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Abstract

A drill-string is a slender structure that turns and drills into the rock in search
of oil. There are many sources of uncertainties in this complex dynamical
system. However, this article is concerned only with uncertainties in the
weight-on-hook, which is the supporting force exerted by the hook at the
top. A probabilistic model is constructed for the random variable related to
the weight-on-hook using the Maximum Entropy Principle, and the random
response of the system is computed through Monte Carlo simulations. The
idea is to understand how the performance of the system (which is measured
by the rate of penetration) if a�ected by the uncertainties of the weight-on-
hook. The continuous system analyzed is discretized by means of the Finite
Element Method and a computer code is developed to do the simulations.
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Nomenclature
A cross sectional area, [m2]
conv convergence function, [m2]
D diameter, [m]
E Young modulus, [Pa]
g acceleration of the gravity, [m/s2]
G shear modulus, [Pa]
I moment of inertia of the transversal section, [m4]
S Shannon entropy measure
t time, [s]
u displacement in x-direction, [m]
Z regularizing function
f force vector, [N, N.m]
N shape functions, [m]
u displacement vector, [m, rad]
[C] damping matrix, [N.s/m, N.s.m]
[K] sti�ness matrix, [N/m, N.m]
[M ] mass matrix, [kg, kg.m2]

Greek Symbols
1B(x) assumes value 1 if x belong to B and 0 otherwise
δ coe�cient of variation
ρ density, [kg/m3]
Ωx rotational speed at x = 0, [rad/s]
σ standard deviation, [N]
θx rotation about x-axis, [rad/s]
[Φ] modal basis, [m, rad]

Subscripts
br bit-rock
f �uid
g geometric (for [K]) and gravity (for f)
i inside
o outside
p polar
S static response
u displacement in x-direction
θx rotation about x-axis
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Introduction

In a drilling operation there are many sources of uncertainties, such as the
material properties of the column and of the drilling �uid; the dimensions of
the system, especially of the borehole; the �uid-structure interaction; and the
bit-rock interaction. To have an improved computational model with better
predictability capacity, uncertainties should be quanti�ed and included in
the computational model, which then becomes a stochastic computational
model (if the probability theory is used to quantify the uncertainties).

This paper is concerned with uncertainties in the weight-on-hook because
it is one of the three parameters that are continuously controlled in a drilling
operation. (The other two parameters are the rotational speed at the top
and the inlet �uid velocity). Figure 1 shows the general scheme of the system
analyzed. The motor torque is taken into account as a constant rotational
speed at the top (Ωx) and the weight-on-hook (which is the supporting force,
w) is constant. The bit reacts to the dynamics of the column with the torque
tbit and the force fbit.

gravity

Figure 1: General scheme of the system analyzed.
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The probability theory, which is a powerful tool to model uncertainties,
is used in the present analysis. In a general way there are two types of uncer-
tainties: (1) one type related to the randomness of some parameter (aleatory
uncertainties) and (2) other type related to the lack of knowledge of a given
phenomenon (epistemic uncertainties), which is related to modeling errors.
One way to take into account epistemic uncertainties is to use the nonpara-
metric probabilistic approach (Soize, 2000) because it is able to model both
parameter uncertainties as well as model uncertainties.

The analysis of the dynamics of �exible structures considering the de-
terministic and the stochastic problem (Sampaio and Ritto, 2008) is having
an increasing attention of the scienti�c community over the years. Ritto
et al. (2008), for example, analyze parameter and model uncertainties in the
boundary condition of a beam.

In Tucker and Wang (1999); Khulief and AL-Naser (2005); Sampaio et al.
(2007); Piovan and Sampaio (2009), for instance, the deterministic model of
a drill-string system is analyzed. There are few articles treating the stochas-
tic problem of the drill-string dynamics; see, for instance, Spanos et al.
(1997, 2009); Ritto et al. (2009, 2010). In Kotsonis and Spanos (1997) a
random weight-on-bit is analyzed in a simple two-degrees-of-freedom drill-
string model, and in Spanos et al. (2009) lateral forces at the bit are mod-
eled as stochastic. In Ritto et al. (2009) a probabilistic model (nonparametric
probabilistic approach) is proposed for the bit-rock-interaction model, and in
Ritto et al. (2010) a robust optimization problem is performed, where model
uncertainties are modeled using the nonparametric probabilistic approach.

