N

N
N

HAL

open science

CaPiTo: protocol stacks for services

Han Gao, Flemming Nielson, Hanne Riis Nielson

» To cite this version:

Han Gao, Flemming Nielson, Hanne Riis Nielson. CaPiTo: protocol stacks for services. Formal

Aspects of Computing, 2011, 23 (4), pp.541-565. 10.1007/s00165-011-0174-7 . hal-00684301

HAL Id: hal-00684301
https://hal.science/hal-00684301

Submitted on 1 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00684301
https://hal.archives-ouvertes.fr

Under consideration for publication in Formal Aspects of Computing

CaPiTo: Protocol Stacks for Services

Han Gao! and Flemming Nielson! and Hanne Riis Nielson'

IDTU Informatics, Technical University of Denmark

Abstract. CaPiTo allows the modelling of service-oriented applications using process algebras at three levels
of abstraction. The abstract level focuses on the key functionality of the services; the plug-in level shows
how to obtain security using standardised protocol stacks; finally, the concrete level allows to consider how
security is obtained using asymmetric and symmetric cryptographic primitives.

The CaPiTo approach therefore caters for a variety of developers that need to cooperate on designing and
implementing service-oriented applications. We show how to formally analyse CaPiTo specifications for en-
suring the absence of security flaws. The method used is based on static analysis of the corresponding LySa
specifications. We illustrate the development on two industrial case studies; one taken from the banking
sector and the other a single sign-on protocol.

1. Introduction

Service-oriented systems are becoming the cutting edge of IT Systems. In this context, services are viewed
as independent computational entities that can be described, published, discovered, etc. The most common
implementation of service-oriented systems is protocol-based web services, where security of interactions
between clients and services is ensured by means of industrial communication protocols, e.g. TLS [DA99],
SOAP [SOA], HTTP, TCP/IP.

Different levels of abstractions are employed by the researchers, developers and programmers participating
in the design of service-oriented applications. The CaPiTo approach (presented in Section 2) aims at bridging
these gaps within one uniform framework.

e At the abstract level of CaPiTo the functionality of the system is designed without particular attention
to the methods needed for ensuring security. This level is useful for developing the overall functionality
of the system and for ensuring that services operate as intended.

o At the plug-in level of CaPiTo existing security protocol stacks are attached to the abstract specifications
so as to clarify which methods should be used for ensuring security. We consider it a main achievement
of CaPiTo that we are able to incorporate existing protocols such as TLS and SOAP. This level is useful

Correspondence and offprint requests to: DTU Informatics, Technical University of Denmark. E-mail: han.22cc@Qgmail.com,
nielson@imm.dtu.dk, riis@imm.dtu.dk

2 H. Gao, F. Nielson and H. R. Nielson

for interacting with software developers and for cross-compilation into the actual programming language
of interest, e.g. C or Java.

e At the concrete level the security protocols are expanded out into their underlying symmetric or asym-
metric cryptographic primitives. This is in many ways the level that is closest to the traditional Alice
Bob protocol narrations, but here formulated in the form of processes in a process algebra. This level is
useful for detailed analyses of the security of the cryptographic protocols embedded in the service-oriented
applications.

We provide (in Section 3) two case studies of using this approach. One is the financial Credit Request case
study taken from the SENSORIA project [Sen]. The other is the SAML Single Sign-On protocol case study
from the Liberty-Alliance project [Lib]. We show how one can benefit from the different levels of modelling
in the case studies.

We then develop (in Section 4) a static analysis for ensuring the absence of security flaws in the CaPiTo
concrete level specification. This approach is based on our LySa approach [BBD'05] and aims at providing
a safe over-approximation of the protocol behaviour.

While we have performed code generation from the CaPiTo plug-in level specification into C, using a library
of encoded protocols, this is not part of the present paper.

Related Work. Researchers have developed many general purpose verification tools intended to be used for
modeling and verifying cryptographic protocols. Many of these focus on a process algebraic way of expressing
the Alice Bob narrations typically used when expressing cryptographic protocols. As an example, work was
conducted by using LOTOS [LGO00] (based on CSP) to specify the protocols and the FDR model checker was
used to establish trace inclusion between the system and the property. Abadi and Gordon [AG99] extended
the m-calculus with cryptographic primitives (e.g. keys, nonces, encryptions, signatures) to obtain their spi-
calculus that admitted cryptographic terms into the processes. This approach proves a protocol secure by
establishing bisimulation equivalences between two processes.

Our own work on LySa [BBDT05] was inspired by the spi-calculus but used methods from static analysis
to analyse security of the protocols. Developments with a somewhat similar goal also include ProVerif [Pro],
Scyther [Scy], and OFMC [MVO09]; this list is not intended to be complete!

Recently, process algebras have been used to define clean semantics models for service-oriented systems. This
trend is witnessed by the many process calculi-like formalisms for client-server interaction, orchestration and
the handling of unexpected events. Example process algebras include COWS [LPT07], with a focus on service
orchestration, and CaSPiS [BBNLO0S8], where the notions of session and pipelining play a central role.

The work presented in this paper goes one step further in modelling service oriented systems at different
levels of abstraction and therefore tries to bridge the gap between researchers, developers and programmers.
Previous ideas in this direction were presented in [GNN11].

2. The CaPiTo Approach to Services

The CaPiTo approach to modelling service-oriented applications involves a total of three levels. At the abstract
level, we abstract away from both cryptography and standardised communication protocols, and this allows
us to concentrate on the interaction of the services themselves. At the plug-in level the abstract specification
is augmented with plug-ins for identifying the standardised protocol stacks to be used but without going
into the details of the cryptography. At the concrete level, the notion of services is hidden, while we model
both cryptography and the details of the standardised communication protocols used for implementing the
service-oriented application.

The transformation from the abstract level to the plug-in level needs to be performed manually because it is

CaPiTo: Protocol Stacks for Services 3

Table 1. The abstract level of CaPiTo.

vw = | (@)
e = zlnl i@
P = Tx|xz|n
P = (.P|@-P|wn)P| PPy 1P| P +Py | 0|70].P | nv]].P| 1().P

here that one makes the design decision of choosing between the many different protocol suites that might
be appropriate. The unfolding of sessions at the plug-in level and the transformation to the concrete level,
however, is fully automatic. We do not consider the semantic correctness of unfoldings and transformations
but merely devise the formal semantics at the concrete level.

2.1. The Abstract Level of CaPiTo

In the abstract modelling of service-oriented applications, certain details are often abstracted away, for
example, the underlying standardised protocols to be used to protect the communication steps. The abstract
level of CaPiTo incorporates this abstraction.

The basic building blocks are values, v,w € Val, which correspond to closed expressions, i.e. expressions
without free variables. Values are used to represent keys, nonces, messages, functions, etc. Syntactically, they
are described by expressions e € Expr. We will use n to range over names, x to range over variables, and e
to range over expressions. We use ¥ as a short-hand for vy,...,v. In addition, we allow the use of functions
f (on top of the constructors and destructors that will be used in the other levels of CaPiTo for modelling

cryptography).

