
HAL Id: hal-00684311
https://hal.science/hal-00684311

Submitted on 1 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational model for long-range non-linear
propagation over urban cities

T. Leissing, Christian Soize, P. Jean, J. Defrance

To cite this version:
T. Leissing, Christian Soize, P. Jean, J. Defrance. Computational model for long-range non-linear
propagation over urban cities. Acta Acustica united with Acustica, 2010, 96 (5), pp.884-898.
�10.3813/AAA.918347�. �hal-00684311�

https://hal.science/hal-00684311
https://hal.archives-ouvertes.fr


Computational model for long-range non-linear propagation over
urban cities

T. Leissinga, C. Soize✩b, P. Jeana, and J. Defrancea
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Abstract

A computational model for long-range non-linear sound propagation over urban environments is

described. First the probability model of the geometrical parameters of an urban environment

are determined using Information Theory and the Maximum Entropy Principle. The propagation

model is then presented: it is based on the non-linear parabolic equation (NPE) and its extension to

propagation in porous media, in which the urban layer of the real system is represented by a porous

ground layer. The uncertainties introduced by the use of this simplified model and the presence

of the variability of the real system are taken into account with a probabilistic model. Reference

solutions are obtained thanks to the boundary element method (BEM); these experimental obser-

vations are then used to identify the parameters of the probability model. This inverse stochastic

problem is solved using an evolutionary algorithm which involves both the mean-square method

and the maximum likelihood method. Applications and model validation are then presented for

two different urban environment morphologies. It is shown that the identification method provides

an accurate and robust way for identifying the stochastic model parameters, independently of the

variability of the real system. Constructed confidence regions are in good agreement with the

numerical observations.
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1. Introduction

The long-term aim of this work is to develop a computational model to simulate long-range

non-linear wave propagation over urban cities. We are interested in the effect of the surface ir-

regularities (buildings) on the acoustic field above the urban layer. This problem could be studied

with deterministic numerical models where buildings geometries are explicitly given. For ex-

ample, ray tracing methods or models based on the Euler’s equations allow the environmental

context (buildings, meteorological conditions, site topography, . . . ) to be taken into account and

would technically be suited for this application. However, for long-range propagation applica-

tions, these methods suffer from their numerical complexity and the high computational effort

associated. Moreover, the suitability of these models for the application under interest can be

questioned: considering the high complexity of the real system, the model approximations (e.g.

using the uniform theory of diffraction for ray-tracing methods) and the uncertainties on the model

parameters (e.g. buildings geometries), the computational model could be improved introducing a

probabilistic model.

In this work, a different approach is proposed. It consists in using a very simple model for

the urban and atmospheric layers. Propagation is modelled with a non-linear parabolic equation

(NPE), whose fundamental principle is the solution of a one-way non-linear wave equation over a

moving window surrounding the wavefront. Since the calculation domain is limited to a small area

around the signal, computational cost is generally reduced compared to Euler’s equations methods.

For the propagation in the urban layer, a NPE for porous ground layers is used. Therefore the

simplified model is composed of two domains:

(1) the atmospheric layer, where propagation is modelled by a NPE for air,

(2) the urban city layer, where propagation is modelled by a NPE for porous ground surface.

Equations to couple the two domains complete the simplified model of sound propagation over

urban cities. Using this model as a predictive model for the real system will show very poor

performances as the modelling chosen is far too simplistic to represent the real system complexity.

Hence a probabilistic approach of uncertainties is used to enhance the model capabilities. Section

1.1 below describes the scope and the range of applicability of such a propagation model.
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1.1. Scope and range of applicability

The work presented in this paper was performed to study high-amplitude wave propagation in

complex media [22]. The sound source of such a wave could for example be a sonic bang or the

wave produced by a ground-level explosion. High-amplitude effects are hence considered and the

frequency range under interest is restricted to 0 - 100 Hz.

It is not the intent here to develop an engineering model for the calculation of noise exposure

in urban areas (such as the Nord 2000 model, see [20], or the Harmonoise model, see [41, 11]), but

rather to present a method for the construction of a stochastic model for propagation over irregular

surfaces, such as an urban environment. The propagation over the urban environment, and not

within, is hence considered in this paper.

The urban environment is further characterised by a set of three random variables: the heights

and widths of the buildings, and the spacing between two consecutive buildings (see section 3

for a description of these parameters). It is not the intent here to determine what the statistical

dependencies between these parameters are. The probability distributions of these three random

variables are determined using Information Theory [33] and the maximum entropy principle [17].

It was chosen to place the source above the urban city layer (see section 4 for a complete

description of the configuration): this could correspond to the case of the propagation of a sonic

bang. As a description of the sound field above the city layer is sought, the receiver is placed at

the same altitude as the source. Note that nothing prevents one to use the presented method for

source and receiver locations at any other location, or for a wider frequency range.

As explained in section 1 a NPE model is used as a basis for the development of the stochastic

propagation model. This choice was made regarding the application under interest in this work.

The NPE model is well adapted for long-range sound propagation applications and it can ac-

count for most features of weakly non-linear sound propagation outdoors: geometrical spreading,

weak non-linearities, refraction effects (see for example [27, 6]), site topography [24], ground

impedance [23] and thermoviscous effects [39]. Different models, such as the Fast Field Program

(FFP, see [14, 31]) or the (linear, frequency-domain) Parabolic Equation (PE, see [15]) could as

well be used. The method for the construction of the stochastic model presented in this paper is

general and is not restricted to the use of a specific propagation model.
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Section 2 explains and details the methodology to construct such a stochastic sound propaga-

tion model and the probabilistic model of its parameters, and outlines the content of the paper.

2. Construction of the computational model: principles and methodology

The objective is to develop a stochastic model for sound propagation over urban cities using

a NPE model originally designed for sound propagation over porous ground layers, in which the

urban city is taken into account through independent random porous layer parameters, noted Γ,

Λ and Θ. The probability distributions of these random variables depend on a parameter vector

w (bold letters denote vectors throughout the paper). For example parameter w may contain the

mean values and the standard deviations associated with the random parameters Γ, Λ and Θ. The

model output is the pressure at the receiver which is noted Pr (ω). A second propagation model, in

which the urban city is explicitly accounted for, is used to provide reference solutions. The urban

city geometry is characterised by a parameter vector u. For example, u may contain the mean

values and standard deviations associated with the heights and widths of the buildings (parameter

u is defined in section 3). For a given parameter u and several probability models an urban city

realisation can be generated, and then used in the reference model to obtain the pressure Pexp
r at

the receiver. Figure 1 shows a sketch and a diagram that detail the basic principle of each model.

