochas-
tic representations such as the Chaos polynomial expansion (Ghanem and
Spanos,1991; Totik, 1998; Soize and Ghanem, 2004) or by using the paramet-
ric or the nonparametric statistical estimations (Serfling, 1980; Spall, 2003)
coupled with the Monte Carlo method (Hammersley and Handscomb, 1964;
Rubinstein, 1981; Kalos and Whitlock, 1986).

In practice, in order to construct the specifications for equipment attached
to the master structure, the accelerations have to be computed at different
locations in the master structure where equipment are attached. The effective
construction of the stochastic process {Γ(t), t ∈ J }, which then appears as the
response of the master structure, is then performed using a linear or a nonlin-
ear dynamical computational model under an input which is a non-stationary
stochastic loading. Such a computation can be done for large nonlinear compu-
tational models as it can be seen in the articles by Pradlwarter and Schueller
(2003), Schueller and Pradlwarter (1999), Schueller (2001), Schueller et al.
(2003), Pradlwarter et al. (2003), Schenk et al. (2005).
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1.2 Formulation for the inverse problem and objective of the paper

In structural dynamics (see the beginning of Section 1), the following chal-
lenging stochastic inverse problem is of great interest and has to be solved.
Let {sv(ω, ξ), , ω ∈ Ω , ξ ∈ Ξ} be a given mean value of a random VRS (or
equivalently, of a random SRS). We then have to construct a generator of in-
dependent realizations {Γ(t, θ), t ∈ J } of the stochastic process {Γ(t), t ∈ J }.
Some works in the deterministic context or in the stochastic context have
been devoted to this very difficult inverse problem. Concerning the generation
of transient signals from a given response spectrum, we refer the reader, for
instance, to the articles by Levy and Wilkinson (1976), Kost et al. (1978),
Preumont (1984), Khan (1987), Sabetta and Pugliese (1996), Ghaboussi and
Lin (1998), Gupta and Trifunac(1998), Abbas and Manohar (2002), Lee and
Han (2002), Zerva and Beck (2003), Gu and Wen (2007). It should be noted
that the majority of such approaches uses given representations of the non-
stationary stochastic processes which have to be identified (for representations,
see for instance the articles by Kanay (1957),Tajimi (1960), Kree and Soize
(1986), Lin and Yong (1987), Der Kiureghian and Crempien (1989), Yeh and
Wen (1990), Spanos et al. (2007) and concerning ground motions, the am-
plitude variability (Pachakis et al. 2007) and the effects of representations
(Jalayer and Beck 2008) have recently been analyzed.

However, such a problem cannot be solved exactly with uniqueness in the
deterministic context and this is the reason why the probability theory is
generally used. Nevertheless, it seems that information theory has not been
used to construct a well-posed inverse problem. In this paper, we thus propose
such an approach which allows, in maximizing uncertainties, the construction
of the probability model of the non-stationary stochastic process for which
the mean value of the random VRS is given. The fact to carry out such a
construction in maximizing uncertainties allows a uniqueness to be obtained
and then to get a well-posed inverse problem.

The objective of this paper is to propose a probabilistic framework for which
(1) the stochastic inverse problem is a well-posed problem, (2) the system
of marginal probability distributions of stochastic process {Γ(t), t ∈ J } is
explicitly constructed without giving an a priori stochastic representation, (3)
the generator of independent realizations {Γ(t, θ), t ∈ J } of stochastic process
{Γ(t), t ∈ J } can be constructed using its system of marginal probability
distributions.

1.3 Information theory as an adopted framework for the stochastic

inverse problem

As we have explained above, the objective is to solve the following stochastic
inverse problem: Find the system of the probability distributions of the non-
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stationary stochastic process {Γ(t), t ∈ J } for given functions {σΓ(t), t ∈ J }
and {sv(ω, ξ) , ω ∈ Ω , ξ ∈ Ξ}. In order to solve this stochastic inverse problem,
we propose to use information theory introduced by Shannon (1948) that is to
say we propose to use the maximum entropy principle (Shannon, 1948; Jaynes,
1957; Kapur and Kesavan, 1992; Cover and Thomas, 2006) to construct the
system of the probability distributions of the non-stationary stochastic process
under the constraints defined by the following available information. The two
following functions {σΓ(t), t ∈ J } and {sv(ω, ξ) , ω ∈ Ω , ξ ∈ Ξ} are given. In
this framework of information theory, we then obtain a well-posed problem
with a unique solution to this inverse stochastic problem. The use of this
principle consists in maximizing the uncertainties in the probabilistic model
constructed under the constraints defined by the available information.

