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Stochastic dynamics of a drill-string with uncertain weight-on-hook

In a drilling operation there are many sources of uncertainties, such as the material properties of the column and of the drilling uid; the dimensions of the system, especially of the borehole; the uid-structure interaction; and the bit-rock interaction. To have an improved computational model with better predictability capacity, uncertainties should be quantied and included in the computational model, which then becomes a stochastic computational model (if the probability theory is used to quantify the uncertainties).

This paper is concerned with uncertainties in the weight-on-hook because it is one of the three parameters that are continuously controlled in a drilling operation. (The other two parameters are the rotational speed at the top and the inlet uid velocity). Figure 1 shows the general scheme of the system analyzed. The motor torque is taken into account as a constant rotational speed at the top (Ω x ) and the weight-on-hook (which is the supporting force, w) is constant. The bit reacts to the dynamics of the column with the torque t bit and the force f bit . The probability theory, which is a powerful tool to model uncertainties, is used in the present analysis. In a general way there are two types of uncertainties: (1) one type related to the randomness of some parameter (aleatory uncertainties) and (2) other type related to the lack of knowledge of a given phenomenon (epistemic uncertainties), which is related to modeling errors. One way to take into account epistemic uncertainties is to use the nonparametric probabilistic approach [START_REF] Soize | A nonparametric model of random uncertities for reduced matrix models in structural dynamics[END_REF] because it is able to model both parameter uncertainties as well as model uncertainties.

The analysis of the dynamics of exible structures considering the deterministic and the stochastic problem [START_REF] Sampaio | Short course on dynamics of exible structures deterministic and stochastic analysis[END_REF] is having an increasing attention of the scientic community over the years. [START_REF] Ritto | Timoshenko beam with uncertainty on the boundary conditions[END_REF], for example, analyze parameter and model uncertainties in the boundary condition of a beam.

In [START_REF] Tucker | An integrated model for drill-string dynamics[END_REF]; [START_REF] Khulief | Finite element dynamic analysis of drillstrings[END_REF]; [START_REF] Sampaio | Coupled axial/torsional vibrations of drilling-strings by mean of nonlinear model[END_REF]; [START_REF] Piovan | Modelos continuos de sondas de perforación para la industria petrolera: Análisis de enfoques y su discretización[END_REF], for instance, the deterministic model of a drill-string system is analyzed. There are few articles treating the stochastic problem of the drill-string dynamics; see, for instance, [START_REF] Spanos | Bottom-hole assembly modeling and dynamic response determination[END_REF][START_REF] Spanos | Drillstring vibrations[END_REF]; [START_REF] Ritto | Nonlinear dynamics of a drillstring with uncertain model of the bit-rock interaction[END_REF][START_REF] Ritto | Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[END_REF]. In [START_REF] Kotsonis | Chaotic and random whirling motion of drillstrings[END_REF] a random weight-on-bit is analyzed in a simple two-degrees-of-freedom drillstring model, and in [START_REF] Spanos | Drillstring vibrations[END_REF] lateral forces at the bit are modeled as stochastic. In [START_REF] Ritto | Nonlinear dynamics of a drillstring with uncertain model of the bit-rock interaction[END_REF] a probabilistic model (nonparametric probabilistic approach) is proposed for the bit-rock-interaction model, and in [START_REF] Ritto | Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[END_REF] a robust optimization problem is performed, where model uncertainties are modeled using the nonparametric probabilistic approach.

In the present paper the focus of the stochastic analysis is only on the uncertain weight-on-hook, although there are other sources of uncertainties, such as the ones mentioned above. It is important to analyze a complex problem incrementally, in a way that the nal result is not obscured by the inuence of many factors at the same time. The parametric probabilistic approach is used to model the uncertainties in the weight-on-hook, and the probability density function of the random variable related to the weighton-hook is constructed by the means of the Maximum Entropy Principle [START_REF] Shannon | A mathematical theory of communication[END_REF]Jaynes, 1957a,b).

The strategy goes the following way. After the construction of the probability density function of the random weight-on-hook, a random generator is used to generate a value for the weight-on-hook for each Monte Carlo simulation [START_REF] Rubinstein | Simulation and the Monte Carlo Method, 2nd Edition[END_REF]. The number of Monte Carlo simulations is chosen analyzing a convergence curve. The random response can nally be ana-lyzed by the computations of some statistics, such as mean and condence intervals.