To construct the stochastic sound propagation model, for a given parameter u, one has:

(1) to construct the probability models of the urban city geometrical parameters. From one city to

another one, geometrical parameters (e.g. building density, mean elevation, . . . ) can greatly vary.

The construction of a probabilistic model of these parameters should hence be done with measured

data (for example, data from a geographical information system). Moreover, town planning and

buildings themselves complies with many constraints which introduce a statistical dependence

between the geometrical parameters. The determination of these dependencies being out of the

scope of this work, probability models are constructed assuming that no information is available

concerning the relations between geometrical parameters. The probability models are determined

with the help of Information Theory [33] and the Maximum Entropy Principle [17]. Once the

probability models of the geometrical parameters are determined, different city realisations corre-

sponding to a given parameter u can be generated.
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(2) to use the city realisations generated in (1) and to perform simulations with the reference model

in order to obtain statistical information on the model output Pexp
r (ω).

(3) to construct the probability models of the random parameters Γ, Λ and Θ. These models are

determined with the help of Information Theory and the Maximum Entropy Principle and depend

on parameter w.

(4) using the outputs from the reference model Pexp
r (ω) (step (2)), to identify parameter w cor-

responding to the given parameter u previously fixed. This identification is done by solving an

inverse stochastic problem: the “distance” between Pr (ω ; w) and Pexp
r (ω) is minimised so that

the optimal parameter wopt is obtained. Once wopt is determined, the stochastic NPE model can be

used to study non-linear wave propagation over urban cities.

The paper is organised as follows. Section 3 presents the method to construct the probability

models of an urban city (step (1)). The linear reference propagation model used to obtain reference

solutions (step (2)) is detailed in section 4 while the mean NPE model for sound propagation over

urban cities and its parameters are presented in section 5. In section 6, the probability models

of the NPE model random variables are determined (step (3)). The stochastic NPE model is

then presented in section 7. Section 8 deals with a hybrid method based on the mean-square

and the maximum likelihood methods to solve the inverse stochastic problem and to identify the

parameter wopt (step (4)). Finally, section 9 presents an application and a validation procedure for

the computational model of sound propagation over urban cities. Conclusions and perspectives

are given in section 10.

3. Prior probabilistic model of geometrical parameters of an urban city

A two dimensional cross-section of an urban city is considered. It is composed of n buildings of

rectangular shape parametrised by a set of three parameters. For a given building Bi, its height and

width are noted hi and wi, and the distance between two consecutive buildings Bi and Bi+1 is noted

di (see figure 2). The prior probability model of such an urban city is then introduced with the help

of the random variables {H1, . . . ,Hn} , {W1, . . . ,Wn} , {D1, . . . ,Dn−1}. Let Xi be the positive-valued

real random variable representing either Hi, either Wi, or Di. Let pXi be the probability density

function of Xi and E be the mathematical expectation. Let mXi and δXi = σXi/mXi be its mean value
5



Figure 1: Sketches and diagrams detailing the basic principles of each model. The reference, linear propagation model

is presented on the left, while the stochastic simplified NPE model is shown on the right.

Figure 2: Sketch of a representative urban city.
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and its coefficient of variation, in which σ2
Xi
= m2 − m2

Xi
is the variance and m2 the second-order

moment. One has:

mXi = E {Xi} =
∫ +∞

0
xi pXi dxi , (1a)

m2 = E
{
X2

i

}
=

∫ +∞

0
x2

i pXi dxi . (1b)

In order to construct the probability distributions of random variables {H1, . . . ,Hn} , {W1, . . . ,Wn} ,
{D1, . . . ,Dn−1} Information Theory [33] and the Maximum Entropy Principle [17] are used. One

then has to define the available information for these random variables, which is the following:

For all i, denoting by Xi either Hi, either Wi or Di one has:

(1) Xi is a random variable with values in ] 0,+∞ [

(2) The mean value mXi = E {Xi} is given and is equal to mX, independent of i

(3) The inverse X−1
i of Xi is a second-order random variable. This condition is satisfied if

E
{
log (Xi)

}
= ci, with |ci| < +∞ . (2)

The constraint defined by equation (2) introduces an arbitrary constant ci which does not have any

physical meaning and which is then rewritten as a function of the coefficient of variation of Xi

which is δX, independent of i. The use of the Maximum Entropy Principle yields [34]:

pH1,...,Hn,W1,...,Wn,D1,...,Dn−1 (h1, . . . , hn,w1, . . . ,wn, d1, . . . , dn−1) =

n∏
i=1

pHi (hi)
n∏

i=1

pWi (Wi)
n−1∏
i=1

pDi (di) , (3)

with

pHi (hi) = pX (hi ; mH, δH) , (4a)

pWi (wi) = pX (wi ; mW , δW) , (4b)

pDi (di) = pX (di ; mD, δD) . (4c)

where

pX (x ; mX, δX) = � ]0,+∞[ (x)
1

mX

(
1

δ2X

)
1

Γ
(
1/δ2X

) (
x

mX

) 1
δ2X
−1

exp

(
− x

δ2XmX

)
. (5)
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In equation (5), � ]0,+∞[ (x) = 1 if x > 0 and 0 otherwise, and Γ (z) is the gamma function of

argument z defined by:

Γ (z) =
∫ +∞

0
tz−1e−t dt . (6)

Since no available information concerning the statistical dependence between the families of ran-

dom variables {Hi}i, {Wi}i and {Di}i is used, the Maximum Entropy Principle yields independence

of all the random variables as a result, as it can be seen in equation (3).

The following vector u of the parameters of the probabilistic model is introduced:

u = (mH,mW ,mD, δH, δW , δD) . (7)

Parameter u hence contains the mean values and the dispersion parameters associated with the

heights, widths and spacings of the buildings. It belongs to an admissible set U = (] 0,+∞ [)6.

Figure 3 shows an example of a realisation with n = 20 and u = (10, 20, 30, 0.2, 0.2, 0.2).

Figure 3: Example of a city realisation with n = 20 and u = (mH ,mW ,mD, δH, δW , δD) = (10, 20, 30, 0.2, 0.2, 0.2).

4. Reference model: linear propagation over urban cities

This section presents the stochastic linear propagation model used to obtain reference solutions

of the problem. The problem setting (source and receiver, frequency range, . . . ) is first given in

section 4.1 and the stochastic propagation model itself is then described in section 4.2.