1.4 Contents of the paper

The contents of the paper is the following. In a first section, the real-valued
non-stationary second-order stochastic process {Γ(t), t ∈ J } whose probabil-
ity model has to be constructed is replaced by an equivalent finite length time
series � = (Γ1, . . . ,ΓN) using the sampling technique. This time series � is
then normalized in another time series A = (A1, . . . , AN). The available infor-
mation is defined to solve the normalized stochastic inverse problem, that is to
say to construct the probability distribution of the random vector A. The next
section deals with the construction of the probability density function of A
using the maximum entropy principle. We then have to solve an optimization
problem which is carried out in introducing vector-valued Lagrange multipli-
ers. The calculation of the Lagrange multipliers requires the computation of
integrals in high dimension. This is a difficult point which is solved in using
an algorithm which looks like to the Gibbs approach but which corresponds
to a more direct construction. In another short section, the random genera-
tor of independent realizations of the time series A is presented. Finally, the
last section is devoted to a complete application and to the validation of the
method proposed.

2 TIME SAMPLING, NORMALIZATIONANDAVAILABLE IN-

FORMATION

In this section, using the very well known sampling techniques, we introduce
the random vector � = (Γ1, . . . ,ΓN) (finite length time series) in performing
the sampling of the stochastic process {Γ(t), t ∈ J }. A dimensionless random
vector A = (A1, . . . , AN ) associated with � is introduced and finally, the
stochastic inverse problem which is formulated in terms of A is normalized
and the available information is defined. It should be noted that Section 2.1 is
absolutely standard but we need it in order to introduce the different quantities
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of interest.

2.1 Time sampling of the stochastic process

It is assumed that the energy of the instantaneous spectral density function (or
the evolutionary spectral density function), see (Priestley, 1988), of stochastic
process Γ is concentrated on the limited frequency band [−Ωmax,Ωmax]. This
last property allows the time sampling of stochastic process Γ to be carried
out.

Let Fmax = Ωmax/2π and Fe = 2Fmax be the sampling rate. The sampling
time step ∆t is defined by ∆t = 1/Fe and the sampling points in the time
domain are tj = j∆t for j = 1, . . . , N in which the integer N is such that
T = tN = N ∆t. We then introduce the finite length time series Γ1, . . . ,ΓN

and the associated random vector � such that

� = (Γ1, . . . ,ΓN) , Γj = Γ(tj) , j = 1, . . . , N . (8)

The random vector � is completely defined by the probability density func-
tion p�(�) = pΓ1,...,ΓN

(γ1, . . . , γN) with respect to the volume element d� =
dγ1 . . . dγN . This probability density function is unknown and the first objec-
tive of this paper is to construct this probability density function. From the
properties of stochastic process Γ, it can easily be deduced that � is such that

m� = E{�} = 0 , E{‖�‖2} =
N∑

j=1

σ2
j < +∞ , (9)

in which ‖�‖2 = Γ2
1 + . . .+ Γ2

N and where

σ2
j = E{Γ2

j} = σ2
Γ(tj) , j = 1, . . . , N . (10)

Equation (10) shows that the available information is now replaced by the
vector � = (σ1, . . . , σN) related to the time series � = (Γ1, . . . ,ΓN).

2.2 Construction of a finite representation of the VRS

In this section, we construct a finite representation of the random VRS defined
by Eqs. (6) and (7) and expressed in terms of the random vector �.

We have to perform the time sampling of stochastic process X defined in
Eq. (6). Let δτ be the sampling time step and letM be the number of sampling
points τm = mδτ for m = 1, . . . ,M in which the integer M is such that
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T = τM = M δτ . From Eq. (6), we deduce the following approximation

Sv(ω, ξ) = ω max{ |X(τ1)|, . . . , |X(τM)| } ,

X(τm) ≃ δτ
∑m

m′=1 h(τm − τm′) Γ(τm′) .
(11)

(i)- First case: ωmax ≤ Ωmax. This case corresponds to a frequency band of
analysis which is included in the frequency band containing the energy of the
signal. In such a case, we can choose δτ = π/Ωmax = ∆t, M = N and the
two ensembles {τ1, . . . , τM} and {t1, . . . , tN} coincide. Equation (11) can be
rewritten as

X(τm) ≃ δτ
m∑

m′=1

h(τm − τm′) Γm′ , m = 1, . . . ,M . (12)

(ii)- Second case: ωmax > Ωmax. This case corresponds to a frequency band
containing the energy of the signal which is included in the frequency band
of analysis. The case for which ωmax is much more larger than Ωmax does not
correspond to a practical case because the VRS of the corresponding oscillator
would not be excited by Γ(t) and then would be closed to zero. Nevertheless,
practical cases can exist for which ωmax > Ωmax but ωmax is not much more
larger than Ωmax. In this case, δτ = π/ωmax, M is chosen larger that N
(M > N) and the two ensembles {τ1, . . . , τM} and {t1, . . . , tN} are different.
In Eq. (11), for each m′, Γ(τm′) is calculated by linear interpolation within the
values Γ1, . . . ,ΓN . One can then write Γ(τm′) =