Communication is facilitated by means of pattern matching and the binding of values to variables. We
distinguish between defining occurrences and applied occurrences of variables. A defining occurrence is an
occurrence where the binding of a variable is performed, while an applied occurrence is an occurrence of
a variable where the value bound to it is being requested. We perform this distinction in a clear syntactic
way: the defining occurrence of a variable x is denoted by 7z, while in the scope of the declaration, the
applied occurrences appear as x. For example, the communication from the output action (A).0 to the input
action (?z).P succeeds and results in all the occurrences of the variable z in P being replaced with the value
A. Some calculi do not perform a clear syntactic distinction between defining and applied occurrences of
variables; they either do not permit pattern matching, e.g. the m-calculus [Mil99], or require the defining
occurrences in a matching to be separated from the applied occurrences by some symbol, e.g. the use of the
semi-colon in LySa [BBDT05]. Our approach is more general while still allowing us to define a useful static
analysis in Section 4.

The syntax of the abstract specification is in Table 1. Services are syntactically built from basic activities,
including the invoke activity (77].P), the receive activity (nv[].P), where nv| |.P defines a service that
can be invoked by 77| |.P. Other activities include restriction ((v n)P), nondeterministic choice (P; 4+ P»),
parallel composition (P;|Pz), replication (!P), and service return (1 (€).P), where values € are returned
outside a service to the enclosing environment. In 777[|.(72v]].((4, ?z). 1 ().0)), the process T (x) sends
(x) to the environment, thereby bypassing ns and making it an output belonging to service n;.

After a service has been invoked there is a sequence of communication steps taking place. The empty holes |]
after the service invocations and responses (e.g. 7eq and req) serve as place-holders for the plug-in level to be
presented below: to provide a list of the underlying security protocols to be used to protect the communication
steps. The reader familiar with [BBNLO8] will notice that our abstract level has been inspired by the CaSPiS
process calculus developed in the SENSORIA project [Sen].

Example 1. Let us consider a simple scenario where a client asks his or her bank for the account balance as

4 H. Gao, F. Nielson and H. R. Nielson

Table 2. The plug-in level of CaPiTo: still using sessions.

vw = n|f@)

e i= alnlf@

p = Tz|xz|n

P = (@.P|@.P|wn)P| PPy | \P| PPy | 0| wolps).P | nufpsl-P | 1(6).P
ps == pi| pi;ps

pi = name,parami,--- ,paramy

captured by the following protocol narration:

Client — Bank: TS
Bank — Client: TS, Bal

In the first message the client sends a time stamp (7'S) to the bank and in the second message the bank
replies with the account balance (Bal) and includes the time stamp so that the client will know that is an
answer to his recent request.

In the service-oriented setup of CaPiTo, the bank will provide a service denoted requ[] (for request) and it
is invoked by the construct 7eqr[|. The client and the bank can now be specified as follows:

Client = (v TS) 7Tequ|]. (Client, Bank,TS).
(Bank, Client, TS, 7bal).0
Bank = requ[]. (Client, Bank,?ts).
(v Bal)(Bank, Client,ts, Bal).0

The overall system is the parallel composition of the above processes as given by
System = Client | Bank

Below we shall extend this example to be more specific about the underlying protocols and the establishment
of the security of the message transfer. a

2.2. The Plug-In Level of CaPiTo

From the point of view of the OSI model [OSI], messages have to pass several layers before reaching the
physical link layer and actually being transmitted. Each layer receives information from the layer above,
modifies it and passes it down to the next layer. The operation of each layer is controlled by different
protocols — hence the layers are said to constitute a protocol stack. So far these considerations are not
visible in the syntax of CaPiTo.

We now introduce an intermediate plug-in level in CaPiTo where we can retain part of the abstract view of
service-oriented applications but where we can also begin to be precise about which protocols we intend to
use. This takes the form of providing a list of protocols to be placed in the place-holders mentioned above
and as shown in Table 2. Here ps is a protocol stack, which we take to be a non-empty list (separated by
semi-colons) of the protocols to be used. Each protocol pi is identified by its name and a number of auxiliary
parameters (k > 0).

Ezample 2.Let us extend Example 2.1 to use the TLS (Transport Layer Security) protocol [DA99] to protect
the communication between the client and the bank.

The unilateral TLS protocol is summarised by the following protocol narration taking place between a client

CaPiTo: Protocol Stacks for Services 5

C and a server S holding a certificate S Kz, (S, K;) issued by a mutually trusted Certificate Authority C' A:
1 c —» S NC
+
2. 8§ —- C NS,SKEA(S,KS)
3. ¢ — S PKS+ (N)
4. ¢ — 5 EH(NC,NS,N)(M)

It is assumed that both principals know the public key K, éf 4 of the certificate authority and a signature with
the corresponding private key is denoted S KEA()' Encryption with a public key K¢ is denoted P Kt () The
certificate is then used to prove the identity of the server to the client so that a common master key can be
agreed upon; this key is obtained as the hash H(N¢, Ng, N) of the three nonces N¢, Ng and N. All further
messages are encrypted using this key using symmetric cryptography; this is denoted Exy(ne,ng,n)()-

The plug-in specification is obtained from the abstract specification of Example 2.1 by recording that the
TLS protocol is to be used for protecting the communication, where Client acts as the initiator and Bank as
the responder. The asymmetric key pair associated with Bank is K Eank (for (K3, 1s K ganp))- The construct

(v+ K) is used to generate the new public/private key pair. The overall system will be specified as follows
System = (vy Kca)(ve Kpank) (Client | Bank)

where the previous definitions of Client and Bank are modified by “plugging in” the parameters to the
service invocations and responses as shown below

Client = (v TS) requ[TLS,C,B,CA].
(Client, Bank,TS).
(Bank, Client, TS, ?bal).0
Bank = requ[TLS,C, B,CA|.
(Client, Bank, ?ts).
(v Bal){(Bank, Client,ts, Bal).0

where C, B and C'A stand for C' = Client, B = (Bank, Kﬁank) and CA = KgA.

The use of the unilateral T'LS protocol ensures that the server is authenticated to the client; however, it does
not ensure that the client is authenticated to the server. This may be rectified by using the bilateral version
of TLS. It is very similar to the unilateral version but extends the third message in the protocol narration
to include the client’s certificate as shown in:

3.0 — S : SKEA((J,KJC’),PK;(N),SKE(NC,NS,N)

To indicate the use of the bilateral version of TLS at the CaPiTo-level we simply change the plug-ins to use
TLS, rather than TLS. The overall system is now specified as

System = (v+ Koa)(ve K cgiont) (Ve Kggni) (Client | Bank)

Client = (v TS) 7equ[TLSs,C, B, CA|.
(Client, Bank,TS).
(Bank, Client, TS, ?bal).0
Bank %2 requ[TLS,,C, B, CA].
(Client, Bank, ?ts).
(v Bal){Bank, Client,ts, Bal).0

where C' is now a short-hand defined by C' = (Client, K aiem) and B and CA are defined as before. Clearly
this requires a mechanism for explaining the detailed operation of the plug-in; we shall do so when considering
the translation to the concrete level of CaPiTo. a

Unfolding sessions and protocol stacks. The notion of service is still too abstract for the plug-in level
to serve as a useful specification language for how to incorporate standardised protocols. We therefore show

6 H. Gao, F. Nielson and H. R. Nielson

Table 3. The plug-in level of CaPiTo: now using session identifiers. (Only changes to Table 2 are shown.)

P = (r,&).P|(r,p).P|(wvn)P|Pi|P2|!P|Pi+P|0]|7Fpi]>P|rpi>P

how to replace the sessions with session identifiers that more directly control where and how fresh nonces are
to be created in order to ensure the correct correlation between service invocation and services response. At
the same time we unfold the protocol stacks to apply each protocol one by one. It is convenient to represent
this as a “source-to-source” transformation at the plug-in level: transforming from plug-in with implicit
sessions (Table 2) to plug-ins with explicit session identifiers (Table 3).

