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Abstract

In this paper, we address the construction of a prior stochastic model for non-
Gaussian deterministically-bounded positive-definite matrix-valued random
fields in the context of mesoscale modeling of heterogeneous elastic mi-
crostructures. We first introduce the micromechanical framework and recall,
in particular, Huet’s Partition Theorem. Based on the latter, we discuss the
nature of hierarchical bounds and define, under some given assumptions,
deterministic bounds for the apparent elasticity tensor. Having recourse
to the Maximum Entropy Principle under the constraints defined by the
available information, we then introduce two random matrix models. It is
shown that an alternative formulation of the boundedness constraints fur-
ther allows constructing a probabilistic model for deterministically-bounded
positive-definite matrix-valued random fields. Such a construction is pre-
sented and relies on a class of random fields previously defined. We finally
exemplify the overall methodology considering an experimental database
obtained from EBSD measurements and provide a simple numerical appli-
cation.
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1. Introduction

The general area of stochastic multiscale modeling of complex multiphase
random materials (such as some fiber reinforced composites or living tissues)
has gained a continuing interest among the scientific community during the
past two decades. Historically, most of the attempts were derived having
recourse to the numerical simulations of random microstructures (relying on
the experimental identification of some morphological characteristics, or as-
suming such properties; see [38]), coupled with a (Stochastic) finite elements
analysis [5] (see for instance [12] [37]) and a statistical study performed on
any quantity of interest (local strain or stress random fields, etc.).

Besides these quantitative studies, it is desirable to develop mathemati-
cal representations that, while ensuring a set of fundamental algebraic and
probabilistic properties on the modeled quantities (as well as on the stochas-
tic response of the system, should the modeling be used in the formulation
of a stochastic boundary value problem for instance), catch as many phys-
ical and mechanical information as possible. Such models turn out to be
necessary when performing an experimental identification solving an inverse
problem or introducing the underlying subscale randomness into coarse scale
computational models for instance. In this context, the Maximum Entropy
(MaxEnt) principle has been shown to be an efficient method allowing the
explicit construction of prior probability distributions while considering the
available information only (see Section 2.2).

Based on the so-called nonparametric approach for uncertainties derived
in [31] [32] (making use of the MaxEnt principle), a class for positive-definite
matrix-valued random fields (extending the class previously constructed in
[33]), corresponding to the prior probability model of an elastic anisotropic
microstructure, was proposed in [34]. Invoking the energy-based bound-
edness constraints on the random elasticity tensor established by Huet (see
[10]), a random matrix approach has been derived later on in [2] (see Section
2.3.1). Noticing that the two above approaches induce anisotropic statistical
fluctuations which may not be encountered in practice (and in particular,
in geophysical applications), Ta and his coworkers proposed a refinement
of the probabilistic model derived by Soize by introducing a new param-
eter controlling the anisotropy index apart from the level of fluctuations
[36]. Such developments are basically in the class of the generalized prob-
abilistic approach of uncertainties corresponding to a coupling between the
parametric probabilistic approach and the nonparametric one; see [35]. An
alternative and more general derivation (in the sense that the distance to
a given symmetry class is not restricted to the isotropic case), based on a
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particular characterization of the material symmetry groups and consisting
in prescribing the variances of some stochastic eigenvalues of the random
elasticity matrix, has been finally studied in [6]. Such an approach allows
modeling random elasticity tensors whose mean distance to a given mate-
rial symmetry class is specified. Note that the Maximum Entropy principle
has also been used, within a parametric framework, for simulating random
microstructures in accordance with some morphological features [25].

The present research is devoted to the construction of a prior proba-
bilistic model for deterministically-bounded positive-definite matrix-valued
random fields. Here, the term ‘nonparametric’ makes reference to the fact
that none of the random (morphological) parameters that could be used
to describe the random microstructure (e.g. the local volume fraction, the
shapes of the heterogeneities, etc.) is explicitly considered and modeled.
The induced probability measure is specified by the MaxEnt procedure and
constraints synthesized from experimental data. The paper generalizes re-
sults previously obtained on bounded random elasticity matrices (see [2]) so
as to facilitate the development of an associated random field model.

This paper is organized as follows. Section 2 deals with the construction
of the prior probabilistic model for positive-definite random matrices that
are bounded, in a deterministic sense, from above and below. In particular,
we introduce and discuss, within a micromechanical framework, the bound-
edness constraints that are considered in the formulation of the MaxEnt
principle. We then present, in Section 3, the probabilistic model for non-
Gaussian deterministically-bounded positive-definite matrix-valued random
fields. An application, based on a set of experimental data and illustrating
the overall methodology, is finally provided in Section 4.

2. Probabilistic models for deterministically bounded symmetric
positive-definite real matrices

Let MS
n(R) and M+

n (R) ⊂ MS
n(R) be the set of all the (n × n) real

symmetric and symmetric positive-definite matrices respectively, with n ≤ 6.
A generic point of the Euclidean space R3 is denoted by x = (x1, x2, x3).
Notation x(i) refers to the i-th point defined with respect to any indexation
system. In what follows, single and double brackets denote matrix-valued
and tensor-valued variables, respectively.

In this section, we address the construction of a prior probabilistic model
for a suitable M+

n (R)-valued random matrix representation [L] of the fourth-
order random elasticity tensor [[L]], under the additional constraint that
each realization of the matrix-valued random variable [L] is bounded (in
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the usual quadratic sense) from above and below. In order to make the
paper self-contained, the definition of such bounds is first introduced and
thoroughly discussed within the classical framework of micromechanics in
Section 2.1. In particular, the stationarity and ergodicity properties are re-
called in the context of stochastic homogenization. Following the pioneering
work by Soize (see [31] [32]), the construction of the probabilistic models
is based on the use of the Maximum Entropy principle and is recalled in
Section 2.2. Two probabilistic models are then presented. The first one was
recently proposed in the literature and is briefly reviewed in Section 2.3.1.
Making use of an alternative formulation of the boundedness constraint and
having recourse to a change of variable, we subsequently show that the prob-
abilistic model defined in [31] [32], in which the probability distribution is
supported over M+

n (R), can be used as well. In particular, such a derivation
turns out to be very useful in order to extend the modeling to the random
field case, as will be seen in Section 3.

2.1. Micromechanics-based constraints for the elasticity tensor of random
heterogeneous media

2.1.1. Remarks about the stationarity and ergodicity properties in the context
of stochastic homogenization

Let Ω ⊂ R3 be a domain with boundary ∂Ω, occupied by a hetero-
geneous random medium. Let x 7→ S(x) be a random field defined on
a probability space (Θ, T ,P), indexed by R3 and with values in a subset
of a vector space HS, describing the local morphology and/or the elastic
properties of the microstructure. For all θ in Θ, one has S(x, θ) in HS

and x 7→ S(x, θ) is a trajectory of S which is assumed to belong to a set
of functions HS. Consequently, the random field S is a family of random
variables defined on (Θ, T ,P) with values in HS. Let g be a (measurable)
functional mapping from HS in Hg, where, for all s in HS, Hg is a set of
functions {x 7→ {g(s)}(x)} defined on Ω with values in Hg. Let < {g(S)} >
be the random variable, corresponding to the modeling of any homogenized
quantity of interest (such as the effective stress or strain tensor), defined as:

< {g(S)} >Ω=
1

|Ω|

∫
Ω
{g(S)}(x) dx. (1)