∑N
j=1[Π]m′j Γj in which the

(M ×N) real matrix [Π] is a given sparse matrix. Therefore, Eq. (11) can be
rewritten as

X(τm) ≃ δτ
m∑

m′=1

h(τm − τm′)
N∑

j=1

[Π]m′j Γj , m = 1, . . . ,M . (13)

Finally, we introduce the sampling points ω1, . . . , ωνω of the frequency band of
analysis Ω = [ωmin, ωmax] and the sampling points ξ1, . . . , ξνξ of the admissible
domain Ξ = [ξmin, ξmax] for the damping ratio. Let ν = νω × νξ. In this condi-
tion, the mean value {sv(ω, ξ) , ω ∈ Ω , ξ ∈ Ξ} of the random velocity response
spectrum {Sv(ω, ξ) , ω ∈ Ω , ξ ∈ Ξ} is then represented by the following vector
S with ν components such that

S = {sv(ωi, ξn) , i = 1, . . . , νω , n = 1, . . . , νξ} . (14)

Similarly, the random velocity response spectrum {Sv(ω, ξ), , ω ∈ Ω , ξ ∈ Ξ}
is represented by the random vector S with ν random components such that

S = {Sv(ωi, ξn) , i = 1, . . . , νω , n = 1, . . . , νξ} . (15)
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Using Eqs. (11) to (13), the random VRS defined by Eq. (15) can be rewritten
as

S = S(�) = (S1(�), . . . , Sν(�)) , (16)

in which � �→ S(�) = (S1(�), . . . , Sν(�)) is a perfectly defined and known non-
linear mapping which is such that S(−�) = S(�). The mean value E{S(�)} =
S is the given vector S.

2.3 Normalization

In this section, the random vector A is constructed as the normalization of
the random vector �. As soon as the probability distribution and the random
generator of random vector A will be constructed, it will be easy to deduce the
probability distribution and the random generator of random vector �. Let
A = (A1, . . . , AN ) be the random vector such that Γj =

√
N σj Aj in which σj

is defined by Eq. (10). We can then rewrite � as

� =
√
N [σ]A , [ σ ]jj′ = σj δjj′ , (17)

in which [ σ ] is a (N ×N) real diagonal matrix.

2.4 Definition of the available information

The available information introduced in the previous section for the random
variable � allows the corresponding available information for the random vari-
able A to be easily deduced.

(i) From E{A} = N−1/2 [σ]−1E{�}, we deduce that A is a centered random
variable,

E{A} = 0 . (18)

(ii) The second-order moment of random variable Aj is such that

E{A2
j} =

1

N
, ∀ j ∈ {1, . . . , N} , (19)

and then E{‖A‖2} = 1.

(iii) Let s = (s1, . . . , sν) be the real vector such that all the components of
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vector s are equal to 1. Let s(a) = (s1(a), . . . , sν(a)) be such that

sk(a) =
Sk(

√
N [σ] a)
Sk

, ∀ k = 1, . . . , ν , (20)

in which Sk is defined in Eq. (16). Since S(−�) = S(�) (see Section 2.2), we
have s(−a) = s(a). Finally, it can then easily be deduced that

E{s(A)} = s . (21)

Therefore, the available information which allows the normalized stochastic
inverse problem to be solved, that is to say which allows the probability dis-
tribution of the random vector A to be constructed is made up of Eqs. (18),
(19) and (21).

3 CONSTRUCTION OF THE PROBABILITY MODEL

This section is devoted to the construction of the probability density func-
tion of the random vector A defined on the probability space (Θ, T ,P). This
probability density function defines the probability model of the random vec-
tor A = (A1, . . . , AN) and will allow the random generator of independent
realizations A(θ1),A(θ2), . . . of A to be constructed in Section 4.

3.1 Construction of the probability density function of A using the

maximum entropy principle

Let a = (a1, . . . , aN ) be any real vector. Let A = (A1, . . . , AN) be the random
vector for which the probability density function is pA(a) with respect to the
volume element da = da1 . . . daN . This probability density function which is
unknown satisfies the normalization condition,

∫

RN

pA(a) da = 1 . (22)

As we have explained in Section 1.3, the construction of the unknown probabil-
ity density function pA is performed in the context of information theory using
the maximum entropy principle for which the constraints associated with the
available information are defined by Eqs. (18), (19) and (21),

∫

RN

a pA(a) da = 0 ,
∫

RN

a2 pA(a) da = h ,
∫

RN

s(a) pA(a) da = s , (23)
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in which a2 denotes the vector (a21, . . . , a
2
N) and where h = (h1, . . . hN) is the

vector such that hj = 1/N for all j. Let C be the set of all the probability
density functions pA such that Eqs. (22) and (23) hold. The maximum entropy
principle (Shannon, 1948; Jaynes, 1957) consists in constructing pA in C such
that

pA = argmax
p∈C

Ent(p) , (24)

in which the entropy Ent(p) of the probability density function p is defined
by

Ent(p) = −
∫

RN

p(a) log(p(a)) da , (25)

where log is the Neperian logarithm. In order to solve the optimization prob-
lem defined by Eq. (24), a Lagrange multiplier λ0 > 0 associated with the con-
straint defined by Eq. (22) and three Lagrange multipliers �sol