4.1. Setting the problem

Output Pexp
r (ω) from the reference model is analysed in the frequency domain on a frequency

band defined by B = ] 0, ωmax ], in which ωmax is such that B is a low frequency band. Hence, the

buildings surfaces are assumed to be acoustically rigid (no absorption and specular reflections).
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The source and receiver are placed above the urban city layer and the source is placed sufficiently

far from the first building B1 to assume that the wave impinging on this first building is a plane

wave. The receiver is placed at the same altitude as the source and at the right of the last building

Bn. The quantity under interest is the normalised spectrum Lexp (ω) at the receiver such that

Lexp (ω) = 10 log10

⎛⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣P

exp
r (ω)

pfree (ω)

∣∣∣∣∣∣
2⎞⎟⎟⎟⎟⎟⎠ , (8)

where pfree (ω) and Pexp
r (ω) denote free field pressure and the pressure in the presence of the urban

city at the receiver, respectively. Note that the reference model used does not account for building

surfaces vibrations.

4.2. Stochastic BEM solver for constructing a reference solution

The model used to construct the reference solution is an implementation of the boundary ele-

ment method [8, 18] (BEM), in which the city geometry is explicitly entered into the computational

model. For a fixed parameter u, the outputs Lexp (ω) are calculated using the Monte Carlo method

[16] with νexp independent realisations η1, . . . , ηνexp of urban cities generated with the probability

models presented in section 3. The realisation of the experimental observation for the urban city

νp is
{
Lexp

(
ω, ηνp

)
, ω ∈ B

}
.

5. Mean non-linear parabolic propagation model for sound propagation over urban cities

This section describes the mean parabolic propagation model that will be later used, associated

with a probabilistic model of uncertainties, to model sound propagation over urban environments.

Section 5.1 presents a general overview of propagation models based on the non-linear parabolic

equation (NPE), section 5.2 formally defines the propagation model and section 5.3 explains the

choice of the propagation model parameters and details their algebraic properties.

5.1. General overview of NPE models

The non-linear parabolic equation (NPE) has first been developed by McDonald and Kuperman

in 1987 [28] (see also [27, 6]) and has been successfully used for underwater acoustics simulations
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[1, 7] and blast wave propagation in air [40, 2, 21]. The NPE model for a 2D domain with Cartesian

coordinates (x, z) filed with air is:

∂�t r (x, z ; t) = −∂x

(
c1r (x, z ; t) + c0

β

2
r (x, z ; t)2

)
− c0

2

∫
∂2

z r (x, z ; t) dx , (9)

where ∂i means partial derivation with respect to variable i, x is the main propagation direction, z is

the transverse propagation direction and t is the time variable. The ambient sound speed is c0 while

c1 is the sound speed perturbation in the moving window, i.e. c1 = c (x, z)− c0 , where c (x, z) is the

spatially-dependent sound speed. The dimensionless over-density variable is r (x, z ; t) such that

r (x, z ; t) = ρ′ (x, z ; t) /ρ0, with ρ′ (x, z ; t) the acoustic density perturbation and ρ0 the ambient

medium density. In the following the (x, z ; t) dependence is dropped, i.e. r (x, z ; t) is written r.

For air, the coefficient of non-linearity β is calculated with the help of the ratio of specific heats

γ, i.e. β = (γ + 1) /2. The first term on the right hand side of equation (9) simulates refraction

and non-linear effects. The second term accounts for propagation in the transverse direction. The

moving window operator ∂�t is defined by

∂�t = ∂t + c0∂x . (10)

Note that in equation (9), the azimuthal spreading term c0r/(2d), in which d is the distance from

the source to the point where the field is calculated, has been dropped from the original NPE [28].

There is no absorption from air included in the model. The NPE model derives from Euler’s equa-

tions. The assumptions used are

(1) weak non-linearities, i.e. ρ′/ρ0 � 1,

(2) weak sound speed perturbations, i.e. c1 � c0 ,

(3) propagation along a main direction.

Various modifications and extensions to this original model were made during the past two

decades. Spherical and cylindrical coordinate system versions [38] and high-angle formulation

[26] have been developed. Too and Lee [39] has added a complementary term in the NPE equa-

tion in order to take into account thermoviscous effects. Propagation in multiple media [1] and

propagation through atmospheric turbulences [4] were also successfully studied using this model.
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The NPE differential equation (9) is discretised with the finite difference method. The Crank-

Nicolson method is used for linear terms yielding a tridiagonal system which can be solved with

a Thomas algorithm (see for example [29]). For the non-linear term, one has to use a specialised

algorithm which is able to propagate discontinuities and which is stable. In the numerical imple-

mentation used in this work, the flux corrected transport algorithm (FCT) [5, 42] is used. The

principle of the FCT algorithm is to introduce some artificial viscosity in the numerical scheme to

limit the Gibb oscillations.

In a previous work, the original NPE model has been extended to propagation within and over

porous ground layers [24, 25]. In this model the porous layer is assumed to be equivalent to a

continuous fluid medium. A wave causes a vibration of air particles contained in the ground pores,

while the ground frame does not vibrate. The model derivation and the applications to propagation

over porous layers can be found in [23]. In this work, it is proposed to use this model to study

long-range sound propagation over urban cities.

5.2. NPE model for sound propagation in multiple media

In this section, we summarise the NPE model for sound propagation in multiple media pro-

posed in [23]. This propagation model is composed of three entities. The two first are non-linear

parabolic equations for the air and the urban layers, and the third one is an interface condition

to couple the two domains. Let Ωa and Ωu be two domains occupied by the atmosphere and the

urban environment, and let Γa be the boundary at the top of the domain and Γu the boundary at the

bottom. The coupling interface between the domains is noted Γ and the boundary to the left and to

the right of the domain Ωa ∪ Ωu are Γl and Γr, respectively. The mean acoustic perturbation field

at points xa = (x, z) ∈ Ωa and xu = (x, z) ∈ Ωu are ra and ru, respectively. Figure 4 shows a sketch

of the different domains with their boundaries. The NPE model for propagation in multiple media
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Figure 4: Sketch of the different domains with their respective boundaries of the NPE model for propagation in

multiple media.

is written as

∂�t ra + ∂x

(
c1ra + β

c0

2
r2

a

)
+

c0

2

∫
∂2

z ra dx = g (xa, t) in Ωa , (11a)

∂�t ru + ∂x

(
c0 (μ − 1) ru + β μ

c0

2
r2

u

)
+
μc0

2

∫
∂2

z ru dx + αru = 0 in Ωu , (11b)

∂zra + ε

∫
∂zra dx = γ ∂zru on Γ , (11c)

ra = 0, ru = 0 on Γr , (11d)

ra, ru satisfy Sommerfeld radiation condition on Γl , (11e)

∂zru = 0 on Γu , (11f)

ra satisfies Sommerfeld radiation condition on Γa , (11g)

where g (xa, t) is an external pressure field applied in the atmospheric layer. Equations (11a) and

(11b) handle propagation in the atmospheric and urban layers. Equation (11c) is the interface

condition between the domains and equation (11d) is a standard boundary condition applied on

the boundary Γr to the right of the moving window. Equation (11e) states that the wave must not

reflect at the left boundary of the domain, and hence the acoustic field must satisfy Sommerfeld

radiation condition on Γl. It is supposed that the bottom of the domain is perfectly rigid, hence
12



∂zru = 0 on Γu (see equation (11f)). Since the propagation problem is infinite in the +z direction

the acoustic field must satisfy Sommerfeld radiation condition on Γa (equation (11g)). For the sake

of brevity the explicit expressions of Sommerfeld radiation conditions are not given here. In the

present work the propagation domain is truncated in the +z direction with the help of a perfectly

matched layer (see [3] and [9]).