Therefore, the effective property < {g(S)} >Ω is a Hg-valued random vari-
able whose probability distribution P<{g(S)}>Ω

is completely defined by the
probability law of random field x 7→ S(x) and by mapping g. We assume
that transformation g and random field S are such that x 7→ {g(S)}(x) is
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a homogeneous random field indexed by R3 (which means that its system
of marginal probability distributions is invariant under translation in R3).
In addition, if the homogeneous random field x 7→ {g(S)}(x) is shown (or
assumed) to be ergodic in the mean-square sense (note that the mean-square
convergence can be replaced by any other mode of convergence) with respect
to the mean function m{g(S)} = E{{g(S)}(x)} (independent of x) of {g(S)},
we then have:

lim
Ω→R3

E
{
‖ < {g(S)} >Ω −m{g(S)}‖2

}
= 0, (2)

in which ‖ · ‖ is a suitable norm in Hg. Consequently, for all ς > 0, there
exists a domain Ως such that:

E
{
‖ < {g(S)} >Ως −m{g(S)}‖2

}
≤ ς. (3)

If Eq. (3) holds for a given and sufficiently small ς, then the random variable
< {g(S)} >Ως exhibits a negligible level of statistical fluctuations and conse-
quently, Ως is called the Representative Volume Element (RVE). The effec-
tive mechanical property, associated with this RVE, is almost deterministic.
If the size of domain Ως is much smaller than the characteristic length of
the macroscale, one can state the separation between the microscale (RVE)
and the macroscale.

From Eq. (1), it is readily seen that the construction of the probabil-
ity law of random field {g(S)} allows for the calculation of the probability
distribution of random variable < {g(S)} >Ω. Consequently, a probabilistic
analysis of the RVE size can be carried out as soon as the probability law
of random field {g(S)} is known. It should also be noted that the mean-
ergodicity assumption, allowing one to substitute spatial averaging (over
the RVE) for statistical averaging, is absolutely required for performing any
homogenization procedure if the above probability distribution is unknown.

In this paper, we make use of these derivations and consider the mesoscale
modeling of a stationary random microstructure. More specifically, x 7→
{g(S)}(x) models the mesoscopic elasticity tensor random field and S de-
scribes the morphology and/or the properties of the underlying microstruc-
ture at microscale. For this type of analysis, random field S is not explicitly
described but the construction of the probability law of random field {g(S)}
is directly addressed using neither g nor S. In this context, the definition of
the RVE size through a probabilistic convergence analysis on the apparent
properties has been introduced in [34].
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2.1.2. Definition of the apparent elasticity tensors

A fundamental property of the effective elasticity tensor is that it does
not depend on the usually prescribed boundary conditions (that are, the
kinematic and static uniform boundary conditions; see below). In this con-
text, the theoretical calculation of either estimates or bounds on the overall
properties of random heterogeneous materials gave rise to an extensive lit-
erature in micromechanics and homogenization theories (see [16] [19] and
the references therein). Such a deterministic framework was proven to be
suitable for modeling random medium for which the typical size of the con-
stituents is very small compared to the dimensions defining the coarse scale
(that is, the scale at which the engineering structural application is carried
out, for instance).

However, there exists a few classes of materials, for example some con-
cretes or (long) fiber-reinforced composites, for which the scale separation
can not be stated. In this case, statistical fluctuations still remain at the
macroscale and the experimental characterization is often carried out for
bodies smaller than the RVE, called Statistical Volume Elements. Their
associated mechanical properties are then called apparent properties and
are, by definition, random. Thus, the apparent tensor depends, unlike the
effective one, on both the realization of the random medium and on the
applied boundary conditions. This fact partly explains the large amount of
scattering encountered in experimental testing on such materials.

The relation between the effective and apparent tensors was first studied
by Huet [10] (see also the probabilistic interpretation by Sab [24], as well as
the general review provided in [21]). In this paper, we denote by [Leff] (resp.
[Lapp]) the matrix representation of the effective (resp. apparent) elasticity
tensor [[Leff]] (resp. [[Lapp]]). It should further be pointed out that the
matrix representation of the elasticity tensor must be chosen in a way that
ensures the equivalence between quadratic forms written using a tensorial
formalism and those expressed having recourse to a matrix representation.
Such an equivalence can be obtained making use of the well-known Voigt-
Mandel matrix representation for instance, and is assumed in the following.
Thus, any inequality (see Sections 2.1.3 and 2.1.4) will be written in matrix
form. Below, we briefly review the main and fundamental results derived in
[10].

Following the notation introduced in the previous section, for any inte-
grable function x 7→ a(x) (defined from Ω into Ha), we denote by < a >
the volume average of a over Ω (note that for notational convenience, de-
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pendance of < a > on Ω is now dropped), namely:

< a >=
1

|Ω|

∫
Ω
a(x)dx. (4)

For a domain Ω equal or larger than the RVE, the effective elasticity tensor
[[Leff]] can thus be defined as:

< σ >= [[Leff]] :< ε >, (5)

where the symbol “:” denotes the classical twice contracted tensor product.
For x ∈ Ω, the functions x 7→ σ(x) and x 7→ ε(x) denote the local stress and
strain fields, respectively.

We recall that the Hill condition (also known as the Hill’s macrohomo-
geneity condition or Hill-Mandel condition) states the following equivalence
[9]:

< σ : ε >=< σ >:< ε > . (6)

We are now in a position to define two essential kinds of boundary con-
ditions, as well as the associated apparent tensors. Unless otherwise stated,
domain Ω is assumed to be smaller than the RVE.

In the first case, one assumes the prescription of a displacement field of
the form:

u(x) = ε0x, ∀x ∈ ∂Ω, (7)

to the boundary of the domain Ω. In Eq. (7), ε0 is a given symmetric
second-order tensor whose components have magnitudes consistent with the
retained framework of small deformations. Following the original terminol-
ogy from Huet, we refer to this kind of boundary conditions as kinematic
uniform boundary conditions (KUBC). Due to the linearity of the problem,
one can write:

< σ >= [[Lapp
ε ]] :< ε >= [[Lapp

ε ]] : ε0, (8)

in which the fourth-order tensor [[Lapp
ε ]] denotes the so-called kinematic

apparent modulus ( or elasticity) tensor of Ω in KUBC. The kinematic ap-
parent compliance tensor [[Mapp

ε ]] of body Ω in KUBC is readily obtained
by inverting Eq. (8), so that:

[[Mapp
ε ]] = [[Lapp

ε ]]−1. (9)

In the second case, one considers that a traction vector field of the fol-
lowing form is applied:

t(x) = σ0n(x), ∀x ∈ ∂Ω, (10)
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where n(x) is the unit vector normal to boundary ∂Ω at point x and σ0 is
a given symmetric second-order tensor, the components of which have mag-
nitudes compatible with the elastic domain of the material under consider-
ation. Such boundary conditions are referred to as static uniform boundary
conditions (in brief, SUBC) and allow the definition of the static apparent
compliance tensor [[Mapp

σ ]] of Ω in SUBC, such as:

< ε >= [[Mapp
σ ]] :< σ >= [[Mapp

σ ]] : σ0. (11)

Finally, one readily defines the static apparent modulus tensor of domain Ω
in SUBC as:

[[Lapp
σ ]] = [[Mapp

σ ]]−1. (12)

It can easily be shown that both KUBC and SUBC satisfy the Hill condi-
tion (6) (note that the demonstration does not require the stationarity and
ergodicity assumptions to be satisfied), so that the above mechanical defini-
tions of the apparent tensors coincide with their energetic counterpart (see
[10]).