1 = (λsol
1,1, . . . , λ

sol
1,N),

�sol
2 = (λsol

2,1, . . . , λ
sol
2,N) and �

sol
3 = (λsol

3,1, . . . , λ
sol
3,ν) associated with the three con-

straints defined by Eq. (23) are introduced. Using the Euler-Lagrange equation
of the calculus of variations, it can then easily be proven that the solution of
Eq. (24) is written as

pA(a) = csol
0 exp(− < �sol

1 , a > − < �sol
2 , a2 > − < �sol

3 , s(a) >) , (26)

with csol
0 = exp(−λsol

0 ) and where λsol
0 , �sol

1 , �sol
2 and �sol

3 are such that Eqs. (22)
and (23)) are satisfied. In Eq. (26), we have < �sol

1 , a >= λsol
1,1 a1+. . .+λsol

1,N aN ,
< �sol

2 , a2 >= λsol
2,1 a

2
1 + . . . + λsol

2,N a2N and < �sol
3 , s(a) >= λsol

3,1 s1(a) + . . . +
λsol
3,ν sν(a). Since s(−a) = s(a) (see Section 2.4) and from the first Eq. (23),

it can be proven that �sol
1 = 0. We then introduce the vectors � = (�2,�3)

and �sol = (�sol
2 ,�sol

3 ) of length µ = N + ν. Let g be the function such that
g(a) = (a2, s(a)). Finally, we introduce the vector f = (h, s) in which h is
defined in Eq. (23). Consequently, the second and the third Eq. (23) can be
rewritten as

E{g(A)} =
∫

RN

g(a) pA(a) da = f , (27)

and pA defined by Eq. (26) can be rewritten as

pA(a) = csol
0 exp(− < �sol, g(a) >) , (28)

in which < �sol, g(a) >= λsol
1 g1(a) + . . .+ λsol

µ gµ(a). The constant csol
0 and the
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Lagrange multiplier �sol must be calculated in order that Eqs. (22) and (27)
be satisfied.

It should be noted that function g is such that g(a) = (a2, s(a)). Each compo-
nent sk(a) of the nonlinear function s defined by Eq. (20) is not a separable
nonlinear function with respect to the variables a1, . . . , aN . This means that,
due to Eqs. (11), (15), (16) and (20), we do not write either sk(a) = sk(ak) or
sk(a) =

∑
k′ skk′(ak′). It can then be seen that pA(a) cannot be written as a

product pA1
(a1)× . . .× pAN

(aN) but is a not separable function of a1, . . . , aN
that is to say, we have pA(a) = pA1,...,AN

(a1, . . . , aN). Consequently, all the
components A1, . . . , AN of the non-Gaussian random vector A are statistically
dependent and are correlated. The covariance matrix of random vector A is not
diagonal. Then the probability density function pA given by Eq. (28) defines
the probability model of the random vector A and then defines the probability
model of stochastic process Γ which is a non-stationary non-Gaussian second-
order stochastic process with an autocorrelation function which is not a delta
function but for which the correlation time is non zero and finite.

3.2 Computation of the vector-valued Lagrange multipliers

For � = (λ1, . . . , λµ) fixed, let B� = (B�,1, . . . , B�,N) be the random vector
whose probability density function p(b;�) with respect to the volume element
db is written as

p(b;�) = c� exp(− < �, g(b) >) , (29)

in which c� is a finite positive constant depending on � defined by the nor-
malization condition

∫

RN

p(b;�) db = 1 . (30)

Taking c�sol = csol
0 , Eqs. (28) and (29) show that

pA(a) = p(a;�sol) , (31)

which means that we have A = B�sol. From Eq. (27), it can then be deduced
that �sol is the solution in � of the equation,

E{g(B�)} = f , (32)
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in which the integral E{g(B�)} which depends on � is such that

E{g(B�)} =
∫

RN

g(b) p(b;�) db . (33)

We then have to construct the solution �sol of Eq. (32) in �. It is assumed that
the constraints are such that Eq. (32) has a unique solution �sol. Consequently,
for such a solution, Eqs. (22) and (27) are satisfied and the probability density
function pA is given by Eq. (28) with csol

0 = c�sol.