The main task is to distinguish between different services as well as different sessions of each service by
using unique session identifiers. This is taken care of by a transformation function 7. The transformation
function takes two arguments; the first one is a plug-in specification to be transformed and the second one is
a stack for recording all the session identifiers that are generated along the way, with the topmost identifier
as the most recent one. Initially the function is called with 7¢,,, denoting the environment, as the second
argument, i.e. 7 (P, [reny]). The result of applying the transformation function is a plug-in specification with
explicit session identifiers, of which the syntax is as shown in Table 3. The auxiliary task is to unfold a
protocol stack that is used by each service. When a protocol stack contains a sequence of protocols we first
expand away the leftmost (topmost) protocol in the stack and then continue with the subsequent layers. The
function 7 is defined as follows:

T (50[piy, -+ ,pir).-Porl) 2 (v 1) (Penv, 8,7).Flpix] &> (- - - Flpis) > T (P, r = 1))
T (sv[piy, - ,pzk] Prl) & (Tenw, s, 77).r[pix] > (- r[pir] > T (P,r :: 1l))
T{&).P,r::rl) £ (r,&).T(Pr:7l)

T((ﬁPT) = (rﬁ)T(PT"Tl)

T(1(E).Pryrgrl) 2 (rg, &) T(Pyry ry i)

T((v n)P,rl) 2 (vn)T(Prl)

T (Py|Py,7l) L& T(P,rD)|T(Ps,rl)

T(Pl-I-PQ,?“l) £ T(P17TZ)+T(P27TZ)

T(P,rl) £ 1T (P,rl)

Each service invocation s7[ps].P leads to the creation of a new session, identified by a fresh session identifier
r, that is sent to the corresponding service sv[ps].Q for synchronisation. At both invocation and responding
sides, the identifier r is systematically attached to each communication belonging to the session, which
imposes all the outputs (€) and inputs (p) to take the form (r, &) and (r,p), respectively. Since client and
service may be far apart, a session naturally comes with two parties, written 7[ps] > P and r[ps] > P, with
r bound somewhere above them by (v 7).

In the first two lines of the definition of the transformation function, the messages for the communication
of r use the global session identifier reyy, i.€6. (Teny, s,7) and (Tepw, S, 7") We do this to ensure that a search
for matching invocation and service provider is performed in the entlre system; it also ensures that outputs
and inputs have the required form.

The session identifer 7 is used to correlate communications from the same service invocation and response.
Multiple invocations to services will yield separate session identifiers, as identified by different r’s, and the
hierarchy of nested sessions is reflected by the position of each session identifer r in the identifier stack.
In fact, when values are returned outside the current session using the return operator, 1 (€), the second
topmost identifer in the stack is adopted, which gives (rq, €) (see the fifth line of the function definition). As
a fresh session identifier r is generated at each service invocation, it ensures that in the replication case, say,
(sv[ps] ... | sv[ps]...), a unique session identifier is attached to each process copy.

CaPiTo: Protocol Stacks for Services 7

Table 4. The concrete level of CaPiTo.

vw w= n|nt[n” [P, (0)]S, (7) | H@) | f(7)

e s= alnlnt [0 |Pi(@]8,-(@ | HE@ | /@

p = Tz|a|n|nt|n [P, (P)]S,+()

P = (re).P|(rp).P|wn)P|'P|r:ew P|(vtn)P|Pi+P| Pi|P2|0

Ezxample 3. Consider a simple process P

8171/[]721](
Sav[pia].(
(A, B).1(A).0))

Applying the transformation function on P, e.g. T (P, [Fens]), gives the following result,

(V T1)<T€nva 817T1>'ﬁ[pi1] > (
(v T2)<renv7 52, T2>~5[piz] > (
(ro, A, B).(r1, A).0))

After the transformation, service s; is identified by 71 and s3 by ro. The communication (A, B) belongs to
the session r hence we have (rq, A, B). The last message 1 (A) returns the value A to the session outside 73,
i.e. r1, and therefore it is transformed into (ry, A).

2.3. The Concrete Level of CaPiTo

At the concrete level of CaPiTo we fully model communication protocols and the use of asymmetric and
symmetric cryptography. We write P+ (¥) for asymmetric encryption and Sv& (¥) for digital signatures; we
write EUJ (p) for asymmetric decryption and §U0+ (p) for the validation of digital signatures; and we write

H(?) for producing hash values of ¥. Symmetric cryptography is modelled as communications through an
encrypted tunnel, e.g. r : e » P, with r being the session identifier and e being the symmetric key shared
between the sending and receiving principals involved in the communications within P.

An alternative design decision would be to have encryptions instead of tunnels, for example {A, B}, instead
of r : k » (A, B), as is often found in other calculi, for example, the spi-calculus, as well as in Alice
Bob protocol narrations. In our view, tunnels are one of the basic building blocks in real-life protocols,
e.g. IPSec Architecture [Sta99], and being able to accommodate it in a process algebra shows their power
and convenience.

Expanding protocol behaviour. Services described at the plug-in level of CaPiTo contain the names of
the protocols that need to be applied. The formal definition of these protocols is made clear at the concrete
level and corresponds to expanding the behaviour of protocols; each protocol gives rise to a set of expansion
rules.

The unilateral TLS protocol is defined in Table 5 and the bilateral T'LS protocol is defined in Table 6 and
are parameterised on the name of the service to be protected by the protocol. The definition is explicit about
the creation of nonces and the checking of certificates (as explained informally in the protocol narrations of
Example 2.2). After the completion of the the handshakes, the symmetric key H(N¢, Ng, N) is computed
and used to tunnel the remainder of the communication steps. Note that the session identifer r is attached
to each input and output in order to achieve the desired correlation.

8 H. Gao, F. Nielson and H. R. Nielson

Table 5. Unilateral T'LS protocol for the service between C' and S, where S’ = (.S, Kgf) and CA = KétA.

FTLS,C,S', CAl > ({r,).P) (v No)(r, C, S, N¢).

(T’, Sa Cv ?nS7§K+ (S7 7$k9))
CA
(v N){r,C, 8, Py, (N)).
T H(Nc’n57N) > (<T7ﬁ>P)
r[TLS,C, S, CAl > ((r,p).P) & (r,C,S,™nc).
(v Ns)(r,S,C,Ns,S, - (S,K{)).
CA
(r,C,S, P, (n)).
S
T H(n09N57n) | 4 ((T:mp)

Table 6. Bilateral T'LS protocol for the service between C' and S, where C’ = (C, Kéf), S' = (S, Ksi) and CA = K%A'

F|TLS2,C’, S, CA > (r,7).P £ (v No){r,C, S, N¢g).
(T’S’Cv?n57§K+ (57?xks))
CA
(v N)
<Tzcv57SKEA(CvKg):szS(N)aSKE(NC»'”S:N»'
T:H(N07n57N)><T7ﬁ>'P
r[TLS2,C", 8", CAl > (r,p).P = (r,C,S,™n¢).
(l/ NS)<TaS’CyNS»SKEA(SvK;»‘
? ?
(Tv C’ S’gKgA (07 kc):EKg (‘n)7§kc(n07N57n))'
T:H(nC7NS7n)>(T7m‘P

Ezxample 4. Returning to Example 2.2 we can now complete the description of how to make use of the TLS
protocols. Applying the expansion rules to the system defined in Example 2.2, where the TLS protocol has
been inlined into the notation, will result in an overall system taking the form