2.1.3. Inequalities between effective and apparent tensors: the Partition The-
orem

Let us assume in this section that Ω is equal or larger than the RVE, and
divide it into n equally shaped subdomains Vi, i = 1, . . . , n. For each sub-
domain Vi, we denote by [Lapp

ε (Vi)] and [Mapp
σ (Vi)] the kinematic apparent

elasticity matrix and the static apparent compliance matrix of Vi in KUBC
and SUBC, respectively. It can then be shown that:

[L̂app
σ ] ≤ [Leff] ≤ [L̂app

ε ], (13)

where the matrices [L̂app
σ ] and [L̂app

ε ], called the static and kinematic statis-
tical apparent modulus matrices, are defined by:

[L̂app
σ ] = (

1

n

n∑
i=1

[Mapp
σ (Vi)])

−1, (14)

[L̂app
ε ] =

1

n

n∑
i=1

[Lapp
ε (Vi)]. (15)

Eq. (13) is referred to as the Partition Theorem [10]. As all stochastic
inequalities that will be defined throughout this section, Eq. (13) means
that for all θk in Θ:

[L̂app
σ (θk)] ≤ [Leff] ≤ [L̂app

ε (θk)], (16)
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in which [L̂app
σ (θk)] and [L̂app

ε (θk)] are the realizations of the static and kine-
matic statistical apparent elasticity matrices, associated with the realization
θk of the random medium occupying domain Ω. The non-strict inequality
(13) ensures that the effective properties are recovered for n = 1 (since
KUBC and SUBC are then applied on a body equal or larger than the RVE,
the properties of which are independent of the kind of boundary conditions).
For the general case however (that is, for n > 1 and subdomains Vi smaller
than the RVE), Eq. (13) is assumed to hold in the strict sense, so that:

[L̂app
σ ] < [Leff] < [L̂app

ε ]. (17)

For any real symmetric matrices [A] and [B], inequality [A] > [B] (resp.
[A] ≥ [B]) means that the matrix [A]−[B] is positive-definite (resp. positive-
semidefinite). Such a positive semidefinite ordering is usually referred to as
Loewner ordering. It is worth noticing that no general conclusion about the
(deterministic or random) nature of the bounds can be drawn from Eqs.
(14-15), except for the limiting cases n = 1 and n → +∞. In the first
case, one recovers the deterministic effective elasticity matrix (as discussed
above). For n → +∞ (in the sense that n is “sufficiently” large, so that
the elasticity or compliance matrix is homogeneous over each subdomain
Vi), the bounds are readily seen to coincide with the classical, deterministic,
Reuss (lower) and Voigt (upper) bounds. Finally, it should be noted that
similar results hold for the effective and apparent compliance matrices (see
[10]).

2.1.4. Inequalities between apparent tensors at various mesoscales

Let us now consider the case where Ω is smaller than the RVE. Conse-
quently, we can define the corresponding static and kinematic statistical ap-
parent elasticity matrices, denoted respectively by [Lapp

σ ] and [Lapp
ε ]. Using

the same methodology as in Section 2.1.3 (that is, introducing a partition-
ing of Ω), it can be shown that the following inequality holds for any given
realization of the random media [10]:

[L̂app
σ ] ≤ [Lapp

σ ] ≤ [Lapp
ε ] ≤ [L̂app

ε ], (18)

where [L̂app
σ ] and [L̂app

ε ] are given by Eqs. (14-15). Again, taking a suffi-
ciently large value of n in Eq. (18) allows one to recover Reuss and Voigt-like
bounds that are, unlike the usual Reuss and Voigt (deterministic) bounds,
random (since mesoscopic domains are very likely to exhibit fluctuations in
the volume fractions of the constituents, in addition to potential fluctuations
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of the elasticity tensors of the constitutive phases). Let [L−1]−1 and [L] be
these statistical Reuss and Voigt bounds.

The boundedness property (18) holds for apparent tensors defined with
respect to very particular kinds of boundary conditions (namely, KUBC
and SUBC) which may not be encountered in practical applications or may
be tricky to reproduce experimentally (as pointed out in [8]). Thus, we
now consider the more relevant case of mixed boundary conditions (MBC).
The mechanical definition of the mixed apparent elasticity tensor in MBC,
denoted by [[Lapp

m ]], then reads:

< σ >= [[Lapp
m ]] :< ε > . (19)

Equivalently, one has:

< ε >= [[Mapp
m ]] :< σ >, (20)

where [[Mapp
m ]] is the mixed apparent compliance tensor in MBC. Note that

the above mechanical definitions do not coincide with the energetic ones,
unless the retained boundary conditions satisfy the Hill condition (see [8]
for a discussion). A particular family of MBC satisfying Eq. (6) is the one in
which “uniform conditions are applied to any three of the six displacement
or traction vector components” (this kind of boundary conditions may be
referred to as orthogonal uniform mixed boundary conditions; see [8]), which
includes the important practical case of uniaxial testing. In this context,
one can further prove that [8]:

[Lapp
σ ] ≤ [Lapp

m ] ≤ [Lapp
ε ], (21)

so that:

0 < [L−1]−1 ≤ [L̂app
σ ] ≤ [Lapp

σ ] ≤ [Lapp
m ] ≤ [Lapp

ε ] ≤ [L̂app
ε ] ≤ [L]. (22)

For any given realization of the random media, Eq. (22) provides an inequal-
ity between the corresponding realization of the apparent elasticity tensor
of a domain smaller than the representative volume element, defined with
respect to mixed boundary conditions (satisfying the Hill condition), and
the associated realizations of apparent elasticity tensors derived, either by
applying KUBC and SUBC (for [L̂app

σ ], [Lapp
σ ], [Lapp

ε ] and [L̂app
ε ]) or without

considering any boundary condition at all (for [L−1]−1 and [L]).
As will be discussed in Section 2.3, the boundedness constraint will be

used for defining the support of the probability distribution and therefore, it
should be pointed out that [L̂app

σ ] and [L̂app
ε ] implicitly depend on the choice
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of the partitioning scheme, while [Lapp
σ ] and [Lapp

ε ] do not (and are defined
at the same scale as [Lapp

m ]).

It is worth pointing out that, in general, the apparent elasticity matri-
ces in Eq. (22) are all random. For two-phase materials made up with
ordered (in the positive-definite sense) phases (assume for instance that
[L(i)] > [L(m)], where [L(m)] and [L(i)] are the elasticity tensors of the ma-
trix and inclusions, respectively), one can readily obtain lower and upper
deterministic bounds setting:

[L`] =
(

(1− fmin)[L(m)]−1 + fmin[L(i)]−1
)−1

, (23)

[Lu] = (1− fmax)[L(m)] + fmax[L(i)], (24)

in which fmin ∈ [0, 1] and fmax ∈ [0, 1] are the lower and upper bound of the
compact support of the probability density function of the random volume
fraction of phase (i). In the most general case, scale-dependent deterministic
bounds [L`] and [Lu] have to be computed from a set of realizations of the
statistical Reuss and Voigt bounds (or from a set of realizations of [Lapp

σ ] and
[Lapp
ε ], yielding slightly tighter bounds in view of Eq. (22)). Noticing that

Loewner ordering is partial, it follows that supremum and infimum can not
be defined on a set of realizations (unlike in the real, scalar-valued case) and
a specific numerical strategy to circumvent this difficulty will be formulated
in Section 4.3.1. Note finally that while such a choice clearly introduces
some modeling bias, it is however consistent with the usual way to perform
identification on uniform distribution with limited experimental data. Eq.
(22) then reads:

[L`] ≤ [Lapp
m ] ≤ [Lu], (25)

almost surely (a.s.). Eq. (25) states that each realization of the random
matrix [Lapp

m ] is deterministically bounded from above and below. Such a
boundedness constraint will be considered in the construction of the proba-
bilistic model, as discussed in the next section.