Equation (32) can be solved in � using a direct approach based on the use of
any appropriate algorithm (for instance, the interior-reflective Newton method
(Coleman and Li, 1994 and 1996) as in Matlab). It can also be proven that
the solution �sol of Equation (32) can also be calculated by an indirect ap-
proach consisting in introducing a companion convex optimization problem
(see for instance Kapur and Kesavan (1992)) for which the solution is �sol. For
the numerical application presented in Section 5, numerical experiments have
been carried out by the author. No numerical gain has been obtained with
the indirect approach with respect to the direct one. Nevertheless, if neces-
sary, the indirect approach can always be used to solve Eq. (32) without any
modification of the method proposed.

3.3 Estimating the integrals in high dimension

As explained in Section 3.2, the calculation of the solution �sol of Eq. (32) in �
requires to calculate, for any given value of �, the mathematical expectation
E{g(B�)}, that is to say (taking into account Eq. (33)) requires to calculate
the following integral in high dimension

∫
RN g(b) p(b;�) db in which p(b;�) =

c� exp(− < �, g(b) >) is defined by Eq. (29). This problem is very difficult
for the high dimension case (for instance, in the application which will be
presented in Section 5, the dimension will be N = 128 and the number of
constraints will be µ = 168).

For any �, the evaluation of E{g(B�)} defined by Eq. (33) can be performed
using the Markov Chain Monte Carlo method (MCMC) (Kaipio and Somer-
salo, 2005; Spall, 2003; MacKeown, 1997). The transition kernel of the homo-
geneous Markov chain of the MCMC method can be constructed using the
Metropolis-Hastings algorithm (Hastings, 1970) or the Gibbs sampling (Ge-
man and Geman, 1984) which is a slightly different algorithm for which the
kernel is directly deduced from the probability density function and for which
the Gibbs samplers are always accepted. These two algorithms allow the tran-
sition kernel to be constructed for which the invariant measure is p(b;�) db. In
general, these two algorithms are efficient, but can also be not efficient if there
exists attraction regions which do not correspond to p(b;�) db. These cases
cannot be easily detected and are time consuming. The method presented be-
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low has been developed by (Soize, 2008) and looks like to the Gibbs approach
but corresponds to a more direct construction of a random generator of inde-
pendent realizations of the random variable B� whose probability distribution
is p(b;�) db. The difference between the Gibbs algorithm and the proposed
algorithm is that the convergence in the proposed method can be studied
with all the mathematical results concerning the existence and uniqueness of
Itô stochastic differential equation. In addition, a parameter f0 is introduced
which allows the transient part of the response to be killed in order to get more
rapidly the stationary solution corresponding to p(b;�) db. The construction
of the transition kernel by using the detailed balance equation is replaced by
the construction of an Itô Stochastic Differential Equation (ISDE) (depending
on �) which admits p(b;�) db defined by Eq. (29) as a unique invariant mea-
sure (Soize, 1994). Finally, the ergodic method is used to estimate E{g(B�)}
in order to calculate �sol.

Below, we summarize the algorithm and we refer the reader to (Soize, 2008)
for the details of the construction of this algorithm and its validation. The
parameters of this algorithm are the integers M0 and M such that M0 < M, and
the positive real numbers ∆r and f0. The role played by these parameters is
explain below. For M0 fixed and for M sufficiently large, E{g(B�)} is estimated
by

E{g(B�)} ≃ 1

M − M0 + 1

M∑

k=M0

g(Uk(θ)) , (34)

in which, for θ in Θ, {Uk(θ), k = 1, . . . ,M} is any realization of the family
{Uk, k = 1, . . . ,M} of random vectors calculated by the following algorithm:
For k = 1, . . . ,M − 1,

[A�]Vk+1 = [B�]Vk −∆r [K�]Uk +∆r Lk
NL +

√
f0∆Wk+1 , (35)

Uk+1 = Uk +
∆r

2
(Vk+1 + Vk) , (36)

with the initial condition U1 = 0 and V1 = 0. In Eq. (35), (1) the matrices
[A�] and [B�] are defined by

[A�] = (1 + f0
4
∆r) [ IN ] +

∆r2

4
[K�] ,

[B�] = (1− f0
4
∆r) [ IN ]− ∆r2

4
[K�] ,

(37)

(2) the matrix [K�] is such that [K�]jj′ = 2 λ2,j δjj′, (3) the random vectors
∆W2, . . . ,∆WM are M − 1 independent copies of Gaussian centered random
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vectors with covariance matrix ∆r [ IN ] in which [ IN ] is the identity (N ×N)
matrix, and (4) Lk

NL = (Lk
NL,1, . . . , L

k
NL,N ) in which

Lk
NL,j = −ΦNL(∆Uk,j,�)− ΦNL(Uk,�)

Uk+1
j − Uk

j

, (38)

in which ΦNL(u,�) =<�3 , s(u)> and where ∆Uk,j is the random vector

∆Uk,j = (Uk
1 , . . . , U

k
j−1, U

k
j +∆Uk+1

j , Uk
j+1, . . . , U

k
N) , (39)

with ∆Uk+1
j = Uk+1

j − Uk
j . With the above algorithm, we have

lim
k→+∞

Uk = B� in probability distribution. (40)

