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An approximate formula which utilizes the concept of conditional power spectral density (PSD) has been
employed by several investigators to determine the response PSD of stochastically excited nonlinear
systems in numerous applications. However, its derivation has been treated to date in a rather heuristic,
even “unnatural” manner, and its mathematical legitimacy has been based on loosely supported
arguments. In this paper, a perspective on the veracity of the formula is provided by utilizing spectral
representations both for the excitation and for the response processes of the nonlinear system; this is done
in conjunction with a stochastic averaging treatment of the problem. Then, the orthogonality properties
of the monochromatic functions which are involved in the representations are utilized. Further, not only
stationarity but ergodicity of the system response are invoked. In this context, the nonlinear response PSD
is construed as a sum of the PSDs which correspond to equivalent response amplitude dependent linear
systems. Next, relying on classical excitation-response PSD relationships for these linear systems leads,
readily, to the derivation of the formula for the determination of the PSD of the nonlinear system. Related

numerical results are also included.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Popular random vibration techniques, such as the statistical lin-
earization [1,2], have been proven quite successful in determining
approximately the response statistics, such as the variance, of non-
linear systems [3,4]. However, this is not the case for quantities
such as the response power spectral density (PSD). In fact, response
PSD estimation applications that utilize a statistical linearization
technique may reflect significant discrepancy from the correct re-
sult. Specifically, while the technique yields the right resonance
frequencies, it may overestimate the peak values and underesti-
mate the bandwidths [5].

In Ref. [6] an improved linearization technique was proposed,
where the stiffness element of the oscillator was treated as a ran-
dom variable. In Ref. [7] the form of the conditional PSD was pre-
sented for the first time and was used to derive an approximate
formula for the response PSD. However, the term conditional PSD
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had not been introduced until Bouc [5] first suggested the termi-
nology and derived an approximate formula for computing the
nonlinear PSD by resorting to the stochastic averaging method
[8,9]. In general, the technique developed in [5,7] utilizes a fam-
ily of equivalent linear systems whose elements are response
amplitude envelope dependent. Specifically, the response PSD is
estimated as a weighted sum of the response PSDs of the linear
systems. The weight function is merely the probability density
function (PDF) of the amplitude process. In Ref. [10] the response
amplitude PSD of a randomly excited Preisach system was com-
puted accurately using the discussed formula. This kind of ap-
proach was also adopted and applied in the context of nonlinear
system identification [11,12]. Moreover, in Ref. [13] and subse-
quent papers [14,15] an alternative formulation was presented re-
lying on equivalent linear systems whose elements are response
energy envelope dependent. In this manner, additional informa-
tion related to the occurrence of higher harmonics was captured.
Taking into account the versatility and the accuracy of this tech-
nique as it has been reported in a large number of applications, it is
desirable to attempt to establish its veracity on a firm mathemati-
cal basis; thus, the derivation of a concrete proof and the presenta-
tion of an alternative perspective on the veracity of the technique
constitute this paper. To this aim, spectral representations [16,17]
for both the stochastic excitation and the response processes,
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the orthogonality conditions of the monochromatic functions and
stochastic averaging are combined to derive the discussed formula.

2. Mathematical formulation
2.1. Equivalent linear system interpretation

Consider a nonlinear single degree of freedom system whose
motion is governed by the differential equation

X+ Bk +z(t, x, %) = w(0). (1)

In this equation a dot over a variable denotes differentiation with
respect to time (t); (z(t, x, X)) is the restoring force which can be
either hysteretic or depend only on the instantaneous values of (x)
and (%); (B) is a linear damping coefficient; and (w(t)) represents
a zero-mean stationary random process possessing a broad-band
power spectrum S,,(w). It is further assumed that the system is
lightly damped and thus the response can be treated as a narrow-
band process with slowly varying effective amplitude (A), and
frequency (w(A)).

