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Abstract

In this paper, we consider the probabilistic modeling of media exhibiting
uncertainties on material symmetries. More specifically, we address both
the construction of a stochastic model and the definition of a methodology
allowing the numerical simulation (and consequently, the inverse experi-
mental identification) of random elasticity tensors whose mean distance (in
a sense to be defined) to a given class of material symmetry is specified.
Following the eigensystem characterization of the material symmetries, the
proposed approach relies on the probabilistic model derived in [25], allowing
the variance of selected eigenvalues of the elasticity tensor to be partially
prescribed. In this context, a new methodology (regarding in particular
the parametrization of the model) is defined and illustrated in the case of
transversely isotropic materials. The efficiency of the approach is demon-
strated by computing the mean distance of the random elasticity tensor to
a given material symmetry class, the distance and projection onto the space
of transversely isotropic tensors being defined by considering the Riemma-
nian metric and the Euclidean projection, respectively. It is shown that
the methodology allows the above distance to be (partially) reduced as the
overall level of statistical fluctuations increases, no matter the initial dis-
tance of the mean model used in the simulations. A comparison between
this approach and the initial nonparametric approach introduced in [37] is
finally provided.
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1. Introduction

The increasing use and modeling of heterogeneous materials with com-
plex microstructures, such as fiber- or nano-reinforced composites and live
tissues, gives rise to many scientific challenges defined at various scales.
Among these aspects, the macroscopic modeling of such materials, while
trivial at first sight, is still a complicated task when the material symme-
tries of the medium are not supposed a priori. It is worth noticing that (i)
such symmetry properties are usually assumed for the sake of convenience
and/or simplicity (rather than experimentally identified), and that (ii) all
materials are likely to present a slightly anisotropic behavior which may or
may not be taken into account, depending on whether the anisotropic contri-
butions are considered as negligible or not. It should further be pointed out
that the question on how to properly define material symmetry constraints
also arises in the mesoscale computational modeling and experimental iden-
tification of random elastic microstructures (see the remark at the end of
this section).

This paper then addresses the stochastic modeling of uncertain elasticity
tensors with unknown material symmetries. No matter the scale at which
the representation is performed, the complex material can be conceptually
“replaced” as an homogeneous medium whose linear behavior is modeled by
a constitutive equation defined by an overall fourth-order elasticity tensor,
denoted by C, exhibiting uncertainties on the symmetry class to which it
belongs, as well as possible intrinsic randomness (a mesoscopic modeling
resulting in the definition of the so-called apparent, stochastic properties; see
[14] [15] [31] [29] for a detailed discussion and the definition of inequalities
between the apparent and effective elasticity tensors). Consequently, the
matrix representation [C] ∈ M+

6 (R) (where M+
6 (R) is the set of all the 6×6

symmetric positive-definite real matrices) of the elasticity tensor C has to be
modeled as a random matrix whose probabilistic model must be constructed.
With reference to the fundamental points introduced above, it should be
pointed out at this stage that such a derivation turns out to be useful (i) in
the more general framework of computational stochastic mechanics, when
the randomness arising from mesoscopic features (see [9] for an example of
such an application, for instance) or macroscopic uncertainties on material
symmetries may have to be taken into account at the coarse scale (that is,
the scale at which engineering structural applications are carried out); (ii)
in the context of experimental identification, when no a priori assumptions
can be made about the material symmetries exhibited by the microstructure
under consideration, or when such assumptions have to be relaxed.
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Such a construction can be achieved within two general stochastic frame-
works. A first approach, referred to as a parametric one, consists in modeling
the uncertainties on all the non-zero components of the random matrix [C]
and then requires a prior choice regarding the class of symmetry to which
all the realizations will belong. Clearly, this material symmetry class should
include the expected (or usually assumed) symmetry class and would thus
correspond, in the most general case, to the class of fourth-order anisotropic
elasticity tensors. The parametric approach would then require the con-
struction of a probabilistic model for 21 statistically dependent real-valued
random variables, so that the joint probability distribution should be con-
structed on R21. Such a construction is clearly intractable in practice, and it
should be pointed out that the complexity of the construction still remains
for higher material symmetries.

An alternative to this modeling relies on the direct construction of a
nonparametric probabilistic model for the matrix-valued random variable
corresponding to the matrix representation [C]. Such an approach was first
introduced for the anisotropic material class in [36] [37] (and experimentally
identified in [13] for instance), in a slightly different context. In the sequel,
we will refer to this probabilistic model as the nonparametric probabilistic
model for anisotropic media. The construction is based on the use of the
Maximum Entropy Principle (MEP; see Section 3.1) under the following set
of constraints:

(i) The usual normalization condition for the probability density function;

(ii) The constraints induced by the symmetries and positiveness proper-
ties;

(iii) The mean function, which is assumed to be given;

(iv) The constraint related to the existence of the second-order moment
of the inverse matrix norm (allowing, together with point ((ii)), the
stochastic non-uniform ellipticity property to be preserved).