The parameter f0 > 0 allows a dissipation term to be introduced in order that
the transient response generated by the initial conditions be rapidly killed
to get the asymptotic behavior defined by Eq. (40) and then to get the sta-
tionary and ergodic time series associated with p(b;�) db. For f0 fixed, the
value of M0 is chosen in order to remove the transient part in the time se-
ries {Uk, k = 1, . . . ,M} and is such that the times series {Uk, k = M0, . . . ,M}
is a stationary and ergodic time series. The step size ∆r has to be chosen
sufficiently small to preserve the stability of the scheme. Finally, the mean-
square convergence with respect to M is analyzed in studying the function
M �→ conv(M) = 1

M

∑
M

k=1 ‖Uk(θ)‖2.

4 RANDOMGENERATOROF INDEPENDENTREALIZATIONS

Let �sol be the Lagrange multiplier calculated as explained in Sections 3.1
and 3.2. Therefore, the probability density function of the random vector A
is given by Eq. (28). The problem is now to construct a random generator of
the random vector A. We then have to construct ns independent realizations
A(θ1), . . . ,A(θns

). Taking into account that A = B�sol (see Section 3.2) and
that limk→+∞ Uk = B�sol (see Eq. (40)), we deduce that A = limk→+∞ Uk (for
� = �sol). The random generator is then constructed in using Section 3.3 with
� = �sol.

For ℓ in {1, . . . , ns}, let {∆W2(θℓ), . . . ,∆WM(θℓ)} be ns independent realiza-
tions of the random vectors {∆W2, . . . ,∆WM} defined in Section 3.3. For ℓ
in {1, . . . , ns}, let {Uk(θℓ), k = 1, . . . ,M} be the ns independent realizations
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Fig. 1. Graph ofj �→ σj =
√

E{Γ2
j} (left figure) and graph ofk �→ Sk (right figure).

of the family {Uk, k = 1, . . . ,M} of random vectors calculated by Eqs. (35) to
(39) with � = �sol. For M sufficiently large, we then have

A(θℓ) ≃ UM(θℓ) , ∀ ℓ ∈ {1, . . . , ns} . (41)

5 APPLICATION AND VALIDATION

5.1 Data and parameters

(i) It is assumed that the mean VRS is given for only one value ξ1 = 0.01
of the damping ratio (therefore νξ = 1 in Eqs. (14) and (15)). The frequency
band of analysis (see Section 2.2) is [0.25 , 10] Hz with fmax = 10 Hz and
ν = νω = 40. The sampling points of the frequency band of analysis are then
∆f, 2∆f, . . . , ν∆f with ∆f = 0.25 Hz. Let S = (S1, . . . ,Sν) be the mean
VRS defined by Eq. (14). Figure 1 (right) displays the graph of the function
k �→ Sk.

(ii) The stochastic process {Γ(t), t ∈ [0 , T ]} is such that T = 12.8 s and
Fmax = 5 Hz. The sampling time step is such that ∆t = 0.1 s and consequently,
the number of sampling points in the time domain is N = 128. The sampling
points are tj = j∆t. We have � = (Γ1, . . . ,ΓN) with Γj = Γ(tj) (see Eq. (8)).
Figure 1 (left) displays the graph of the standard-deviation function j �→ σj

(see Eq. (10)).

(iii) Concerning the construction of the nonlinear mapping S defined by Eq. (16),
we are in the second case analyzed in Section 2.2 because fmax > Fmax. The
sampling time step is then δτ = 0.05 s and consequently, M = 256.

5.2 Computation of the vector-valued Lagrange multipliers

The Lagrange multiplier �sol = (�sol
2 ,�sol

3 ) is computed in using Sections 3.2
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and 3.3 with N = 128, ν = 40 and µ = 128 + 40 = 168.

(i) The mathematical expectation defined by Eq. (33) is estimated by using
Section 3.3. For each value of vector � = (�2,�3) corresponding to an itera-
tion of the interior-reflective Newton method (see point (ii) below), the step
size ∆r is defined by ∆r = β/m with β = 2π/(

√
2λmax

2 ) in which λmax
2 =

max{λ2,1, . . . , λ2,N} and with m = 5. The parameters f0 and M0 are such that
f0 = 1 and M0 = 300. These values of parameters ∆r, f0 and M0 have been
deduced from a convergence analysis. For instance, Figure 2 (left) displays the
graph of the function M �→ conv(M) = 1

M

∑
M

k=1 ‖Uk(θ)‖2 for � = �sol and for
the realization θ. Therefore limM→+∞ conv(M) = E{‖B�sol‖2} = E{‖A‖2} and
we must have limM→+∞ conv(M) = 1 (see Eq. (19)). For M = 20000, we have
conv(M) = 0.982 instead of 1 which corresponds to an error of about 1.8%.
The convergence is then reasonably reached for M = 20000.