Wave propagation in the urban layer (equation (11b)) is characterised by μ which modifies the

sound speed in the urban layer so that cΩu = μcΩa , while α is the loss rate in the layer. The interface

condition between domains Ωa and Ωu (equation (11c)) depends on parameters γ and ε. On the

boundary Γr a null pressure ra = 0, ru = 0 is imposed, meaning that no perturbation is introduced

ahead of the wavefront. The relative sound pressure level at the receiver is given by

L (ω) = 10 log10

⎛⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣ρ0c

2
0

r̂a (xr, zr, ω)

pfree (xr, zr, ω)

∣∣∣∣∣∣
2⎞⎟⎟⎟⎟⎟⎟⎠ , (12)

where quantities with hats denote Fourier-transformed quantities, and xr and zr are the receiver

coordinates.

5.3. Construction of the mean model and description of the algebraic properties of its parameters

Below the mean model is derived from section 5.2. One has to define the parameters in the

mean propagation model (see equations (11)) which have the capability to represent the natural

variability of the real system (the urban environment). These defined parameters will be modelled

by random variables as explained in section 2. When a wave is reflecting on a plane surface, its

amplitude is changed and a (possibly negative) delay is given to the reflected wave. Parameters

(μ, α, γ, ε) appearing in equations (11b) and (11c) could be used because the propagation model

can recreate the behaviour of a porous ground layer [23] and could thus be used “as is” to control

the wave reflection. However, in order to reduce the number of parameters in the mean model and

consequently, to reduce the stochastic model complexity, another solution is proposed. The urban

layer is now considered as semi-infinite, and one writes that no waves are transmitted from the

porous ground layer to the atmospheric layer. This implies that the urban layer must behave like

an atmospheric layer, which can be simulated in writing that μ = 1 and α = 0 in equation (11b).

The time delay occurring during reflection is introduced by the use of a time-stretching. The time
13



variable is then transformed according to

t −→ 1
λ

t , (13)

and the time derivative is changed accordingly

∂�t −→ λ ∂�t . (14)

The change of amplitude of the reflected wave is accounted for using the equation (11c). Parameter

γ can be used to tune the amount of reflected and transmitted waves. The time delay being already

taken into account with the time stretching, there is no need to keep parameter ε in equation (11c).

Parameter ε is set to ε = 0. One advantage of using such two parameters instead of four in the mean

model, is that these two parameters γ and λ do not not introduce coupling effects between wave

amplitude and time delay. This means that changing parameter λ does not change the reflected

wave amplitude, and changing parameter γ does not change the time delay of the reflected wave.

This property will later help designing the probabilistic model of these two parameters.

Note that parameter λ cannot take the value 0 which would correspond to an infinite speed

of sound. Parameter γ is used to tune the amount of reflected wave in the atmospheric layer.

Setting γ = 0 yields ∂zra = 0 on coupling interface Γ, which is the condition for perfect reflection.

Setting γ = 1 yields ∂zra = ∂zru on the coupling interface Γ, which is the condition for perfect

transmission; parameter γ thus belongs to [0, 1]. Introducing underlined quantities related to the

mean model, the NPE model for propagation in multiple media with the two above parameters is

rewritten as

λ ∂�t ra + ∂x

(
c1ra + β

c0

2
ra

2
)
+

c0

2

∫
∂2

z ra dx = g (xa, t) in Ωa , (15a)

λ ∂�t ru + ∂x

(
β

c0

2
ru

2
)
+

c0

2

∫
∂2

z ru dx = 0 in Ωu , (15b)

∂zra = γ ∂zru on ∂Ω , (15c)

ra = 0, ru = 0 on Γr , (15d)

ra and ru satisfy Sommerfeld radiation condition on Γl , (15e)

ru satisfies Sommerfeld radiation condition on Γu , (15f)

ra satisfies Sommerfeld radiation condition on Γa . (15g)
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Furthermore, introducing a third parameter θ in order to control the output of the mean model, the

relative sound pressure level at the receiver is given by

L (ω) = 10 log10

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣∣∣
ρ0c

2
0

r̂a

(
xr, zr, ω + θ

)
pfree

(
xr, zr, ω + θ

)
∣∣∣∣∣∣∣∣
2⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (16)

in which θ is a real and positive frequency shifting parameter. Its only intent is to help controlling

the mean model output. The mean propagation model parameter s can now be defined as

s = (γ , λ , θ) . (17)

Vector s belongs to the admissible set S = ([0, 1] × ] 0,+∞ [ × [ 0,+∞ [). The initial value of s is

arbitrarily chosen as s0 = (γ 0, λ0, θ0) = (0 , 1 , 0) in which the superscript 0 refers to the nominal

value of s, so that the nominal mean model simulates a wave reflecting on a plane which is an

acoustically rigid surface.

6. Construction of the probabilistic model of random variables Γ, Λ and Θ

Let Γ, Λ and Θ be the random variables associated with the mean model parameters γ , λ and

θ. Information Theory [33] and the Maximum Entropy Principle[17] are used to construct their

probability distributions (see section 3).

6.1. Construction of the probability distribution of random variable Γ

The available information for random variable Γ is the following.

(1) Γ is a random variable with values in [0, 1] (see section 5.3).

(2) Its mean value mΓ = E {Γ} is given.

(3) Its coefficient of variation δΓ is given.