2.2. Overview of the construction

With reference to the notations introduced in the previous section, let
[L`] ∈ M+

n (R) and [Lu] ∈ M+
n (R) be two given deterministic matrices.

Let [L] be a M+
n (R)-valued random variable, defined on probability space

(Θ, T ,P) and corresponding to a matrix representation of the apparent elas-
ticity tensor [[L]]. It is assumed that Eq. (25) holds in the strict sense.
Let [L] 7→ p[L]([L]) be the probability density function, from S = {[L] ∈
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M+
n (R)|[L`] < [L] < [Lu]} into R+, defining the probability distribution

P[L] = p[L]([L])dL of random matrix [L]. The measure dL on MS
n(R) is de-

fined as dL = 2n(n−1)/4
∏

1≤i≤j≤n d[L]ij , where d[L]ij is the Lebesgue mea-
sure on R (see [31]).

The measure of entropy, introduced for discrete probability distributions
by Shannon [29], of the probability density function p is defined as:

S(p) = −
∫
M+
n (R)

p([L]) ln(p([L]))dL, (26)

where ln is the Neperian logarithm. The Maximum Entropy principle, stated
by Jaynes in the case of random vectors (see [13] [14]), consists in maximiz-
ing the measure of entropy S(p), under a set of constraints defining the
available information. Such a principle basically allows one to construct a
probabilistic model without introducing any bias in the estimation of the
probability distribution. Thus, denoting by Cad the set of all the probabil-
ity density functions, with support S, such that all the constraints defining
the available information are fulfilled, the probability density function p[L]

constructed using the MaxEnt principle is such that:

p[L] = arg max
p∈Cad

S(p). (27)

Such a problem is classically solved by introducing a set of Lagrange mul-
tipliers and having recourse to the calculus of variations, applied to the
resulting Lagragian. The set of constraints considered in this paper, as well
as the resulting explicit form of the probability density function p[L], are
presented in the next section.

2.3. Probabilistic models

2.3.1. Probabilistic model based on the generalized matrix variate Kummer-
Beta distribution

Let us first consider the following set of constraints:∫
S
p[L]([L])dL = 1, (28)

E{[L]} = [L] ∈M+
n (R), (29)

E{ln(det([L]− [L`]))} = ν`, |ν`| < +∞, (30)

E{ln(det([Lu]− [L]))} = νu, |νu| < +∞, (31)
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where E is the mathematical expectation. Eq. (28) is the usual normal-
ization condition of the probability density function, while Eq. (29) means
that the mean value of [L] is supposed to be known. Eqs. (30-31) are
related to the boundedness constraint on [L] (see [31] for a detailed dis-
cussion). This set of constraints has already been considered in [2]. Let
λ0 ∈ R, [Λ[L]] ∈ M+

n (R), λ` ∈ R and λu ∈ R be the real Lagrange multipli-
ers corresponding to constraints (28), (29), (30) and (31), respectively. A
straightforward derivation then yields:

p[L]([L]) = IS([L])c0 det([L]− [L`])
λ`−1 det([Lu]− [L])λu−1

×etr{−[Λ[L]][L]}, (32)

in which etr{[X]}) = exp{tr([X])}, c0 = exp(−λ0) is the normalization con-
stant and [X] 7→ IS([X]) is the indicator function of S. Assuming that the
Lagrange multipliers λ` and λu are both strictly positive, it is seen that Eq.
(32) corresponds to the probability density function of a generalized matrix
variate Kummer-Beta distribution [17], allowing a closed-form expression of
c0 to be derived.

When a sufficiently large number of realizations of [L] are available, the
parameters [L], ν` and νu involved in Eqs. (29-31) can be estimated by the
usual mathematical statistics [28]. In this context, an algorithmic scheme
for computing the multipliers [Λ[L]], λ` and λu is provided in [2].

2.3.2. Alternative formulation

By definition, the random matrix [L] is such that:

[L`] < [L] < [Lu] a.s. (33)

Since [L] − [L`] ∈ M+
n (R) a.s., the random matrix ([L] − [L`])

−1 exists a.s.
and is such that ([L] − [L`])

−1 ∈ M+
n (R) a.s. Similarly, the deterministic

matrix ([Lu]− [L`])
−1 is symmetric definite-positive. We then introduce the

M+
n (R)-valued random variable [N], defined as:

[N] = ([L]− [L`])
−1 − ([Lu]− [L`])

−1. (34)

It is readily seen that Eq. (33) is strictly equivalent to the positive-definiteness
of [N], that is:

0 < [N] a.s. (35)

Let [N ] 7→ p[N]([N ]) be the probability density function of random matrix
[N], defined on M+

n (R). Let us now consider the following constraints:∫
M+
n (R)

p[N]([N ])dN = 1, (36)
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E{[N]} = E{([L]− [L`])
−1} − ([Lu]− [L`])

−1 = [N ], (37)

E{ln(det([N]))} = ν, |ν| < +∞. (38)

Consequently, p[N] takes the form [31]:

p[N]([N ]) = IM+
n (R)([N ])c∗0 det([N ])λ−1etr{−[Λ[N]][N ]}, (39)

in which c∗0 is the normalization constant, λ ∈ R and [Λ[N]] ∈ M+
n (R) are

the Lagrange multipliers associated with Eqs. (38) and (37), respectively.
When λ is a positive integer, Eq. (39) is the probability density function of
a Wishart distribution (see [1] [7]). The Lagrange multiplier [Λ[N]] can be
shown to be given by (see [31], Section 3.4.):

[Λ[N]] =
n− 1 + 2λ

2
[N ]−1. (40)

Let δ[N] be the parameter defined as δ2
[N] = E{‖[N]− [N ]‖2F}/‖[N ]‖2F, where

‖ · ‖F denotes the Frobenius (or Hilbert-Schmidt) norm, allowing the level
of statistical fluctuations of random matrix [N] to be characterized. It can
further be shown that δ[N] can be expressed as an function of λ and [N ]
(see [31], Eq. (51)). From Eqs. (34) and (39), it can be deduced that the
probability density function [L] 7→ p[L]([L]) of random matrix [L] then reads:

p[L]([L]) = IM+
n (R)(([L]− [L`])

−1 − ([Lu]− [L`])
−1)c∗∗0

×det(([L]− [L`])
−1 − ([Lu]− [L`])

−1)λ−1

×det([L]− [L`])
−(n+1)etr{−[Λ[N]]([L]− [L`])

−1},
(41)

in which c∗∗0 is a new normalization constant. In terms of random generation,
once a sample of [N] has been drawed w.r.t. Eq. (39), the corresponding
realization of [L] is readily computed from Eq. (34).

The above probabilistic models are now briefly to be discussed in the
next section.

2.3.3. Discussion

Clearly, the two probabilistic models mainly differ in the way the bound-
edness constraint is introduced. In Section 2.3.1, the constraint is formalized
in its natural form, that is, w.r.t random matrix [L], yielding the final form
(32) of the probability density function [L] 7→ p[L]([L]). Such a strategy
allows the mean value of [L] to be explicitly constrained and offers more
flexibility in prescribing the behavior of the distribution around the bounds
(through the parameters λ` and λu). Conceptually, the methodology fol-
lowed in Section 2.3.2 consists in constructing a probabilistic model for the
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“shifted inverse” random matrix [N], while using information available for
[L]. Consequently, such a strategy does not allow constraining the mean
value of [L], at least in a direct way. Note however that in this case, the
same amount of information is taken into account through the use of real-
izations of random matrix [L].