(ii) The interior-reflective Newton method used to solve Eq. (32) is initialized
with �0 = (�0

2,�
0
3) with �0

2 = 0.5 η N 1N and �0
3 = 0.5 ν−1(1 − η)N 1ν with

η = 0.98 and where 1N and 1ν are the vectors of length N and ν for which all
the components are equal to 1. The solution has been calculated in four steps
(in order to optimize the computer time) with respect to the number iter of
iterations of the interior-reflective Newton method. For step 1, the parameter
is M = 600 for iter = 1, . . . , 16 and for step 2, M = 2800 for iter = 17, . . . , 30.
Figure 2 (right) displays the graph of the function iter �→ convALG(iter) =
‖E{g(B�(iter))}− f‖2. This calculation is completed by two other steps, one for
which M = 8300 with 7 iterations and the last one for which M = 20000 with
7 iterations.

(iii) Figure 3 shows the solution �sol obtained at convergence and displays the
graph of j �→ λsol

2,j (left figure) and the graph of k �→ λsol
3,k (right figure).
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Fig. 2. Graph ofM �→ conv(M) (left figure) and graph of iter�→ convALG(iter) (right figure).

5.3 Validation

The solution �sol of Eq. (32) being known, ns independent realizations of the

17



0 32 64 96 128
62

62.5

63

63.5

Index j

La
gr

an
ge

 m
ul

tip
lie

r 
 λ

2so
l  

0 10 20 30 40
−0.2

−0.1

0

0.1

0.2

Index k

La
gr

an
ge

 m
ul

tip
lie

r 
 λ

3so
l

Fig. 3. Graph ofj �→ λsol
2,j (left figure) and graph ofk �→ λsol

3,k (right figure).

random variable A = B�sol are constructed using the method presented in
Section 4.

A first element of validation of the method proposed is to verify that the con-
straints are satisfied. We then have to estimate k �→ E{Sk} = E{Sk(�)} and
j �→ E{Γ2

j} by the Monte Carlo simulation using the generator presented in
Section 4 and to compare these estimations with k �→ Sk and j �→ σ2

j respec-
tively. The estimations are calculated by E{Sk} ≃ n−1

s

∑ns

ℓ=1 Sk(�(θℓ)) and
E{Γ2

j} ≃ n−1
s

∑ns

ℓ=1 Γ
2
j (θℓ) in which �(θℓ) =

√
N [σ]A(θℓ). The ns independent

realizations A(θ1), . . . ,A(θns
) of random vector A are calculated using Sec-

tion 4 with ∆r determined as in Section 5.2, with f0 = 1 and where ns = 300.

(i) Concerning the value of M, Figure 4 (left) displays the graph of the func-
tion M �→ convℓ(M) = 1

M

∑
M

k=1 ‖Uk(θℓ)‖2 for � = �sol and for a realization
θℓ (it should be noted that all the graphs are similar for ℓ = 1, . . . , ns).
This graph allows the value of M to be estimated in order to obtain a real-
ization A(θℓ) ≃ UM(θℓ). Therefore, M must be such that the graph be flat
that is reasonably true for M = 400. Figure 4 (right) displays the corre-
sponding trajectory of the random time series j �→ Γj, that is to say the
graph of the realization j �→ Γj(θℓ) in which �(θℓ) =

√
N [σ]A(θℓ) with

A(θℓ) ≃ UM(θℓ). (ii) Concerning the value of ns, Figure 5 shows the graph
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of ns �→ convMC(ns) = ns
−1 ∑ns

ℓ=1 ‖A(θℓ)‖2 which is an estimation of the
second-order moment E{‖A‖2} = E{‖B�sol‖2} of the random variable ‖A‖.
This figure shows that ns = 300 is a reasonable value for ns.
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Fig. 5. Graph ofns �→ convMC(ns).

(iii) Figure 6 shows the estimation of the constraints (standard deviation and
mean VRS) constructed with the random generator and compares these es-
timations with the references defined in Figure 1. Figure 6 (left) compares
the graph of the standard-deviation function j �→ σj with the estimation
j �→ E{Γ2

j} ≃ n−1
s

∑ns

ℓ=1 Γ
2
j(θℓ). Figure 6 (right) compares the graph of the

mean velocity response spectrum k �→ Sk with the estimation k �→ E{Sk} ≃
n−1
s

∑ns

ℓ=1 Sk(�(θℓ)). The comparisons are good and validate the method pro-
posed. The small fluctuations of the estimation of the standard-deviation func-
tion computed by the Monte Carlo method using the random generator can
be reduced in increasing the value of ns.
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Fig. 6. Graph ofj �→ σj = E{Γ2
j}

1/2
(left figure) and graph ofk �→ Sk (right figure). Reference (dashed

lines). Estimation with the random generator (solid lines).

