N

N

A reduced-order model of detuned cyclic dynamical
systems with geometric modifications using a basis of
cyclic modes
M. Mbaye, Christian Soize, J.-P. Ousty

» To cite this version:

M. Mbaye, Christian Soize, J.-P. Ousty. A reduced-order model of detuned cyclic dynamical systems
with geometric modifications using a basis of cyclic modes. Journal of Engineering for Gas Turbines
and Power-Transactions of the Asme, 2010, 132 (11), pp.Article Number 112502. 10.1115/1.4000805 .
hal-00684307

HAL Id: hal-00684307
https://hal.science/hal-00684307

Submitted on 1 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00684307
https://hal.archives-ouvertes.fr

A reduced-order model of detuned cyclic
dynamical systems with geometric modifications
using a basis of cyclic modes

Moustapha Mbaye 12

Christian Soize? *

Jean-Philippe Ousty?

1 Université Paris-Est, Laboratoire de Modélisation et Simulation Multi Echelle
MSME FRE3160 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
2 Turbomeca - Safran Group, 64511 Bordes, France
moustapha.mbaye@univ-paris-est.fr
christian.soize@univ-paris-est.fr
jean-philippe.ousty@turbomeca.fr

A new reduction method for vibration analysis of intention-
ally mistuned bladed disks is presented. The method is built
for solving the dynamic problem of cyclic structures with ge-
ometric modifications. It is based on the use of the cyclic
modes of the different sectors which can be obtained from a
usual cyclic symmetry modal analysis. Hence the projection
basisis constituted aswell as, on the whole bladed disk, each
sector matrix is reduced by its own modes. The method is
validated numerically on a real bladed disk model, by com-
paring free and forced responses of a full model finite ele-
ment analysis to those of a reduced-order model using the
new reduction method.

1 Introduction

In the context of turbomachinery design, small varia-
tions in the blade characteristics of cyclic structures due to
manufacturing tolerances affect the structural cyclic symme-
try creating mistuning which increases the forced response
amplitudes (e.g. see [1-3]). However, it is possible (e.g.
see [4-8]) to intentionally mistune the mistuned system in or-
der to reduce the forced response amplification. Intentionally
mistuning the system is called detuning. The main technical
solutions to introduce detuning are based on modifying blade
material properties, the interface between the blades and the
disk, or the blades’ shapes by introducing several types of
blades with different geometries corresponding to geometric
modifications of the nominal blades. In the present paper, it
is assumed that detuning is performed by modifying blade
shapes and the disk is not detuned.

Vibration analyses of cyclic structures are usually per-
formed using their cyclic symmetry and formulated for one
sector from which the dynamic of the whole structure is ob-
tained (e.g. see [9-12]). This is no longer the case for mis-
tuned and/or detuned structures which need a full structure

*Adress all correspondance to this author.

formulation. To reduce numerical computational costs while
solving the detuning problem on finite element meshes of re-
alistic bladed disks, many reduced-order methods have been
introduced (see [6, 13-20]). In general, reduced-order mod-
els are obtained by substructuring a bladed disk into disk and
blades components (see e.g. [13, 14]), as this allows an easy
implementation of blade mistuning or detuning. However,
a different approach [15] called SNM has been proposed by
Yang and Griffin, in which the tuned system cyclic modes
are used without substructuring to generate a reduced-order
model. This technique is very efficient in the case of cyclic
structures with blade material properties modifications but
can be not efficient for the case of blade geometric mod-
ifications for the following reasons. It is well known that
the tuned modes constitute a basis of the admissible space
of the displacements for the mistuned bladed disk. Never-
theless, such a basis is generally not really efficient with re-
spect to the convergence speed and a large number of tuned
modes are required for such a situation. It should be noted
that if convergence is slow, then the reduced-order model is
not sufficiently small and so would not be efficient and ef-
fective to implement the probabilistic model of uncertainties
and above all to perform a robust design optimization. In
another hand, it is well recognized today that, if the use of
the tuned modes for constructing the reduced-order model is
efficient for blade material properties modifications, it is not
always the case for blade geometric modifications (see for
instance [18,21]). In addition, the blade geometric modifica-
tions induce a problem related to incompatibility represen-
tations between the tuned modes calculated with the mesh
of the tuned bladed disk and the structural matrices of the
geometrically modified bladed disk calculated with another
mesh. In these conditions, the nominal and the geometrically
modified meshes are incompatible (see Appendix A). Con-
sequently, these incompatible finite element meshes induce
a difficulty for constructing the projection of the geometri-