System = (vy Kca)(Ve Kpank) (Client | Bank)

where in the case of the unilateral TLS protocols the client and bank are now given as follows:

Client £
(v TS)(v r){renv,req,r).(v N¢){r, Client, Bank, N¢).
(r, Bank, Client, Tny, gKéA (Bank,?rk,,..))
(v N)(r, Client, Bank, P, (N)).
r:H(Ng,np, N) » ((r, Client, Bank,TS).
(r, Bank, Client, T'S, 7bal).0)

Bank =
(Fenw,Teq, ?r).(r, Client, Bank, ™n.).(v Np)
- +
(r, Bank, Client, N, SKEA (Bank,K,,..))
(r, Client, Bank, Py k(‘?n))
r:H(ng, Ng,n) » ((r, Client, Bank, ?ts).
(v Bal) (r, Bank, Client,ts, Bal).0)

The concrete specification is close to the style of process algebras with cryptography, e.g. the spi-calculus
[AG99] and the LySa calculus [BBDT05], where there are no constructs for services. O

CaPiTo: Protocol Stacks for Services 9

Table 7. The CaPiTo concrete level structural congruence.

P1‘(I/ m)P2 = (V m)(P1|P2) if m §é fn(Pl)
Pi|(v+ m)P> = (v+ m)(P1|P2) if {(mt,m=}nf(P) =0
r:ep(vmP=@wm)(r:ew P) ifm¢fn(re)
riew (vx m)P = (ve m)(r:ew P)if {mt,m=}nfn(r,e) =0

P=pP ifP 2P r:ep0=0

(vm)(v n)P = (v n)(vm)P (ym)0=0

(v+ m)(v+ n)P = (v+ n)(v+ m)P (v£ m)0=0

IP=P|IP PPy = P| Py

Pl0=P (PL|P2)|Ps = P1|(P2|Ps)

Table 8. The CaPiTo concrete level labelled transition system.

(out) (r,@).P ST, p () —MEP=0
(r.5).P =% Po
(t t) P (r,¥) P’ (t)) P (r,¥) P!
-ou = -in -
riwp P SEw@D, oy pr riwp P DEw@) g, pr
Py (r,v) Pll P (r,7) P2l Py (r,Ew (7)) Pll P (1, Ew (V) P2l
(sync) Y] (t-sync) T, plp!
P1|P2 U P1|P2 P1|P2 U P1|P2
(0 P 2 p! (2) p 2 p
r-passl) ————— r-pass
P (v n)P 2 (v n)P’ P (v n)P 25 (vy n)P!
if n ¢ n(X) if {nt,n=3INn(A) =10
P 2 p P2 p
(t-pass) (par) _—
rrwp P riwe P P|P 2 PPy
A= (9|0, D) if fn(P1) Nbn(X) =0
I B (@), Ew (D)7
and r # 7’
P=PpP P 2 pr pr=p" P2 P
(congr) X (choice) 7;
i P+ P, 2 P

Semantics of the concrete level. The concrete level semantics consists of a structural congruence and a
labelled transition system.

The structural congruence = is defined as the least congruence relation induced by the laws in Table 7. The
first rules are known as the “scope extension” rules. They describe how a bound name m may be extruded
by an output action, causing the scope of m to be extended; here fn() denotes the set of free names. The rule
P, = P, if P, £ P, is more general than the usual rule A = P if A £ P for unfolding recursive definitions;
this is essential to the CaPiTo approach of unfolding protocol stacks thereby passing from the plug-ing level
to the concrete level. We shall provide several examples of this in Section 3.

The labelled transition relation - is induced by the rules in Table 8. The label X is generated by the

following grammar:
An=7 [(r,0) | (r,0) | (r,Ew(7)) | (r, Ey(V))

Here the labels (r,) and (r,?) result from applying rules for output (out) and input (in), respectively;
E, (¥) and E,(¥) indicate encryption and decryption using the key w; finally, we use 7 to denote a silent
transaction. Names, n(\), bound names, bn()\), and free names, fn()), are defined in the usual way [Mil99].
We explain the rules below.

Rules (out) and (in) describe how a list of values ¥/ is output and how it is then input and matched to a pattern

10 H. Gao, F. Nielson and H. R. Nielson

P creating new variable bindings recorded in the substitution o that is then applied to the continuation of
the input operation.

The pattern matching function, M, is defined as follows (or see Appendix A for a more verbose definition).
The substitution M (7, p) = o resulting from matching ¥ against p'is intended to ensure that ¥ and po only
differ in their use of asymmetric keys: a public key in one should relate to the corresponding private key in
the other. If we write switch(K}) = K and switch(K) = K} we may define M as follows
S _ o if switch(po) = U and dom(o) = dv(p)
M(@.p) = { undef otherwise
where dv() denotes the set of defined variables (those with a question mark in front of them) and where we
use a notion of substitution where vo = v, (p1,...,pr)o = (p10,...,pk0), (T2)o = o(x), and xo = undefined.

Returning to Table 8, the rules (t-out) and (t-in) model communications inside a tunnel protected by the
symmetric key w. Rule (t-sync) describes the communication inside the tunnel; finally, rule (t-pass) propa-
gates all the activities that are transparent to tunnels. Rules (choice), (par), (r-passl) and (r-pass2) are the
standard ones for nondeterministic choice, parallel composition and restriction. and structural congruence.
Rule (congr) is for the structural congruence. It makes sure the processes before and after the transition, P
and P, are in the right forms.

3. Service-Oriented Examples

To illustrate the use of the CaPiTo approach to specification of service-oriented systems we shall now look
at the financial Credit Request case study developed in the context of the EU project SENSORIA [Sen] and
the SAML single sign-on protocol [Lib].

3.1. The Credit Request Case Study

Abstract specification. Here a client C' requests a credit from the validation service VS of a bank. Once
the bank has obtained the request it will invoke a service at one of two specialised departments, one taking
care of larger enterprises Ser g and one taking care of smaller companies Serc. The overall system is specified
as follows at the abstract CaPiTo level; we shall comment on it below:

C
VS

(1>

! (v Bta)Tequ| |.((Bta).(Bta, ?z,). T {z,).0)

Prequ]]-((7ybta)-(
valgv| 1.((ysta)-(Pyr)- T (Ybta, yr).0)
+ valcv[[((Yta)-(?yr)- 1 (Ybtar Yr)-0))

Serp 2 Vwalpv[].((?2pea)-(is Valid(zpta))-0)
(?zpta)-(is Valid(zpta) -0)

1>

>

Serc Poalev|].(

First the client C' invokes the service req at the bank by sending its Balance Total Assets (Bta). The validation
service VS will handle the request by invoking a validation service val either at Serp or at Serc depending
on the status of the client, modelled as a non-deterministic choice between two almost identical sub-processes
of the form valv[|({(ypta).-(Tyr). T (Ysta, yr)-0). The invocation forwards the balance Bta obtained from the
client and the response (recorded in the variable y,.) will tell whether or not the enquiry was valid. Having
obtained this answer the validation service V.S will send a message back to the client using the construct
1 (Ybta, yr). The whole system is thus obtained as the parallel composition of the four processes:

CaPiTo: Protocol Stacks for Services 11

ertificate
Authority

Signs all
T certificates
redit TLS Validation
Request .
} Service
Client

A WS-Security
| / SOAP

SOAP-
Mediator

ValidationService ValidationService
Enterprises Corporates

Fig. 1. The Credit Request Case Study.