5.4 Properties of the constructed probability model

In this section we presents some properties of the probabilistic model con-
structed for the time series � = (Γ1, . . . ,ΓN). We have � =

√
N [σ]A and the
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probability density function of A is not Gaussian and is written (see Eq. (28))
as pA(a) = csol

0 exp(− < �sol, g(a) >) with N = 128 and µ = 168.

(i) Let (j, j′) �→ Rjj′ = E{ΓjΓj′} be the autocorrelation function of the time
series {Γ1, . . . ,ΓN}. This function is estimated by Rjj′ ≃ n−1

s

∑ns

ℓ=1 Γj(θℓ) Γj′(θℓ)
in which the independent realizations �(θ1), . . . ,�(θns

) are those calculated
in Section 5.3 with ns = 300. As an example, Figure 7 displays the graph of
the function j �→ Rjj′ for j

′ = 35 (left figure) and for j′ = 76 (right figure).
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(ii) The random VRS S = (S1, . . . ,Sν) with Sk = Sv(ωk, ξ1) is such that
E{S} = S (see Figure 6 (right)). It is interesting to define the statistical
fluctuations of S induced by the probability model of �. For that we construct
the confidence region of the time series {S1, . . . ,Sν} which is delimited by the
upper envelope k �→ S+

k and the lower envelope k �→ S−

k such that,

Proba{S−

k < Sk ≤ S+
k } = Pc , ∀ k ∈ {1, . . . , ν} , (42)

with Pc = 0.98. The envelopes are constructed by using the method of quan-

20



tiles (Serfling,1980). Let X = Sk, x
+ = S+

k and x− = S−

k . Let FX be the
cumulative distribution function (continuous from the right) of the random
variable X such that FX(x) = Proba{X ≤ x}. For 0 < p < 1, the pth quantile
(or fractile) of FX is defined by ζ(p) = inf{x : FX(x) ≥ p}. Then x+ and
x− are defined by x+ = ζ ((1 + Pc)/2) and x− = ζ ((1 − Pc)/2) and are esti-
mated by using the sample quantiles. Let x1 = X(θ1), . . . , xns

= X(θns
). Let

x̃1 < . . . < x̃ns
be the order statistics associated with x1 < . . . < xns

. There-
fore, one has the following estimations, x+ ≃ x̃j+ with j+ = fix(ns (1 + Pc)/2)
and x− ≃ x̃j− with j− = fix(ns(1 − Pc)/2) in which fix(z) is the integer part
of the real number z. Figure 8 displays the graph of the confidence region of
the time series {S1, . . . ,Sν} for Pc = 0.98.

5.5 Computation time

The computation time is mainly due to the computation of the Lagrange
multiplier �sol. The calculation of realizations of the random vector A = B�sol

using the random generator presented in Section 4 is not time consuming with
respect to the computation of Lagrange multiplier �sol. It should be noted that
the computational effort is performed only once and the generator can then
be used with a small computational cost.

The computation time required for the calculation of �sol is correlated to
the choice of the initial value given to the algorithm. For the initial value
proposed in Section 5.2 (ii), about 1014 floating-point operations are required
which yields about 27 hours CPU time with a computer performing 1 Gflops
and 3 hours with a computer performing 10 Gflops.

6 CONCLUSIONS

In many applications of structural engineering, mechanical engineering, space
engineering, earthquake engineering, civil engineering, nuclear engineering and
offshore engineering, the dynamical levels of transient vibrations in structures
can be specified in terms of shock response spectrum (SRS) (or in terms of
velocity response spectrum (VRS)). Such a response spectrum is used by en-
gineering to specify the transient loads which is applied to equipment or sec-
ondary subsystems. In the random case, a fundamental problem is then to
construct a generator of the non-stationary stochastic process (the transient
signal) satisfying the given SRS (or VRS). This problem has been looked at
by others using specific representations of the non-stationary stochastic pro-
cess (the accelerogram) which are chosen a priori. In this paper, we have
not imposed any stochastic representation for the non-stationary stochastic
accelerogram. We have proposed to solve this challenging stochastic inverse
problem by another way in using information theory which allows the inverse
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problem to be well posed (the constructed probability model maximizes the
uncertainties). In the approach proposed, the target SRS is taken as the mean
value of the unknown random SRS spanned by the unknown non-stationary
stochastic accelerogram for which the probabilistic model has to be identified.
We have presented the construction of this probability model and the algo-
rithm for the random generator of independent realizations. This approach
allows to construct the confidence region of the random SRS for which the
target SRS is the mean value. The method presented has been validated with
an example. It should be noted that the randomness of the random SRS has
indirectly been introduced in giving the variance of the non-stationary stochas-
tic accelerogram as available information. This available information could be
substituted by the variance or by the confidence region of the random SRS.
Such a formulation can be performed without difficulty in the proposed math-
ematical framework and is in progress.
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