It should be noted that the upper bound γ = 1 corresponds to perfect reflection at the interface and

the lower bound γ = 0 corresponds to perfect transmission. Since the neighbourhoods of these two

bounds can be reached with a non-zero probability, it is not necessary to introduce an available

information related to the behaviour of the probability distribution in the neighbourhood of these

two bounds. With such an available information, the Maximum Entropy Principle yields

pΓ (γ) = �[0,1] (γ) e−μ0−γ μ1−γ2 μ2 , (18)
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where the constants μ0, μ1 and μ2 depend on mΓ and δΓ and are the solutions of the equations∫ 1

0
γ e−γ μ1−γ2μ2 dγ − mΓ

∫ 1

0
e−γ μ1−γ2μ2 dγ = 0 , (19a)∫ 1

0
γ2e−γ μ1−γ2μ2 dγ −

(
m2
Γ + σ

2
Γ

) ∫ 1

0
e−γ μ1−γ2μ2 dγ = 0 , (19b)∫ 1

0
e−γ μ1−γ2μ2 dγ − e μ0 = 0 . (19c)

In the equations above, integrals are numerically evaluated with the Monte Carlo method and the

equations are solved using a non-linear Least-Squares method [13].

6.2. Construction of the probability distribution of random variable Λ

Taking into account the algebraic properties given in section 5.3, random variable Λ is with

values in ] 0,+∞ [ . Since λ cannot take the value 0 which would correspond to an infinite speed

of sound, it is necessary to write that the probability distribution goes sufficiently fast to zero

when λ goes to zero with superior values. Such a property is satisfied in introducing the following

condition,

E{logΛ} = c , |c| < +∞ , (20)

which implies that the inverseΛ−1 ofΛ is a second-order random variable. Therefore, the available

information for random variable Λ is the following.

(1) Λ is a random variable with values in ]0,+∞[.

(2) Its mean value mΛ = E{Λ} is given.

(3) Equation (20) is satisfied.

With the constraints defined by the above available information, the use of the Maximum Entropy

Principle yields (see section 3),

pΛ (λ) = � ]0,+∞[ (λ)
1

mΛ

(
1

δ2
Λ

)
1

Γ
(
1/δ2

Λ

) (
λ

mΛ

) 1
δ2
Λ

−1

exp

(
− λ

δ2
Λ

mΛ

)
, (21)

in which δΛ is the coefficient of variation of Λ.
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6.3. Construction of the probability distribution of random variable Θ

The available information relative to random variableΘ is the same as the available information

defined in section 6.2 for random variable Λ. Consequently, the probability density function of

random variable Θ is written as

pΘ (θ) = � ]0,+∞[ (θ)
1

mΘ

(
1

δ2
Θ

)
1

Γ
(
1/δ2

Θ

) (
θ

mΘ

) 1
δ2
Θ

−1

exp

(
− θ

δ2
Θ

mΘ

)
, (22)

in which mΘ and δΘ are the mean value and the coefficient of variation of random variable Θ.

7. Stochastic non-linear propagation over urban cities

The following vector w of the parameters of the probabilistic models of random variables Γ, Λ

and Θ is introduced

w = (mΓ , mΛ , mΘ , σΓ , σΛ , σΘ) , (23)

in which σΓ = mΓ δΓ, σΛ = mΛ δΛ and σΘ = mΘ δΘ. Parameter w belongs to the admissible set

W = (] 0,+∞ [)6. The stochastic model for non-linear sound propagation over urban cities is

defined by

Λ ∂�t Ra + ∂x

(
c1Ra + β

c0

2
R2

a

)
+

c0

2

∫
∂2

z Ra dx = g in Ωa , (24a)

Λ ∂�t Ru + ∂x

(
β

c0

2
R2

u

)
+

c0

2

∫
∂2

z Ru dx = 0 in Ωu , (24b)

∂zRa = Γ ∂zRu on Γ , (24c)

Ra = 0, Ru = 0 on Γr , (24d)

Ra and Ru satisfy Sommerfeld radiation condition on Γl , (24e)

Ru satisfies Sommerfeld radiation condition on Γu , (24f)

Ra satisfies Sommerfeld radiation condition on Γa . (24g)

The relative sound pressure level is calculated with

L (ω,w) = 10 log10

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∣∣∣∣∣∣∣
ρ0c

2
0

R̂a (xr, zr, ω + Θ)

pfree (xr, zr, ω + Θ)

∣∣∣∣∣∣∣
2⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (25)
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In equations (24) and (25), the probability distributions of random variables Γ, Λ and Θ depend

on w, which in turn depends on u, the parameter that describes the urban city geometry. Hence,

to complete the construction of the computational model and to obtain observations of L (ω,w),

one has to express parameter w as a function of parameter u (it should be noted that no explicit

expression can be constructed but the corresponding mapping will be numerically constructed).

8. Identification of parameter w of the stochastic model

8.1. Identification strategy

The identification of parameter w is performed by solving an inverse stochastic problem.

Mean-square methods [36, 43] and the maximum likelihood method [35] are generally used to

solve such a problem. Both techniques have been tested (see below) for different values of param-

eter u (corresponding to different urban environments). The conclusions of this comparative study

are the following.

(i) Since the mean-square methods introduce a mean-square distance between the experimental

data and the random response of the stochastic model, this type of method is equivalent to a min-

imisation of the sum of the variance for the stochastic model response with the bias between the

experimental mean value and the mean value of the random response. If these two mean values

are significantly different, the bias can only be reduced in increasing the variance of the model.

In this case, the distance between the experimental mean value and the mean value of the random

response of the stochastic model is effectively reduced but in counterpart, the confidence region of

the random response increases (see for example [12]).

(ii) For the application analysed it has been seen that, for certain values of parameter u, the max-

imum likelihood method under-estimates the width of the confidence region which means that an

important number of experimental paths cross the upper and the lower envelopes of the confidence

region. This indicates that the maximum likelihood method cannot lead to an accurate description

of the sound field for certain values of parameter u.

To provide an accurate and robust identification method for all values of parameter u, a hybrid

method is used; the identification of the optimal parameter wopt is done in two successive steps:
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(1) The mean model is first updated with experimental data: this step consists of finding the opti-

mal mean model parameter sopt that minimises the norm between the mean value of the reference

model outputs and the mean model output. As only the mean value of the experimental obser-

vations is used, this first step only allows us to identify the parameter that optimises the mean

response of the stochastic model.

(2) Next, to take into account the dispersion of the experimental observations, a multi-objective

optimisation problem is solved: both the mean-square and the maximum likelihood methods are

used concurrently. This multi-objective optimisation problem aims to find the optimal param-

eter wopt that maximises the log-likelihood function between the experimental observations and

the stochastic model outputs, while minimising the areas where experimental observations do not

belong to the confidence regions of the stochastic model. This problem is solved using an evolu-

tionary algorithm [10, 37].