cally modified mass and stiffness matrices using the tuned
bladed disk sector cyclic modes. In such a situation, intru-
sive developments must be performed in commercial soft-
wares to take into account this incompatibility of represen-
tations related to different meshes. A simple model derived
from SNM and known as the Fundamental Mistuning Model
(FMM) that reduces the set of nominal modes to a single
modal family [16,17] had also been introduced. Neverthe-
less, its application field is limited to a modal family with
nearly equal frequency. An extension of the FMM for the
case in which all modes of the family do not share the same
frequency, known as Asymptotic Mistuning model (AMM)
has also been introduced in [19,20]. This method is a per-
turbation method in which the small parameters are the small
frequency corrections induced by mistuning, the small damp-
ing of the tuned modes or the first aerodynamic correction of
the purely structural vibration characteristics. Then large ge-
ometric detuning can be difficult to solve with this method.
To solve the problem of geometric detuning, without using
substructuring, a method named Static Mode Compensation
(SMC) has been proposed in [18], and used in [22], in which
the mistuned system is represented by the full tuned system
and by virtual mistuning components. But this method needs
a convergence acceleration to be performed, which leeds to
a large amount of calculation.

In this paper, we propose a method inspired of the SNM
method but allowing the case of geometric detuning to be
treated with efficiency with respect to the speed of conver-
gence and with respect to the incompatibility of the represen-
tations induced by the use of different finite element meshes
corresponding to the nominal blade and to the geometrically
modified blades. Thus, we do not want to have a substructur-
ing method or to use static modes for convergence accelera-
tion. Then, it is assumed that a commercial software (black
box) is used to compute the cyclic modes and mass and stiff-
ness matrices of the different bladed disk sector types in in-
dependent calculations. In this particular context, we pro-
pose here a new method which uses the cyclic modes of the
different bladed disk sectors and which consist on reducing
each sector mass and stiffness matrices by its own modes.
Linear constraints are applied on common boundaries be-
tween sectors to make the displacement field admissible on
the entire bladed disk. An application is done on a realis-
tic bladed disk model by comparing its dynamic characteris-
tics using this reduction method to those obtained on a full
model.

2 Theory
2.1 Dynamic equation

Let us consider the finite element model Q of a de-
tuned structure with N blades. Detuning results from geo-
metric modifications of some blades. In the frequency band
[ defined by [ = [®min, Omax]), 0 < ®min < Omax the dynamic
equation of the detuned bladed disk can be written

(~0’M] + jo[D] + [K])u(o) = f(o) @

where the vector u stands for the union of all sectors (with
free interfaces) displacements for the entire detuned bladed
disk and not the displacement vector of the entire detuned
bladed disk. This vector contains redundant degrees-of-
freedom corresponding to the common interfaces degrees-of-
freedom of adjacent sectors (a blade + a part of the disk) due
to the fact we consider each sector with its inner and bound-
aries degrees-of-freedom. f denotes the vector of external
structural forces and fluid-structure coupling forces, matri-
ces [M], [D], [K] represent real mass, damping and stiffness
matrices and j2 = —1. ngof is the size of vectors u.

