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Information theory for generation of accelerograms associated with Shock Response Spectra

In structural dynamics, the specification of the transient loads applied to equipment (or to secondary subsystems) consists of a given shock response spectrum (SRS). The transient dynamical analysis of such equipment is performed using a computational nonlinear dynamical model. A generator of accelerograms satisfying the given SRS is then required. Information theory is used to solve this challenging inverse problem that has been looked at by others but not in the way presented. The maximum entropy principle is used to construct the probability distribution of the non-stationary stochastic process for which the available information is constituted of the mean SRS and an additional information on the variance. A random generator of independent realizations of the non-stationary stochastic process is developed using a new algorithm based on the stochastic analysis. The method presented is validated with an example.

1I N T R O D U C T I O N

In transient linear or nonlinear structural dynamics, the response spectrum method is often used to characterize the dynamical response in a point of a structure (for instance on a floor of a building, in a point of the structure where equipment are connected or in a small region of the structure where secondary systems are connected, etc). In such an approach, a transient response is characterized either by the displacement response spectrum, either by the pseudo-velocity response spectrum (simply called the velocity response spectrum (VRS)) or by the pseudo-acceleration response spectrum which can also be called the shock response spectrum. These quantities can directly be constructed using the acceleration transient signals (accelerograms) calculated in different points with the computational linear or nonlinear dynamical model of the structure which is submitted to a given transient loads due, for instance, to a shock wave or to an earthquake, etc. Such a response spectrum is often used by engineering to specify the transient loads which is applied to equipment or to secondary subsystems. If equipment or secondary subsystems have a linear dynamical behavior, the use of the response spectrum is very efficient to predict the maximum of the transient dynamical responses of equipment or secondary subsystems. If equipment or secondary subsystems have a nonlinear dynamical behavior, the situation is much more difficult and transient signal accelerations (accelerograms) satisfying the given VRS (or SRS) must be constructed in order to analyze the transient responses using a computational nonlinear dynamical model of equipment or secondary subsystems. This problem consisting in constructing acceleration transient signals (accelerograms) from a given VRS (or SRS) is a challenging inverse problem which is not a well-posed problem. Many works have been devoted to this inverse problems and in this paper, we propose another way which allows this inverse problem to be a well-posed problem in the context of information theory.

The response spectrum method was introduced by Biot in 1932 (see of instance the article by [START_REF] Trifunac | Brief history of earthquake response spectra[END_REF]) in the context of earthquake engineering and has intensively been studied to extend its domain of applicability to many different situations and applications in the domain of structural engineering, mechanical engineering, earthquake engineering, civil engineering, nuclear engineering, offshore engineering, as it can be shown in the articles by [START_REF] Levy | Generation of artificial time-histories, rich in all frequencies, from given response spectra[END_REF], [START_REF] Gupta | Probable simultaneous response by response spectrum method of analysis[END_REF], [START_REF] Peters | Determination of floor response spectra on basis of response spectrum method[END_REF], [START_REF] Kost | Automated generation of spectrum-compatible artificial time histories[END_REF], [START_REF] Sato | Extensive study of a simple method for estimating response spectrum based on a simulated spectrum[END_REF], [START_REF] Anderson | Note on probabilistic computation of earthquake response spectrum amplitudes[END_REF], [START_REF] Hadjian | Seismic response of structures by the response spectrum method[END_REF], [START_REF] Unruh | An iterative procedure for the generation of consistent power-response spectrum[END_REF], [START_REF] Scherer | Estimation of the timedependent frequency content of earthquake accelerations[END_REF], [START_REF] Nouromid | Modal characterization of equipment continuous structure systems[END_REF], [START_REF] Preumont | The generation of spectrum compatible accelerograms for the design of nuclear-power plants[END_REF], Gupta and Jaw (1986a, 1986b, 1986c), [START_REF] Sharma | Floor spectra by mode accelerationbased response spectrum approach for nonclassically damped structures[END_REF], [START_REF] Chan | Earthquake response spectrum analysis of platforms engineering structures[END_REF], [START_REF] Khan | Improved method of generation of artificial time-histories, rich in all frequencies, from floor spectra[END_REF], [START_REF] Yang | A response spectrum approach for seismic analysis of nonclassically damped structure[END_REF], [START_REF] Beck | Moving resonance in nonlinear response to fully non-stationary stochastic ground motion[END_REF], [START_REF] Chen | Modification of floor response spectrum based on stochastic sensitivity analysis[END_REF], Der [START_REF] Der Kiureghian | CQC modal combination rule for high-frequency modes[END_REF], [START_REF] Smith | A proposed method to standardize shock response spectrum (SRS) analysis -To provide agreement between tests performed at different facilities[END_REF], [START_REF] Gupta | An improved spectrum superposition method for structures with rigid modes[END_REF], [START_REF] Allam | Analysis of cable-stayed bridges under multi-component random ground motion by response spectrum method[END_REF], [START_REF] Lam | Seismic displacement response spectrum estimated from the frame analogy soil amplification model[END_REF], [START_REF] Li | A response spectrum method for seismic response analysis of structures under multi-support excitations[END_REF], [START_REF] Su | A new average response spectrum method for linear response analysis of structures to spatial earthquake ground motions[END_REF] and [START_REF] Jankowski | Pounding force response spectrum under earthquake excitation[END_REF].

For a given deterministic transient signal {γ(t),t ∈J}(accelerogram in a given direction) with a finite duration T and where J =[0,T], the construction of the VRS consists following the book of [START_REF] Clough | Dynamics of Structures[END_REF] in evaluating the maximum of the dynamical response of a family of single degree of freedom (SDOF) linear damped oscillators excited at their bases with this transient signal. Let m, ω and ξ be the mass, the natural frequency (pulsation in rad/s) and the damping ratio of an oscillator of this family. Let {x(t),t ∈ J}be the displacement of the mass with respect to the base. For all t in ]0 ,T], the displacement x is such that m ẍ(t)+2ξmω ẋ(t)+mω 2 x(t)=-mγ(t) with the initial condition x(0) = ẋ(0) = 0. Let Ω = [ω min ,ω max ]b et h ef r equency band of analysis for the natural frequency ω with 0 <ω min <ω max . Let Ξ = [ξ min ,ξ max ] be the admissible domain for the damping ratio ξ with 0 <ξ min <ξ max < 1. The deterministic transient signal is then characterized by the displacement response spectrum s d (ω, ξ) which is defined by