Step (1) allows us to obtain a rough approximation of the mean values mΓ, mΛ and mΘ which

are the three first components of vector w, and hence helps initialising the optimisation problem

in step (2). Section 8.2 presents the procedure to update the mean model with experimental data

(step (1)). The mean square method and the maximum likelihood method are presented in sections

8.3 and 8.4.

8.2. Updating the mean model with experimental data

The observation from the mean model depending on the choice of parameter s, it is rewritten

as Ls (ω). The performance level of the nominal model can be measured in estimating the norm

∣∣∣∣∣∣E {Lexp} − Ls
∣∣∣∣∣∣

B
=

{∫
ω∈B

∣∣∣E {Lexp (ω)} − Ls (ω)
∣∣∣2 dω

}1/2

, (26)

and the nominal value of the mean model parameter s0 can be updated in a vector sopt such that

sopt = arg min
s∈S

∣∣∣∣∣∣E {Lexp} − Ls
∣∣∣∣∣∣

B
. (27)

Hence for a fixed value of u = (mH,mW ,mD, δH, δW , δD), the parameter sopt that minimises the

norm between the mathematical expectation of the experimental observations and the observation

from the mean model can be determined.
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8.3. Identification of the stochastic model parameter with the mean-square method

This section presents the mean-square method [36, 43] with non-differentiable objective func-

tion [35] for the identification of the parameter wopt of the stochastic model. The objective function

is defined by writing that the ηνexp experimental observations
{
Lexp

(
ω ; η j

)
, ω ∈ B, j = 1, . . . , νexp

}
,

must belong to the confidence region of the stochastic model with a probability level Pc fixed

in ] 0, 1 [. Before giving the formal definition of the mean-square method one must address the

problem of the construction of confidence region.

The confidence region is constructed by using the quantiles. Let FL(ω) be the cumulative dis-

tribution function of random variable L (ω), such that

FL(ω) (�) = P {L (ω) ≤ �} . (28)

In equation (28) the right-hand side represents the probability that the random variable L (ω) takes

on a value less than or equal to �. For 0 < p < 1, the pth quantile (or fractile) of FL(ω) is defined as

ζ (p ;ω) = inf
�

{
FL(ω) (�) ≥ p

}
. (29)

Then, the upper and lower envelopes �+ (ω) and �− (ω) of the confidence region are given by

�+ (ω) = ζ

(
1 + Pc

2
;ω

)
, �− (ω) = ζ

(
1 − Pc

2
;ω

)
. (30)

The estimation of �+ (ω) and �− (ω) is performed by using the sample quantile [32]. Consider

ν independent realisations of the random variable L (ω) noted �1 (ω) = L (ω ; η1) , . . . , �ν (ω) =

L (ω ; ην) and let �̃1 (ω) < . . . < �̃ν (ω) be the ordered statistics associated with �1 (ω) , . . . , �ν (ω).

One has the following estimations for the upper and lower envelopes:

�+ (ω) 
 �̃+j+ (ω) , j+ = fix

(
ν

1 + Pc
2

)
, (31a)

�− (ω) 
 �̃−j− (ω) , j− = fix

(
ν

1 − Pc
2

)
, (31b)

in which fix (x) is the integer part of the real number x.

Now introducing the dependence on parameter w, the formal definition of the mean-square

method now follows. Let �+ (w, ω) and �− (w, ω) be the upper and lower envelopes of the confi-

dence region of the stochastic model. The functions �+exp (ω), �−exp (ω), z+ (w , ω) and z− (w , ω)
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are such that

�+exp (ω) = max
j

Lexp
(
ω; η j

)
, �−exp (ω) = min

j
Lexp

(
ω; η j

)
, (32)

z+ (w, ω) =
(
�+ (w, ω) − �+exp (ω)

) × (
1 − H

(
�+ (w, ω) − �+exp (ω)

))
, (33a)

z− (w, ω) =
(
�− (w, ω) − �−exp (ω)

) × (
1 − H

(
�− (w, ω) − �−exp (ω)

))
, (33b)

in which H (x) is the Heaviside function such that H (x) = 1 if x ≥ 0 and H (x) = 0 oth-

erwise. Functions z+ (w, ω) and z− (w, ω) represent selected parts of [�+ (w, ω) − �+exp (ω)] and

[�− (w, ω) − �−exp (ω)] where the experimental observations do not belong to the confidence re-

gion calculated with the stochastic model. The non-differentiable objective function J (w) is then

defined by

J (w) =
∣∣∣∣∣∣z+ (w, .)

∣∣∣∣∣∣2
B
+

∣∣∣∣∣∣z− (w, .)
∣∣∣∣∣∣2

B
(34)

and the optimal parameter wopt is solution of the following optimisation problem:

wopt = arg min
w∈W

J (w) , (35)

The mean-square method aims to minimise the areas where the experimental observations do not

belong to the confidence region of the stochastic model: the only criteria to select the optimal

parameter wopt is hence the amount of information not covered by the stochastic model.

8.4. Identification of the stochastic model parameter with the maximum likelihood method and

statistical reduction of information

This section deals with the maximum likelihood method to identify the optimal parameter w opt.

Let {ω1, . . . , ωm} ⊂ B be a sampling of frequency band B and let w→ L (w) be the log-likelihood

function fromW into �, defined by

L (w) =
νexp∑
j=1

log10 p
(
Lexp

(
ω1 ; η j

)
, . . . , Lexp

(
ωm ; η j

)
; w

)
, (36)

in which p
(
Lexp

(
ω1 ; η j

)
, . . . , Lexp

(
ωm ; η j

)
; w

)
is the joint probability density function of random

variables L (ω1 ,w) , . . . , L (ωm ,w) for the values Lexp
(
ω1 ; η j

)
, . . ., Lexp

(
ωm ; η j

)
. The maximum
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likelihood method [36] consists in finding wopt as the solution of the following optimisation prob-

lem:

wopt = arg max
w∈W
L (w) . (37)

The standard method requires a direct evaluation of the joint probability density function appearing

in equation (36) which involves a significant computational effort. In order to decrease this effort

the method of statistical reduction of information introduced in [35] is used. The principle of

the method is to proceed to a statistical reduction of information using a principal component

analysis (see for instance [19]) and then to use the maximum likelihood method in the space of the

uncorrelated random variables related to the reduced statistical information.