In the present paper the focus of the stochastic analysis is only on the
uncertain weight-on-hook, although there are other sources of uncertainties,
such as the ones mentioned above. It is important to analyze a complex
problem incrementally, in a way that the �nal result is not obscured by the
in�uence of many factors at the same time. The parametric probabilistic
approach is used to model the uncertainties in the weight-on-hook, and the
probability density function of the random variable related to the weight-
on-hook is constructed by the means of the Maximum Entropy Principle
(Shannon, 1948; Jaynes, 1957a,b).

The strategy goes the following way. After the construction of the proba-
bility density function of the random weight-on-hook, a random generator is
used to generate a value for the weight-on-hook for each Monte Carlo simu-
lation (Rubinstein, 2007). The number of Monte Carlo simulations is chosen
analyzing a convergence curve. The random response can �nally be ana-
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lyzed by the computations of some statistics, such as mean and con�dence
intervals.

In the �rst Section of the paper, the discretized system is presented and
the element matrices are depicted, then, in the second Section, the reduced-
order model is developed. The probabilistic model for the weight-on-hook
is constructed in the third Section and the stochastic dynamical system is
presented in the fourth Section. The numerical results are presented in the
�fth Section and, �nally, the concluding remarks are presented in the last
Section.

Final discretized system

The present work is concerned with the stochastic response of the system
when the weight-on-hook (axial force) is random. To focus the attention
of the analysis on the stochastic problem, and to speed up the numerical
simulations, a simpli�cation of the model found in Ritto et al. (2009) is
used for the present analysis. The lateral displacements are assumed to
be small and, therefore, they are neglected; and the system is linearized
about the prestressed state uS. This state is computed through the equation
uS = [K]−1(fg + fc + ff), where [K] is the sti�ness matrix of the system, fg
is the gravity force, fc is the concentrated reaction force at the bit, and ff is
the �uid axial force. The �nal discretized system considering the prestressed
state is written as:

[M ]¨̄u(t) + [C] ˙̄u(t) + ([K] + [Kg(uS)])ū(t) = g(t) + fbr( ˙̄u(t)) , (1)

in which the response ū (= u − uS) is represented in a subspace Vm ⊂ Rm,
where m equals the number of degrees of freedom of the system. [M ], [C],
and [K] are the classical mass, damping and sti�ness matrices, [Kg(uS)] is
the geometric sti�ness matrix (due to the �nite strain formulation), g is the
force due to the Dirichlet boundary condition (imposed rotational speed at
the top) and fbr are the forces due to the bit-rock interactions.

The proportional damping matrix is construct a posteriori [C] = a[M ] +
b([K] + [Kg(uS)]), where a and b are positive constants. The �nite element
approximation of the displacement �elds is written as

u(ξ, t) = Nu(ξ)ue(t) , θx(ξ, t) = Nθx(ξ)ue(t) , (2)
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where u is the axial displacement, θx is the rotation about the x-axis, ξ = x/le
is the element coordinate, le is the element length, N are the shape functions

Nu = [(1− ξ) 0 ξ 0] ,

Nθx = [0 (1− ξ) 0 ξ] ,
(3)

and the element node displacements are

ue = [u1 θx1 u2 θx2]
T , (4)

where the exponent T means transposition.
The element forces and matrices are depicted in the sequence. The mass

[M ](e) and sti�ness [K](e) element matrices are written as

[M ](e) =

∫ 1

0

[ρA(NT
uNu + ρIp(N

T
θx

Nθx)] ledξ , (5)

and

[K](e) =

∫ 1

0

[
EA

le

(
N′Tu N′u

)
+
GIp
le

(
N′Tθx

N′θx

)]
dξ , (6)

where ρ is the density, A is the cross sectional area, Ip is the polar moment
of inertia, E is the elasticity modulus, G is the shear modulus, and the space
derivative (d/dξ) is denoted by (′). The element geometric sti�ness matrix
is written as