In the rst Section of the paper, the discretized system is presented and the element matrices are depicted, then, in the second Section, the reducedorder model is developed. The probabilistic model for the weight-on-hook is constructed in the third Section and the stochastic dynamical system is presented in the fourth Section. The numerical results are presented in the fth Section and, nally, the concluding remarks are presented in the last Section.

Final discretized system

The present work is concerned with the stochastic response of the system when the weight-on-hook (axial force) is random. To focus the attention of the analysis on the stochastic problem, and to speed up the numerical simulations, a simplication of the model found in [START_REF] Ritto | Nonlinear dynamics of a drillstring with uncertain model of the bit-rock interaction[END_REF] is used for the present analysis. The lateral displacements are assumed to be small and, therefore, they are neglected; and the system is linearized about the prestressed state u S . This state is computed through the equation

u S = [K] -1 (f g + f c + f f ), where [K]
is the stiness matrix of the system, f g is the gravity force, f c is the concentrated reaction force at the bit, and f f is the uid axial force. The nal discretized system considering the prestressed state is written as:

[M ] ü(t) + [C] u(t) + ([K] + [K g (u S )])ū(t) = g(t) + f br ( u(t)) , (1) 
in which the response ū

(= u -u S ) is represented in a subspace V m ⊂ R m ,
where m equals the number of degrees of freedom of the system.

[M ], [C],
and [K] are the classical mass, damping and stiness matrices, [K g (u S )] is the geometric stiness matrix (due to the nite strain formulation), g is the force due to the Dirichlet boundary condition (imposed rotational speed at the top) and f br are the forces due to the bit-rock interactions.

The proportional damping matrix is construct a posteriori

[C] = a[M ] + b([K] + [K g (u S )])
, where a and b are positive constants. The nite element approximation of the displacement elds is written as

u(ξ, t) = N u (ξ)u e (t) , θ x (ξ, t) = N θx (ξ)u e (t) , ( 2 
)
where u is the axial displacement, θ x is the rotation about the x-axis, ξ = x/l e is the element coordinate, l e is the element length, N are the shape functions

N u = [(1 -ξ) 0 ξ 0] , N θx = [0 (1 -ξ) 0 ξ] , (3) 
and the element node displacements are

u e = [u 1 θ x1 u 2 θ x2 ] T , (4) 
where the exponent T means transposition.

The element forces and matrices are depicted in the sequence. The mass [M ] (e) and stiness [K] (e) element matrices are written as

[M ] (e) = 1 0 [ρA(N T u N u + ρI p (N T θx N θx )] l e dξ , (5) 
and

[K] (e) = 1 0 EA l e N T u N u + GI p l e N T θx N θx dξ , ( 6 
)
where ρ is the density, A is the cross sectional area, I p is the polar moment of inertia, E is the elasticity modulus, G is the shear modulus, and the space derivative (d/dξ) is denoted by ( ). The element geometric stiness matrix is written as

[K g (u)] (e) = 1 0 N T u N u 3EAu + 1.5EAu 2 + +0.5EI p θ 2 x ) + N T u N θx (EI p θ x + EI p θ x u ) + + N T θx N u (EI p θ x + EI p θ x u ) + N T θx N θx (EI p u + +0.5EI p u 2 + 1.5EI p4 θ 2 x + 3EI 22 θ 2 x )] 1 l e dξ , (7) 
where u = N u u e /l e , θ x = N θx u e /l e , I 22 = A (y 2 z 2 )dA and I p4 = A (y 4 + z 4 )dA. The gravity element force and the uid element force are written as

f (e) g = 1 0 N T u ρgA l e dξ , (8) 
and

f (e) f = 1 0 M f g -A i ∂p i ∂x - 1 2 C f ρ f D o U 2 o N T u l e dξ , ( 9 
)
where g is the gravity acceleration, M f is the uid mass per unit length, A i and A o are the cross-sectional areas corresponding to the inner and outer diameters of the column, D is the diameter, U o is the ow speed outside the column, C f is a uid viscous damping coecient and p i is the pressure inside the column (see [START_REF] Paidoussis | Dynamics of a long tubular cantilever conveying uid downwards, which then ows upwards around the cantilever as a conned annular ow[END_REF][START_REF] Ritto | Nonlinear dynamics of a drillstring with uncertain model of the bit-rock interaction[END_REF] for details). The concentrated force at the bit is written as

f c = [0 0 ... -f c 0] T . ( 10 
)
where f c is the initial reaction force at the bit. The bit-rock interaction force is written as

f br = [0 0 ... f bit t bit ] T . ( 11 
)
in which f bit is the axial force and t bit is the torque about the x-axis. This two functions can be written as [START_REF] Tucker | Torsional vibration control and Cosserat dynamics of a drill-rig assembly[END_REF])

f bit = - ubit a 2 Z( θbit ) 2 + a 3 θbit a 2 Z( θbit ) - a 1 a 2 , t bit = - ubit a 4 Z( θbit ) 2 θbit -a 5 Z( θbit ) (12 
) where Z( θbit ) is the regularizing function such that

Z( θbit ) = θbit ( θbit ) 2 + e 2 . ( 13 
)
In the above equation, a 1 , . . . , a 5 are positive constants that depend on the bit and rock characteristics as well as on the weight-on-bit (f bit ).