System £ C | VS | Serc | Serg

Plug-in specification. The case study goes one step further and gives details about the various protocols
needed to secure the communication [NAPN] as shown in Figure 1. The service req provided by the validation
service V(' and invoked by the client C' should be protected by the TLS protocol. The validation service
delegates the validation of the balance to the correct service via WS-Security [WS-] and make use of a SOA P-
Mediator (SM) [SOA], that works as an application level router (using WS-Addressing), and is responsible
for invoking the service val offered by the two specialised departments.

Using the CaPiTo approach we can get a much more modular specification of the scenario than the one given
in [NAPN] where all of this is mixed together in a single narration. The idea is simply to specify the relevant
plug-ins and then extend the abstract specification with the required information

C 2 (v Bta)Tequ[TLS, C, S,CA].({Bta).
(Bta,?z,). T{x,).0)
VS &1 requ[TLS,C, S, CA].((?ypta)-(
valpu[P2P, S, R, CA; SOAP, VS, SM, Ser).
((ybta>~(?yr)- T<ybtaayr>-0)
+ valcv[P2P*, S, Rc,CA; SOAP, VS, SM, Serc]
(<ybta>'(?y7”)' T<ybtaayr>'0))
Serg = ! valpv[P2P*, S, Rp,CA; SOAP, VS, SM, Ser).
((?2pta)-(is Valid(2pta))-0)
Serc = lvalcv[P2P*, S, Rc,CA; SOAP, VS, SM, Serc].
((?2pta)-(is Valid(2pta))-0)

where CA = K% ,, S = (VS,Ki,), Rg = (SerE,KS#ETE) and Rg = (Serc7KSierc).

The protocol SOAP (Simple Object Access Protocol) [SOA] is used to exchange data in a decentralised
distributed scenario and only defines the message format. In this case study, SOAP works by incorporating
a few additional fields (i.e. sender, receiver) in messages.

The TLS protocol is already presented in Table 5 so let us have a look at the communications between the
validation service VS and the services Serp and Serc. As already mentioned they are to be protected by
Web-Service Security (WS-Security) and to be routed by a SOAP mediator.

WS-Security [WS-] is a communication protocol suite providing security to Web Services, while guaranteeing
end-to-end integrity, authenticity and privacy. Furthermore, WS-Security gives a standardised format for the

12 H. Gao, F. Nielson and H. R. Nielson

A B
M M Application - - = Application
S \»;(P,\.E(.S'A\'.A\[) S \»;(P,\-E(bﬂ\'. M, Skz ‘l;\. K1) WS-security [— = — > WS-security
A B.Sp-(Pys(SN.M)) A B.Sy-(Pys(SN,M.Sp- (A K1) soar [*™ sm [*™] soar

Fig. 2. Protocol Stack of the Credit Request Case Study.

respective SOAP messages involved in the protocols. In this case study its use is restricted to signing and
encrypting message content, while leaving the message header as plain text, so as to allow SOAP-routing.

The protocol stack used in the case study therefore contains WS-Security and SOAP. The structure of the
stack and the operation of WS-Security (both the variants P2P and P2P") and SOAP are illustrated in
Fig. 2.

These protocols are modelled as plug-ins to the service requests and responses. The whole system is defined
as

SyStem = (l/:l: KVS)(V:I: KSerE)(V:I: KS'erc)
C|VS|SM | Serg | Serc

where the SOAP mediator SM is given by:
SM =1 (7r,?2A,SM, A,?B,?M).(r, SM, B, A, B, M)

and where we assume that the public key of the Certificate Authority CA, KZC 4, is known to all parties
involved.

Example 5. Applying the transformation function 7 on VS’s plug-in specification gives the following result
(except that for simplicity, only one branch of VS is considered here):

T(VS, [Fens]) 2
(Tenva req, ?rl)'rl[TLS7 Ca Sa CA] > (
(rla ?ybta)~
(v ro)(Tenv, valg, ra).
73[SOAP, VS, SM, Serg| > (r3[P2P*, VS, Serg, CA] > (
<T27 ybta>'(7ﬂ27 ?yr) <T17 Ybta, yr>0)))

Concrete specification. The protocols are defined in Table 9 and Table 10. Protocols P2P*, P2P and
SOAP are all defined in an inductive way such that each protocol is able to deal with a sequence of messages.
The protocol P2PT deals with outgoing messages (e.g. (r,@).P) in the following way: it firstly generates a
sequence number SN for correlating relevant messages, then it encrypts and signs the sequence number
SN, the message M and the sender’s certificate, using the receiver’s public key, and finally it invokes P2P
to handle the next message. Reverse actions are taken for incoming messages (e.g. (r,5).P). Similarly for
P2P except that here no sender’s certificate is included. The definition of SOAP is parameterised on three
principals, S for sender, SM for mediator, and R for receiver. It includes a few additional fields to messages
for specifying the intended sender and receiver.

CaPiTo: Protocol Stacks for Services

Table 9. Point-to-point Protocol for the service between A and B, where S =

(Av K,:c‘]:)z R=

7[P2P*,S, R, CA| 1> ({r,€).P)

> T

F[P2P*,S, R, CAl > ((+',&).P) & <r). [P2P+ S,R,CA|> P ifr#7r'
F[P2Pt,S,R,CA]> (v n)P) 2 (vn)F[P2P*,S,R,CAl > P
FlP2Pt,S,R,CA|> (P +) 2 (F[(P[ZP'*‘, +s gz, ng AD] P1)+)

F[P2Pt, S, R, > Ps
F[P2Pt,S, R, CA| > (P1|P2) £ (F[P2P*,S,R,CA| > P)|(F[P2P", S, R, CA] > P,)
F[P2Pt,S, R,CA] > (IP) £ (F[P2P*,S,R,CA] > P)
F[P2P*, S, R,CA] >0 £ 0
T[P2P+aS7 R: CA] > ((Timp) = (,ngKX(EKE (?Sn7ﬁ7§Ké‘A (Ay‘?ki))))

r[P2P, (A, k3), R, sn] > P
r[P2PT,S,R,CAl > ((+',§).P) = (+',p).r[P2P*+,S,R,CAl>P ifr# 7'
r[P2P+,S,R,CAl > ((v n)P) 2 (v n)r[P2Pt,S,R,CA|> P
r[P2PT,S,R,CA| > (P1 + P2) = (r[(P[2P+, f é«z, CAC] A>] P1)+)