[Kg(u)](e) =

∫ 1

0

[(
N′Tu N′u

) (
3EAu′ + 1.5EAu′2+

+0.5EIpθ
′2
x ) +

(
N′Tu N′θx

)
(EIpθ

′
x + EIpθ

′
xu
′) +

+
(
N′Tθx

N′u
)

(EIpθ
′
x + EIpθ

′
xu
′) +

(
N′Tθx

N′θx

)
(EIpu

′+

+0.5EIpu
′2 + 1.5EIp4θ

′2
x + 3EI22θ

′2
x )]

1

le
dξ ,

(7)

where u′ = N′uue/le, θ
′
x = N′θx

ue/le, I22 =
∫
A

(y2z2)dA and Ip4 =
∫
A

(y4 +
z4)dA. The gravity element force and the �uid element force are written as
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f (e)
g =

∫ 1

0

NT
uρgA ledξ , (8)

and

f
(e)
f =

∫ 1

0

(
Mfg − Ai

∂pi
∂x
− 1

2
CfρfDoU

2
o

)
NT
u ledξ , (9)

where g is the gravity acceleration, Mf is the �uid mass per unit length, Ai
and Ao are the cross-sectional areas corresponding to the inner and outer
diameters of the column, D is the diameter, Uo is the �ow speed outside the
column, Cf is a �uid viscous damping coe�cient and pi is the pressure inside
the column (see (Paidoussis et al., 2008; Ritto et al., 2009) for details). The
concentrated force at the bit is written as

fc = [0 0 ... − fc 0]T . (10)

where fc is the initial reaction force at the bit. The bit-rock interaction force
is written as

fbr = [0 0 ... fbit tbit]
T . (11)

in which fbit is the axial force and tbit is the torque about the x-axis. This
two functions can be written as (Tucker and Wang, 2003)

fbit = − u̇bit

a2Z(θ̇bit)2
+

a3θ̇bit

a2Z(θ̇bit)
− a1

a2

, tbit = − u̇bita4Z(θ̇bit)
2

θ̇bit
− a5Z(θ̇bit)

(12)
where Z(θ̇bit) is the regularizing function such that

Z(θ̇bit) =
θ̇bit√

(θ̇bit)2 + e2
. (13)

In the above equation, a1, . . . , a5 are positive constants that depend on the
bit and rock characteristics as well as on the weight-on-bit (fbit).

Reduced-order model

To accelerate the computations of the dynamical system response, a
reduced-order model is constructed. One way to construct it is to project
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the nonlinear dynamical equation (Eq. (1)) on a subspace Vn ⊂ Rm, with
n << m. In Trindade et al. (2005) the Karhunen-Loève decomposition is
used to reduce a coupled axial/bending beam dynamics subjected to im-
pacts. In the present paper, the basis used for the reduction corresponds to
a basis of normal modes, which are obtained from the following generalized
eigenvalue problem,

([K] + [Kg(uS)])φ = ω2[M ]φ , (14)

where φi is the i-th normal mode and ωi is the i-th natural frequency. Using
the representation

u(t) = [Φ]q(t) , (15)

and substituting it in the equation of motion yields

[M ][Φ]q̈(t) + [C][Φ]q̇(t) + ([K] + [Kg(uS)])[Φ]q(t) = g(t) + fbr( ˙̄u(t)) , (16)

where [Φ] is a (m × n) real matrix composed by n normal modes obtained
using the prestressed con�guration, Eq. (14). Projecting the equation on the
subspace spanned by these normal modes yields

[Φ]T [M ][Φ]q̈(t) + [Φ]T [C][Φ]q̇(t) + [Φ]T ([K] + [Kg(uS)])[Φ]q(t) =

= [Φ]T (g(t) + fbr( ˙̄u(t))) ,
(17)

which can be rewritten as

[Mr] q̈(t) + [Cr] q̇(t) + [Kr]q(t) = [Φ]T (g(t) + fbr( ˙̄u(t))) , (18)

in which
[Mr] = [Φ]T [M ][Φ], [Cr] = [Φ]T [C][Φ]

[Kr] = [Φ]T ([K] + [Kg(uS)])[Φ] (19)

are the reduced matrices. The advantage of using a reduced-order model is
to end up with a diagonal reduced matrix of size 22, instead of a banded
�nite element matrix of size 114 (values used in the numerical simulations).