s d (ω, ξ)= max t∈[0 ,T ] |x(t)| , (1) 
where the displacement x(t) is written as

x(t)= t 0 h(t -τ ) γ(τ ) dτ , (2) 
in which the impulse response function h is such that

h(t)=-1 [0,+∞[ (t) 1 ω √ 1 -ξ 2 e -ξωt sin(ω 1 -ξ 2 t) . (3) 
In the equation above, 1 [0,+∞[ (t)=1i ft ≥ 0a n d=0i ft<0. The pseudo-velocity response spectrum denoted by s v (ω, ξ) (so called the Velocity Response Spectrum (VRS)) and the pseudo-acceleration response spectrum s a (ω, ξ) are such that ω 2 s d (ω, ξ)=ωs v (ω, ξ)=s a (ω, ξ) which shows that the VRS is such that

s v (ω, ξ)=ωs d (ω, ξ) .
(4)

Formulation for the direct problem

The direct problem is usually formulated as follows for the deterministic and for the random cases.

(i) Concerning the deterministic case, the direct problem is simple. For a given deterministic transient signal {γ(t),t ∈J} , the velocity response spectrum s v (ω, ξ) is calculated using Eqs. (1) to ( 4).

(ii) We now introduce the more realistic situation corresponding to the usual stochastic case that we consider in this paper. The deterministic transient signal {γ(t),t ∈J}is then replaced by a real-valued non-stationary secondorder centered stochastic process {Γ(t),t∈J}defined on a probability space (Θ, T , P). For general notions on stochastic processes, we refer the reader to the books of [START_REF] Doob | Stochastic Processes[END_REF], [START_REF] Gikhman | The Theory of Stochastic Processes[END_REF], [START_REF] Priestley | Elements of Information Theory[END_REF] or Kree and Soize (1986). Since the random variable Γ(t) is centered, its variance σ 2 Γ (t) is equal to its second-order moment and we have,

E{Γ(t)} = Θ Γ(t, θ) dP(θ)=0 , σ 2 Γ (t)=E{Γ(t) 2 } = Θ Γ(t, θ) 2 dP(θ) , (5) 
in which E denotes the mathematical expectation. Equations ( 1), ( 2) and ( 4) then define a random variable S v (ω, ξ) such that

S v (ω, ξ)=ω max t∈[0 ,T ] |X(t)| ,X (t)= t 0 h(t -τ )Γ(τ ) dτ . (6) 
Consequently, the family {S v (ω, ξ) ,ω ∈ Ω ,ξ ∈ Ξ} of random variables defines a real-valued stochastic process S v indexed by Ω × Ξ. The mean value s v (ω, ξ) of the random variable S v (ω, ξ) is such that

s v (ω, ξ)=E{S v (ω, ξ)} = Θ S v (ω, ξ, θ) dP(θ) . (7) 
It should be noted that the mapping Γ → S v is a nonlinear transformation. As soon as the system of the marginal probability distributions of the stochastic process Γ is known, then the system of the marginal probability distributions of the stochastic process S v is completely defined [START_REF] Gikhman | The Theory of Stochastic Processes[END_REF]Kree and Soize, 1986). In general, the system of the marginal probability distributions of the stochastic process S v cannot exactly be determined but only an estimation of it can be calculated either by using adapted stochastic representations such as the Chaos polynomial expansion (Ghanem and Spanos,1991;[START_REF] Totik | Orthogonal polynomials with respect to varying weights[END_REF][START_REF] Soize | Physical Systems with Random Uncertainties: Chaos representations with arbitrary probability measure[END_REF] or by using the parametric or the nonparametric statistical estimations [START_REF] Serfling | Approximation Theorems of Mathematical Statistics[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF] coupled with the Monte Carlo method [START_REF] Hammersley | Monte Carlo Methods[END_REF][START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF][START_REF] Kalos | Monte Carlo Methods[END_REF].

In practice, in order to construct the specifications for equipment attached to the master structure, the accelerations have to be computed at different locations in the master structure where equipment are attached. The effective construction of the stochastic process {Γ(t),t ∈J}, which then appears as the response of the master structure, is then performed using a linear or a nonlinear dynamical computational model under an input which is a non-stationary stochastic loading. Such a computation can be done for large nonlinear computational models as it can be seen in the articles by Pradlwarter and Schueller (2003), [START_REF] Schueller | On the stochastic response of nonlinear FE models[END_REF], [START_REF] Schueller | Computational stochastic mechanics -recent advances[END_REF], [START_REF] Schueller | Non-stationary response of large linear FE models under stochastic loading[END_REF], Pradlwarter et al. (2003), [START_REF] Schenk | Non-stationary response of large, non-linear finite element systems under stochastic loading[END_REF].

Formulation for the inverse problem and objective of the paper

In structural dynamics (see the beginning of Section 1), the following challenging stochastic inverse problem is of great interest and has to be solved. Let {s v (ω, ξ),,ω ∈ Ω ,ξ ∈ Ξ} be a given mean value of a random VRS (or equivalently, of a random SRS). We then have to construct a generator of independent realizations {Γ(t, θ),t ∈J}of the stochastic process {Γ(t),t ∈J}. Some works in the deterministic context or in the stochastic context have been devoted to this very difficult inverse problem. Concerning the generation of transient signals from a given response spectrum, we refer the reader, for instance, to the articles by [START_REF] Levy | Generation of artificial time-histories, rich in all frequencies, from given response spectra[END_REF], [START_REF] Kost | Automated generation of spectrum-compatible artificial time histories[END_REF], [START_REF] Preumont | The generation of spectrum compatible accelerograms for the design of nuclear-power plants[END_REF], [START_REF] Khan | Improved method of generation of artificial time-histories, rich in all frequencies, from floor spectra[END_REF], [START_REF] Sabetta | Estimation of response spectra and simulation of non-stationary earthquake ground motions[END_REF], [START_REF] Ghaboussi | New method of generating spectrum compatible accelerograms using neural networks[END_REF], [START_REF] Gupta | Defining equivalent stationary PSDF to account nonstationarity of earthquake ground motion[END_REF], [START_REF] Abbas | Investigations into critical earthquake load models within deterministic and probabilistic frameworks[END_REF], [START_REF] Lee | Neural-network-based models for generating artificial earthquakes and response spectra[END_REF], [START_REF] Zerva | Identification of parametric ground motion random fields from spatially recorded seismic data[END_REF], [START_REF] Gu | A record-based method for the generation of tridirectional uniform hazard-response spectra and ground motions using the Hilbert-Huang transform[END_REF]. It should be noted that the majority of such approaches uses given representations of the nonstationary stochastic processes which have to be identified (for representations, see for instance the articles by Kanay (1957), [START_REF] Tajimi | A statistical method of determining the maximum response of a building structure during an earthquake[END_REF], Kree and Soize (1986), [START_REF] Lin | Evolutionary Kanai-Tajimi earthquake models[END_REF], Der [START_REF] Der Kiureghian | An evolutionary model for earthquake ground motion[END_REF], [START_REF] Yeh | Modeling of non-stationary ground motion and analysis of inelastic structural response[END_REF], [START_REF] Spanos | Time-frequency representation of earthquake accelerograms and inelastic structural response records using the adaptive chirplet decomposition and empirical mode decomposition[END_REF] and concerning ground motions, the amplitude variability [START_REF] Pachakis | Amplitude variability in simulated incoherent seismic ground motions[END_REF]) and the effects of representations [START_REF] Jalayer | Effects of two alternative representations of ground-motion uncertainty on probabilistic seismic demand assessment of structures[END_REF] have recently been analyzed.