A statistical linearization/stochastic averaging technique may
next be adopted to determine response amplitude dependent
equivalent damping and stiffness elements. In fact, several differ-
ent implementations of the linearization technique exist in the lit-
erature, which are presented and discussed in [1,2]. Following the
technique developed in [18], the linearized counterpart of Eq. (1)
becomes

¥4 BAX + 0’ (A)x = w(t), (2)

where the equivalent damping element and natural frequency are
taken to be functions of the amplitude (A) of the response to ac-
count for the effect of the nonlinearity. Due to the overall light
damping of the system, the amplitude (A) is a slowly varying func-
tion with respect to time and therefore is treated as a constant over
one cycle of oscillation. Specifically, defining the error between
Egs. (1) and (2) as

€ =Z(t,X, X) +[ﬂ _ﬂ(A)]X_wZ(A)Xv (3)
the expressions
gy = p+ L2 (4)
f x2de
and
2,0 $xzdt
') = e (5)

are derived. Egs. (4) and (5) have been obtained by applying an er-
ror minimization procedure in the mean square sense, where (95 )
can be interpreted as ‘an average over one cycle’ operator. Due to
the narrow-band attribute of the response Eqgs. (4) and (5) yield,
respectively,

mops SB ‘
Pty =+ o (6)
and
204y — CA
w”(A) = a0 (7
where
2
CAA) = %f cos[yr]z(t, Acos ¥, —w(A)Asin ¥ )dyr, (8)
0
and

2
S(A) = —%/ sin[yr]z(t, Acos ¢, —w(A)Asiny)dy. 9)
0

Considering the aforementioned derivation of the equivalent
linear system, it can be argued that the PSD of the response pro-
cess is likely to lend itself to an equivalent amplitude dependent
“linearized” representation. Since for a fixed value of the ampli-
tude, i.e. (A = A*), the oscillator of Eq. (2) takes the form of a linear
oscillator with fixed damping and stiffness elements, the PSD of the
response is expected to be

Sw ()
(@2(A) = )’ + (BAD)*

Consequently, an intuitive estimate of the expression of the re-
sponse PSD would be a weighted sum of the “linear” PSD com-
ponents of the form of Eq. (10) for (A* € [0, co]). Furthermore,
considering a long time interval, the weighting factors of this sum
would be the ratios of the time the process spends at amplitude
(A*) over the total period of time. In mathematical terms, one can
set as an approximation for the system response PSD the expres-
sion

Se(w) = (10)

Sx(w) = lim
T—o00
M— o0
AA—0

(T Su (@)
<Y (= 2 : (11)
i \ T (02(kAA) — 0?)” + (B(kAA)w)?

Note that inherent in the derivation of Eq. (11) is the considera-
tion of two different time scales. Specifically, a short time scale (t;)
is associated with the rapid fluctuations induced by the dynamics
of the model, and a relatively long time scale (t;) is associated with
the low variations of the amplitude. In an attempt to confirm the
reliability of Eq. (11), a Duffing oscillator of the form

5€+2§0w0k+w§x+8w3x3 =w(t), &>0, (12)

is considered, where (o) is the ratio of critical damping. Using
Egs. (6) and (7), the amplitude dependent equivalent natural fre-
quency and damping term are found to be, respectively,

B(A) = 2¢owo, (13)
and
o’ (A) = w} (1 + %g/ﬁ) ) (14)

Choosing the values (S, (w) = Sp = 0.3, {p = 0.01, wy = 3.612
rad/s,e = 0.2, M = 300) and utilizing Eq. (11), the response
PSD of the Duffing oscillator is estimated in Fig. 1. For this, an ade-
quately long time interval is considered and the time portions the
response spends at each amplitude level are determined and sub-
stituted into Eq. (11). The derived result is compared with a direct
estimation of the response PSD using the Welch method [19,20].
An identical procedure is also applied to a linear oscillator pos-
sessing the same values for the natural frequency, and the ratio
of critical damping. Examining Eq. (1) the numerical results clearly
support the interpretation suggested by Eq. (11). Furthermore, the
presented PSD estimations are in agreement with the conclusions
drawn in [5,6,21]. Specifically, it can be readily seen that the non-
linear stiffness induces a significant broadening and a shift in res-
onance peaks in the response PSD.