Probabilistic model of the weight-on-hook

The uncertainties in the weight-on-hook are modeled using the paramet-
ric probabilistic approach, therefore, the weight-on-hook w is modeled as a
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random variable W. To be coherent with the physics of the problem, the
probability density function of W is constructed by means of the Maximum
Entropy Principle (Shannon, 1948; Jaynes, 1957a,b). This principle consists
on �nding the probability density function that maximizes the entropy, given
some available information. To compute the distribution, an optimization
problem with constraints is solved, and it is guaranteed that all available
information are respected and that no unphysical conditions appear (Kapur
and Kesavan, 1992).

The available information is derived from the mechanical properties of
the weight-on-hook. These properties are: (1) the column must penetrate
the soil, i.e., W must be lower than the weight w2 of the column; (2) buckling
must not occur, i.e., W must be greater than the buckling limit w1; (3) the
probability must go to zero when W approaches w1; (4) the probability must
go to zero when W approaches w2.

Conditions (1) and (2) are expressed by setting the support of the prob-
ability density function as ]w1,w2[. Conditions (3) and (4) are expressed
by E{ln (W − w1)} = c̃1 and E{ln (w2 −W)} = c̃2, with |c̃1| < +∞ and
|c̃2| < +∞, where E{} is the mathematical expectation. The reason why
the logarithm, (ln), is used is because it imposes a weak decreasing of the
probability density function in w+

1 and w−2 . To facilitate the calculus, we
introduce a normalized random variable X with values in ]0, 1[, such that:

W = w1(1− X) + w2X . (20)

The expected value of W is written as

E{W} = w1(1− E{X}) + w2E{X} . (21)

We introduce the notation w = E{W} and x = E{X}. The second
moment of W may be written as

E{W2} = E{X2}(w2
1 − 2w1w2 + w2

2) + x(−2w2
1 + 2w1w2) + w2

1 . (22)

The available information is re-expressed in term of the new random
variable:

1. X ∈ ]0, 1[.
2. E{ln (X)} = c1.
3. E{ln (1− X)} = c2.

(23)
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with |c1| < +∞ and |c2| < +∞. The optimization problem for the Maximum
Entropy Principle is �nally written as:

p∗X = arg max
pX ∈ C

S(pX) , (24)

where C is the space of admissible probability density functions pX satisfying
the constraints given by Eq. (23) and the entropy measure S is given by
(Shannon, 1948):

S(pX) = −
∫
R

pX(x) ln (pX(x))dx . (25)

The probability density function, solution of the optimization problem
de�ned by Eq. (24), is the Beta probability density function which may be
written as:

p∗X(x) = 1]0,1[(x)
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 , (26)

where the Gamma function Γ(y) =
∫ +∞

0
ty−1 exp (−t)dt for y > 0. Also,

α > 2 and β > 2 so that Eq. (23) holds. The random generator of indepen-
dent realizations of the random variable X is already implemented in many
computer codes. The mean value of X is given by

x =
α

α + β
, (27)

and coe�cient of variation is given by

δX =

√
β

α(α + β + 1)
. (28)

where δX = σX/x, in which σX is the standard deviation.
The random weight-on-hook de�ned by Eq. (20) depends on the four pa-

rameters (w1,w2, α, β). For applications, w1 and w2 will be �xed. Parameters
α and β have no physical meaning, consequently, we express them as function
of the physical meaningful parameters w and δ. After some manipulations
we obtain:

x =
w − w1

w2 − w1

, (29)
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δX =

√
w2(δ2 + 1)− (w − w1)2 − 2w1(w − w1)− w2

1

(w − w1)2
, (30)

and

α =
x

δ2

(
1

x
− δ2

X − 1

)
, (31)

β =
x

δ2
X

(
1

x
− δ2

X − 1

)(
1

x
− 1

)
. (32)

It should be noticed that with this scheme the random weight-on-hook can
be computed for any �xed values of w1 and w2. A specialist should be the
one who gives these limits depending on the drill-string system analyzed. If
the support ]w1,w2[ is de�ned, and the mean and coe�cient of variation are
given, it is very simple to compute W.