However, such a problem cannot be solved exactly with uniqueness in the deterministic context and this is the reason why the probability theory is generally used. Nevertheless, it seems that information theory has not been used to construct a well-posed inverse problem. In this paper, we thus propose such an approach which allows, in maximizing uncertainties, the construction of the probability model of the non-stationary stochastic process for which the mean value of the random VRS is given. The fact to carry out such a construction in maximizing uncertainties allows a uniqueness to be obtained and then to get a well-posed inverse problem.

The objective of this paper is to propose a probabilistic framework for which (1) the stochastic inverse problem is a well-posed problem, (2) the system of marginal probability distributions of stochastic process {Γ(t),t ∈J }is explicitly constructed without giving an ap r i o r istochastic representation, (3) the generator of independent realizations {Γ(t, θ),t∈J}of stochastic process {Γ(t),t ∈J }can be constructed using its system of marginal probability distributions.

1.3 Information theory as an adopted framework for the stochastic inverse problem

As we have explained above, the objective is to solve the following stochastic inverse problem: Find the system of the probability distributions of the non-stationary stochastic process {Γ(t),t ∈J}for given functions {σ Γ (t),t ∈J} and {s v (ω, ξ) ,ω ∈ Ω ,ξ ∈ Ξ}. In order to solve this stochastic inverse problem, we propose to use information theory introduced by [START_REF] Shannon | A mathematical theory of communication[END_REF] that is to say we propose to use the maximum entropy principle [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF][START_REF] Cover | Elements of Information Theory[END_REF]) to construct the system of the probability distributions of the non-stationary stochastic process under the constraints defined by the following available information. The two following functions {σ Γ (t),t ∈J}and {s v (ω, ξ) ,ω ∈ Ω ,ξ ∈ Ξ} are given. In this framework of information theory, we then obtain a well-posed problem with a unique solution to this inverse stochastic problem. The use of this principle consists in maximizing the uncertainties in the probabilistic model constructed under the constraints defined by the available information.

Contents of the paper

The contents of the paper is the following. In a first section, the real-valued non-stationary second-order stochastic process {Γ(t),t ∈J}whose probability model has to be constructed is replaced by an equivalent finite length time series =( Γ 1 ,...,Γ N ) using the sampling technique. This time series is then normalized in another time series A =(A 1 ,...,A N ). The available information is defined to solve the normalized stochastic inverse problem, that is to say to construct the probability distribution of the random vector A. The next section deals with the construction of the probability density function of A using the maximum entropy principle. We then have to solve an optimization problem which is carried out in introducing vector-valued Lagrange multipliers. The calculation of the Lagrange multipliers requires the computation of integrals in high dimension. This is a difficult point which is solved in using an algorithm which looks like to the Gibbs approach but which corresponds to a more direct construction. In another short section, the random generator of independent realizations of the time series A is presented. Finally, the last section is devoted to a complete application and to the validation of the method proposed.

TIME SAMPLING, NORMALIZATION AND AVAILABLE IN-FORMATION

In this section, using the very well known sampling techniques, we introduce the random vector =( Γ 1 ,...,Γ N ) (finite length time series) in performing the sampling of the stochastic process {Γ(t),t∈J}. A dimensionless random vector A =( A 1 ,..., A N ) associated with is introduced and finally, the stochastic inverse problem which is formulated in terms of A is normalized and the available information is defined. It should be noted that Section 2.1 is absolutely standard but we need it in order to introduce the different quantities of interest.

Time sampling of the stochastic process

It is assumed that the energy of the instantaneous spectral density function (or the evolutionary spectral density function), see [START_REF] Priestley | Non-linear and Non-Stationary Time series analysis[END_REF], of stochastic process Γ is concentrated on the limited frequency band [-Ω max , Ω max ]. This last property allows the time sampling of stochastic process Γ to be carried out.

Let F max =Ω max /2π and F e =2F max be the sampling rate. The sampling time step ∆t is defined by ∆t =1 /F e and the sampling points in the time domain are t j = j ∆t for j =1 ,...,N in which the integer N is such that T = t N = N ∆t. We then introduce the finite length time series Γ 1 ,...,Γ N and the associated random vector such that

=(Γ 1 ,...,Γ N ) , Γ j =Γ(t j ) ,j =1,...,N . (8) 
The random vector is completely defined by the probability density function p ( )=p Γ 1 ,...,Γ N (γ 1 ,..., γ N ) with respect to the volume element d = dγ 1 ...dγ N . This probability density function is unknown and the first objective of this paper is to construct this probability density function. From the properties of stochastic process Γ, it can easily be deduced that is such that

m = E{ } = 0 ,E { 2 } = N j=1 σ 2 j < +∞ , (9) 
in which 2 =Γ 2 1 + ...+Γ 2 N and where

σ 2 j = E{Γ 2 j } = σ 2 Γ (t j ) ,j =1,...,N . (10) 
Equation ( 10) shows that the available information is now replaced by the vector × =(σ 1 ,...,σ N ) related to the time series =(Γ 1 ,...,Γ N ).