For all w fixed inW, let be L (w) = (L (ω1 ,w) , . . . , L (ωm ,w)). Let m (w) = E {L (w)} be its

mean value and let
[
CL(w)

]
be its (m × m) covariance matrix defined by

[
CL(w)

]
= E

{
(L (w) −m (w)) (L (w) −m (w))T

}
, (38)

in which T superscript stands for transposition. The following eigenvalue problem is introduced

[
CL(w)

]
x (w) = e (w) x (w) , (39)

for which the first largest q ≤ m positive eigenvalues are e1 (w) ≥ e2 (w) ≥ . . . ≥ eq (w) and the

associated eigenvectors are x1 (w) , . . . , xq (w), in �m. The approximation Lq (w) of L (w) is written

as

Lq (w) = m (w) +
q∑
α=1

√
eα (w) Yα (w) xα (w) , (40)

in which Y1 (w) , . . . , Yq (w) are q real-valued random variables such that, for all α = 1, . . . , q

Yα (w) =
1√

eα (w)
xα (w)T (L (w) −m (w)) . (41)

It can easily be proved that Y (w) =
(
Y1 (w) , . . . , Yq (w)

)
is a second-order random variable such

that, for all α and β in {1 . . . q}

E {Yα (w)} = 0 , E
{
Yα (w) Yβ (w)

}
= δαβ , (42)
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which means that the centred random variables Y1 (w) , . . . , Yq (w) are uncorrelated. The order q

of the statistical reduction is calculated in order to get an approximation with a given accuracy ε

which has to be chosen such that

max
w∈W

{
1 −

∑q
α=1 eα (w)

tr [CL (w)]

}
≤ ε . (43)

From equation (41) one can deduce that random variables Y exp
α

(
w ; η j

)
associated with the experi-

mental realisation η j are given, for all α = 1, . . . , q and j = 1, . . . , νexp by

Yexp
α

(
w ; η j

)
=

1√
eα (w)

xα (w)T
(
Lexp

(
η j

)
−m (w)

)
. (44)

Finally, taking into account that the random variables Y1 (w) , . . . , Yq (w) are mutually independent,

one introduces the following approximation for the reduced log-likelihood function L red,

Lred (w) =
νexp∑
j=1

q∑
α=1

log10 pYα(w)

(
Yexp
α

(
w ; η j

)
; w

)
, (45)

where pYα(w) (y ; w) is the probability density function of the real-valued random variable Yα (w).

The optimal value wopt of w is then given by,

wopt = arg max
w∈W
Lred (w) . (46)

This problem is solved by using a genetic algorithm based on non-dominated sorting (NSGA-

II) [10, 37]. This method is used to solve the multi-objective optimisation problem for which an

initial population evolves over several generations of individuals. For each generation a selection

process selects the “best” parents from which children are generated.

9. Application and numerical validation

It is proposed in this section to use the here developed stochastic parabolic propagation model

to study sound propagation over given urban environments. Numerical solutions from a BEM code

are used as references.
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9.1. Summary of previous sections – Stochastic model validation procedure

In order to construct and validate the stochastic propagation model one has to

(1) choose a parameter u = (mH,mW ,mD, δH, δW , δD) that describes the urban city geometry stud-

ied. With this parameter the νexp urban environment realisations can be generated with the proba-

bility distributions given in section 3 (see section 9.2).

(2) using the νexp realisations of the probabilistic model of the given city, and using the stochastic

reference model (see section 4), produce the family
{
Lexp

(
ω ; η j

)
, ω ∈ B

}
j
(see section 9.2).

(3) once the experimental realisations are obtained, identify the optimal parameter wopt of the

stochastic model with the help of the method described in section 8 (section 9.3).

(4) using the stochastic parabolic propagation model derived from section 7, construct the confi-

dence region associated with the optimal parameter wopt determined in (3) which finally allows the

stochastic propagation model to be validated (section 9.4).

9.2. Choice of parameter u, numerical experiment description and output calculation from the

reference model

As explained in section 4, the reference model is defined as a numerical experiment consisting

of numerical calculations using the Boundary Element Method (BEM). The source and receiver are

positioned 2000 m from the central point of the urban environment at an angle of 5◦ and the urban

environment is composed of n = 20 buildings. The ground and building surfaces are supposed

acoustically rigid and computations are performed on a frequency range B = ] 0 , 100 ] Hz with a

frequency sampling Δ f = 2 Hz yielding data vectors with 51 values. Figure 5 shows a sketch of

the configuration.

In this application two different city morphologies are chosen. The corresponding parame-

ters are u1 and u2 such that u1 = (mH,mW ,mD, δH, δW , δD) = (10, 20, 30, 0.2, 0.2, 0.2) and u2 =

(40, 40, 30, 0.2, 0.2, 0.2). Once u1 and u2 are fixed the buildings dimensions are generated with the

help of the probability distributions defined in section 3. The number of realisations of the prob-

abilistic model of the real urban city is νexp = 500, inducing a convergence with a 10−3 accuracy

(at least) for the first and second order moment of the random variable Lexp. A calculation with

24



Figure 5: Sketch for the reference model (numerical experiment).

the nominal mean model described in section 5 is also performed for comparison and is initialised

with

s0 =
(
γ 0, λ 0, θ 0

)
= (0 , 1 , 0) , (47)

for which the interface behaves like a plane acoustically rigid surface. Figure 6 compares the

reference model (made up of 500 outputs and the mean values estimates mLexp
1

and mLexp
2

) with the

nominal model output Ls0
.

For the value u1 of the parameter describing the urban environment, a low dispersion on the

observations and quasi-specular reflection behaviour are obtained. The output from the nominal

model and the mean value of the reference model output have a similar shape. For the value u2

of the parameter describing the urban environment, low dispersion on the low frequency range

and high dispersion in the range [65, 90] Hz can be observed. It can also be noted that the mean

value estimate of the experimental realisations Lexp
2 (ω) is contained in a relatively narrow region.

The maximum and minimum values never exceed 6 dB and -6 dB. The shape of the experimental

realisations differs from the shape of the nominal model. As it can be seen in figure 6 the output

from the mean model Ls0
has misplaced interference dips for both urban environments parameters

u1 and u2.

9.3. Identification of the stochastic model optimal parameter wopt

In this section, the procedure described in section 8 is used to identify the optimal parameters

wopt
1 and wopt

2 of the stochastic model corresponding to the parameters u1 and u2.
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Figure 6: Comparisons of the reference model with the nominal model (initial mean model). Reference model (made

up of 500 outputs (thin lines) and the mean values estimates m Lexp
1

and mLexp
2

(thick white lines)). Nominal model output

Ls0
(dashed line). The value of parameter u is u1 (top figure) and u2 (bottom figure).