Stochastic dynamical system

Using the probabilistic model of the weight-on-hook, the deterministic
reduced model de�ned by Eq. (18) is replaced by the following stochastic
equations:

[Mr] Q̈(t) + [Cr] Q̇(t) + [Kr]Q(t) = [Φ]T (g(t) + fbr(Q̇(t)) + FW) , (33)

where Q is the random response and FW is a vector for which the only
nonzero component is related to the axial d.o.f. of the �rst node FW(1) =
(W − w). Note that w was subtracted because the response is calculated in
the prestressed con�guration.

Numerical results

The data used in the simulations is found in the appendix. The drill-
string is discretized with 56 �nite elements, and for the construction of the
reduced dynamical model, 10 torsional modes, 10 axial modes and also the
two rigid body modes of the structure (axial and torsional) are used, hence
22 modes in the total for the reduced model. The time integration is done
using an explicit Runge-Kutta algorithm with a time step controller to keep
the error within a given accuracy.
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Convergence of the stochastic solution

Let [U(t, s)] be the response of the stochastic dynamical system calculated
for each realization s. The mean-square convergence analysis with respect to
the number ns of independent realizations is carried out studying the function
conv(ns) de�ned by

conv(ns) =
1

ns

ns∑
j=1

∫ tf

0

||U(sj, t)||2dt . (34)

Figure 2: Mean square convergence for δ = 0.01 (left) and δ = 0.05 (right).

Figure 2 shows that 500 simulations are su�cient to reach the mean-
square convergence.

Response of the stochastic system

The stochastic system's response is analyzed in this Section. Note that
the dispersion of the response is all due to the random weight-on-hook, which
is modeled as shown in Section four (Probabilistic model of the weight-on-
hook). We may identify experimentally the parameters of the probabilis-
tic model of the random weight-on-hook (mean and coe�cient of variation)
directly by measuring the weight-on-hook, or indirectly, by measuring the
dynamical response of the bit, for instance. In both cases, the identi�cation
procedure can be done using, for example, the Maximum Likelihood method
(Aldrich, 1997; Spall, 2005). As we know that there are other sources of
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uncertainties for the problem, the experimentally identi�cation procedure
should be performed considering all the modeled random variables.

Figure 3 shows the 95% envelope (that is to say the con�dence region
constructed with a probability level of 0.95) for the rate-of-penetration and
the rotational speed of the bit for a standard deviation σ = 1000 N, which
means δ = σ/w is approximately 1 × 10−3. The envelopes (the upper and
lower envelopes of the con�dence region) are calculated using the method of
quantiles, Ser�ing (1980).

Figure 3: 95% envelope for σ = 1000 N. Rate-of-penetration, ROP (left), and rotational
speed of the bit (right).

We are plotting two important variables: the rate-of-penetration (ROP)
and the rotational speed at the bit (ωbit). So, we analyze the in�uence of
the random weight-on-hook in the system response. It can be seen that, for
σ = 1000 N, the random response presents tie con�dence intervals. Figure 4
shows the stochastic response of the torque and force on the bit.
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Figure 4: 95% envelope for σ = 1000 N. Torque-on-bit (left) and force-on-bit (right).

It is noted that for σ = 1000 N, the response changes just a little, there-
fore, σ will be increased in the next analysis. In our analysis we can not
increase σ too much because the model used for the bit-rock interaction as-
sumes a weight-on-bit fbit ∼ −100 kN, hence the standard deviation σ of the
W is increased in a way that the fbit has a maximum variation around 5%,
that is to say that σmax = 5000 N and, therefore, δmax ∼ 0.005 (0.5% varia-
tion), which is a constraint to our analysis. But, as it will be seen, a small
variation on W may cause a big variation in the system response. Figures 5
and 6 shows the system response for σ = 3000 N (δ ∼ 0.003).

Figure 5: 95% envelope for σ = 3000 N. rate-of-penetration, ROP (left); rotational speed
of the bit (right).
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Figure 6: 95% envelope for σ = 3000 N. torque-on-bit (left); and force-on-bit (right).