Construction of a finite representation of the VRS

In this section, we construct a finite representation of the random VRS defined by Eqs. ( 6) and ( 7) and expressed in terms of the random vector .

We have to perform the time sampling of stochastic process X defined in Eq. ( 6). Let δτ be the sampling time step and let M be the number of sampling points τ m = mδτ for m =1 ,...,M in which the integer M is such that

T = τ M = Mδτ.
From Eq. ( 6), we deduce the following approximation

S v (ω, ξ)=ω max{|X(τ 1 )|,...,|X(τ M )|} , X(τ m ) ≃ δτ m m ′ =1 h(τ m -τ m ′ )Γ(τ m ′ ) . (11) 
(i)-First case: ω max ≤ Ω max . This case corresponds to a frequency band of analysis which is included in the frequency band containing the energy of the signal. In such a case, we can choose δτ = π/Ω max =∆ t, M = N and the two ensembles {τ 1 ,...,τ M } and {t 1 ,...,t N } coincide. Equation ( 11) can be rewritten as

X(τ m ) ≃ δτ m m ′ =1 h(τ m -τ m ′ )Γ m ′ ,m =1,...,M . (12) 
(ii)-Second case : ω max > Ω max . This case corresponds to a frequency band containing the energy of the signal which is included in the frequency band of analysis. The case for which ω max is much more larger than Ω max does not correspond to a practical case because the VRS of the corresponding oscillator would not be excited by Γ(t) and then would be closed to zero. Nevertheless, practical cases can exist for which ω max > Ω max but ω max is not much more larger than Ω max .I nt h i sc a s e ,δτ = π/ω max , M is chosen larger that N (M>N ) and the two ensembles {τ 1 ,...,τ M } and {t 1 ,...,t N } are different. In Eq. ( 11), for each m ′ ,Γ(τ m ′ ) is calculated by linear interpolation within the values Γ 1 ,...,Γ N . One can then write Γ(τ m ′ )= N j=1 [Π] m ′ j Γ j in which the (M × N) real matrix [Π] is a given sparse matrix. Therefore, Eq. ( 11) can be rewritten as

X(τ m ) ≃ δτ m m ′ =1 h(τ m -τ m ′ ) N j=1 [Π] m ′ j Γ j ,m =1,...,M . (13) 
Finally, we introduce the sampling points ω 1 ,...,ω νω of the frequency band of analysis Ω = [ω min ,ω max ] and the sampling points ξ 1 ,...,ξ ν ξ of the admissible domain Ξ = [ξ min ,ξ max ] for the damping ratio. Let ν = ν ω × ν ξ . In this condition, the mean value {s v (ω, ξ) ,ω ∈ Ω ,ξ ∈ Ξ} of the random velocity response spectrum {S v (ω, ξ) ,ω ∈ Ω ,ξ ∈ Ξ} is then represented by the following vector S with ν components such that

S = {s v (ω i ,ξ n ) ,i=1,...,ν ω ,n=1,...,ν ξ } . ( 14 
)
Similarly, the random velocity response spectrum {S v (ω, ξ),,ω∈ Ω ,ξ ∈ Ξ} is represented by the random vector S with ν random components such that

S = {S v (ω i ,ξ n ) ,i=1,...,ν ω ,n=1,...,ν ξ } . ( 15 
)
Using Eqs. ( 11) to ( 13), the random VRS defined by Eq. ( 15) can be rewritten as

S = S( )=(S 1 ( ),...,S ν ( )) , (16) 
in which → S( )=(S 1 ( ),...,S ν ( )) is a perfectly defined and known nonlinear mapping which is such that S(-)=S( ). The mean value E{S( )} = S is the given vector S.

Normalization

In this section, the random vector A is constructed as the normalization of the random vector . As soon as the probability distribution and the random generator of random vector A will be constructed, it will be easy to deduce the probability distribution and the random generator of random vector .L e t A =(A 1 ,...,A N ) be the random vector such that Γ j = √ Nσ j A j in which σ j is defined by Eq. ( 10). We can then rewrite as

= √ N [σ] A , [ σ ] jj ′ = σ j δ jj ′ , ( 17 
) in which [ σ ]i sa( N × N) real diagonal matrix.

Definition of the available information

The available information introduced in the previous section for the random variable allows the corresponding available information for the random variable A to be easily deduced.

(i) From E{A} = N -1/2 [σ] -1 E{ }, we deduce that A is a centered random variable, E{A} = 0 . (18) 
(ii) The second-order moment of random variable A j is such that

E{A 2 j } = 1 N , ∀ j ∈{1,...,N} , (19) 
and then E{ A 2 } =1.

(iii) Let s =( s 1 ,...,s ν ) be the real vector such that all the components of vector s are equal to 1. Let s(a)=(s 1 (a),...,s ν (a)) be such that

s k (a)= S k ( √ N [σ] a) S k , ∀ k =1,...,ν , (20) 
in which S k is defined in Eq. ( 16). Since S(-)=S( ) (see Section 2.2), we have s(-a)=s(a). Finally, it can then easily be deduced that

E{s(A)} = s . (21) 
Therefore, the available information which allows the normalized stochastic inverse problem to be solved, that is to say which allows the probability distribution of the random vector A to be constructed is made up of Eqs. ( 18), ( 19) and ( 21).

CONSTRUCTION OF THE PROBABILITY MODEL

This section is devoted to the construction of the probability density function of the random vector A defined on the probability space (Θ, T , P). This probability density function defines the probability model of the random vector A =( A 1 ,...,A N ) and will allow the random generator of independent realizations A(θ 1 ), A(θ 2 ),... of A to be constructed in Section 4.