Following a similar methodology, Das and Ghanem [9] replaced constraint
(iv) by an uniform ellipticity condition consisting in introducing a deter-
ministic non-zero lower bound (for the elasticity tensor) which has to be
defined and/or constructed. While these nonparametric probabilistic mod-
els benefit from both their mathematical background and simplicity (and
especially regarding the experimental identification, because of a minimal
parametrization), they basically induce anisotropic statistical fluctuations
which cannot be preferably assigned to a set of components of the random
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matrix (for instance, with respect to material symmetries). This fact was
recently pointed out in [39], where the authors propose a new class with
the nonparametric probabilistic approach by adding a new parameter allow-
ing the distance of the anisotropy class to be measured with respect to the
isotropic symmetry, and to be partly controlled. Such developments are in
the class of the generalized probabilistic approach of uncertainties [38] cor-
responding to a coupling between the parametric probabilistic approach and
the nonparametric one. Nevertheless, for lower material symmetries, such
an approach requires the construction of a parametric probabilistic model
on a space of high dimension (5 for transverse isotropy, 9 for orthotropy,
etc.).

In this paper, we specifically address the construction of a probabilistic
model and the definition of a methodology dedicated to the modeling of an
anisotropic elasticity tensor, under the constraint that the mean distance
of the random elasticity matrix [C] to a given material symmetry class is
specified. The paper is organized as follows.

We present, in Section 2, the general framework associated with mate-
rial symmetry classes. We introduce distances in the set of elasticity tensors
(from which projections onto the set of elasticity tensors with given symme-
tries can be defined), as well as the eigensystem characterization of material
symmetries. In particular, such definitions will be used in order to define
a set of constraints on the stochastic eigenvalues of the random elasticity
tensor, so that the (mean) distance to a material symmetry class can be
specified.

The probabilistic model for symmetric positive-definite random matrices
verifying a stochastic ellipticity condition (with constrained variances on
selected eigenvalues), derived in [25] and used in this paper, is recalled in
Section 3. A new parametrization is further introduced and the strategy for
simulating independent realizations of the random elasticity tensor is briefly
recalled.

The methodology is finally exemplified in Section 4, where we consider
the case of a symmetry constraint defined with respect to transverse isotropy.
Such an application typically corresponds to the case of unidirectional com-
posites, for instance. Moreover, the results obtained by using the proposed
approach are compared with the ones derived from the nonparametric prob-
abilistic approach for anisotropic media.

Remark: naturally, the constraints on material symmetries considered in this
paper typically hold when dealing with the mesoscale stochastic modeling
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of heterogeneous materials, which have to be modeled as non-homogeneous
random media. However, such a modeling would require the construction of
a probabilistic model for a tensor-valued random field, which is outside the
scope of this work and will be presented in a forthcoming paper.

2. Definition of a distance of an elasticity tensor with arbitrary
material symmetries to the class of elasticity tensors exhibiting
given symmetry properties

2.1. Representation of the elasticity tensor

In the following, we will consider the matrix representation [C] ∈ M+
6 (R)

of the fourth-order tensor C (with components Cijkℓ) belonging to the set of
elasticity tensors (verifying the usual symmetry and positiveness properties),
also known as the Kelvin formulation and defined as follows [23]:

[C] =




C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C3333

√
2C3323

√
2C3313

√
2C3312

2C2323 2C2313 2C2312

Sym. 2C1313 2C1312

2C1212




. (1)

Otherwise stated, the summation on repeated indices is assumed throughout
the paper.

2.2. Definition of distances in the set of elasticity tensors

The question of defining the distance between elasticity tensors (or equiv-
alently, of finding the closest approximation of an elasticity tensor with ar-
bitrary symmetry to an elasticity tensor with given symmetries) has been
largely investigated, especially within the context of geophysical applications
(see [5] for instance). The calculation of such a distance typically arises in
inverse and/or experimental identification, when one wants to reduce the
complexity of a model by best fitting anisotropic measurements to a model
with given higher symmetries (see [11] [28] and the references therein).

Several metrics have been introduced in the literature to quantify the
distance between two elasticity tensors. The most widely used metrics are
the Euclidean, Log-Euclidean [2] and Riemannian metrics [26], denoted by
dE , dLE and dR respectively, and defined for any elasticity tensors C1 and
C2 by:

dE(C1, C2) = ‖C2 − C1‖, (2)
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dLE(C1, C2) = ‖log (C2) − log (C1) ‖, (3)

dR(C1, C2) = ‖log
(
C
−1/2
1 C2C

−1/2
1

)
‖. (4)

In addition, we introduce the inner product of two fourth-order elasticity
tensors C and D, and its associated norm, such that:

< C, D >= CijkℓDijkℓ, ‖C‖ =< C, C >1/2 . (5)

The convention stated in Eq. (1) ensures the preservation of the norm, no
matter the representation of the elasticity tensor:

‖C‖ = ‖[C]‖F,

where ‖[C]‖F =
√

Tr ([C]2) is the Frobenius norm (or Hilbert-Schmidt
norm) of the real symmetric matrix [C]. Furthermore, the Log-Euclidean
and Riemmanian metrics have the additional property of invariance by in-
version,

dLE(C1, C2) = dLE(C1
−1, C2

−1),

dR(C1, C2) = dR(C1
−1, C2

−1),

which makes them more attractive than the Euclidean metric when dealing
with elasticity tensors. This property for the Log-Euclidean and Riemma-
nian metrics is particularly important when one is interested in defining the
closest approximation (together with its reference frame) of a tensor belong-
ing to a given symmetry class, since the result should then be independent
on whether the stiffness or compliance tensor is considered.