We want to see how uncertainties in the weight-on-hook a�ects the per-
formance of the system, hence, Fig. 7 shows the evolution of the dispersion
of the response for four dynamic responses: ROP, rotational speed of the
bit, torque-on-bit, and force-on-bit. The dispersion of the response is cal-
culated taking the square root of the variance divided by the value of the
mean response for each time instant (it is the instant coe�cient of variation).
It can be noticed that the mean coe�cient of variation of the force-on-bit
(FOB) (see Fig. 7(d)) is about 3%, which is much more than 0.3%, which is
the coe�cient of variation of the random weight-on-hook W. This might be
explained due to the fact that the absolute value of W is much higher than
the absolute value of FOB, therefore, a small percentage variation of W has
a great e�ect in the FOB, in terms of percent. What is more critical is the
fact that the dispersion is even higher for the ROP and the rotational speed
of the bit (Figs. 7(a) and (b))).
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(a) (b)

(c) (d)

Figure 7: Dispersion of the response for σ = 3000 N. (a) rate-of-penetration, ROP; (b)
rotational speed of the bit; (c) torque-on-bit; and (d) force-on-bit.

Figure 8 shows the system response for σ = 5000 N (δ ∼ 0.005).
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(a) (b)

(c) (d)

Figure 8: 95% envelope for σ = 5000 N. (a) rate-of-penetration, ROP; (b) rotational speed
of the bit; (c) torque-on-bit; and (d) force-on-bit.

As expected, as δ increases the envelope of the response gets wider. Figure
9 shows the dispersion of the response for σ = 5000 N of the W.
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(a) (b)

(c) (d)

Figure 9: Dispersion of the response for σ = 5000 N. (a) rate-of-penetration, ROP; (b)
rotational speed of the bit; (c) torque-on-bit; and (d) force-on-bit.

It is noted that, even for a small variation of W (∼ 0.5%), there is a
big dispersion in the response. See for instance the rate-of-penetration: the
mean coe�cient of variation is 4.3%, which is more than eight times greater
than the coe�cient of variation of W. It gets worse if we take the maximum
coe�cient of variation, which is 16%. It means that if the W has a coe�cient
of variation of half percent, the variation in the ROP may achieve sixteen
percent and the coe�cient of variation of the rotational speed of the bit may
achieve twenty six percent!

Concluding remarks

A stochastic model of the drill-string dynamics has been analyzed. The
weight-on-hook has been modeled as a random variable with probability den-
sity functions constructed using the Maximum Entropy Principle. It has been
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shown that the system response is sensitive to a dispersion on the weight-on-
hook. There are many sources of uncertainties in this problem, hence more
stochastic analysis should be done to identify the uncertainties that most
a�ect the performance of the system.
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Appendix

A. Data used in the simulations

w = 1.06× 106 [N] (mean weight-on-hook),
w1 = 0.49× 106 [N] (weight-on-hook related to the buckling limit),
w2 = 1.16× 106 [N] (weight of the column),
Ldp = 1400 [m] (length of the drill pipe),
Ldc = 200 [m] (length of the drill collar),
Dodp = 0.127 [m] (outside diameter of the drill pipe),
Dodc = 0.2286 [m] (outside diameter of the drill collar),
Didp = 0.095 [m] (inside diameter of the drill pipe),
Didc = 0.0762 [m] (inside diameter of the drill collar),
E = 210 [GPa] (elasticity modulus of the drill string material),
ρ = 7850 [kg/m3] (density of the drill string material),
Ωx = 100 [RPM] (constant speed at the top),
ρf = 1200 [kg/m3] (density of the �uid),
Cf = 1.25× 10−2 [-] (�uid viscous damping coe�cient),
fc = 100 [kN] (initial reaction force at the bit),
g = 9.81 [m/s2] (gravity acceleration),
a1 = 3.429× 10−3 [m/s] (constant of the bit-rock interaction model),
a2 = 5.672× 10−8 [m/(N.s)] (constant of the bit-rock interaction model),
a3 = 1.374× 10−4 [m/rd] (constant of the bit-rock interaction model),
a4 = 9.537× 10−6 [N.rd] (constant of the bit-rock interaction model),
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a5 = 1.475e× 103 [N.m] (constant of the bit-rock interaction model),
e = 2 [rd/s] (regularization parameter).
The damping matrix is constructed using the relation [C] = a[M ]+b([K]+

[Kg(uS)]) with a = .01 and b = .0003.
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