From a numerical standpoint, the generation of random matrix [L] w.r.t.
Eq. (32) requires the use of either Markov Chain Monte Carlo methods
(such as Gibbs sampling or the Metropolis algorithm) or the slice sampling
technique [18] (as discussed in [2]). On the contrary, the generation of
realizations of random matrix [N] (w.r.t. Eq. (39)) relies on Monte-Carlo
simulations of Gaussian and gamma univariate random variables (see the
numerical strategy proposed in [31]). Consequently, the second approach
relies on a more robust generator and outperforms the first one in terms
of computational cost. More importantly, the alternative formulation in
Section 2.3.2 further allows the probabilistic model to be readily extended
to the case of M+

n (R)-valued random fields. Such an extension is addressed
below.

3. Probabilistic model for matrix-valued random field

3.1. Model derivation

Let x 7→ [L(x)] be the M+
n (R)-valued random field defined on probability

space (Θ, T ,P), indexed by a bounded open domain D in Rd (d being a
positive integer, 1 ≤ d ≤ 3) and corresponding to a suitable random matrix
representation of the tensor-valued random field x 7→ [[L(x)]]. The objective
of this section is the construction of a prior stochastic model of matrix-
valued random field [L] using only the available information and Information
Theory. Therefore, the model thus obtained is related to this framework.

Following Section 2, we assume that there exists two given deterministic
fields x 7→ [L`(x)] and x 7→ [Lu(x)] (which are intrinsically scale-dependent;
see the discussion in Section 2.1), with values in M+

n (R), such that:

0 < [L`(x)] ≤ [L(x)] ≤ [Lu(x)], (42)

for x fixed in D. Let x 7→ [N(x)] be the M+
n (R)-valued random field defined

on probability space (Θ, T ,P), indexed by D, such that for all x in D:

[N(x)] = ([L(x)]− [L`(x)])−1 − ([Lu(x)]− [L`(x)])−1. (43)

It is assumed that the mean function x 7→ E{[N(x)]} = [N(x)], defined
from D into M+

n (R), is given. This mean function can be either directly
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estimated using Eq. (43) when realizations of [L(x)] are available or in the
most general case, computed solving an inverse (boundary value) problem.
It can then be deduced that there exists a deterministic field x 7→ [M(x)],
where [M(x)] is an invertible upper triangular matrix, such that:

[N(x)] = [M(x)]T[M(x)], (44)

for x ∈ D. We assume that the available information is the one considered
in [33] [34] and then, the prior stochastic model of random field x 7→ [N(x)]
belongs to the class defined in these references. For x fixed in D, the random
matrix [N(x)] is thus written as:

[N(x)] = [M(x)]T[K(x)][M(x)], (45)

in which x 7→ [K(x)] is a homogeneous non-Gaussian second-order M+
n (R)-

valued random field, indexed by Rd, defined on probability space (Θ, T ,P),
such that E{[K(x)]} = [In] ([In] being the (n×n) identity matrix). Let δ[K]

be defined as:

δ2
[K] =

1

n2
E{‖[K(x)]− [In]‖2F}, (46)

with 0 < δ[K] <
√

(n+ 1)/(n+ 5). The random field x 7→ [K(x)] is defined
by a nonlinear mapping of n(n + 1)/2 independent second-order centered
homogeneous R-valued Gaussian random fields, denoted by x 7→ ζij(x) for
1 ≤ i ≤ j ≤ n, defined on (Θ, T , P ) and indexed by Rd. Specifically, for x
fixed in D, the random matrix [K(x)] is written as:

[K(x)] = [P(x)]T[P(x)], (47)

in which [P(x)] is a upper triangular matrix defined by:

[P(x)]ij =
δ[K]√
n+ 1

ζij(x), (48)

for i < j and:

[P(x)]ii =
δ[K]√
n+ 1

√
2hai(ζii(x)), (49)

in which ai = (n + 1)/(2δ2
[K]) + (1 − i)/2 and u 7→ hai(u) is the function

parameterized by ai > 0 and defined from R into R+ by:

hai(u) = F−1
Γai

(FU (u)), (50)

where u 7→ FU (u) is the cumulative distribution function of the normalized
Gaussian random variable U and p 7→ F−1

Γai
(p) is the reciprocal function of
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the cumulative distribution function γ 7→ FΓai
(γ) of the Gamma random

variable Γai with parameter ai. A set of further fundamental properties
of random fields x 7→ [K(x)] and x 7→ [N(x)] can be found in [33] [34]
(note that the mapping will be described, from an algorithmic standpoint,
in Section 3.2). It can finally be shown that:

δ[N](x) = {E{‖[N(x)]− [N(x)]‖2F}/‖[N(x)]‖2F}1/2

=
δ[K]√
n+ 1

{1 +
(tr[N(x)])2

tr([N(x)]2)
}1/2.

(51)

Each random field of the family of stochastic germs {x 7→ ζij(x)}i,j is
completely defined by its correlation function y ∈ Rd 7→ Rζij (y) = E{ζij(x+
y)ζij(x)}, such that:

Rζij (y) =
d∏

k=1

rkζij (yk), (52)

in which rkζij (yk) = (2lkij/(πyk))
2 sin2(πyk/(2l

k
ij)) for k = 1, . . . , d. The pa-

rameter lkij corresponds to the spatial correlation length of random field
x 7→ ζij(x) in the direction identified by index k. The correlation structure
is thus entirely defined by the dn(n+ 1)/2 correlation lengths of the Gaus-
sian germs, ensuring a minimal parametrization of the probabilistic model.

Following [33], x 7→ [N(x)] is a second-order random field, that is to say,

E{‖[N(x)]‖2F} < +∞, (53)

for all x in D, with continuous realizations on the closure D of D a.s. (pro-
vided that x 7→ [N(x)] is continuous on D). Consequently, it can be de-
duced, taking into account the results provided in [33], that x 7→ [L(x)] is
a second-order random field on D. Having recourse to such a construction,
the probabilistic model for x 7→ [L(x)] is then completely defined by:

(i) The mean function x 7→ [N(x)].

(ii) The field x 7→ δ[N](x) (or equivalently, δ[K]; see Eq. (51)).

(iii) The set of spatial correlation lengths {lkij}, 1 ≤ i ≤ j ≤ n, k = 1, . . . , d.

(iv) The deterministic fields x 7→ [L`(x)] and x 7→ [Lu(x)].

When the mean function does not depend on x, it can be deduced that
δ[N](x) = δ[N] (see Eq. (51)) and x 7→ [N(x)] can then be seen as the
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restriction to domain D of a homogeneous random field indexed by Rd. Fur-
thermore, if the bounding fields x 7→ [L`(x)] and x 7→ [Lu(x)] are constant
(i.e. ∀x ∈ D, [L`(x)] = [L`] and [Lu(x)] = [Lu]), random field x 7→ [L(x)]
can also be viewed as the restriction to domain D of a homogeneous random
field indexed by Rd.