Linear constraint equations must be added to Eq.(1).
The vector u(w) is written as

U((l)) = (U[((D), UC(CO)) ) (2)

in which uc(w) is the vector of constrained degrees-of-
freedom and where u,() is the vector of the free degrees-
of-freedom. The constraints equation can the be written as

Ue(®) = [Blug(®) . ®)

It can then be deduced the constraints equation for the entire
detuned bladed disk,

u(w) = [Blug(w) . 4)
Introducing the dynamic stiffness matrix
[E(0)] = —0?[M] + jo[D] + K] (5)

then the dynamic equation (1) integrating the constraints
equation becomes

[B]" [E(w)][Bus(w) = [B]"f(@) . (6)

The detuned bladed disk is made of N sectors compatible on
their coupling interfaces. Consequently, the dynamic stiff-
ness matrix is formed by N x N sub-matrices, each one hav-
ing T x N components and displacement and forces vectors
are formed by N sub-vectors.

[E]°--- [0]
El=1] : - ; )
0] --- [EN?
u® f0
u=1| |, f=[ ; €))
uNfl fol



with the vector uP containing the displacements of the A
degrees-of-freedom associated with sector p. Note that ma-
trix [E] is a bloc diagonal matrix. Then, the mass and stiff-
ness matrices take the form

M]°--- [0

M= + . : (9)
0] --- MN
K] --- 0]

K= « - : (10)
0] - [KN

where the fi x 71 sector mass and stiffness matrices [M] and
[K] are symmetric matrices and

[Mu]  [Mi]  [0]

MPP= [ [Mi]T [Ma] [Mif] | (11)
[0] [Mir]T [Mrr]
[Ki] [Ki] [0]

KIP= [ [Ki]" [Ki] [Kie] | (12)
[0] [Kir]T [Krr]

where subscripts i, | and r are related to the inner, the left
side coupling interface and the right side coupling inter-
face degrees-of-freedom. At this step, the dynamic sys-
tem matrices and the displacement vector are expressed in
local blade coordinates system associated with each sector
Qp, Vpe{0,N—-1}.

2.2 Reduced-order model
2.2.1 Projection basis

Let us consider t different blade types for a bladed disk
with N blades, t < N. In the following discussion, we con-
sider N blade types which can be different, knowing that if
t < N there is at least one repetition of a blade type. So, each
sector Qp of the detuned bladed disk is associated with a
blade type. For each blade type associated with a given Q p, a
tuned bladed disk is considered with this blade type in cyclic
symmetry conditions. For each tuned bladed disk associated

with Qp, the cyclic modes are computed. Let ﬁ?”, U
be the m cyclic modes in the global coordinates system of
the tuned bladed disk whose blade type is associated with
the blade type of sector Q, in the detuned bladed disk. For
the projection basis, the continuity of the displacement vec-
tor is ensured between two adjacent sectors which have the
same blade type, but is not ensured between two adjacent
sectors with different blade types. In addition, when the

cyclic modes of two different sector types are computed by

independent calculations, a phase shift can appear between
them. This phenomenon will be explained more in subsec-
tion 2.2.2. So we need to reinstate the displacement vector
continuity and put in phase the modes related to different sec-
tor types over the entire bladed disk. It should be noted that
if all blades are identical, then the projection basis integrates
the displacement vector continuity between adjacent sectors
and the phase coherence which makes the constraint Eq.(2)
automatically satisfied. In the global coordinates system, the
projection basis is written as

G2 . g
=1 : : (13)
~QN_ ~QN_
‘I’lN 1. lllmN 1

where \4729 is a real mode expressed in the global coordi-
nates system, m is the number of modes selected and Q, is
a geometrical domain represented by the sector p of the de-
tuned bladed disk. The subscript o stands for a couple of
index (n,v) where n is the number of nodal diameters of the
mode and v is the mode rank for this family of nodal diam-
eters. So, ﬁff” is the mode number o associated with sector

p which has a blade of type Q. This real mode is obtained

~ ~0.p
using the corresponding cyclic mode q)?r;f)v) = ¢?r;'fv) + j¢<n,v)
in local coordinate system of sector Qg for the bladed disk of
type Qp in cyclic symmetry conditions

~Qp  0p 2npr\ =0P  /2npn
\p(n‘fv) = () COS (—N ) — O(ny) SiN N (14)
2.2.2 Phase correction of cyclic modes of different sec-
tor types