r[P2P*,S, R, > P
r[P2Pt,S R,CA] > (P1|P2) £ (r[P2P*,S,R,CA| > P)|(r[P2PT, S, R,CA] > P,)
r[P2P*,S, R,CA] > (IP) £ \(r[P2P*,S,R,CA] > P)
r[P2Pt,S R, CA] >0 e
TIP2P.L, M, SN > ((r,é).P) = (1,8 (P4 (SN,))).7[P2P, L, M, SN] > P
FP2P,L,M,SN] > ((r',&).P) = (', *} [P2P L,M,SN|> P ifr#r
7[P2P,L,M,SN]> ((r,p).P) & (r, Sict By (SN, 1))).7[P2P, L, M, SN &> .P
F[P2P, L, M,SN] > ((r',5).P) % (r ,ﬁ)r[PQPL M,SN]> P ifr#7/
7[P2P,L,M,SN] > ((v n)P) = (v n)F[P2P,L,M,SN])> P
FP2P,L,M,SN|> (P + P2) £ (F[P2P,L, M,SN] 1> Py) + (F[P2P, L, M, SN] > P)
FP2P, L, M,SN] > (P1|P2) £ (F[P2P,L,M,SN] 1> P)|(F[P2P, L, M, SN] >> Px)
7[P2P,L,M,SN] > (\P) £ (F[P2P,L,M,SN]> P)
F[P2P,L, M,SN]| >0 2 0
r[P2P, L, M, sn] > ((r, €).P) = (r SK (PK+ (sn,€))).r[P2P, L, M, sn| > P
r[P2P, L, M, sn] > ((',&).P) £ (). [PQP L,M,sn]> P ifr#7/
r[P2P, L, M, sn] > ((r, p).P) E SK+(P (sn 7)).r[P2P, L, M, sn] > P
r[P2P, L, M, sn] > ((+',§).P) % (', p). r[PZP L,M,sn]> P if r# '
r[P2P,L, M, sn] > ((v n)P) = (v n)r[P2P,L,M,sn] > P
r[P2P, L, M, sn] > (P1 4 P2) £ (r[P2P,L,M,sn] > P1) + (r[P2P, L, M, sn] > Pz)
r[P2P, L, M, sn] > (P1|Ps) £ (r[P2P,L, M, sn] > P)|(r[P2P, L, M, sn] > Ps)
r[P2P, L, M, sn] > (!P) £ (¢[P2P,L,M,sn] > P)

o

r[P2P, L, M, sn] >0

0

(Fenv,req, ?r1).(r1,C, VS, Ine).

(v Ng){r1, VS,C, Ng,
(r,C, VS, Pp- (™n
\

Sy (VS.K{y))
).

r1 H(nc,Ns,n) | 4 (

(Tla ?ybta)~

(V ’/‘2)<’I"€»,w,UCLZE,T2>.(V SN)

(ro, VS,SM, VS, Serg, S - (PK+
Vs
(ro, SM, VS, Serg, VS,§K; (7

(SN ybtavSK— (VSvK\ts))»-
(SN 7y,)))-

<Tla Yvta, yr>0)

(B,K3%), and CA = K} .

13

Ezxample 6. Applying the unfolding function on the above result gives the concrete level specification of VS:

14 H. Gao, F. Nielson and H. R. Nielson

Table 10. SOAP Protocol for the service between sender S and responder R using SM as SOAP Mediator.

FISOAP,S,SM,R| > ((r,&).P) £ (r,S,SM,S,R,&) F[SOAP,S,SM,R] > P
FI[SOAP,S,SM,R] > ((r',&).P) 2 (1/,&F[SOAP,S,SM,R]> P ifr#1'
FISOAP,S,SM,R| > ((r,p).P) 2 (r,8M,S,R,S,p).F[SOAP,S,SM,R] > P
F[SOAP,S,SM,R] > ((+',p).P) £ (,p). r[SOAP S,SM,R| 1> P ifr #r'
FISOAP,S,SM,R| > ((v n)P) £ (v n)F[SOAP,S,SM,R] > P
F[SOAP,S,SM,R]> (Pi+ P:) £ (7 [f{%f; g ﬁj‘é Af]z?] Pll)j)

T > P2
F[SOAP, S, SM, R] 1> (P1|P») £ (F[SOAP,S,SM,R| > Py)|

(F[SOAP, S, SM, R] > Ps)
F[SOAP, S, SM, R] > (\P) £ (F[SOAP,S,SM,R] > P)
FISOAP,S,SM, R] >0 £ 9
r[SOAP,S,SM,R) > ((r,&).P) £ (r,R,SM,R,S,é&.r[SOAP,S,SM,R]> P
r[SOAP,S, SM,R) > ((r',&).P) £ (+/,&).r[SOAP,S,SM,R|> P ifr # '
r[SOAP,S,SM,R| > ((r,p).P) & (r,SM,R,S,R,p).r[SOAP,S,SM,R]> P
r[SOAP,S,SM,R] > ((r',§).P) 2 (r',p).r[SOAP,S,SM,R] > P ifr#1'
r[SOAP,S,SM,R] > (v n)P) £ (vn)r[SOAP,S,SM,R] > P
r[SOAP,S,SM,R|> (P1 +P) 2 (r [(S%AOleg gz\g]\f]]% P11)3+)

T > o
r[SOAP,S, SM,R] > (P1|P2) £ (r[SOAP,S,SM,R] > Py)|

(r[SOAP,S,SM, R] > Py)
r[SOAP,S,SM, R] > (IP) £ (r[SOAP,S,SM,R] > P)

2

r[SOAP, S, SM, R > 0 0

3.2. The SAML Single Sign-On Protocol

SAML stands for Security Assertion Markup Language and has been developed by the standardisation
organisation OASIS [OAS]. They also developed the Single Sign-On protocol that forms the basis for com-
mercial protocols developed within projects such as the Liberty-Alliance Project [Lib] and the Shibboleth®©
Project [Shi].

The SAML Single Sign-On protocol (SAML SSO for short) is used to authenticate users. The idea is that
users only need to authenticate themselves to a single authentication server rather than to a number of
individual services — and once that has happened the user has access to all the services and hence does not
need to go through additional logon procedures. The authentication service manages the accounts of the
individual users and therefore the individual services do not need to take care of this.

In the SAML SSO scenario we thus distinguish between three kinds of principals:

User: A user U accesses the network via a standard web browser implementing standard protocols such as
HTTP and TLS.

Destination: A destination site D offers a restricted service which is only available to users that have been
authenticated by a central authentication server.

Server: The server site S will take care of authenticating the users, thereby allowing them to access services
at the destination sites.

The protocol uses the concept of an artifact that arises because most browsers only allow for a lim-
ited length of the HTTP URL messages. Many websites send arguments along with the HTTP query by
appending them to the query. For example searching for the string SSO on google results in the URL
http://www.google.com/search?q=SS0. In this example the URL is 35 characters long, but in some cases
an argument might become too long for the browser to handle. An artifact is a unique string which is used as
an argument in an URL instead of the real data. An artifact is in fact a sequence of bytes and in our model
we shall encode it as a nonce. In the SAML scenario, the artifact is used as a pointer pointing to a larger

CaPiTo: Protocol Stacks for Services

User

T
 —

Server

T
1. Service Request—»{

Create Artifact

@—2. Redirect with Artifact—i

A

Destination

3. Deliver Artifact

:4—4. SAML Request————

Check Artifact

' 5. SAML Response——»

A

I
6. Service Response

Fig. 3. The SAML SSO Protocol.

15

SAML assertion, which contains authentication and authorization decision statements that destinations use

to make access control decision [HMO04].

Prior to usage of the SAML SSO protocol, the user and the server must share a key (K); this key is used
by the destination sites to communicate confidential data to the user. Based on this, Figure 3 illustrates the
six steps of the SAML SSO protocol:

1. The user U makes a request to the authentication server S for a SAML assertion to a specific service at
a destination site D by sending the name D.
2. The server S then generates an artifact A and the corresponding SAML assertion, and responds to the
user with the artifact that will be used to identify the session.

Ll

The user sends the artifact to the destination site.
To verify the identity of the user the destination now forwards the artifact to the server.

5. The server looks up the SAML assertion using the artifact. If it is verified, the server then sends back a
SAML Response message to the destination containing a key Ky that is to be used for communication

with the user.

6. The destination and the user communicate with each other using Ky as the key for encryption and

decryption.