3.2. Implementation

The main algorithm allowing realizations of random field x 7→ [L(x)] to
be simulated is presented below. The numerical simulation of the Gaussian
germs can be performed using the classical method introduced in [30] and is
not detailed for the sake of brevity (note that the spatial correlation lengths
are then implicit inputs of the algorithm).

input : n, δ[K], Nsim, [L`(x)], [Lu(x)], [M(x)]
output: Nsim realizations of random field x 7→ [L(x)]

1 b← δ[K](n+ 1)−1/2;

2 for i← 1, n do
3 ai ← (n+ 1)/(2δ2

[K]) + (1− i)/2;

4 end
5 for p← 1, Nsim do
6 for i← 1, n do
7 for j ← i, n do
8 generation of Gaussian random field x 7→ ζij(x);
9 end

10 end
11 forall the x ∈ D do
12 for i← 1, n do

13 [M(x)]ii ← b
√

2hai(ζii(x));
14 for j ← i, n do
15 [M(x)]ij ← bζij(x);
16 end

17 end
18 [K(x)]← [M(x)]T[M(x)];
19 [N(x)]← [M(x)]T[K(x)][M(x)];
20 [L(x)]← {[N(x)] + ([Lu(x)]− [L`(x)])−1}−1 + [L`(x)];

21 end

22 end
Algorithm 1: Numerical Monte Carlo simulations of random field.
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4. Application

4.1. Experimental database

As an application, we consider the case of an Al alloy (with commer-
cial reference Al 2024-T351). Details about the experimental analysis can
be found in [22]. The microstructural-crystallographic characterization is
obtained using the EBSD technique (see [27] for instance). Specifically,
measurements were obtained from a 6.35 [mm] thick rolled plate, the faces
of which were polished on the rolling plane as well as on the plan perpen-
dicular to the rolling direction. Nine slightly overlapping 2 × 1 [mm] maps
of the microstructure were obtained on each plane and only the data rela-
tive to the rolling plane are considered in this research. An experimental
realization of the polycrystalline microstructure is shown on Fig. 1, where
colors refer to crystallographic orientations.

Figure 1: Experimental realization of the polycrystalline microstructure.

For characterization purposes, each grain Gi is fitted to an ellipse Ei
(using a conic representation and a least-square estimation), so that the
microstructure is classically described by the equivalent aspect ratios ω and
Euler angles of all the grains. Let Φi = [φi1, φ

i, φi3] be the random vector
of Euler angles corresponding to grain Gi. For a given realization of the
microstructure containing, say, NG grains, the NG realizations of ω and Φ are
considered as independent realizations and thus, the experimental database
is made up of 394 independent realizations of ω and Φ. The kernel estimate
of the probability density function of ω is plotted in Fig. 2. It is seen that
most of the realizations of the aspect ratio are significantly different from
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1, so that most of the grains appear elongated. Furthermore, the angular
definition of the axis characterizing the fitting ellipses shows that the grains
are all elongated in the same direction defined by, say, vector e1 (see also
Fig. 1). Note that this feature is typically encountered for the kind of alloy
considered in this research and does not result from the rolling process. The
plot of the probability density functions of the three Euler angles is shown
in Fig. 3. It is seen that angles φ1 and φ3 are, roughly speaking, uniformly
distributed over [0, 2π], while φ has a slightly bimodal distribution supported
over [0, π/2].
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Figure 2: Plot of the probability density function of ω.

4.2. Simulation of a database

This section aims at defining a general framework for digitally simulat-
ing 2D microstructures in accordance with the experimental data previously
defined. Such simulations will be latter used to ensure a reasonable level of
convergence in the identification of the probabilistic model. From Section
4.1, it turns out that the numerical simulation of the polycrystalline mi-
crostructure relies on the simulation of both the grain geometry and the
crystallographic orientation parameterized by the Euler angles.

The simulation of the crystallographic orientation involves sampling from
the joint distribution of φ1, φ and φ3 and is performed in practice prescrib-
ing the marginal cumulative distribution functions (estimated from the ex-
perimental data) and the spearman’s rank correlation matrix (see [11] for
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Figure 3: Plot the probability density functions of φ1 (thick solid line), φ (dashed line)
and φ3 (thin solid line).

instance).
Voronoi tessellation [20] being a very common way to model the polycrys-

talline microstructure in metallic alloys, a first natural approach to simulate
the grain geometry would then consist in using a two-dimensional Voronoi
tessellation, typically generated from a homogeneous Poisson point process
and as such, usually referred to as a Poisson-Voronoi tessellation. At this
stage, it should however be pointed out that such a partitioning technique
is not able to generate cells that are all elongated in a given direction and
thus, it may introduce a modeling bias in the identification process. This
difficulty can be circumvented having recourse to the Voronoi-G tessellation,
introduced in [26] and briefly reviewed hereafter. Let Ω ⊂ Rd be a bounded

open set. Let {x(i)
tes}

Ntes
i=1 be the set of generating points belonging to the clo-

sure Ω of Ω. The cell V(x
(i)
tes) generated by x

(i)
tes is the set of all the points of

Ω that are closer to x
(i)
tes than any other generating point, the closeness being

defined with respect to the Euclidean distance in Rd. The set {V(x
(i)
tes)}

Ntes
i=1

is then referred to as a Voronoi tessellation (or Voronoi diagram) of Ω. For
(x,y) ∈ Rd × Rd, let (x,y) 7→ dG(x,y) be the distance defined by:

dG(x,y) =
√

(x− y)T[G](x− y), (54)

in which [G] is a positive definite symmetric matrix. The cell VG(x
(i)
tes) of
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the Voronoi-G tessellation, generated by point x
(i)
tes, is defined as:

VG(x
(i)
tes) = {x ∈ Ω|dG(x

(i)
tes,x) ≤ dG(x

(j)
tes,x)}, (55)

in which j = 1, . . . , Ntes, j 6= i. From Eq. (54), it is readily seen that setting
[G] = [Id] allows one to recover the classical Voronoi tessellation. Let [G] be
defined as:

[G] =

[
1/s2 0

0 1

]
. (56)

in which s ∈ R+
∗ . It can then be shown that the form (56) allows one to

generate elongated cells in the e1-direction, parameter s being interpreted
as the rate of growth of the cell in this given direction. Thus, 1/s may be
seen as an overall aspect ratio and may be identified from the experimental
distribution (see Fig. 2), enforcing an estimate ŝ of s to be equal to the
inverse of the aspect ratio empirical mean value for instance. However, it
should be kept in mind that the scaling is applied to all the cells of a given
realization of the microstructure, so that such an approach may, in some
sense, over-constrain the numerical simulation. Subsequently, an estimate
ŝ of parameter s is here obtained from the experimental data using the
Maximum Likelihood Approach and is then defined as:

ŝ = arg max
b∈R+

∗

L(ω(1)
exp, . . . , ω

(394)
exp , b), (57)

in which the Log-likelihood function is defined as:

L(ω(1)
exp, . . . , ω

(394)
exp , b) =

394∑
i=1

log(pω(ω(i)
exp, b)), (58)

where log is the Neperian logarithm, x 7→ pω(x, b) is the probability density
function of the aspect ratio, estimated from numerical Monte Carlo simula-
tions of the microstructure using Voronoi-G tessellation (setting s = b) and

{ω(i)
exp}394

i=1 are the experimental realizations of the aspect ratio. The plot of
the Log-likelihood function, reported in Fig. 4, shows that the maximum is
reached for ŝ = 2.5.

An example of microstructure, obtained before and after stretching, is
shown on Fig. 5.

The algorithm used for generating the Voronoi-G tesselation is presented
below (see [26]).
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Figure 4: Plot of the likelihood function b 7→ L(ω
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exp, . . . , ω

(394)
exp , b).
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Figure 5: Example of digitally simulated microstructure, without (left) and with (right)
elongation.