Returning to Eq. (11) the ergodicity property for the response
will be invoked to proceed with. Specifically, the response dis-
placement (x), the response velocity (%) and the response ampli-
tude (A) processes will be treated as ergodic in the second order
sense. Thus, the term (lim7_, %") may be interpreted as the prob-
ability the process maintains the specific amplitude level (A =
kAA). Therefore, it can be argued that

T,
im — = p(kAA)AA, (15)
T—soo T
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""" Linear - Welch PSD estimation

—Linear - Analytical PSD estimation
10 ---Duffing - Analytical PSD estimation {
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Fig. 1. Response PSD estimation of a Duffing (S,,(w) = So = 0.3, {o = 0.01, wy =
3.612 rad/s,e¢ = 0.2), and of a linear oscillator (S,(w) = Sp = 0.3,% =
0.01, wy = 3.612 rad/s); comparison between PSD direct estimation using Welch
method and Eq. (11) (M = 300).

where (p(.)) represents the probability density function of the re-
sponse amplitude envelope. Substituting Eq.(15)into Eq.(11) leads
to the formula

(o] Sw
Sv(@) :/ (zw) ,PA)dA
0 (?(A) - 0?)" + (BA)w)

for the response PSD as reported in Ref. [7]. Then, the conditional
PSD is introduced as

Su (@)
(@A) — 0?)’ + (BAw)*

(16)

Sx(wlA) = (17)

2.2. Response power spectral density determination

In context with the developments of the preceding sections,
several efforts have been made in the literature to determine the
response power spectrum of a nonlinear system by resorting to the
concept of the conditional PSD. For this purpose, the formula

S@) = f S(@lAp(A)dA, (18)
0

which is equivalent to Eq. (16), has been extensively used by vari-
ous researchers [5,13,7,10] to derive an approximate estimation of
the response PSD of nonlinear oscillators of the form of Eq. (1). In
Eq. (18) the variable (p(A)) represents the PDF of the response am-
plitude envelope, whereas the variable (Sy(w|A)) may be viewed
as the response PSD of a linear oscillator possessing natural fre-
quency equal to (w(A)) and damping element equal to (8(A)).
Taking into account the preceding analysis, Eq. (11) can be recast
into the form of Eq. (16), or equivalently in the form

1
Sx(@) = Sy, (w)E 5 . (19)
(@A) = ?)” + (BA)w)

Despite the fact that numerous applications of Eq. (18) have
been made, no concrete proof of this formula has been reported. In
fact, the available treatments vary from the rather heuristic ones to
those with indisputable mathematical rigor, which, however, lack
proper perspective. In this section, a proof of Eq. (18) is attempted
based on a spectral representation [22,17,23,24] of the excitation
and of the response processes.

To proceed, adopt spectral representations for the processes
(x(t)) and (w(t)) which utilize monochromatic functions of ran-
dom amplitude [16,24]. Specifically, set

N-1 N-—1
x(t) = ZAn cos[(nAw) t] + Z B, sin[(nAw) t], (20)
n=0 n=0

and
N—1 N—1

w(t) = ZC,, cos [(nAw) t]+ZD,., sin[(nAw) t], (21)
n=0 n=0

where
Wy

Aw = N (22)

and (Ap), (By) and (Cp), (D,) are random amplitudes associated
with (x(t)) and (w(t)), respectively.

In Eq. (22), (w,) represents an upper cut-off frequency beyond
which the corresponding PSD can be assumed to be zero. The se-
quences of the random variables {Ag, A1, ..., An}, {Bo, B1, ..., Bu},
{Co, Cq,...,Cn}, {Do, D1, ..., Dy} can be shown [17] to be statis-
tically independent with mean value equal to zero and variance
equal to

o} =25 (nAw) Aw. (23)

Moreover, Egs. (20) and (21) yield stochastic processes which are
ergodic in the mean, mean square, correlation function, and first
order distribution in the weak sense. A more global and detailed
treatment of the properties which are implied by this kind of rep-
resentation may be found in [16,17]. Note that the approximating
processes are periodic with period

2 _ 2N

Top=—= .
0 Aw wy

(24)

Taking the first and second derivatives of Eq. (20) with respect to
time yields
N—1

X(t) =) — (nAw) Aysin[(nAw) t]
n=0
N—1
+ Z (nAw) B, cos [(nAw) t], (25)
n=0
and
N—-1
X(t) = Z — (NAw)? Ay cos [(nAw) t]
n=0
N—1
+ ) — (nAw)* Bysin[(nAw) t]. (26)
n=0
Considering next the orthogonality conditions of monochromatic
functions leads to

1
bt _
/ " coslIAw) ] cosl(naw) eldt = {270 =T (27)
0 0 l#n
To 1
. . *To I=n
/ sin[(lAw) t] sin[(nAw) t]dt = { 2 , (28)
0 0 I#n
and
To
/ sin[(IAw) t] cos[(nAw) t]dt = 0. (29)
0