Construction of the probability density function of A using the maximum entropy principle

Let a =(a 1 ,...,a N ) be any real vector. Let A =(A 1 ,...,A N ) be the random vector for which the probability density function is p A (a) with respect to the volume element da = da 1 ...da N . This probability density function which is unknown satisfies the normalization condition,

R N p A (a) da =1 . ( 22 
)
As we have explained in Section 1.3, the construction of the unknown probability density function p A is performed in the context of information theory using the maximum entropy principle for which the constraints associated with the available information are defined by Eqs. ( 18), ( 19) and ( 21),

R N a p A (a) da = 0 , R N a 2 p A (a) da = h , R N s(a) p A (a) da = s , ( 23 
)
in which a 2 denotes the vector (a 2 1 ,...,a 2 N )a n dw h e r eh =( h 1 ,...h N )i st h e vector such that h j =1 /N for all j.L e tC be the set of all the probability density functions p A such that Eqs. ( 22) and ( 23) hold. The maximum entropy principle [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF] 

consists in constructing p A in C such that p A =argmax p∈C Ent(p) , (24) 
in which the entropy Ent(p) of the probability density function p is defined by

Ent(p)=- R N p(a)l o g ( p(a)) da , ( 25 
)
where log is the Neperian logarithm. In order to solve the optimization problem defined by Eq. ( 24), a Lagrange multiplier λ 0 > 0 associated with the constraint defined by Eq. ( 22) and three Lagrange multipliers Ð sol

1 =(λ sol 1,1 ,...,λ sol 1,N ),
Ð sol 2 =(λ sol 2,1 ,...,λ sol 2,N )andÐ sol 3 =(λ sol 3,1 ,...,λ sol 3,ν ) associated with the three constraints defined by Eq. ( 23) are introduced. Using the Euler-Lagrange equation of the calculus of variations, it can then easily be proven that the solution of Eq. ( 24) is written as

p A (a)=c sol 0 exp(-< Ð sol 1 , a > -< Ð sol 2 , a 2 > -< Ð sol 3 , s(a) >) , (26) 
with c sol 0 =exp(-λ sol 0 )andwhereλ sol 0 , Ð sol 1 , Ð sol 2 and Ð sol 3 are such that Eqs. ( 22) and ( 23)) are satisfied. In Eq. ( 26), we have

< Ð sol 1 , a >= λ sol 1,1 a 1 +...+λ sol 1,N a N , < Ð sol 2 , a 2 >= λ sol 2,1 a 2 1 + ... + λ sol 2,N a 2
N and < Ð sol 3 , s(a) >= λ sol 3,1 s 1 (a)+... + λ sol 3,ν s ν (a). Since s(-a)=s(a) (see Section 2.4) and from the first Eq. ( 23), it can be proven that Ð sol 1 = 0. We then introduce the vectors Ð =( Ð 2 , Ð 3 ) and Ð sol =( Ð sol 2 , Ð sol

3 )o fl e n g t hµ = N + ν.L e tg be the function such that g(a)=( a 2 , s(a)). Finally, we introduce the vector f =( h, s)i nw h i c hh is defined in Eq. ( 23). Consequently, the second and the third Eq. ( 23) can be rewritten as

E{g(A)} = R N g(a) p A (a) da = f , (27) 
and p A defined by Eq. ( 26) can be rewritten as

p A (a)=c sol 0 exp(-< Ð sol , g(a) >) , (28) 
in which < Ð sol , g(a) >= λ sol Lagrange multiplier Ð sol must be calculated in order that Eqs. ( 22) and ( 27) be satisfied.

It should be noted that function g is such that g(a)=(a 2 , s(a)). Each component s k (a) of the nonlinear function s defined by Eq. ( 20) is not a separable nonlinear function with respect to the variables a 1 ,...,a N . This means that, due to Eqs. ( 11), ( 15), ( 16) and ( 20), we do not write either s k (a)=s k (a k )or s k (a)= k ′ s kk ′ (a k ′ ). It can then be seen that p A (a) cannot be written as a product p A 1 (a 1 ) × ...× p A N (a N ) but is a not separable function of a 1 ,...,a N that is to say, we have p A (a)=p A 1 ,...,A N (a 1 ,...,a N ). Consequently, all the components A 1 ,...,A N of the non-Gaussian random vector A are statistically dependent and are correlated. The covariance matrix of random vector A is not diagonal. Then the probability density function p A given by Eq. ( 28) defines the probability model of the random vector A and then defines the probability model of stochastic process Γ which is a non-stationary non-Gaussian secondorder stochastic process with an autocorrelation function which is not a delta function but for which the correlation time is non zero and finite.

Computation of the vector-valued Lagrange multipliers

For Ð =( λ 1 ,...,λ µ ) fixed, let B Ð =( B Ð,1 ,...,B Ð,N ) be the random vector whose probability density function p(b; Ð) with respect to the volume element db is written as

p(b; Ð)=c Ð exp(-< Ð, g(b) >) , (29) 
in which c Ð is a finite positive constant depending on Ð defined by the normalization condition

R N p(b; Ð) db =1 . (30) 
Taking c Ð sol = c sol 0 , Eqs. ( 28) and (29) show that

p A (a)=p(a; Ð sol ) , (31) 
which means that we have A = B Ð sol . From Eq. ( 27), it can then be deduced that Ð sol is the solution in Ð of the equation,

E{g(B Ð )} = f , (32) 
in which the integral E{g(B Ð )} which depends on Ð is such that

E{g(B Ð )} = R N g(b) p(b; Ð) db . (33) 
We then have to construct the solution Ð sol of Eq. ( 32) in Ð. It is assumed that the constraints are such that Eq. ( 32) has a unique solution Ð sol .Consequently , for such a solution, Eqs. ( 22) and ( 27) are satisfied and the probability density function p A is given by Eq. ( 28) with c sol 0 = c Ð sol .

Equation ( 32) can be solved in Ð using a direct approach based on the use of any appropriate algorithm (for instance, the interior-reflective Newton method (Coleman and[START_REF] Coleman | On the convergence of reflective newton methods for large-scale nonlinear minimization subject to sounds[END_REF]1996) as in Matlab). It can also be proven that the solution Ð sol of Equation ( 32) can also be calculated by an indirect approach consisting in introducing a companion convex optimization problem (see for instance [START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF]) for which the solution is Ð sol .F or the numerical application presented in Section 5, numerical experiments have been carried out by the author. No numerical gain has been obtained with the indirect approach with respect to the direct one. Nevertheless, if necessary, the indirect approach can always be used to solve Eq. ( 32) without any modification of the method proposed.