To built a basis for the complete detuned bladed disk
with cyclic modes of the different sector types, we must
write the continuity and phase conditions on interfaces be-
tween adjacent sectors with different blade types, as said pre-
viously. In fact, since cyclic modes of each type of sector are
computed independently from the cyclic modes of the other
sector types, a phase shift may appear between cyclic modes
of different sector types. This phase shift is caracterized by
a rotation of the nodal diameters of the cyclic mode on the
disk. In fact, in tuned conditions, the location of the modes
nodal diameters on the bladed disk is indeterminate as shown
in Fig. 1. On this figure, the sub-figures on left and right rep-
resent twin orthogonal modes obtained for each computation.
To ensure the phase coherence between the cyclic modes of
the different sector types, we introduce a complex parameter
called MSF (Modal Scale Factor) which is defined by

{x}7{y}
MSF(x,y) = = (15)

{X}T{x}
where argMSF (x,y) represents the phase shift between the
two complex vectors x and y. In these conditions, each cyclic



Geometries of twin modes with one nodal diameter obtained

Fig. 1.
by two independent computations :
second computation ((c),(d)).

first computation ((a),(b)) and

mode ¢'™ can be corrected in phase with the formula

MSF (pnom ini
o= (™M, ¢'m)

= TMSF (oom, i )| 10

q)lnl ,

where ¢'™ a cyclic mode obtained by one of the independent
computations, ¢ is a cyclic mode corresponding to ¢'™ and
corrected in phase with ™™, ¢"°™ is a cyclic mode obtained
by one of the independent computations and taken as phase
reference and |Z| represents the modulus of complex z. Thus,
we can verify in Eq.(17) and Eq.(18) that the new mode ¢
is in phase with the nominal mode ¢™°™ because its MSF re-
ferred to the nominal mode is real, implying that its argument
is null.

{q)nom}T@
{q)nom}T {q)nom}
I SCEa N G M)
|Mg:(¢nom’¢|nl)| {q)nom}T{W}
= [MSF ("™, 0™)| € R

MSF (™™, 0) =

(17
This implies that

argMSF (6™, ¢) =0 (18)
Then after a phase correction of cyclic modes obtained by

independent computations, Fig. 1 becomes Fig. 2, which ex-
hibits phased cyclic mode shapes.

2.2.3 Displacement continuity between adjacent sectors
To solve the dynamic equation of motion of the geo-
metrically detuned bladed disk, by using a projection basis

Fig. 2. Geometries of twin modes with one nodal diameter obtained
by two independent computations after phase correction: first com-
putation ((a),(b)) and second computation ((c),(d)).

made of different sector types cyclic modes, we must en-
sure an admissible displacement field on the coupling sector
interfaces. This admissibility is defined by two conditions
on interfaces: a compatibility of meshes which is naturally
ensured because geometric modifications are only done on
blades, and the displacement vector continuity between two
adjacent sectors which can be ensured by linear constraints
on the interface. In the method proposed, the displacements
are taken equal on the coupling interface between two adja-
cent sectors. These constraints can be introduced by using
a Lagrange multiplier field (see [23]) or by constraining the
redundant degrees-of-freedom in each sector displacement
vector. The latter formulation is made here. Let us consider
Eq.(1) expressed in the global coordinates system and for
which the constraints are not yet specified

~

(~0’[M] + jo[D] + [K]U(w) =f(@) ,  (19)

where U(®) = (U/(0),Uc(m)), Uy(o) is the displacement
vector for free degrees-of-freedom and Uc(w) is the displace-
ment vector for constrained degrees-of-freedom. The con-
straint relationship is written in the global coordinates sys-
tem

-~

Uc(w) = [B]Uy(w) (20)
With this relationship, we can write
A(w) = (Bt (o) (21)