2.3. Projection onto the set of elasticity tensors with given material sym-
metries

Let CSym be a class of elasticity tensors with given symmetries (isotropy,
transverse isotropy, orthotropy, etc.). Let C be a fourth-order elasticity
tensor having an arbitrary symmetry, with components Cijkℓ with respect
to a given frame R = (0, e1, e2, e3). We then denote by CSym = PSym (C)
the projection of C onto CSym, calculated by using one of the distance d
introduced in the previous section, such that:

CSym = Arg min
eC∈CSym

d(C, C̃). (6)

As an example, let CTI be the projection of C onto the set of all the elas-
ticity tensors exhibiting transverse isotropy with respect to e3. Using the
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Euclidean distance dE , it can then be shown that the matrix [CTI] is given
by [27]:

[CTI] =




CTI
1111 CTI

1122 CTI
1133 0 0 0

CTI
1111 CTI

1133 0 0 0
CTI

3333 0 0 0
2CTI

2323 0 0
Sym. 2CTI

2323 0
CTI

1111 − CTI
1122




, (7)

where

CTI
1111 =

1

8
(3C1111 + 3C2222 + 2C1122 + 4C1212) , (8)

CTI
1122 =

1

8
(C1111 + C2222 + 6C1122 − 4C1212) , (9)

CTI
1133 =

1

2
(C1133 + C2233) , (10)

CTI
3333 = C3333, (11)

CTI
2323 =

1

2
(C2323 + C1313) . (12)

It should be pointed out that such a projection could also be derived by using
either the Log-Euclidean or the Riemannian metric. However, such projec-
tions would require the numerical solving of the corresponding optimization
problem and consequently, would largely increase the computational time
associated in the context of the probabilistic analysis. For this reason, the
Euclidean projection will be used in this work.

Remark: the closest approximation ĈSym of C, as well as its reference frame

R̂Sym, could be defined as:

ĈSym = PSym
(
C̃
(
[Qopt]

))
, (13)

in which [Qopt] would be computed by solving the following optimization
problem:

[Qopt] = Arg min
[Q]∈SO(3)

d

(
˜̃
C ([Q]) ,PSym

(
˜̃
C ([Q])

))
, (14)

where d stands either for dLE or dR, SO(3) is the group of all 3-by-3 real or-

thogonal matrices (with determinant equal +1) and
˜̃
C ([Q]) would be defined

by:
˜̃
C ([Q])ijkℓ = [Q]ip[Q]jq[Q]kr[Q]ℓsCpqrs. (15)
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Alternatively, Eq. (14) could be formalized by using the matrix repre-
sentation of the elasticity tensor (given by Eq. (1)) and by considering a
parametrization of the orthogonal group SO(6) (see [22]). Such a character-
ization was studied in [6], in which the use of some quantities, invariant with
respect to SO(3) (such as the trace of the second-order symmetric Voigt and
dilatation tensors), is proposed so as to make the minimization procedure
easier. Numerical procedures for estimating such approximations and their
reference frames (or “effective orientations”) have been proposed and suc-
cessfully applied in [21] and [20] (for transversely isotropic and orthotropic
tensors, respectively); see also [19]. Note finally that the question of defin-
ing such approximations in the presence of measurement errors was recently
addressed in [3].

However, due to the presence of uncertainties which are taken into ac-
count through the probabilistic model inducing statistical fluctuations, there
would not be additional benefit to optimize the distance with respect to [Q].
Consequently, we will limit the development in considering the minimization
with respect to the distance (see Eq. (6)).

2.4. Eigensystem characterization of the material symmetry classes

The classification of material symmetries has been investigated by many
researchers and was historically based on crystallographic considerations.
Quite recently, other approaches, in which the elasticity tensors were classi-
fied either by considering the set of admitted (minor) symmetry planes (see
[7] [8]) or with respect to symmetry groups (see [12] [16]), were proposed.
Both approaches basically result in the definition of eight symmetry classes,
as shown in [7].

In this work, we follow the second approach and more precisely, we
consider the eigensystem-based coordinate-free characterization of the sym-
metry classes, as defined in [4] (see the references therein for previous ap-
plications of this approach, such as the pioneering work [30] in the case of
transversely isotropic media defined by a known axis). This characteriza-
tion allows one to define coordinate-free conditions which are necessary and
sufficient for the identification of the material symmetry class of a given
elasticity tensor. These conditions are formulated through the definition of
the multiplicities of the eigenvalues and through a set of constraints for the
corresponding eigenspaces.

In this framework, it should be noted that (i) the use of the classical
random ensembles from the Random Matrix Theory [24] (such that GOE,
GUE and so on) generally implies all the random eigenvalues of the random
matrix representation to be of multiplicity one (no matter the eigenvalue
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multiplicity orders of the random matrix mean value), and that (ii) the
corresponding random eigenspaces cannot explicitly be described and con-
strained. It can then be deduced that the distance of each realization of
the random elasticity tensor to a given (and closest) symmetry class can be
controlled (albeit within a limited extent) by enforcing the closeness of a
few selected random eigenvalues. Furthermore, while the above classical en-
sembles of the random matrices do not allow the mean value of the random
eigenvalues to be specified, they allow the closeness of several eigenvalues
to be partially controlled by constraining their respective variances. The
present stochastic modeling will thus rely on the probabilistic model for
symmetric positive-definite random matrices with prescribed variances on
several eigenvalues, derived in [25] and recalled in the next section.