Estimating the integrals in high dimension

As explained in Section 3.2, the calculation of the solution Ð sol of Eq. ( 32) in Ð requires to calculate, for any given value of Ð, the mathematical expectation E{g(B Ð )}, that is to say (taking into account Eq. ( 33)) requires to calculate the following integral in high dimension R N g(b) p(b; Ð) db in which p(b; Ð)= c Ð exp(-< Ð, g(b) >) is defined by Eq. ( 29). This problem is very difficult for the high dimension case (for instance, in the application which will be presented in Section 5, the dimension will be N = 128 and the number of constraints will be µ = 168).

For any Ð, the evaluation of E{g(B Ð )} defined by Eq. ( 33) can be performed using the Markov Chain Monte Carlo method (MCMC) [START_REF] Kaipio | Statistical ans Computational Inverse Problems[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF][START_REF] Mackeown | Stochastic Simulation in Physics[END_REF]. The transition kernel of the homogeneous Markov chain of the MCMC method can be constructed using the Metropolis-Hastings algorithm [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF] or the Gibbs sampling (Geman and [START_REF] Geman | Stochastic relaxation, Gibbs distribution and the Bayesian distribution of images[END_REF] which is a slightly different algorithm for which the kernel is directly deduced from the probability density function and for which the Gibbs samplers are always accepted. These two algorithms allow the transition kernel to be constructed for which the invariant measure is p(b; Ð) db.In general, these two algorithms are efficient, but can also be not efficient if there exists attraction regions which do not correspond to p(b; Ð) db. These cases cannot be easily detected and are time consuming. The method presented be-low has been developed by [START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. Applications to stochastic processes, random fields and random matrices[END_REF] and looks like to the Gibbs approach but corresponds to a more direct construction of a random generator of independent realizations of the random variable B Ð whose probability distribution is p(b; Ð) db. The difference between the Gibbs algorithm and the proposed algorithm is that the convergence in the proposed method can be studied with all the mathematical results concerning the existence and uniqueness of Itô stochastic differential equation. In addition, a parameter f 0 is introduced which allows the transient part of the response to be killed in order to get more rapidly the stationary solution corresponding to p(b; Ð) db. The construction of the transition kernel by using the detailed balance equation is replaced by the construction of an Itô Stochastic Differential Equation (ISDE) (depending on Ð)whic ha d m i t sp(b; Ð) db defined by Eq. ( 29) as a unique invariant measure [START_REF] Soize | The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions[END_REF]. Finally, the ergodic method is used to estimate E{g(B Ð )} in order to calculate Ð sol .

Below, we summarize the algorithm and we refer the reader to [START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. Applications to stochastic processes, random fields and random matrices[END_REF] for the details of the construction of this algorithm and its validation. The parameters of this algorithm are the integers M 0 and M such that M 0 < M,and the positive real numbers ∆r and f 0 . The role played by these parameters is explain below. For M 0 fixed and for M sufficiently large, E{g(B Ð )} is estimated by

E{g(B Ð )}≃ 1 M -M 0 +1 M k=M 0 g(U k (θ)) , (34) 
in which, for θ in Θ, {U k (θ),k =1 ,...,M} is any realization of the family {U k ,k =1 ,...,M} of random vectors calculated by the following algorithm: For k =1,...,M -1,

[A Ð ] V k+1 =[B Ð ] V k -∆r [K Ð ] U k +∆r L k NL + f 0 ∆W k+1 , (35) 
U k+1 = U k + ∆r 2 (V k+1 + V k ) , (36) 
with the initial condition U 1 = 0 and V 1 = 0. In Eq. ( 35), (1) the matrices

[A Ð ]a n d[ B Ð ] are defined by [A Ð ]=(1+ f 0 4 ∆r)[I N ]+ ∆r 2 4 [K Ð ] , [B Ð ]=(1-f 0 4 ∆r)[I N ] -∆r 2 4 [K Ð ] , (37) 
(2) the matrix [K Ð ] is such that [K Ð ] jj ′ =2λ 2,j δ jj ′ , (3) the random vectors ∆W 2 ,...,∆W M are M -1 independent copies of Gaussian centered random vectors with covariance matrix ∆r [ I N ]i nw h i c h[I N ] is the identity (N × N) matrix, and (4)

L k NL =(L k NL,1 ,...,L k NL,N )i nw h i c h L k NL,j = - Φ NL (∆U k,j , Ð) -Φ NL (U k , Ð) U k+1 j -U k j , (38) 
in which Φ NL (u, Ð)=<Ð 3 , s(u)> and where ∆U k,j is the random vector

∆U k,j =(U k 1 ,...,U k j-1 ,U k j +∆U k+1 j ,U k j+1 ,...,U k N ) , (39) 
with ∆U

k+1 j = U k+1 j -U k j .
With the above algorithm, we have

lim k→+∞ U k = B Ð in probability distribution. ( 40 
)
The parameter f 0 > 0 allows a dissipation term to be introduced in order that the transient response generated by the initial conditions be rapidly killed to get the asymptotic behavior defined by Eq. ( 40) and then to get the stationary and ergodic time series associated with p(b; Ð) db.F o rf 0 fixed, the value of M 0 is chosen in order to remove the transient part in the time series {U k ,k =1 ,...,M} and is such that the times series {U k ,k = M 0 ,...,M} is a stationary and ergodic time series. The step size ∆r has to be chosen sufficiently small to preserve the stability of the scheme. Finally, the meansquare convergence with respect to M is analyzed in studying the function

M → conv(M)= 1 M M k=1 U k (θ) 2 .

RANDOM GENERATOR OF INDEPENDENT REALIZATIONS

Let Ðsol be the Lagrange multiplier calculated as explained in Sections 3.1 and 3.2. Therefore, the probability density function of the random vector A is given by Eq. ( 28). The problem is now to construct a random generator of the random vector A. We then have to construct n s independent realizations A(θ 1 ),...,A(θ ns ). Taking into account that A = B Ð sol (see Section 3.2) and that lim k→+∞ U k = B Ð sol (see Eq. ( 40)), we deduce that A = lim k→+∞ U k (for Ð = Ðsol). The random generator is then constructed in using Section 3.3 with Ð = Ðsol.