Substituting Egs. (20), (21),(25) and (26) into Eq. (2) and exploiting
Egs. (27)-(29) yields

{ —(Aw)*Ay + BA) (NAW)B, + &*(A)A, = G, (30)

—(nAw)*B, — B(A)(NAw)A, + w?(A)B, = D.
In producing Eq. (30), it has been assumed that the equivalent

damping element and natural frequency are constant over the pe-
riod (Tp). Further manipulation of Eq. (30) yields
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C? + D2
[02(A) — (Aw)?2]’ + (A BA ]

The PSD estimation for the stationary processes (w(t)) and (x(t))
is given [25,26] by the equations

2

} , (32)

T .
f w(t)e™ @t dt
0
and

1 T 2
sx(w)=T1ET;o TE[ /0 x(t)e tdt } (33)

Substituting Eq. (21) into Eq. (32), taking into account the orthog-
onality conditions of Eqs. (27)-(29) and assuming a fixed value for
the frequency (w), i.e. (w = w*) yields

2:|

1 T -
lim —E f w(t)e ™ dt
T—oo T 0
1 T
... lim =E / w(t) cos (w*t) dt
T—oo T 0
T 2
- i/ w(t) sin (w*t) dt }
0
2i|
2

: 1 T 2 2
-+ lim TE|:4 (C*+D*):|. (34)

T—o00

Al +B. =

n

(31)

1
Su(w) = TILIEO ?E |:

Sw(w®)

. 1 T T
-+ lim =E | |=C, —i=D,
T 2 2

In this equation the term (Cf + Di) is interpreted as the squared
amplitude of the process which corresponds to the fixed frequency
(w = w*). Applying a similar procedure for Sy(w*) yields

1 T e [P
lim —E / x(t)e " tdt
T—oo T 0

1 T
= ... lim E|: / x(t) cos (w*t) dt
T—oo T 0

T
- i/ x(t) sin (o*t) dt
0
2}

.1 T 2 2 ]

Sx(@)

21

Il

3

|

m
.
N~

X

*

oo ]

*

Further, combining Egs. (31) and (35) gives

(5 e +8)]

|:T2 ( 24 D2 )]
xXE| — 3 2
4\ (@2(A) — (@9)?2)" + (@) B(A))

.1 [T?
-+ lim TE|:4(C5+D1):|

Il
3
[
™

Sx(@™)

x E |: 12 :| . (36)
(@) — @92)° + (@)BA)?

Obviously, Eq. (36) can be recast in the form

Sy(@®) = Sy, (w")E |: 12 i| . (37)

(@*@A) — (@*)?)" + () BA)?
Since Eq. (19) is proven for an arbitrary value of the frequency,
ie. (w = "), it holds true for any value of (w). Therefore, the
validity of Eq. (18) is proven. Note that deriving Eq. (36) indepen-
dence has been assumed between (C2 +D?) and the amplitude (A).
This assumption is substantiated using the arguments expounded
in the Appendix.

3. Concluding remarks

In this paper a formula which estimates the PSD of the random
response of nonlinear systems has been considered. The formula,
which is based on the notion of conditional PSD, has been widely
used in computing, with remarkable reliability, the response PSDs
of a wide range of randomly excited nonlinear oscillators. Despite
the popularity and the versatility of the technique, its mathemati-
cal legitimacy has been based so far on arguments of limited rigor.
In this regard, an effort to provide a concrete proof has been made
in this paper by utilizing spectral representations both for the exci-
tation and the response processes of the nonlinear system; this has
been done in conjunction with an equivalent linear approximation
of the original system. Further, exploiting the orthogonality prop-
erties of the monochromatic functions which are involved in the
expansions has led to a straightforward verification of the formula.
Furthermore, an intuitive interpretation of the concept of the con-
ditional PSD has been included. Specifically, it has been shown that
the nonlinear response PSD can be viewed as a sum of the PSDs
which correspond to equivalent amplitude dependent linear sys-
tems. The necessity of invoking for the system response not only
stationarity but ergodicity as well has been pointed out. Related
numerical simulations have been included.