3. Probabilistic model of random matrix [C]

3.1. Model derivation

The construction of the model relies on the use of the MEP, introduced
in [17] [18] [33] for random vectors. We recall that such an approach al-
lows one to explicitly construct probability distributions using the available
information only, so that no additional bias is introduced by the probabilis-
tic modeling. The MEP consists in maximizing the measure of entropy S,
defined as:

S = −
∫

M
+
6 (R)

p[C] ([C]) ln
(
p[C] ([C])

)
dC, (16)

with respect to the probability density function p[C], where [C] 7→ p[C] ([C])

is the probability density function from M+
6 (R) into R+ defining the prob-

ability distribution P[C] = p[C] ([C]) dC of random matrix [C] with values in

M+
6 (R). The volume measure dC on the set MS

6 (R) of all the symmetric
6 × 6 real matrices is written as dC = 215/2

∏
1≤i≤j≤6 d[C]ij (see [34]). The

optimization problem (16) is solved under the following set of constraints:

∫

M
+
6 (R)

p[C] ([C]) dC = 1, (17)

E {[C]} =

∫

M
+
6 (R)

[C] p[C] ([C]) dC = [C], (18)

∫

M
+
6 (R)

ln (det ([C])) p[C] ([C]) dC = β, |β| < +∞, (19)
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E

{(
ϕ

iT [C] ϕ
i
)2
}

= s2
i λ

2
i , i ∈ I ⊆ [1, 6], (20)

where det ([C]) and [C]T are the determinant and the transpose of [C], E {·}
denotes the mathematical expectation and

{(
λi,ϕ

i
)}

i
are the eigenvalues

and eigenvectors of the mean matrix [C]. The family {si}i∈I is a set of m
parameters which are supposed to be either assumed or computed from an
experimental inverse identification.

The set of constraints defined by Eqs. (17-19) basically corresponds to
the one previously used and studied in [34] [35]. Eq. (17) is the classical
normalization condition for the probability density function, while Eq. (18)
means that the mean matrix is supposed to be known a priori. Eq. (19)
implies the existence of the second-order moment of the inverse random ma-
trix norm (see [34] [35]). Finally, the set of constraints defined by Eq. (20)
allows one to partially prescribe the variances of m (m ≤ 6) selected random
eigenvalues {λi}m

i=1 of [C] (see [25] for a discussion).

Let µ0 ∈ R, (α − 1) ∈ R, [M1] ∈ MS
6 (R) and {τ ′

i ∈ R}6
i=1 be the La-

grange multipliers associated with the constraints (17-20). It can then be
shown that the probability density function [C] 7→ p[C] ([C]) takes the form:

p[C] ([C]) = k1 (det ([C]))α−1 exp

(
−tr

(
[M1]

T[C]
)
−
∑

i∈I

τ ′
i

(
ϕ

iT [C] ϕ
i
)2
)

,

where tr ([C]) is the trace of [C] and k1 is a normalization constant. Let [Φ]
be the matrix whose columns are the eigenvectors of the mean matrix [C]
corresponding to the constrained eigenvalues gathered in the diagonal matrix
[Λ]. It can easily be proven that [C]−[C][Φ][Λ]−1[Φ]T[C] is positive (positive-
definite if m = 0) and consequently, there is a rectangular n × (n − m) real
matrix [D] such that:

[D][D]T = [C] − [C][Φ][Λ]−1[Φ]T[C]. (21)

Matrix [D] can be obtained from a singular value decomposition. The ran-
dom matrix [C] is next written as:

[C] = [L] [G] [L]T, (22)

where [L] =
[
[C][Φ][Λ]−1/2 [D]

]
and [G] is a random matrix whose proba-

bility density function can be readily obtained as:

p[G] ([G]) = k2 (det ([G]))α−1 exp

(
−tr

(
[M ]T[G]

)
−

m∑

i=1

τi[G]ii
2

)
, (23)
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where k2 is a new normalization constant and the following changes of vari-
ables were performed: [M ] = [L]T [M1] [L], τi = τ ′

iλ
2
i . Finally, the random

matrix [G] is expressed as:

[G] = [H] [H]T, (24)

in which [H] is a lower triangular random matrix with probability density
function:

p[H] ([H]) = k3

(
6∏

ℓ=1

[H]ℓℓ
5−ℓ+2α

)

×exp


−tr

(
[H]T[M ]T[H]

)
−

m∑

i=1

τi

(
i∑

ℓ=1

[H]iℓ
2

)2

,

(25)

where k3 is an appropriate normalization constant. It can be shown that
[G] is such that

E {[G]} = [I6], (26)

and
E
{

[G]ii
2
}

= s2
i , (27)

where [I6] is the 6 × 6 identity matrix. From Eq. (26), it can be deduced
that [M ] is a diagonal matrix, so that the corresponding Lagrange multipliers
can be put into the vectorial form µ = (µ1, . . . , µ6) = ([M ]11, . . . , [M ]66) and
Eq. (25) can be written as:

p[H] ([H]) =
m∏

i=1

k̂i[H]ii
5−i+2αexp


−µi

(
i∑

ℓ=1

[H]iℓ
2

)
− τi

(
i∑

ℓ=1

[H]iℓ
2

)2



×
n∏

i=m+1

k̂i[H]ii
5−i+2αexp

[
−µi[H]ii

2
]