To reduce the detuned bladed disk model with a usefull ba-
sis, while respecting the specified constraints, we just have



to project U(m) on a subspace which respects the constraints.
This means that the basis vectors just have to respect these
constraints. The modes of the basis [¥] have been corrected
in phase but are not continuous on degrees-of-freedom as-
sociated with interfaces between sectors. That is to say
that they do not respect the constraints. Consequently, we
are going to build a new projection basis [‘f’pmj] from the
modes of the basis [‘T’] and which integrates the continu-
ity constraints on sector interfaces. Let y& ' be a column
of the new projection basis [PProi]. This vector is written
U5 = (W5)e, (W8®)c). The constraint relationship is
then written (W5 ) = [B](¥5),, which yields the equa-
tion

PE© = (Bl (22)
2.24 System reduction

The displacement vector can be projected on the built
projection basis by

U(w) =¥ (23)
where q = (d1,...,0m) is the vector of generalized coordi-
nates. Then the reduced problem can be written

~

[Ereq(w)]g(0) =g(0) (24)

where the reduced dynamic matrix [Eyeq ()] and the vector
of generalized forces g are written as

[Erea(0)] = [¥P]T[E()][¥P)] (25)
§(w) =[PP (0) (26)

Using the form of matrix [E(®)] in Eq.(7) and the form of
[‘T’PVOJ] which can be deduce from Eq.(13), the reduced dy-
namic matrix [Ereq()] is fully populated and the terms of
this matrix are written

R N-1

~projy$2p T e ~projy\2p
mﬂmm—%cwnﬁ)mwwawwﬁ)
27)

225 Particular case of a structural damping intro-
duced by amodal damping ratio

The way the reduced structural damping matrix is writ-
ten by using the projection basis [PP°!] depends on the way
structural damping is taken into account. In fact, when damp-
ing is taken into account by a fully populated matrix or a ma-
trix expressed in function of the mass and the stiffness matri-
ces ([D] = a]M] + b[K]), the reduced structural damping ma-
trix is fully populated with this projection basis. Although,

if we consider a modal damping ratio, it is necessary to di-
agonalize the structural mass and stiffness reduced matrices
to be able to write the reduced structural damping matrix in
a diagonal form. To do so, we solve at first the homogenous
eigenvalue problem without damping for the structural re-
duced system. Then we diagonalize the structural mass and
stiffness matrices using the eigenvectors obtained. The ho-
mogenous eigenvalue problem to solve without damping for
the structural reduced system is written: Find (A,y), with ¥
so that

~ o~

([Krea] = A[Mrea])y =0, (28)

where X is an eigenvalue and ¥ is an eigenvector. Since ma-
trices [Kreq] and [Myeq] are real symmetric, their eigenvectors
are real. Thus the eigenvectors obtained verify the orthogo-
nality property

< [Kreal§* 9P >= 0%padop (29)

< Mrea]9*, VP >= Hodop (30)
where |, is the generalized mass associated with the mode
o and oy, is the eigenfrequency associated with the mode o
By choice, the reduced structural damping matrix can them
be written in a diagonal form using a modal damping ratio

< [DrealV*,9? >= 280000 Hodap (31)

where &, is the modal damping ratio associated with the
mode o.. Note that the real modes U* of the detuned bladed
disk in the global coordinates system are written as

e = [Pelge (32)

Let us introduce a new variable n such that q(®) = [yn(w).
Then the generalized problem defined by Eq.(24) becomes

{~0*[Maiag] +i®[Daiag] + [Kaiag] 11 () = V] Gecc(®)
R R R (33)
where [Mgiag], [Kdiag] and [Dgiag] are diagonal and are written
as

Mg - 0

Maiag) = )" [Mrea] 91 = | = . i | . (34)
O)%ul . 0

[Kaiag) = V" [Kreal M= | ¢ . ¢ |, (39)



281011y - 0
[Daiag] = [¥]" [Drea] [¥] = S :
0 . Zammmum

(36)

3 Validation of thereduction method with an industrial

bladed disk

The realistic test case considered here is an industrial
bladed disk with 23 blades (see Fig. 3). The commercial
software used to compute the cyclic modes and mass and
stiffness matrices for the reduced-order model (ROM) in-
puts, and the forced response and resonant frequencies of the
full model is ANSYS. Fig. 4 displays the eigenfrequencies