Appendix

In this Appendix arguments are expounded to substantiate the
assumption of independence between (C2+D?) and the amplitude
(A) which is a necessary condition to prove Eq. (37). To elucidate
this point, consider a linear system the squared amplitude of the
response of which is given by the equation
¥)
X

Az = XZ + 72.
@y

Then, substituting Eqs. (20) and (25) into Eq. (A.1) yields

N-1 N—1 2
A? = (ZArl cos[(nAw) t] + ZBn Sin[(nAa))t]) 4.

n=0 n=0

(A1)

_ _ 2
<N21 — (nAw) A, sin[(nAw) t] + NZ] (nAw) B, cos[(nAw) t])

n=0 n=0

2%
(A.2)
Multiplying Eq. (30) by (A%) and taking expectations on both sides
gives

— (NAw)’E [AnA’] + (nAw) BE [B.A”] + wiE [AnA?]

=E[GA?], (A.3)
and
— (nAw)’E [B.A’] — (nAw) BE [AnA®] + w3E [BrA?]

= E [D.A?]. (A4)

Taking into account the statistical independence of the zero-
mean random variables {Ag, A1, ..., An}, {Bo, B1, ..., By}, itcan be
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readily seen that the only terms which remain in the expectations
(E[B,A?]) and (E[A,A%]) when (A?) is substituted as given by
Eq. (A.2), are

E[AA?] = E [A}] cos® [(nAw) t]

2
] % sin? [(nAw) t]; (A5)

0

+E[A}
or equivalently
E[AA’] = E[A}] ( cos? [(nAw) t]

2
+ M sin? [(nAw) r]) , (A.6)
@y

and
E[B,A*] = E [B;]sin’ [(nAw) t]

Aw)?
+E[B] M cos? [(nAw) t]; (A7)
@
or equivalently

E[B,A*] = E[B;] <sin2 [(nAw) t]

2
L RO o [(naw) t]) . (AS)
,

0

The fact that the variables (A,) and (B,) are zero-mean Gaussian
variables yields

E[A)] =0, (A.9)
and
E[B}] =o. (A.10)

Examining Eqs. (A.6) and (A.8)-(A.10) and taking into account
Egs. (A.3) and (A.4) yields

E[GA*] =0, (A11)
and
E[D:A’] =0 (A12)

which implies the independence of the quantities (A), (C,) and
(Dy), since the variables (C,) and (D,) have a zero-mean value.
Extending this argument to the case of a nonlinear system is

not a straightforward task due to the dependence of the natu-
ral frequency on the amplitude in Eq. (A.1). However, considering
the correlation time (t},) of the excitation process, it can be ar-
gued that for a stationary broad-band random process it is approx-
imately equal to

v 27 (A.13)
T o~ —. .

cor a)u
A similar approximation can be assumed for the response process
(x). Taking into account the assumption of light damping, it can be
deduced that the main part of the energy of the process is concen-
trated in a small frequency band around the dominant frequency
(w(A)). Therefore, the correlation time (7, ) of the response pro-
cess can be approximated as

x 2T (A.14)
T ——. .

cor CU(A)
Due to the slowly varying nature of the amplitude process (A) it
is safe to assume that the correlation time (7 ) of the response

cor
amplitude is greater than (t},). This argument together with
Egs. (A.13) and (A.14) yields

80

—Single realization - Product A(tw(t) - E[Aw]=8.873*10"]

60
40
20
o i
-20
-40
-60

a0t 4

100 L . . I . |
0 50 100 150 200 250 300
time (s)
Fig. 2. A single realization of the excitation process multiplied with the corre-

sponding response amplitude process; Duffing oscillator (S, (@) = Sp = 0.3, { =
0.01, wy = 3.612rad/s, e = 0.2).

A>Tk (A.15)
Thus,

tCOT tC):)T

which leads to

T w(A

% < o@ < 1. (A.17)
Teor Wy

This implies that the terms (C? + D2?) and (A) in Eq. (36) are
uncorrelated, and therefore independence can be assumed. To
support the foregoing analysis numerically, the Duffing oscillator
(Eq. (12)) is considered possessing identical parameters (S, (w) =
So = 0.3,% = 0.01,wpy = 3.612 rad/s, ¢ = 0.2). To show that
(E(A - w) = 0) the ergodicity property for the two processes is
invoked. Thus,

T
E(A-w) = lim M. (A.18)

To calculate the limit in Eq. (A.18) realizations of the processes (w)
and (A) are produced. In Fig. 2 the product (A(t)w(t)) is plotted.
Using Eq. (A.18) yields the value (E(A- w) = 8.873-10~%) suggest-
ing the independence of the two terms in Eq. (36).
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