Abstract specification. Turning to the abstract CaPiTo specification the system is defined as

SSO2 (v Ky) (U | D S)

where

U 2
S =
D 2

inov]].(U, S, D).(S,U, D,

fwdv[.(U, D, S, a).
sendv[].(?m).0

invv[].(U, S, 7d) (v A){(S,
valv[].(d, S, A).(S,d

fwdv[].(U,D,S,?a).

valv[|.(D,S,a’).(S, D, ?ky,U).
(v M)sendv] (M

?a).

U,d, A).
Ky, U).0

).0

Here inwv is a service offered by the authentication server S and it is invoked by the user U. The destination
D is offering the fwd service and it is invoked by the user upon receipt of the artifact from the server. The

16 H. Gao, F. Nielson and H. R. Nielson

destination is then invoking the service wval provided by the server in order to get information about the
encryption service (to be called enc) offered by the user.

Plug-in specification. Following [HSNO05] and [OAS] we may protect the services using a unilateral (Table
5) or a bilateral (Table 6) TLS protocol. As already mentioned the unilateral version of TLS relies on the
server to hold a certificate issued by the Certificate Authority; in the bilateral version the client is assumed
to have a similar certificate.

Following the recommendations of the SAML SSO documents we may protect the connections by unilateral
TLS protocols. This is expressed by:

U = inw|[TLS,U,S,CA].(U,S,D).(S,U,D,?a).
Fwdv[TLS,U, D,CAl(U,D,S,a).
sendv[enc, Ky].(?m).0

S £ inw[TLS,U,S,CA].(U,S,?d)(v A){(S,U,d, A).
valv[TLS, D, S,CA].(d, S, A).{S,d, Ky, U).0

D 2 fwdv[TLS,U,D,CAL(U,D,S,?).
valv[TLS, D, S,CA|.(D,S,a).(S, D, ?ky,U).
(v M)sendv|enc, ky](M).0

Ezxample 7. Applying the transformation function 7 on U’s plug-in specification gives the following result:

T<U7 [TEHUD é
(v r1)(renv, tnv,) T[T LS, U, S,CA] > (r1,U, S, D).(r1,S,U, D, ?a).
(v r2){(Teny, fwd,ro) [T LS, U, D,CA] > (re,U, D, S, a).
(Fenw, send, ?r3).rslenv, Ky| > (rs, 7m).0

Concrete specification. The encryption service of the user can be specified by

Tlenc, keyl > ((r,€).P) = r:keyw (r,é).P
rlenc, keyl > ((r,p).P) = r:keyw (r,p).P

and simply uses the parameter key as a key for encryption and decryption. Thus writing sendv|enc, key](€).P
we ensure that €.P is encrypted by key.

Example 8. Applying the unfolding function on the above result gives the concrete level specification of U.

(v r1){renv, inv, 71).
(v Nu)(ri,U, S, Nu)?(r1,5,U, 'ns, S ex (S, ?aks)).(v N)(r1, U, S, Py (N)).
r1: H(Ny,ns, N) » (
<7“1,U, S,D>.(T‘1,S, Uv,D7 7a)
(V T2)<renvafwda 712>‘
(ro, D,U, M, Sy (D, 7wy,)).(v N')(ro, U, D, Py (N')).
(v N{;)(r2,U,D, N{;).ro : H(N{;,n;, N") » (
<’I“2,U,D,S,a/>~
(Fenw, send, 7r3).
rs3 : Ky » (r3,7m).0))

Clearly it is easy to experiment with different protocols, e.g. bilateral TLS protocol, by simply replacing the
plugins, i.e. replacing TLS by TLSs.

CaPiTo: Protocol Stacks for Services 17

Table 11. Transformation of tunnels into LySa.

e » (r, @0 [dest {I}].P ~ (r',{&}0 [dest {I}]).r: eo » P ifr =1
rieo B (1!, &0 [dest {I}].P ~ (r',&)0[dest {I}].r:eo » P ifr £’
r:eo » (',)0 orig {I}].P ~ (1, {ﬁ}é% [orig {I}]).7 : eo » P

if r =" and fn(eo) N NFfn(p;) =0
r:eo B (1!, p)0orig {I}].P ~ (r', p)l0[orig {I}].7 : eo » P if r # 1/
r:eg®» (¥ n)P~ (vn)r:eg» P if n¢fn(e)
rieg W (Ve n)P ~ (v n)rieg » P if {nT,n"}Nfn(eo) =0
r:eg BIP ~~lr ey » P
r:ieg Py ‘ Py ~>1r:ieg P P |’I‘:eo » P
r:egp Pi + Po~>r:egp P1 + 1r:eg P Ps
r:ieg»0~~0

4. Static Analysis

We now show how to use the protocol analysis tool LySa [BBDT05] to analyse concrete specifications in
CaPiTo. In order for CaPiTo specifications to be compatible with LySa, there are some issues to be addressed.

4.1. From CaPiTo to LySa

Adding Annotations. In order to express our intentions with the protocols, we follow the work of LySa
[BBD*05] and manually add annotations about the origin and destination of encrypted messages; this mod-
ification is performed in the concrete specification of CaPiTo. The idea is that each encryption occurring in a
process is annotated with a crypto-point [defining its position as well as a set of crypto-points L specifying
the destination positions where the encryption is intended to be decrypted. Similarly, each decryption is
annotated with a crypto-point defining its position as well as a set of crypto-points specifying the potential
origins of encrypted messages to be decrypted. For example, consider the following process:

1L r:ew (r,Vi,Va)ildest {l2}].0 quad|
2. r:iew (r,Vi,z)2[orig {I1}].0

Here the process in line 1 specifies that the encryption is created at crypto-point [; and is intended for
decryption at crypto-point lo, whereas the process in line 2 specifies that the message to be decrypted
at crypto-point l; must come from crypto-point [;. Similar annotations are made in case of asymmetric
encryption, decryption, signature and signature validation.

From Tunnels to LySa. The main difference between concrete specifications in CaPiTo and LySa is the way
symmetric encryptions and decryptions are handled. Rather than using tunnels, as discussed in Subsection
2.3, LySa has explicit encryptions (e.g. {M} k) and decryptions (e.g. decrypt V as {;m}x). We therefore
transform tunnels into the explicit encryptions and decryptions used to realise them. The transformation
rules are listed in Table 11. Note that, in the first four lines, the dest and orig annotations are passed along
so that the resulting forms are compatible with the syntax of LySa. Also replacement in context is implicitly
assumed. The transformation is guaranteed to terminate, as each rule inductively unfolds the process until
it becomes 0.

18 H. Gao, F. Nielson and H. R. Nielson

. Analysis of LySa

The control flow analysis of LySa [BBD'05] describes a protocol behaviour by collecting all the communi-
cations that a process may participate in. In particular, the analysis contains the tuples that may flow over
the network and the values that the variables may be bound to. The analysis information is collected in the
following main components:

o p:P(Var x Val) is a “global” component containing for each variable the set of names it may be bound
to;
e k:P(Val") is a “global” component containing all the tuples that have been communicated;

e ¢ : P(Lab x Lab) is a “local” error component containing an over-approximation of the potential ori-
gin/destination violations. If (I,1’) € ¢ then something encrypted at crypto-point ! might unexpectedly
be decrypted at crypto-point I/, or something decrypted at I’ might have been expected to be encrypted
at another place than .

Formally, the analysis information is represented by a triple (p, k,) called an analysis estimate of a given
process; for an expression it suffices with a pair (p,) where ¥ is an over-approximation of the set of values
to which the expression can evaluate.