4.3. Identification of the probabilistic model

This section is devoted to the identification of the probabilistic model
for random matrix [N]. In particular, we do not address the identification of
the parameters for random field x 7→ [N(x)], taking into account the limited
amount of experimental data. Subsequently, we identify parameters [N ] and
δ[N] for a given mesoscopic domain. The correlation structure (that are, the
set of spatial correlation lengths) will be assumed for illustration purposes
in Section 4.4.
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input : [G], Ω
output: Voronoi-G tessellation of Ω

1 [Q]← [G] = [Q]T[Q];

2 generate the generating points x
(i)
tes ∈ Ω, i = 1, . . . , Ntes;

3 for i← 1, Ntes do

4 x̃
(i)
tes ← [Q]x

(i)
tes;

5 compute the cell V(x̃
(i)
tes) generated by x̃

(i)
tes;

6 forall the y ∈ V(x̃
(i)
tes) do

7 ˜̃y← [Q]−1y;
8 end

9 define the Voronoi-G tessellation, VG(x
(i)
tes)← {˜̃y};

10 end
Algorithm 2: Construction of the Voronoi-G tessellation.

4.3.1. Numerical strategy for computing the realizations of the apparent ten-
sors

The first step consists in computing a set of realizations of the bounds
[L̂app
σ ] and [L̂app

ε ], according to Sections 2.1.3 and 2.1.4. Let Nsim be the
number of simulated realizations of the microstructure. For this purpose,
following Huet’s Partition Theorem, domain Ω is divided into 9 subdomains
Vi, for which the apparent tensors [Mapp

σ (Vi)] and [Lapp
ε (Vi)] have to be com-

puted considering both KUBC and SUBC. For a simulated realization of the
polycrystalline microstructure and for a given kind of boundary condition
BC, the mean stress < σ >BC and mean strain < ε >BC vectors are com-
puted averaging over Vi, the local stress and strain fields being computed
using a Finite Element analysis. From a numerical standpoint, it can be
verified that < ε >KUBC≈ ε0 and that < σ >SUBC≈ σ0. The corresponding
realizations of [Lapp

ε (Vi)] and [Mapp
σ (Vi)] are then defined as:

[Lapp
ε (Vi)] = arg min

[L−1]−1<[L]<[L]

‖ < σ >KUBC −[L] < ε >KUBC ‖, (59)

[Mapp
σ (Vi)] = arg min

[L]−1<[M ]<[L−1]

‖ < σ >SUBC −[M ]−1 < ε >SUBC ‖, (60)

in which ‖ · ‖ is any suitable norm, [L−1] and [L] are respectively defined as:

[L−1] =

NG∑
k=1

|Gk|
|Vi|

[Lk]
−1, (61)
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[L] =

NG∑
k=1

|Gk|
|Vi|

[Lk], (62)

where NG is the realization of the random variable corresponding to the
number of grains, |Gk| and [Lk] are the area and the realization of the elas-
ticity tensor of grain Gk. The general form of the cost function in Eqs.
(59-60) has been proposed in [2]. These equations are solved having re-
course to semidefinite programming [39] (see also [3] Chapter 4) and more
precisely, using the MATLAB toolbox YALMIP [15]. Once the realizations
of [Lapp

ε (Vi)] and [Mapp
σ (Vi)], i = 1, . . . , 9, have been computed, the associ-

ated realizations [L̂app
σ ] and [L̂app

ε ] of [L̂app
σ ] and [L̂app

ε ] are estimated using
Eqs. (14) and (15) respectively.

The second step of the methodology deals with the computation of the
realization of the apparent elasticity matrices [Lapp

ε ] and [Lapp
σ ]. These real-

izations can be similarly computed applying KUBC and SUBC to the whole
domain Ω and are defined as follows:

[Lapp
ε ] = arg min

[L̂app
σ ]<[L]<[L̂app

ε ]

‖ < σ >KUBC −[L] < ε >KUBC ‖, (63)

[Lapp
σ ] = arg min

[L̂app
σ ]<[L]<[L̂app

ε ]

‖ < σ >SUBC −[L] < ε >SUBC ‖. (64)

The final step involves the computation of the realizations of the appar-
ent elasticity matrix [Lapp

m ] for mixed boundary conditions (a tensile test
here). In order to be consistent with Eq. (25), such calculations first re-
quire the estimates of the deterministic bounds [L`] and [Lu]. As briefly
discussed in Section 2.1.4, [L`] (resp. [Lu]) can not be defined as the in-
fimum (resp. supremum) on the set of realizations {[Lapp

σ (θk)]}Nsimk=1 (resp.

{[Lapp
ε (θk)]}Nsimk=1 ). Consequently, we propose to define these bounds as fol-

lows:

[L`] = arg min
[L]∈C`ad

Nsim∑
k=1

‖[Lapp
σ (θk)]− [L]‖F, (65)

[Lu] = arg min
[L]∈Cuad

Nsim∑
k=1

‖[L]− [Lapp
ε (θk)]‖F, (66)

in which

C`ad = {[L] ∈M+
n (R)|[L] < [Lapp

σ (θk)], k = 1, . . . , Nsim}, (67)

Cuad = {[L] ∈M+
n (R)|[Lapp

ε (θk)] < [L], k = 1, . . . , Nsim}. (68)
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Once the deterministic bounds [L`] and [Lu] have been computed solving the
optimization problems (65-66), the realization [Lapp

m ] of the apparent tensor
[Lapp
m ], associated with the considered realization of the microstructure, is

finally defined as:

[Lapp
m ] = arg min

[L`]<[L]<[Lu]
‖ < σ >MBC −[L] < ε >MBC ‖. (69)

4.3.2. Identification of the probabilistic model

Let Ω be a 0.3 × 0.3 square domain and let Nsim = 100. The sets
of realizations {[Lapp

σ (θk)]}100
k=1 and {[Lapp

ε (θk)]}100
k=1 are computed using the

methodology detailed in Section 4.3.1. Solving Eqs. (65-66) first yields
estimates of the bounds (in megapascals):

[L̃`] = 105

 1.0869 0.6068 0.0007
0.6068 1.0884 0.0007
0.0007 0.0007 0.2347

 , (70)

[L̃u] = 105

 1.1487 0.5787 0.0013
0.5787 1.1477 −0.0003
0.0013 −0.0003 0.2825

 . (71)

For all the realizations of the volume averaged stress and strain vectors, solv-
ing Eq. (69), taking into account Eqs. (70-71) and Eq. (34), allows the cor-
responding realizations [N(θ1)], . . . , [N(θNsim)] of [N] to be computed. Con-
sequently, estimates of parameters [N ] and δ[K] of the probabilistic model
can be readily determined using classical statistical estimates:

[Ñ ] =
1

Nsim

Nsim∑
k=1

[N(θk)], (72)

δ̃[K] = δ̃[N]

√
n+ 1

{
1 +

(tr[Ñ ])2

tr([Ñ ]2)

}−1/2

, (73)

in which

δ̃[N] =

{
1

Nsim‖[Ñ ]‖2F

Nsim∑
k=1

‖[N(θk)]− [Ñ ]‖2F

}1/2

. (74)

It is found that:
δ̃[N] = 0.66, (75)
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and

[Ñ ] = 10−3

 0.2767 0.0879 −0.0189
0.0879 0.2214 0.0277
−0.0189 0.0277 0.2366

 . (76)

Making use of these parameters, numerical Monte-Carlo simulations of
random matrix [N] can be readily performed and allow realizations of [L]
to be obtained. Since the construction of the probabilistic model has been
addressed for [N], it is worth comparing the sets of experimental and sim-

ulated realizations of the random apparent elasticity matrix [L]. Let [L̃
exp

]

and [L̃
sim

] be the statistical estimates of mean value [L] computed using the
experimental and the simulated realizations respectively. It is found that:

[L̃
exp

] = 105

 1.1176 0.5907 0.0028
0.5907 1.1230 −0.0019
0.0028 −0.0019 0.2584

 , (77)

and

[L̃
sim

] = 105

 1.1153 0.5944 0.0025
0.5944 1.1194 −0.0016
0.0025 −0.0016 0.2601

 . (78)

It is seen that the mean model computed using the the probabilistic model
reasonably matches the one estimated from the experimental realizations of
[L]. Similarly, the corresponding estimates δ̃exp[L] and δ̃sim[L] of δ[L] are given
by:

δ̃exp[L] = 0.0108, (79)

and
δ̃sim[L] = 0.0093. (80)

The relative error |δ̃exp[L] − δ̃sim[L] |/δ̃
exp
[L] is equal to 0.1389, showing a good

agreement between the model predictions and the experimental data as well.
Furthermore, it is seen that the level of statistical fluctuations exhibited
by the random elasticity tensor is small. This fact can be explained by
noticing that (i) the RVE associated with polycrystalline microstructures
is generally small (which is here confirmed by the closeness of the upper
and lower bounds), and that (ii) the Aluminium single crystal presents a
cubic material symmetry (and is relatively close to isotropy, since the Zener
anisotropy index [40], defined as 2[LAl]44/([L

Al]11− [LAl]12), is equal to 1.2),
so that the crystallographic orientation does not induce large fluctuations in
the elasticity tensors of the grains. Indeed, further numerical experiments
show that considering a single crystal whose Zener anisotropy index is much
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greater than 1 yields a larger level of statistical fluctuations of the apparent
matrices (in the case of a copper crystal, for which the Zener anisotropy
index is equal to 3.2, one has δ̃exp[L] ≈ 0.09 for instance), all other parameters

(e.g. the probability distribution of the Euler angles) being fixed. This
observation is consistent with the results provided in [23].

4.4. Application to a beam with mesoscopic randomness

For illustration purposes, we consider the open bounded domain D of R2

such that D =]0, 20[×]0, 1[ (in millimeters) and then, n = 3. Null displace-
ment Dirichlet boundary conditions are applied to the boundary ΓD defined
as ΓD = {x ∈ D|x1 = 0}, while a static load point (0,−0.01) (in newtons)
is prescribed at the point of coordinates (20, 1).

The elasticity tensor random field is defined with reference to the poly-
crystalline microstructure characterized in Section 4.1 (and simulated as
discussed in Section 4.2). Consequently, following the identification carried
out in Section 4.3, the mean function is such that [N(x)] = [Ñ ] (see Eq.
(76)), the dispersion parameter δ[N](x) is given by δ[N](x) = δ̃[N] (see Eq.
(75)) and the deterministic fields x 7→ [L`(x)] and x 7→ [Lu(x)] are such
that [L`(x)] = [L̃`] and [Lu(x)] = [L̃u] (see Eqs. (70)-(71)) for all x in D.
The spatial correlation lengths are assumed to be such that lkij = `c = 1
(millimeter) for all i, j and k. Domain D is discretized using 40 × 2 = 80
4-nodes isoparametric finite elements (with 4 integrating points), as shown
in Fig. 6.
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Figure 6: Plot of the mesh of domain D.

The R2-valued displacement random field x 7→ u(x) = (u1(x), u2(x))
is characterized solving the stochastic boundary value problem with nmc
Monte-Carlo simulations (see Section 3.2). In order to illustrate the effect
of the boundedness constraints, the nonparametric approach derived in [34]
is also considered and is parameterized by Eqs. (77-79) (assuming the same
correlation structure as for the proposed approach).
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Let X be the random vector of the u2-displacement of the nodes located
in the central line of the beam. The convergence of the statistical estimate

of
√

E{‖X‖2E} (in which ‖ · ‖E is the usual Euclidean norm) with respect to

nmc is first studied and shown in Fig. 7. It is seen that a reasonable level
of convergence is reached for nmc = 3000 simulations.
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Figure 7: Convergence of the statistical estimate of
√

E{‖X‖2
E} with respect to the number

of Monte-Carlo simulations: proposed approach with boundedness contraints (black line),
Soize’s nonparametric approach (red line).

Clearly, for a given level of statistical fluctuations, the effect of the
boundedness constraints is more significant for small levels of probability.
This point is illustrated in Figs. 8 and 9, where the confidence region (as-
sociated with probability level P = 0.99) of the transverse displacement
of the central line and the probability density functions of the maximum
transverse displacement are respectively plotted for the proposed approach
(black line) and Soize’s nonparametric model (dashed line). Obviously, the
observed discrepancy between the two probabilistic models is all the more
small that the level of statistical fluctuations of the elasticity tensor random
field is small (see Eq. (79)).

5. Conclusion

In this paper, we have addressed the construction of a prior stochastic
model for non-Gaussian deterministically-bounded positive-definite matrix-
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Figure 8: Confidence region (associated with probability level P = 0.99) of the trans-
verse displacement of the central line for the proposed approach (black line) and Soize’s
nonparametric model (dashed line).
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Figure 9: Semilog scale plot of the probability density functions of the maximum transverse
displacement maxx∈D |u2(x)| (in millimeters) for the proposed approach (black line) and
Soize’s nonparametric model (dashed line).
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valued random fields in the context of mesoscale modeling of heterogeneous
elastic microstructures. With reference to Huet’s Partition Theorem, we first
discussed the definition of bounds that are used for specifying the support
of the probability density function for the mesoscopic random elasticity ten-
sor. Emphasis is put on the random or deterministic nature of the bounds,
which has an important consequence for the construction of the probabilistic
model. In particular, a numerical procedure, allowing one to define approx-
imate deterministic bounds in the general case of a stochastic boundedness
constraint, is proposed. Considering next the case of deterministic lower
and upper bounds, two random matrix models are presented. The first one,
previously derived in the literature, specifically allows prescribing the be-
havior of the distribution around the bounds. Making use of an alternative
formulation of the boundedness constraints, a second probabilistic model is
proposed and allows extending the modeling to deterministically-bounded
positive-definite matrix-valued random fields. Such an extension is read-
ily performed making use of the class of random fields introduced in [34].
It is worth mentioning that while the probabilistic model was derived for
modeling mesoscale random elasticity tensors, it is also suitable for other
applications involving non-Gaussian positive-definite matrix-valued random
fields, for which similar boundedness constraints hold (such as random per-
meability tensors; see [4]). The overall methodology is finally exemplified
through the calibration of the prior probabilistic model, performed using an
experimental database obtained from EBSD measurements on Al alloy. In
accordance with the literature, it is shown that the level of statistical fluc-
tuations of the apparent tensor is small because of the material symmetry
exhibited by the aluminium crystal (which is relatively close to isotropy).
A simple numerical application, carried out considering both the proposed
probabilistic model and the class of random fields defined in [34], is also
provided.

The procedure leading up to the foregoing prior probabilistic model pro-
vides a compact stochastic representation for a non-Gaussian tensor-valued
random field. Uncertainty propagation procedures can be used to explore
the dependence of model-based predictions on this prior stochastic model.
It is important to note that the smallest statistical fluctuations at finer (mi-
croscopic) scales are smoothed at the mesoscale considered in the calibration
procedure and consequently, cannot be accounted for and consequently, can-
not be propagated. The proposed stochastic model at mesoscale is, therefore,
well adapted for taking into account physical phenomena occurring at this
scale and characterizing the consequences induced at the macroscale.
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