For ℓ in {1,...,n s },l e t{∆W 2 (θ ℓ ),...,∆W M (θ ℓ )} be n s independent realizations of the random vectors {∆W 2 ,...,∆W M } defined in Section 3.3. For ℓ in {1,...,n s },l e t{U k (θ ℓ ),k =1 ,...,M} be the n s independent realizations of the family {U k ,k =1,...,M} of random vectors calculated by Eqs. ( 35) to (39) with Ð = Ðsol.ForM sufficiently large, we then have

A(θ ℓ ) ≃ U M (θ ℓ ) , ∀ ℓ ∈{1,...,n s } . ( 41 
)
5 APPLICATION AND VALIDATION

Data and parameters

(i) It is assumed that the mean VRS is given for only one value ξ 1 =0 .01 of the damping ratio (therefore ν ξ = 1 in Eqs. ( 14) and ( 15 (ii) The stochastic process {Γ(t),t ∈ [0 ,T]} is such that T =1 2 .8sa n d F max = 5 Hz. The sampling time step is such that ∆t =0.1 s and consequently, the number of sampling points in the time domain is N = 128. The sampling points are t j = j ∆t.W eh a v e =(Γ 1 ,...,Γ N )w i t hΓ j =Γ(t j ) (see Eq. ( 8)).

Figure 1 (left) displays the graph of the standard-deviation function j → σ j (see Eq. ( 10)).

(iii) Concerning the construction of the nonlinear mapping S defined by Eq. ( 16), we are in the second case analyzed in Section 2.2 because f max >F max .T h e sampling time step is then δτ =0.05 s and consequently, M = 256.

Computation of the vector-valued Lagrange multipliers

The Lagrange multiplier Ð sol =( Ð sol 2 , Ð sol and 3.3 with N = 128, ν =40andµ = 128 + 40 = 168.

(i) The mathematical expectation defined by Eq. ( 33) is estimated by using Section 3.3. For each value of vector Ð =( Ð 2 , Ð 3 ) corresponding to an iteration of the interior-reflective Newton method (see point (ii) below), the step size ∆r is defined by ∆r = β/m with β =2 π/( √ 2λ max 2 )i nw h i c hλ max 2 = max{λ 2,1 ,...,λ 2,N } and with m = 5. The parameters f 0 and M 0 are such that f 0 =1a n dM 0 = 300. These values of parameters ∆r, f 0 and M 0 have been deduced from a convergence analysis. For instance, Figure 2 19)). For M = 20000, we have conv(M)=0 .982 instead of 1 which corresponds to an error of about 1.8%. The convergence is then reasonably reached for M = 20000.

(ii) The interior-reflective Newton method used to solve Eq. ( 32) is initialized with Ð 0 =( Ð 0 2 , Ð 0 3 ) with Ð 0 2 =0 .5 ηN1 N and Ð 0 3 =0 .5 ν -1 (1 -η) N 1 ν with η =0.98 and where 1 N and 1 ν are the vectors of length N and ν for which all the components are equal to 1. The solution has been calculated in four steps (in order to optimize the computer time) with respect to the number iter of iterations of the interior-reflective Newton method. For step 1, the parameter is M = 600 for iter = 1,...,16 and for step 2, M = 2800 for iter = 17,...,30. 

Validation

The solution Ð sol of Eq. ( 32) being known, n s independent realizations of the random variable A = B Ð sol are constructed using the method presented in Section 4.

A first element of validation of the method proposed is to verify that the constraints are satisfied. We then have to estimate k → E{S k } = E{S k ( )} and j → E{Γ 2 j } by the Monte Carlo simulation using the generator presented in Section 4 and to compare these estimations with k →S k and j → σ 2 j respectively. The estimations are calculated by E{S k }≃n -1

s ns ℓ=1 S k ( (θ ℓ )) and E{Γ 2 j }≃n -1 s ns ℓ=1 Γ 2 j (θ ℓ )i nw h i c h (θ ℓ )= √ N [σ] A(θ ℓ ).
The n s independent realizations A(θ 1 ),...,A(θ ns ) of random vector A are calculated using Section 4 with ∆r determined as in Section 5.2, with f 0 =1andwheren s = 300. θ ℓ (it should be noted that all the graphs are similar for ℓ =1 ,...,n s ). This graph allows the value of M to be estimated in order to obtain a realization A(θ ℓ ) ≃ U M (θ ℓ ). Therefore, M must be such that the graph be flat that is reasonably true for M = 400. Figure 4 (right) displays the corresponding trajectory of the random time series j → Γ j ,t h a ti st os a yt h e graph of the realization j → of n s → convMC(n s )=n s -1 ns ℓ=1 A(θ ℓ ) 2 which is an estimation of the second-order moment E{ A 2 } = E{ B Ð sol 2 } of the random variable A . This figure shows that n s = 300 is a reasonable value for n s . (iii) Figure 6 shows the estimation of the constraints (standard deviation and mean VRS) constructed with the random generator and compares these estimations with the references defined in Figure 1. Figure 6 (left) compares the graph of the standard-deviation function j → σ j with the estimation j → E{Γ 2 j }≃n -1 s ns ℓ=1 Γ 2 j (θ ℓ ). Figure 6 (right) compares the graph of the mean velocity response spectrum k →S k with the estimation k → E{S k }≃ n -1 s ns ℓ=1 S k ( (θ ℓ )). The comparisons are good and validate the method proposed. The small fluctuations of the estimation of the standard-deviation function computed by the Monte Carlo method using the random generator can be reduced in increasing the value of n s . 

Γ j (θ ℓ )i nw h i c h (θ ℓ )= √ N [σ] A(θ ℓ ) with A(θ ℓ ) ≃ U M (θ ℓ ). (ii)

Properties of the constructed probability model

In this section we presents some properties of the probabilistic model constructed for the time series =(Γ 1 ,...,Γ N ). We have = √ N [σ] A and the probability density function of A is not Gaussian and is written (see Eq. ( 28)) as p A (a)=c sol 0 exp(-< Ð sol , g(a) >) with N = 128 and µ = 168.