Fig. 3. Finite element model of the tuned bladed disk.

of the generalized eigenvalue problem associated with the
tuned bladed disk as function of the circumferential wave
number. To validate the method, we are going to approxi-

12000 ‘ ‘
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7000 B
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Natural Frequency (Hz)
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Circumferential Wave Number

Fig. 4. Natural frequencies versus circumferential wave numbers of
the tuned bladed disk.

mate the 76 first modes of the detuned bladed disk and to
compute the forced response under two engine order exci-
tation numbers. Note that the 76 first natural frequencies

of the tuned bladed disk are above 5000Hz. For the de-
tuned system, two other kinds of blades are created from
the nominal one by shape modification of the blade upper
part: a blade with increased thickness called ”heavy blade”
and a blade with decreased thickness called ”light blade”
(see Fig. 5). To quantify the level of mistuning, the three

@ (b) ©

Fig. 5. Finite element models of blades: a reference blade (a), a
light blade (b) and a heavy blade (c).

first natural frequencies of the different kinds of blades are
computed in clamped blade alone configuration and shown
in Table 1. These values show a large frequency deviation
which can exceed 10% for the mode 2T. The bladed disk is

Nominal blade | Light blade | Heavy blade
Mode 1F 996.4 1054.3 947.9
Mode 2F 4013.0 3937.5 4077.1
Mode 1T 4382.6 4514.2 4321.9
Mode 2T 8217.0 7616.6 9081.8
Table 1. Natural clamped blades frequencies (Hz) for the four first

modes.

detuned by modifying arbitrarily two of its blades to make
them have the shapes shown in Fig. 5. The test case we are
going to study is shown in Fig. 6. Fig. 7 and Fig. 8 display
the 76 first eigenfrequencies of the generalized eigenprob-
lem associated with the detuned bladed disk and the corre-
sponding frequency estimation errors for a ROM contain-
ing 76 dof. In this test, the eigenfrequencies prediction er-
rors obtained for all approximated detuned modes are below
0.35%, which demonstrates a sufficient accuracy in captur-
ing the eigenfrequencies of the detuned bladed disk. Note
that the maximum error levels are obtained for eigenfrequen-
cies associated with modes for which the vibrational energy
is mainly located on the disk, and that the eigenfrequencies
associated with modes for which the vibrational energy is



Fig. 6. Complete intentionally detuned bladed disk with arbitrary ge-

ometric modification of two blades.
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Fig. 7. Comparison of the 76 first detuned eigenfrequencies be-
tween the full model and several ROM sizes.

mainly located on the blades are precisely obtained, with an
error level below 0.01%. The latter case eigenfrequencies
can be easily identified as the clustered modes near frequen-
cies 1000Hz, 4000Hz and 4400Hz in Fig. 7. For the forced
response consideration, all blades responses under engine or-
ders excitation 5 and 9 are computed in the frequency band
[ = [4150,4550] Hz and displayed in Fig. 9 and Fig. 10. The
ROM used for these calculations is a ROM with 92 dof. The
structural damping is introduced with a damping ratio value
0f 0.003. On these figures, both the full model and the ROM
exhibit a clustered response of 21 blades and 2 isolated re-
sponses which are the modified blades responses. Moreover,
the dynamic behavior of the full bladed disk model is quite
similar to the ROM one. In Fig. 11 a comparison of the max-
imum forced response of the detuned bladed disk obtained
with the full model and the ROM is presented. This com-
parison shows very good results since the curves are quite
identical. The results obtained above demonstrate a suffi-
cient accuracy of the proposed ROM in capturing the detuned
bladed disk behavior, in both free and forced response con-

0.5

o o o
S w -
f T I
| | |

Natural Frequency Error (%)

o
-
f

OLMM@@%L i | 5 | 4 4

0 10 20 30 40 50 60 70
Mode number

Fig. 8. Comparison of the 76 first detuned eigenfrequencies predic-
tion errors between the full model and several ROM sizes.
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Fig. 9. Forced response of the 23 blades to an engine order excita-
tion 5 in the frequency band [F: Full model (left) and ROM (right).
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Fig. 10. Forced response of the 23 blades to an engine order exci-
tation 9 in the frequency band [F: Full model (left) and ROM (right).

figurations.