×
n∏

i=m+1

i−1∏

ℓ=1

k̂iℓexp
[
−µi[H]iℓ

2
]
,

(28)

where
{

k̂i

}

i
and

{
k̂iℓ

}

iℓ
are normalization constants. From Eq. (28), it is

seen that:

• the terms [H]iℓ are all independent from each other and from the other
elements for i > m and i > ℓ, and are normally distributed with mean
0 and standard deviation 1/

√
2µi. Moreover, it can be proven that

µi = 5/2 + α for i > m.
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• the terms [H]ii are all independent from each other and from the other
elements for i > m and are distributed according to:

p[H]ii ([H]ii) = k̂i[H]ii
5−i+2αexp

[
−µi[H]ii

2
]
, [H]ii ≥ 0,

with µi = 5/2 + α.

• for each i fixed in 1, . . . ,m, the random variables [H]iℓ, for ℓ = 1, ..., i
are statistically dependent, while the families of random variables
{[H]11}, {[H]21, [H]22}, . . ., {[H]mℓ, ℓ = 1, . . . ,m} are independent.
For each i fixed in 1, . . . ,m, the joint probability density function of
the random variables [H]i1, . . . , [H]ii is written as:

p[H]i1,...,[H]ii ([H]i1, . . . , [H]ii) = k̂i[H]ii
5−i+2αexp

(
−µi

(
i∑

ℓ=1

[H]iℓ
2

)

−τi

(
i∑

ℓ=1

[H]iℓ
2

)2

.

Making use of a change of variables, it can also be proven that the marginal
distribution of component [G]ii is:

p[G]ii ([G]ii) = ai[G]ii
3/2+αexp

(
−µi[G]ii − τi[G]ii

2
)

, (29)

where [G]ii > 0 (resp. [G]ii ≥ 0) when 3/2 + α is a real positive number
(resp. a positive integer) and ai is a normalization constant.

Let δ be the parameter allowing the level of statistical fluctuations of
random matrix [G] to be characterized:

δ2 =
1

6
E
{
‖[G] − [I6]‖2

F

}
. (30)

Making use of Eq. (26) and taking advantage of both the algebraic and
probabilistic properties of components [H]iℓ, it can further be shown that:

δ2 =
1

6

m∑

i=1

s2
i −

7 − (m/6)(7 + 2α)

5 + 2α
. (31)

Finally, we introduce the following measure of statistical fluctuations on the
random matrix [C]:

δ2
C =

E
{
‖[C] − [C]‖2

F

}

‖[C]‖2
F

. (32)
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3.2. Parametrization of the probabilistic model

From the previous sections, it is seen that the probabilistic model is
initially parametrized by a set of 2m + 1 Lagrange multipliers, namely α,
µ = (µ1, . . . , µm) and τ = (τ1, . . . , τm). However, enforcing Eq. (26) yields
a set of m uncoupled equations in terms of (α, µi, τi) (1 ≤ i ≤ m) which
can be numerically solved for, say, parameter µi, and used to reduce the
parametrization to m+1 parameters. Let q = 3/2+α. In the following, we
will assume that q is a positive integer. The system of equations then reads:

∫

R+

p[G]ii ([G]ii) d[G]ii = 1, (33)

∫

R+

[G]iip[G]ii ([G]ii) d[G]ii = 1, (34)

for i ∈ I and where [G]ii 7→ p[G]ii ([G]ii) is given by Eq. (29).
For small and moderate values of both α and τi (typically, α ≤ 80

and τi ≤ 1000), a closed-form algebraic equation for parameter µi can be
readily obtained and used as follows. Proceeding to the change of variable
r =

√
2τi[G]ii in Eq. (33), the normalization constant ai is first derived as:

ai =
(2τi)

(q+1)/2

Γ(q + 1)U

(
q +

1

2
,

µi√
2τi

)
exp

(
µ2

i

8τi

) , (35)

where U(a, x) is the parabolic cylinder function of parameter a and argument
x (see [40] [1]). Next, substituting Eq. (35) in Eq. (34) yields the following
equation:

U
(
q + 3/2, µi/

√
2τi

)

U
(
q + 1/2, µi/

√
2τi

) =

√
2τi

q + 1
, (36)

which has to be solved for parameter µi. It should be noted that the resolu-
tion of Eq. (36) does not require the normalization constant to be calculated.

For large values of parameters α and τi, Eq. (36) may be tricky to solve
in practice because of numerical infinite values. In this case, the integral
equations (33) and (34) have to be solved numerically, requiring the nor-
malization constant to be calculated for each trial of parameter µi. This
computation can be performed by writting Eq. (33) as:

∫

R+

exp
(
a′i + qlog ([G]ii) − µi[G]ii − τi[G]ii

2
)

d[G]ii = 1, (37)

where log is the Neperian logarithm, a′i = log (ai) is a new normalization
constant which is used to rescale the integrand and which may be computed
using any optimization algorithm.
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3.3. Strategy for simulating realizations of random matrix [C]

The realizations of random matrix [C] can be readily obtained from the
ones of matrix [H], using Eqs. (24) and (22). In the sequel, Z ∝ N (a, b)
(resp. Z ∝ G (a, b)) means that the random variable Z is normally (resp.
Gamma) distributed with mean value a and standard deviation b (resp. with
parameters a and b).