9.3.1. Determination of the updated parameter of the mean model

In the identification of the optimal parameter wopt of the stochastic model, the first step is the

determination of the updated parameter sopt of the mean model (step 1 in section 8.2), solution of

the minimisation problem defined in equation 27.

The effects of parameters γ , λ and θ on the reflected wave being uncoupled, the minimi-

sation problem is reduced to three one-dimensional searches. The parameters are real and we

use a parabolic interpolation and the Brent’s method [30]. The optimal parameter found from

this minimisation problem is sopt
1 =

(
γ opt

1
, λ

opt
1 , θ

opt
1

)
= (0.366, 1.004, 6.377) for u1 and sopt

2 =(
γ opt

2
, λ

opt
2 , θ

opt
2

)
= (0.107, 1.814, 21.362) for u2.

For u1 and u2, figure 7 shows the experimental observations
{
Lexp

1

(
ω ; η j

)}
j
and

{
Lexp

2

(
ω ; η j

)}
j

from the reference model, together with their respective mean value estimates mLexp
1

and mLexp
2

and

the output from the updated mean model with sopt
1 and sopt

2 . Figure 7 shows that the updated mean

model yields an excellent prediction with respect to the reference model. However it should be

noted that for u = u2 the reference model exhibits a high level dispersion around the frequency 80
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Hz. These variabilities will be taken into account by the probabilistic model in the section below.
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Figure 7: Comparisons of the reference model with the updated mean model. Reference model (made up of 500

outputs (thin lines) and the mean values estimates mLexp
1

and mLexp
2

(thick white lines)). Updated mean model output

Lsopt
(dashed line). The value of parameter u is u1 (top figure) and u2 (bottom figure).

9.3.2. Identification of the optimal parameter of the stochastic model with a genetic algorithm

The updated parameters of the mean model sopt
1 and sopt

2 are then used to define the reduced

admissible setW red of w, which is used to initialise the genetic algorithm. For the evaluation of

the mean-square norm the 0 Hz point is removed from the calculation and the probability level

used for the construction of the confidence region is Pc = 0.98. For the statistical reduction

of information performed in the maximum likelihood method the order of decomposition q (see

equation (39)) is q = 12. With this order of decomposition, the accuracy ε in equation (43) is

such that ε < 10−3, meaning that at least 99.9 % of the information is contained within the random

variables {Y1 (w) , . . . , Y12 (w)}.
Concerning the genetic algorithm, the number of individuals in the population is set to ni =

50, for each individual ν = 500 observations from the stochastic model are generated and the

population evolved over 50 generations. At each generation, half the population is replaced with

children.
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Figure 8 shows the values of the objective functions −Lred (w) and J (w) of the 50 individuals

at generation 1, 10 and 50 (the final generation) for both parameters u1 and u2. It can be seen that

as the population evolves the values of the objective functions −Lred (w) and J (w) decreases.

The chosen criteria to select the final individuals is the mean-square norm: individuals that

show the lowest mean-square norm are selected first and within the remaining individuals, the

individual that exhibit the highest log-likelihood is selected. This way, the least possible under-

estimation of the experimental observations is achieved. The corresponding optimal parameters

wopt
1 and wopt

2 are

wopt
1 =

(
mopt
Γ
, mopt
Λ
, mopt
Θ
, σ

opt
Γ
, σ

opt
Λ
, σ

opt
Θ

)
= (0.213 , 0.984 , 5.136 , 0.140 , 0.023 , 0.143) ,

(48)

and

wopt
2 =

(
mopt
Γ
, mopt
Λ
, mopt
Θ
, σ

opt
Γ
, σ

opt
Λ
, σ

opt
Θ

)
= (0.262 , 1.776 , 20.575 , 0.132 , 0.091 , 5.036) .

(49)
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Figure 8: Values of the objective functions −L red (w) and J (w) for the 50 individuals at generations 1 (circles), 10

(squares) and 50 (final generation, diamonds). The value of parameter u is u 1 (left figure) and u2 (right figure). Note

that some individuals are out of the figure ranges.
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9.4. Solution of the stochastic propagation model, construction of confidence region and valida-

tion

Once the parameters wopt
1 and wopt

2 are identified for u1 and u2 one can solve the stochastic

equations (24) and (25) using the Monte Carlo method with these parameters and construct the

associated confidence region as explained in section 8.3. Confidence regions are constructed with

a probability level Pc = 0.98 and with ν = 500 realisations of the stochastic model.

Figure 9 shows the experimental observations
{
Lexp

1

(
ω ; η j

)}
j

and
{
Lexp

2

(
ω ; η j

)}
j
, their mean

values estimates and the confidence region calculated using the stochastic model and the mean

value of the stochastic model. As one can see the experimental observations belong to the con-

structed confidence regions. For configuration corresponding to u2, the solutions calculated using

the stochastic model show a broad confidence region in the very low frequency range, whereas the

reference solutions exhibit a thin confidence region. This means that the underlying deterministic

model used is not robust in this very low frequency range with respect to statistical fluctuations

generated by the probabilistic model.

10. Conclusions

In this work the development of a stochastic model for long-range non-linear sound propaga-

tion over urban environments has been initiated. It provides an insight into the construction method

of stochastic models and demonstrates the feasibility of using such methods for studying sound

propagation in complex environments. Furthermore, it is shown that the amount of information

provided by such prediction models can be improved by the use of stochastic methods.

The mean propagation model is in this paper based on the non-linear parabolic equation and

its extension for propagation over porous ground layers in order to model propagation over urban

environment. This mean model exhibit low numerical cost but in counterpart induces model uncer-

tainties for simulation of sound propagation over urban environments. Indeed the high complexity

of the urban environment requires more advanced models. The mean propagation model is hence

improved introducing a probabilistic model of uncertainties.

The constructed stochastic model was shown to be in good agreement with the reference model

and can thus be used to study non-linear wave propagation in complex environments. Dissipation
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Figure 9: Comparisons of the reference model with the confidence region calculated with the stochastic model. Ref-

erence model (made up of 500 outputs (thin lines) and the mean values estimates m Lexp
1

and mLexp
2

(thick white lines)).

The confidence region calculated with the stochastic model is represented by the grey area, delimited by thick black

lines. The value of parameter u is u1 (top figure) and u2 (bottom figure).
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effects or refraction effects are naturally present in the NPE model and could be incorporated

in the stochastic model. Thanks to the low numerical effort associated with this model, large

parametric studies could be performed, including main features of sound propagation outdoors,

e.g. temperature and wind velocity gradients or site topography.
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Berg, F. van der Eerden, P. van der Weele, and E. Védy. Blast sound absorbing surfaces. Technical report,

ERDC/CRREL, September 2004.
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