Reduced-order model

To accelerate the computations of the dynamical system response, a reduced-order model is constructed. One way to construct it is to project the nonlinear dynamical equation (Eq. ( 1)) on a subspace V n ⊂ R m , with n << m. In [START_REF] Trindade | KarhunenLoève decomposition of coupled axial/bending of beams subjected to impacts[END_REF] the Karhunen-Loève decomposition is used to reduce a coupled axial/bending beam dynamics subjected to impacts. In the present paper, the basis used for the reduction corresponds to a basis of normal modes, which are obtained from the following generalized eigenvalue problem,

([K] + [K g (u S )])φ = ω 2 [M ]φ , ( 14 
)
where φ i is the i-th normal mode and ω i is the i-th natural frequency. Using the representation

u(t) = [Φ] q(t) , (15) 
and substituting it in the equation of motion yields

[M ][Φ]q(t) + [C][Φ] q(t) + ([K] + [K g (u S )])[Φ]q(t) = g(t) + f br ( u(t)) , (16) 
where [Φ] is a (m × n) real matrix composed by n normal modes obtained using the prestressed conguration, Eq. ( 14). Projecting the equation on the subspace spanned by these normal modes yields

[Φ] T [M ][Φ]q(t) + [Φ] T [C][Φ] q(t) + [Φ] T ([K] + [K g (u S )])[Φ]q(t) = = [Φ] T (g(t) + f br ( u(t))) , (17) 
which can be rewritten as

[M r ] q(t) + [C r ] q(t) + [K r ] q(t) = [Φ] T (g(t) + f br ( u(t))) , (18) 
in which

[M r ] = [Φ] T [M ][Φ], [C r ] = [Φ] T [C][Φ] [K r ] = [Φ] T ([K] + [K g (u S )])[Φ] (19) 
are the reduced matrices. The advantage of using a reduced-order model is to end up with a diagonal reduced matrix of size 22, instead of a banded nite element matrix of size 114 (values used in the numerical simulations).

Probabilistic model of the weight-on-hook

The uncertainties in the weight-on-hook are modeled using the parametric probabilistic approach, therefore, the weight-on-hook w is modeled as a random variable W. To be coherent with the physics of the problem, the probability density function of W is constructed by means of the Maximum Entropy Principle [START_REF] Shannon | A mathematical theory of communication[END_REF]Jaynes, 1957a,b). This principle consists on nding the probability density function that maximizes the entropy, given some available information. To compute the distribution, an optimization problem with constraints is solved, and it is guaranteed that all available information are respected and that no unphysical conditions appear [START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF].

The available information is derived from the mechanical properties of the weight-on-hook. These properties are: (1) the column must penetrate the soil, i.e., W must be lower than the weight w 2 of the column; (2) buckling must not occur, i.e., W must be greater than the buckling limit w 1 ; (3) the probability must go to zero when W approaches w 1 ; (4) the probability must go to zero when W approaches w 2 .

Conditions (1) and ( 2) are expressed by setting the support of the probability density function as ]w 1 , w 2 [. Conditions (3) and ( 4) are expressed by E{ln (W -w 1 )} = c1 and E{ln (w 2 -W)} = c2 , with |c 1 | < +∞ and |c 2 | < +∞, where E{} is the mathematical expectation. The reason why the logarithm, (ln), is used is because it imposes a weak decreasing of the probability density function in w + 1 and w - 2 . To facilitate the calculus, we introduce a normalized random variable X with values in ]0, 1[, such that:

W = w 1 (1 -X) + w 2 X . ( 20 
)
The expected value of W is written as

E{W} = w 1 (1 -E{X}) + w 2 E{X} . (21) 
We introduce the notation w = E{W} and x = E{X}. The second moment of W may be written as

E{W 2 } = E{X 2 }(w 2 1 -2w 1 w 2 + w 2 2 ) + x(-2w 2 1 + 2w 1 w 2 ) + w 2 1 . ( 22 
)
The available information is re-expressed in term of the new random variable:

1. X ∈ ]0, 1[. 2. E{ln (X)} = c 1 . 3. E{ln (1 -X)} = c 2 . ( 23 
)
with |c 1 | < +∞ and |c 2 | < +∞. The optimization problem for the Maximum Entropy Principle is nally written as:

p * X = arg max p X ∈ C S(p X ) , ( 24 
)
where C is the space of admissible probability density functions p X satisfying the constraints given by Eq. ( 23) and the entropy measure S is given by [START_REF] Shannon | A mathematical theory of communication[END_REF]:

S(p X ) = - R p X (x) ln (p X (x))dx . ( 25 
)
The probability density function, solution of the optimization problem dened by Eq. ( 24), is the Beta probability density function which may be written as:

p * X (x) = 1 ]0,1[ (x) Γ(α + β) Γ(α)Γ(β) x α-1 (1 -x) β-1 , (26) 
where the Gamma function Γ(y) = +∞ 0 t y-1 exp (-t)dt for y > 0. Also, α > 2 and β > 2 so that Eq. ( 23) holds. The random generator of independent realizations of the random variable X is already implemented in many computer codes. The mean value of X is given by

x = α α + β , ( 27 
)
and coecient of variation is given by

δ X = β α(α + β + 1) . ( 28 
)
where δ X = σ X /x, in which σ X is the standard deviation.

The random weight-on-hook dened by Eq. ( 20) depends on the four parameters (w 1 , w 2 , α, β). For applications, w 1 and w 2 will be xed. Parameters α and β have no physical meaning, consequently, we express them as function of the physical meaningful parameters w and δ. After some manipulations we obtain:

x = w -w 1 w 2 -w 1 , ( 29 
)
δ X = w 2 (δ 2 + 1) -(w -w 1 ) 2 -2w 1 (w -w 1 ) -w 2 1 (w -w 1 ) 2 , ( 30 
)
and

α = x δ 2 1 x -δ 2 X -1 , (31) β = x δ 2 X 1 x -δ 2 X -1 1 x -1 . ( 32 
)
It should be noticed that with this scheme the random weight-on-hook can be computed for any xed values of w 1 and w 2 . A specialist should be the one who gives these limits depending on the drill-string system analyzed. If the support ]w 1 , w 2 [ is dened, and the mean and coecient of variation are given, it is very simple to compute W.

Stochastic dynamical system

Using the probabilistic model of the weight-on-hook, the deterministic reduced model dened by Eq. ( 18) is replaced by the following stochastic equations:

[M r ] Q(t) + [C r ] Q(t) + [K r ] Q(t) = [Φ] T (g(t) + f br ( Q(t)) + F W ) , ( 33 
)
where Q is the random response and F W is a vector for which the only nonzero component is related to the axial d.o.f. of the rst node F W (1) = (W -w). Note that w was subtracted because the response is calculated in the prestressed conguration.

Numerical results

The data used in the simulations is found in the appendix. The drillstring is discretized with 56 nite elements, and for the construction of the reduced dynamical model, 10 torsional modes, 10 axial modes and also the two rigid body modes of the structure (axial and torsional) are used, hence 22 modes in the total for the reduced model. The time integration is done using an explicit Runge-Kutta algorithm with a time step controller to keep the error within a given accuracy.

Convergence of the stochastic solution Let [U(t, s)] be the response of the stochastic dynamical system calculated for each realization s. The mean-square convergence analysis with respect to the number n s of independent realizations is carried out studying the function conv(n s ) dened by Figure 2 shows that 500 simulations are sucient to reach the meansquare convergence.

conv(n s ) = 1 n s ns j=1 t f 0 ||U(s j , t)|| 2 dt . (34) 
Response of the stochastic system

The stochastic system's response is analyzed in this Section. Note that the dispersion of the response is all due to the random weight-on-hook, which is modeled as shown in Section four (Probabilistic model of the weight-onhook). We may identify experimentally the parameters of the probabilistic model of the random weight-on-hook (mean and coecient of variation) directly by measuring the weight-on-hook, or indirectly, by measuring the dynamical response of the bit, for instance. In both cases, the identication procedure can be done using, for example, the Maximum Likelihood method [START_REF] Aldrich | Fisher and the making of maximum likelihood 1912[END_REF][START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF]. As we know that there are other sources of uncertainties for the problem, the experimentally identication procedure should be performed considering all the modeled random variables.