The terms [H]iℓ, with i > m and i > ℓ, are easily generated as Gaussian
random variables, with mean 0 and standard deviation 1/

√
2µi (with µi =

5/2 + α).
The terms [H]ii, i > m, can be simulated as:

[H]ii =

√
Yii

µi
, (38)

where Yii ∝ G (3 + α − i/2, 1) and µi = 5/2 + α.
An efficient simulation algorithm of the terms [H]iℓ, i ≤ m, has been

proposed in [25] and is recalled below:

1. Generate the random matrix [H′] whose components are defined by:

[H′]ii =

√
Y ′

ii

µi
, Y ′

ii ∝ G (3 + α − i/2, 1) , (39)

for i = 1, . . . ,m and by:

[H′]iℓ ∝ N
(
0, 1/

√
2µi

)
, (40)

for i = 1, . . . ,m and ℓ = 1, . . . , i − 1.

2. Compute the diagonal random matrix [G′] with components:

[G′]ii =
i∑

ℓ=1

[H′]iℓ
2
, i = 1, . . . ,m. (41)

3. Generate the terms [G]ii (i = 1, . . . ,m) according to Eq. (29) by using
an algorithm by rejection (see [10]) for instance.

4. Compute the terms [H]iℓ as:

[H]iℓ = [H′]iℓ

√
[G]ii
[G′]ii

. (42)
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4. Application

In this application, we consider three mean (or nominal) deterministic
models, whose elasticity tensors belong to the anisotropic class and are more
or less close to the transverse isotropy symmetry. Their respective distances
to transverse isotropy will be first calculated. Then, for one of these mean
models, we use the presented probabilistic model and methodology allowing
the uncertainties to be taken into account. These probabilistic models de-
pend on parameters α and τ . We then analyze the dependence of the global
statistical fluctuations and of the mean distance to transverse isotropy with
respect to these parameters. Finally, we compare the results given by this
theory with the ones from the nonparametric probabilistic approach with
anisotropic statistical fluctuations.

4.1. Definition of the mean models and quantification of their distances to
the transverse isotropy class

For this application, we will consider three mean models [CS ], [CM ] and
[CH ], respectively corresponding to a small, medium and large distance to
transverse isotropy. They are obtained using a perturbation of the typical
elasticity matrix of a carbon-epoxy unidirectional composite (with fibers
aligned along axis e3) and are defined as follows (unit is GPa):

[CS ] =




10.1036 0.5391 2.9625 −0.0040 0.0071 −0.0165
0.5391 10.1061 2.9782 −0.0041 −0.0070 −0.0036
2.9625 2.9782 182.690 0.0197 0.0016 0.0145
−0.0040 −0.0041 0.0197 14.0339 0.0068 0.0008
0.0071 −0.0070 0.0016 0.0068 14.0121 −0.0103
−0.0165 −0.0036 0.0145 0.0008 −0.0103 9.5552




,

[CM ] =




10.3534 0.6895 2.9143 −0.0283 −0.0293 0.0004
0.6895 10.5845 3.0054 0.1794 0.2049 0.1017
2.9143 3.0054 183.1239 0.2110 0.0533 0.2894
−0.0283 0.1794 0.2110 14.3502 0.3882 0.1864
−0.0293 0.2049 0.0533 0.3882 14.5328 0.1060
0.0004 0.1017 0.2894 0.1864 0.1060 10.2945




,

[CH ] =




10.4270 0.9722 3.4443 0.7987 −0.0773 0.3999
0.9722 11.9611 2.5000 1.2461 −0.5386 −0.1726
3.4443 2.5000 186.1899 −0.1625 −0.1436 1.4450
0.7987 1.2461 −0.1625 16.4521 −0.4674 0.3480
−0.0773 −0.5386 −0.1436 −0.4674 15.9919 0.6151
0.3999 −0.1726 1.4450 0.3480 0.6151 11.0544




.
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We recall that any elasticity matrix exhibiting transverse isotropy has two
eigenvalues of multiplicity two and two eigenvalues of multiplicity one. Mak-
ing use of this property, we can obtain a rough characterization of the dis-
tance to transverse isotropy by computing the eigenvalues of these nominal
models, which are:

• Mean model [CS ]: λ1 = 9.5498, λ2 = 9.5709, λ3 = 10.5417, λ4 =
14.0102, λ5 = 14.0359, λ6 = 182.7925.

• Mean model [CM ]: λ1 = 9.7546, λ2 = 10.2847, λ3 = 11.0632, λ4 =
14.0443, λ5 = 14.8660, λ6 = 183.2265.

• Mean model [CH ]: λ1 = 9.7907, λ2 = 11.0559, λ3 = 11.8578, λ4 =
15.8393, λ5 = 17.2267, λ6 = 186.3060.