4 Conclusion

In this paper a new reduction method for the dynamic
problem of cyclic structures with geometric modifications of
blades, based on the use of the cyclic modes of the different
sectors is presented. The projection basis is constituted as
well as on the whole bladed disk, each sector matrix is re-
duced by its own modes and linear constraints are applied on
common boundaries between sectors to make the displace-
ment field admissible. This method is applied on an indus-
trial bladed disk to show its efficiency. The proposed method
allows very compact reduced-order models to be obtained
and accurately capture the mistuned system dynamics.



Excitation engine order 5

= Reduced-order model
—Full model

Excitation engine order 9
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Fig. 11. Comparison of the maximum forced response of the bladed
disk obtained with the full and the reduced-order models in the fre-
quency band [F': Excitation engine order 5 (left) and excitation engine
order 9 (right).

Appendix A

This appendix is concerned with showing mesh incom-
patibility which can occur while projecting matrices of a
component mesh on modes of a different geometric compo-
nent mesh. A test case is made by modelling two plates.
These plates have 70 elements : 1 in the thickness direction
(2), 7 in the width direction (y) and 10 in the length direction
(x) (cf. Fig. 12). Each element has 8 nodes. The only dif-
ference between these plates is that the modified plate has 4
nodes which have been moved in the thickness direction to
get a local lower thickness, compared to the nominal plate.
For the boundary conditions, the plates are clamped on the
section x=0. Fig. 13 shows the 4 first modes of the two
plates. Let [M"M], [K"™] and [¢"°™] be the mass matrix,

Fig. 12. Nominal plate (up) and geometrically modified blade
(down).

the stiffness matrix and the modes of finite element model
of the nominal plate. Let [M™9], [K™9] and [¢™] be the

Fig. 13. 4 first modes of the nominal plate (on left) and of the geo-
metrically modified plate (on right). From up to down: mode 1, mode
2, mode 3, mode 4.

mass matrix, the stiffness matrix and the modes of finite ele-
ment model of the geometrically modified plate. The eigen-
frequencies of the modified plate are then computed by two
different ways:

1. Directly by solving the eigenvalue problem defined by:
Find (ATd,0™d) so that

([K™] — A5 M™d)) o3 = 0 (37)

2. By reducing the mass and stiffness matrices of the geo-
metrically modified plate using a basis of modes of the
nominal plate and by solving the eigenvalue problem de-
fined by: Find (AM9,6™9) so that

([Kr ] — A miedhored =0, (38)

where
K9] = [o"°™]T [K ™4 [pmom] (39)
[M7a] = [T [M™d] [g"om] (40)

When we try to obtain the natural frequencies of the modi-
fied plate by using a reduced model obtained by projecting
the modified plate mass and stiffness matrices on the nomi-
nal plate modes, and when we compare them to the natural



frequencies directly computed, high error levels appear in
the estimation of the natural frequencies. Table 2 shows the
high error levels obtained for the 4 first modes by using a
basis containing the 50 first modes. In fact, for approximat-
ing the natural frequency of mode 2, the error level exceeds
35%. Even by proceeding to a convergence analysis of the

Direct solving | Reduced model | Frequency
frequency (Hz) | frequency (Hz) | error (%)
Mode 1 10,79 13,70 27,01
Mode 2 27,56 37,47 35,92
Mode 3 46,44 46,45 0,006
Mode 4 63,89 70,17 9,82
Table 2. Natural frequencies and frequency error levels obtained

between the reduced model and the direct computation.

obtained frequencies, with respect to the modal projection
basis dimension, we see that the convergence speed is low.
So to get accurate results with this kind of domain incompat-
ibilities, by only using modes of the nominal plate, one could
have a reduced-order model of great size.
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