(i) Let (j, j ′ ) → R jj ′ = E{Γ j Γ j ′ } be the autocorrelation function of the time series {Γ 1 ,...,Γ N }. This function is estimated by R jj ′ ≃ n -1 s ns ℓ=1 Γ j (θ ℓ )Γ j ′ (θ ℓ ) in which the independent realizations (θ 1 ),..., (θ ns ) are those calculated in Section 5.3 with n s = 300. As an example, Figure 7 (ii) The random VRS S =( S 1 ,...,S ν ) with S k = S v (ω k ,ξ 1 ) is such that E{S} = S (see Figure 6 (right)). It is interesting to define the statistical fluctuations of S induced by the probability model of . For that we construct the confidence region of the time series {S 1 ,...,S ν } which is delimited by the upper envelope k →S + k and the lower envelope k →S - k such that,

Proba{S - k < S k ≤S + k } = P c , ∀ k ∈{1,...,ν} , (42) 
with P c =0.98. The envelopes are constructed by using the method of quan-tiles (Serfling,1980). Let X = S k , x + = S + k and x -= S - k .L e tF X be the cumulative distribution function (continuous from the right) of the random variable X such that F X (x)=Proba{X ≤ x}.F or0<p<1, the pth quantile (or fractile) of F X is defined by ζ(p) = inf{x : F X (x) ≥ p}.T h e nx + and x -are defined by x + = ζ ((1 + P c )/2) and x -= ζ ((1 -P c )/2) and are estimated by using the sample quantiles. Let x 1 = X(θ 1 ),...,x ns = X(θ ns ). Let x 1 < ... < x ns be the order statistics associated with x 1 < ... < x ns .T h e r efore, one has the following estimations, x + ≃ x j + with j + =fix(n s (1 + P c )/2) and x -≃ x j -with j -=fi x ( n s (1 -P c )/2) in which fix(z)i st h ei n t e g e rp a r t of the real number z. Figure 8 displays the graph of the confidence region of the time series {S 1 ,...,S ν } for P c =0.98.

Computation time

The computation time is mainly due to the computation of the Lagrange multiplier Ð sol . The calculation of realizations of the random vector A = B Ð sol using the random generator presented in Section 4 is not time consuming with respect to the computation of Lagrange multiplier Ð sol . It should be noted that the computational effort is performed only once and the generator can then be used with a small computational cost.

The computation time required for the calculation of Ð sol is correlated to the choice of the initial value given to the algorithm. For the initial value proposed in Section 5.2 (ii), about 10 14 floating-point operations are required which yields about 27 hours CPU time with a computer performing 1 Gflops and 3 hours with a computer performing 10 Gflops.

6C O N C L U S I O N S

In many applications of structural engineering, mechanical engineering, space engineering, earthquake engineering, civil engineering, nuclear engineering and offshore engineering, the dynamical levels of transient vibrations in structures can be specified in terms of shock response spectrum (SRS) (or in terms of velocity response spectrum (VRS)). Such a response spectrum is used by engineering to specify the transient loads which is applied to equipment or secondary subsystems. In the random case, a fundamental problem is then to construct a generator of the non-stationary stochastic process (the transient signal) satisfying the given SRS (or VRS). This problem has been looked at by others using specific representations of the non-stationary stochastic process (the accelerogram) which are chosen ap r i o r i .I nt h i sp a p e r ,w eh a v e not imposed any stochastic representation for the non-stationary stochastic accelerogram. We have proposed to solve this challenging stochastic inverse problem by another way in using information theory which allows the inverse problem to be well posed (the constructed probability model maximizes the uncertainties). In the approach proposed, the target SRS is taken as the mean value of the unknown random SRS spanned by the unknown non-stationary stochastic accelerogram for which the probabilistic model has to be identified. We have presented the construction of this probability model and the algorithm for the random generator of independent realizations. This approach allows to construct the confidence region of the random SRS for which the target SRS is the mean value. The method presented has been validated with an example. It should be noted that the randomness of the random SRS has indirectly been introduced in giving the variance of the non-stationary stochastic accelerogram as available information. This available information could be substituted by the variance or by the confidence region of the random SRS. Such a formulation can be performed without difficulty in the proposed mathematical framework and is in progress.
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 1 Fig. 1. Graph of j → σ j = E{Γ 2 j } (left figure) and graph of k →S k (right figure).

  )). The frequency band of analysis (see Section 2.2) is [0.25 , 10] Hz with f max =1 0H za n d ν = ν ω = 40. The sampling points of the frequency band of analysis are then ∆f, 2∆f,...,ν∆f with ∆f =0 .25 Hz. Let S =( S 1 ,...,S ν )b et h em e a n VRS defined by Eq. (14). Figure 1 (right) displays the graph of the function k →S k .

  (left) displays the graph of the function M → conv(M)= 1 M M k=1 U k (θ) 2 for Ð = Ð sol and for the realization θ. Therefore lim M→+∞ conv(M)=E{ B Ð sol 2 } = E{ A 2 } and we must have lim M→+∞ conv(M) = 1 (see Eq. (
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 2 right) displays the graph of the function iter → convALG(iter) = E{g(B Ð(iter) )}-f 2 . This calculation is completed by two other steps, one for which M = 8300 with 7 iterations and the last one for which M = 20000 with 7 iterations. (iii) Figure 3 shows the solution Ð sol obtained at convergence and displays the graph of j → λ sol 2,j (left figure) and the graph of k → λ sol 3,k (right figure).
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 2 Fig. 2. Graph of M → conv(M) (left figure) and graph of iter → convALG(iter) (right figure).
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 3 Fig. 3. Graph of j → λ sol 2,j (left figure) and graph of k → λ sol 3,k (right figure).

  (i) Concerning the value of M, Figure 4 (left) displays the graph of the function M → conv ℓ (M)= 1 M M k=1 U k (θ ℓ ) 2 for Ð = Ð sol and for a realization
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 4 Fig. 4. Graph of M → conv ℓ (M) (left figure) and graph of j → Γ j (θ ℓ ) for a realization θ ℓ (right figure).
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 5 Fig. 5. Graph of n s → convMC(n s ).
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 6 Fig. 6. Graph of j → σ j = E{Γ 2 j } 1/2 (left figure) and graph of k →S k (right figure). Reference (dashed lines). Estimation with the random generator (solid lines).

  displays the graph of the function j → R jj ′ for j ′ = 35 (left figure) and for j ′ = 76 (right figure).

Fig. 7 .

 7 Fig. 7. Graph of the function j → R jj ′ for j ′ =35(left figure) and for j ′ =76(right figure).
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 8 Fig. 8. Random VRS k →S k . Graph of the mean value k →S k (dashed line). Graph of the mean function k → E{S k } estimated with the random generator (solid line). Confidence region of the time series {S 1 ,...,S ν } with P c =0.98 estimated with the random generator (colored region).
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) is computed in using Sections 3.2