According to the eigensystem characterization of the symmetry class, the in-
crease of the distance between the eigenvalues λ1 and λ2 as well as between
λ4 and λ5 means that the distance to transverse isotropy is higher for [CH ]
than for [CS ]. The distances of the mean models to transverse isotropy,
computed with respect to both the Euclidean and Riemannian metrics, are
given in Tab. 1.

[CS ] [CM ] [CH ]

dE 0.0537 1.0061 3.6851

dR 0.0036 0.0702 0.2250

Table 1: Euclidean and Riemannian distances to transverse isotropy for the three mean
models [C

S
], [C

M
] and [C

H
].

These results allow the distance value to transverse isotropy to be correlated
with the closeness of the eigenvalues.

4.2. Dependence of the distance to transverse isotropy and of the level of
statistical fluctuations with respect to parameters α and τ

In this section, we investigate the capability of the proposed probabilis-
tic model to describe uncertainties for elasticity tensors exhibiting material
symmetries. For that, we carry out a parametric analysis of the probabilis-
tic model to evaluate its capacity to generate realizations almost verifying
material symmetries. Below, the application is limited to the class of trans-
versely isotropic materials.

16



Following the previous section, the mean distance to transverse isotropy
may be reduced by enforcing a small variance on the stochastic eigenvalues
λ1, λ2, λ4 and λ5 (with 0 < λ1 ≤ λ2 ≤ λ4 ≤ λ5). Consequently, the vector
τ is written as

τ = (τ, τ, 0, τ, τ, 0) , (43)

where τ is a real positive parameter. In order to be consistent with the
philosophy of the MEP, it should be pointed out here that enforcing the
value of parameter τi, i = 1, . . . ,m, basically consists in setting, implicitly,
a value of constraint parameter si (see Section 3.1). For each mean model,
the matrices [Φ] and [Λ], introduced in Section 3.1, are then respectively
defined as:

[Φ] =
[
ϕ

1,ϕ2,ϕ4, ϕ5
]
, [Λ] =




λ1 0 0 0
0 λ2 0 0
0 0 λ4 0
0 0 0 λ5


 . (44)

The mean and coefficient of variation of the six eigenvalues of the ran-
dom elasticity matrix are estimated on a set of 2500 realizations by using
mathematical statistics [32]. Note that this number of samples ensures the
convergence of the statistical estimates. The mean and coefficient of varia-
tion are plotted (in semi-log scale) on Figs. 1 and 2, for α = 60, mean model
[CS ] and different values of τ (ranging from 0.1 to 104).
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Figure 1: Plot of function τ 7→ E {λi(τ)}, for α = 60 and mean model [C
S
].
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Figure 2: Plot of function τ 7→ CV {λi(τ)}, for α = 60 and mean model [C
S
].

First of all, it is seen that τ has a negligible effect on the mean values
of the random eigenvalues, while large values of this parameter (typically,
τ ≥ 104) imply a decrease of 25% (resp. 37%, 44% and 44%) of the co-
efficient of variation of λ1 (resp. λ2, λ4 and λ5). Furthermore, it is seen
that all the coefficients of variation take similar values when τ tends to 0,
which is consistent with the nonparametric probabilistic approach for the
anisotropic class which may then be recovered. With such a probabilistic
model, since all the eigenvalues still remains stochastic when δC 6= 0, the
coefficients of variation corresponding to the constrained eigenvalues tend
to a constant value (which is different from 0) when τ goes to infinity, which
implies that the mean distance to transverse isotropy can only be specified
within a limited range. As expected, the coefficients of variation of the un-
constrained eigenvalues, namely λ3 and λ6, do not depend on τ (although
the coefficient of variation of λ3 presents a very small variation which may be
due to its closeness of the constrained eigenvalues). All these comments can
also be visualized on Figs. 3 and 4, where the probability density functions
(estimated by using the kernel density estimation method) of the stochastic
eigenvalues are plotted for τ = 1 and τ = 104 (using the mean model [CS ]).
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Figure 3: Plot of the PDFs of the random eigenvalues λi, i = 1, ..., 5, for τ = 1 (black
solid line) and τ = 104 (red solid line). Mean model: [C
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Figure 4: Plot of the PDF of the random eigenvalue λ6, for τ = 1 (black solid line) and
τ = 104 (red solid line). Mean model: [C
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The graph of τ 7→ δC(τ) is plotted on Figs. 5 and 6, for different values
of parameters α and τ .
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Figure 5: Plot of function τ 7→ δC(τ) for α = 60 (mean model [C
S
]).

10
−1

10
0

10
1

10
2

10
3

10
4

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

τ

δ
C

 

 

α = 20

α = 40

α = 60

α = 80

Figure 6: Plot of function τ 7→ δC(τ) for several values of parameter α (mean model [C
S
]).

It is seen that the level of statistical fluctuations is almost independent from
parameter τ , with a decrease of δC of 1% (resp. 0.8%, 0.8% and 0.7%) for
α = 20 (resp. α = 40, 60 and 80) when τ runs over [0.1, 104]. Furthermore,
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this level strongly depends on α: the larger the parameter α is, the smaller
the overall level of fluctuation δC. Consequently, parameter α has to be
used to calibrate the overall level of statistical fluctuations δC. The plots of
τ 7→ E

{
dR

(
[C], [CTI]

)}
are shown on Figs. 7 and 8, for different values of

α (corresponding then to several levels of fluctuations).
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It is seen that no matter the value of α, the mean distance to transverse
isotropy can be reduced by increasing the value of parameter τ . For in-
stance, in the case α = 60 (corresponding to δC = 0.15), setting τ = 104

yields a reduction of about 7% of the mean distance. It is also observed that
this reduction is all the more important as the value of parameter α is small,
which correspond to large levels of statistical fluctuations (and accordingly,
to large variances of the eigenvalues).