Figure 3 shows the 95% envelope (that is to say the condence region constructed with a probability level of 0.95) for the rate-of-penetration and the rotational speed of the bit for a standard deviation σ = 1000 N, which means δ = σ/w is approximately 1 × 10 -3 . The envelopes (the upper and lower envelopes of the condence region) are calculated using the method of quantiles, [START_REF] Sering | Approximation Theorems of Mathematical Statistics[END_REF]. We are plotting two important variables: the rate-of-penetration (ROP) and the rotational speed at the bit (ω bit ). So, we analyze the inuence of the random weight-on-hook in the system response. It can be seen that, for σ = 1000 N, the random response presents tie condence intervals. Figure 4 shows the stochastic response of the torque and force on the bit. It is noted that for σ = 1000 N, the response changes just a little, therefore, σ will be increased in the next analysis. In our analysis we can not increase σ too much because the model used for the bit-rock interaction assumes a weight-on-bit f bit ∼ -100 kN, hence the standard deviation σ of the W is increased in a way that the f bit has a maximum variation around 5%, that is to say that σ max = 5000 N and, therefore, δ max ∼ 0.005 (0.5% variation), which is a constraint to our analysis. But, as it will be seen, a small variation on W may cause a big variation in the system response. Figures 5 and6 shows the system response for σ = 3000 N (δ ∼ 0.003). We want to see how uncertainties in the weight-on-hook aects the performance of the system, hence, Fig. 7 shows the evolution of the dispersion of the response for four dynamic responses: ROP, rotational speed of the bit, torque-on-bit, and force-on-bit. The dispersion of the response is calculated taking the square root of the variance divided by the value of the mean response for each time instant (it is the instant coecient of variation). It can be noticed that the mean coecient of variation of the force-on-bit (FOB) (see Fig. 7(d)) is about 3%, which is much more than 0.3%, which is the coecient of variation of the random weight-on-hook W. This might be explained due to the fact that the absolute value of W is much higher than the absolute value of FOB, therefore, a small percentage variation of W has a great eect in the FOB, in terms of percent. What is more critical is the fact that the dispersion is even higher for the ROP and the rotational speed of the bit (Figs. 7(a As expected, as δ increases the envelope of the response gets wider. Figure 9 shows the dispersion of the response for σ = 5000 N of the W. It is noted that, even for a small variation of W (∼ 0.5%), there is a big dispersion in the response. See for instance the rate-of-penetration: the mean coecient of variation is 4.3%, which is more than eight times greater than the coecient of variation of W. It gets worse if we take the maximum coecient of variation, which is 16%. It means that if the W has a coecient of variation of half percent, the variation in the ROP may achieve sixteen percent and the coecient of variation of the rotational speed of the bit may achieve twenty six percent! Concluding remarks A stochastic model of the drill-string dynamics has been analyzed. The weight-on-hook has been modeled as a random variable with probability density functions constructed using the Maximum Entropy Principle. It has been shown that the system response is sensitive to a dispersion on the weight-onhook. There are many sources of uncertainties in this problem, hence more stochastic analysis should be done to identify the uncertainties that most aect the performance of the system. 
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 1 Figure 1: General scheme of the system analyzed.
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 2 Figure 2: Mean square convergence for δ = 0.01 (left) and δ = 0.05 (right).
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 3 Figure 3: 95% envelope for σ = 1000 N. Rate-of-penetration, ROP (left), and rotational speed of the bit (right).
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 4 Figure 4: 95% envelope for σ = 1000 N. Torque-on-bit (left) and force-on-bit (right).
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 5 Figure 5: 95% envelope for σ = 3000 N. rate-of-penetration, ROP (left); rotational speed of the bit (right).
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 6 Figure 6: 95% envelope for σ = 3000 N. torque-on-bit (left); and force-on-bit (right).
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 7 Figure 7: Dispersion of the response for σ = 3000 N. (a) rate-of-penetration, ROP; (b) rotational speed of the bit; (c) torque-on-bit; and (d) force-on-bit.
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 88 Figure8shows the system response for σ = 5000 N (δ ∼ 0.005).
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 9 Figure 9: Dispersion of the response for σ = 5000 N. (a) rate-of-penetration, ROP; (b) rotational speed of the bit; (c) torque-on-bit; and (d) force-on-bit.

  a 5 = 1.475e × 10 3 [N.m] (constant of the bit-rock interaction model), e = 2 [rd/s] (regularization parameter). The damping matrix is constructed using the relation [C] = a[M ]+b([K]+ [K g (u S )]) with a = .01 and b = .0003.
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