We can now summarize the results above concerning the use of the mean
distance for characterizing the material symmetries for a stochastic model of
the elasticity tensor. For the mean model [CS ] (close to transverse isotropy),
corresponding to the most severe case, the capability of the proposed proba-
bilistic model to describe the symmetry classes from anisotropy to transverse
isotropy is high when δC is small. In counterpart, as δC increases, this capa-
bility decreases due to the repulsion phenomena of the random eigenvalues,
physical phenomena which cannot be avoided. Nevertheless, the proposed
probabilistic model allows a significant transverse isotropy to be obtained
for the random tensor when its global statistical fluctuations increase.

4.3. Comparison between the proposed stochastic model and the nonpara-
metric probabilistic approach for anisotropic materials

In this section, we compare the proposed stochastic model and the non-
parametric probabilistic approach for anisotropic materials. In order to
study the two probabilistic models, both of them are calibrated with respect
to the level of statistical fluctuations δC. The parameter τ involved in the
proposed analysis is set to 104 (thus yielding a reduction of the mean distance
to transverse isotropy). Let λ̂1 = λ2 − λ1 and λ̂4 = λ5 − λ4. Following Sec-
tions 2.4 and 4.1, the mean distance to transverse isotropy may be reduced

by imposing small values of the second-order moments E
{

λ̂2
1

}
and E

{
λ̂2

4

}
.

The plots of δC 7→ E
{

λ̂2
1

}
and δC 7→ E

{
λ̂2

4

}
, obtained by considering the

two probabilistic models, are shown on Fig. 9, for the three mean models
([CS ], [CM ] and [CH ]) and for reasonable levels of statistical fluctuations
(δC ≤ 0.12). While the second-order moments obviously increase together
with δC for both the proposed model and the nonparametric approach with
anisotropic fluctuations (no matter the mean model used in the simulations),
it is seen that the proposed approach allows these moments to be signifi-
cantly reduced, as shown in Tab. 2. The plot of δC 7→ E

{
dR

(
[C], [CTI]

)}

is shown on Fig. 10, for different nominal distances to transverse isotropy
and for the two probabilistic approaches.
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[CS ] [CM ] [CH ]

Reduction on E
{

λ̂2
1

}
(%) 32.2 30.9 25.1

Reduction on E
{

λ̂2
4

}
(%) 45.7 41.4 38

Table 2: Reduction of E
n

λ̂2
1

o

and E
n

λ̂2
4

o

obtained by using the proposed approach in

comparison with the nonparametric probabilistic approach with anisotropic fluctuations.
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]: blue). The nonparametric approach with anisotropic fluctuations
appears in dashed line, while the proposed approach appears in solid line.

First of all, it is seen that the mean distance increases together with the
overall level of statistical fluctuations, no matter the nominal model or the
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considered probabilistic model. Then, for the three mean models used in
the computations, the proposed approach allows the mean distance to be
decreased (in comparison with the nonparametric model for anisotropic ma-
terials), the obtained reduction depending on δC. For mean model [CM ],
the mean distance to transverse isotropy can thus be reduced by 7% for
δC ≈ 0.4 for instance. It is worth noticing that such a reduction strongly
depends on the choice of the symmetry class with respect to which the mean
distance is constrained, and that transverse isotropy clearly appears as one
of the most severe case. Finally, it is shown that the mean model has a small
effect on the mean distance to transverse isotropy for non negligible levels
of statistical fluctuations (typically, for δC ≥ 0.3).

5. Conclusion

In this paper, we considered the stochastic modeling for elasticity tensors
with uncertain material symmetries. The proposed approach is based on the
eigensystem characterization of the symmetry classes and allows the mean
distance of the elasticity tensor to a given symmetry class to be partially
controlled.

Making use of a probabilistic model for positive matrices proposed re-
cently, we derived and exemplified a methodology, considering the case of
a prescribed distance to transverse isotropy. In particular, it was shown
that the mean distance can be significantly reduced in comparison with the
nonparametric probabilistic model for anisotropic media. The application
presented has been limited to transverse isotropy (that is the most severe
case for the theory developed) and can easily be applied to any other class
of symmetry.

In addition to its capability to represent different classes of symmetries,
the probabilistic model proposed exhibits more parameters than the previous
stochastic models developed in the literature (within the general framework
of nonparametric probabilistic approaches for anisotropic media) and thus,
it turns out to be especially suitable for the fundamental issue of inverse
experimental identification under material symmetry uncertainties. It can
also be used as a prior stochastic model for the development of computa-
tional approaches, where the underlying randomness arising from fine scale
features may have to be taken into account at a coarse scale, for instance.

A natural extension of this work will deal with the derivation of non-
parametric stochastic models for tensor-valued random fields under material
symmetry constraints. Such developments are of particular interest for the
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mesoscale modeling of heterogeneous random media and are currently under
investigation.
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