Flattening the Pattern Matching. Before going into detail of the analysis rules, we shall introduce
an auxiliary function for dealing with pattern matching. We define a judgement for pattern matching,

namely p = p': V > W : ¢ as shown in Table 12. It is defined in the style of Flow Logic [NNP11] which
in particular means that any entities occurring on the righthandsides, and not on the lefthandsides, are
implicitly existentially quantified. It traverses the candidate tuple space first in a forward direction, Where
the tuples in V are tested and only tuples satisfying the requirements are carried forward, and then in

a backward direction, where the tuples in W are those that passed all the requirements. As part of the
backward traversal, the judgement also collects orig, dest annotation violations and includes them in the
error component 1) as needed. The number ¢ indicates the next position to be matched.

As an example, the judgement
plE1L(r, A ?m) {(r, A, M), (r, B,M)} > {(r,A,M)} :
enforces that m becomes bound to M, and the judgement

p 1 {A, T} lorig {I2}] - {{A, M}§[dest {11}], (B, M)}>
My} {(l, 1)}

enforces that the annotation violation (I3,11) is contained in ¢ (because Iy ¢ {l4} and I3 ¢ {l2}).

Expressions. The judgement for analysing expressions takes the form p = e : . Basically, the clauses
defining the judgement ensure that ¥ contains all the values associated with the components of a term, e.g. a
name n evaluates to the set ¥, provided that n belongs to ¥; similarly for a variable z, provided that
includes the set of values p(x) to which z is associated. The analysis rules are defined in the upper part of
Table 13.

Processes. The judgement for analysing processes is p, s = P : 1. For each process P, the analysis ensures
that the information in p correctly captures the variable bindings taking place, that the information in &
correctly captures the communications taking place, and that annotation violations are correctly recorded

in .
The analysis rules are defined in the lower part of Table 13. The (Inp) clause makes use of the auxiliary
judgement for pattern matching p |=; p': V > W. It requires that the continuation service P is analysed

CaPiTo: Protocol Stacks for Services 19

Table 12. Flattened pattern matching.

pEie: VW o iff {7eV||gl=i—-1}CW
plEin,P: VoW ¢ iff {#eV|m(@) =n}CV/A
pE PV PW: g
pEiz, P VoW ey iff {U€V|7ri(}7)€Ap(z)}QV’/\
pFi+1ﬁ:V/DW:¢
plEte, B VoW g iff pli 5: Ve W g
Vi :TeW = (m; (V) € p(x))
plidpr,. . peYhlorig L1, 7: VoW ¢ /) A
iff {v1,..., 0 | {vl,,;.,vk}f}[dest L'Nem(V)} CVIA
pELDPL Pk VD W YA .
{WeV |IeW @) ={t}n} CV'A
pEi 1PV >W YA
(¢ LV ¢L) = L) e
plEi Py (p1,...,pr)lorig L,5: VoW : ¢ /) A
it {v1,..., v | Pn+(Av1,...,vk)l [dest L' € my(V)} C VA
pELDPL Pk VDWW YA .
{WeV |WeW :mj(W) =P, ,+(0)} SV'A
pEi D:VI>W YA
gL'Vl ¢r) = LU) e
pEi Syt (1, p)lorig L,7: VW 14 /) A
it {vr,..., 0 | Snf(})l,...,vk)l [dest L' € m;(V)} C V' A
pELDPL Pk VD W YA R
(FeV |IWeW :m(d) =S, (@)} CVIA
pEP:VIEW 9
(ltegc'vigl)y=(U)ey

only when pattern matching returns a non-empty result. The (Out) clause evaluates all the expressions,
e1,...,ex, and requires that all the combinations of these values are contained in k. Indeed these are the
values that may be communicated. Finally, the continuation service P must be analysed. The rest of the
rules are straightforward.

Modelling the attacker. Protocols are executed in an environment where there may exist malicious
attackers. For most process algebras, this is modelled as Psy|Q with Py, s being the implementation of the
protocol and @ representing the actual environment, and this is the scenario we consider as well.

Following [BBD*05], we shall say that a process P is of type (N, Ax, Agne) whenever: (1) it is closed (no
free variables), (2) its free names are in Ny, (3) all the arities used for sending or receiving are in A, and (4)
all the arities used for encryption or decryption are in Agy.. Clearly one can inspect Psys to find minimal
Ny, Aw, Agne such that Py is of type (N, A,, Agnc). We also postulate a new name n,, a new variable z,,
and a new crypto-point /o that are not occurring in P,y,. We then define the Dolev-Yao attacker’s ability
as the conjunction of the five components in Table 14 (similar components may be added to deal with
asymmetric cryptography).

Implementation outline. The overall goal of the implementation of the analysis is to compute the analysis,
e.g. p and k, for a given service P. This is done in two phases. In the first phase, a generation function using
Standard ML is constructed, which translates a service into a logic formula in the form of Alternation-free
Least Fixed Point logic [NNS02], and in the second phase, a logic solver (the Succinct solver [NNS02]) is
employed to compute the least interpretations of predicates that satisfy the formula [Gao08].

20 H. Gao, F. Nielson and H. R. Nielson

Table 13. Analysis judgements for expressions and processes.

(Name) pEnR:9 iff ned
(Pri) pEN Y iff nT e
(Pub) pERT Y if ntev
(Var) pET:Y iff p(z) CY
(Enc) pEA{v,..., vk}fjg [dest L] : ¥ i AR p vt %A
Ywg, w1, ..., Wk : /\f:Owi €Y =

{wy, ..., wpt,, [dest £] €9
(AEnc) pkE Pvg. (v1,.. o) [dest £] 19 iff AF_jp E vt 9iA

Ywo, w1, ..., Wk : /\f:Owi €V =
P+ (wi, ..., wy) [dest L] € 9
0

(Sig) pE S”o_ (v1,.. o)l [dest L] =9 if AF_jp vt A

Vwo,wl,...,wk:/\f:owieﬁiﬁ
S,-(wi,... ,wy,) [dest L] € 9
0
(Fun) pEflur,...,vg) 0 iff AP p v %A
le,...,wk:/\f:lwieﬁi#
f(wl,...,”u)k)eﬂ
(Out) pk = (e1,...,ex). Pt iff AP pEei: A
le,...,wk:/\lewieﬂiﬁ(
(Wi, ..., wE) € KA
pik =P i)
(Inp) prk = (P1se ey pr)P i iff p 1 pr,. .k KD W o YA
W £0= por= Pt
(New) pkEWN)P: iff pkEP:Y
(ANew) p,kFE(v£ n)P: ¢ if pkEP:9Y
(Rep) pyk ELP ifft pkEP:Y
(Par) pkEPL| Pt iff ppkEPL:Y A pkiEP: Y
(Chs) pEPL + Pa:vp it pprEPL:Y A prlEP:9Y
(Nil) pkE0:Y iff true

Table 14. The Dolev-Yao Attacker.

(1) Akea, Y(vi,...,vk) €R: AF; vi € p(2e)
(2) Akedpne ot vith lldest £] € p(ze) :
vo € p(ze) = (NfZ1vi € plze) A (L, 1s) € %)
(3) Akedg,, V00,01, .., vk 1 AF_ v € p(ze) = {v1,.. .,vk}i,'o [dest {le}] € p(2e)
(4) Agea, Yvi,...,v5: AF_ v € p(ze) = (v1,...,04) €K
(5) {ne} UN; C plze)

4.3. Properties of the Analysis

We establish the formal correctness of our analysis by showing a subject reduction theorem and an adequacy
theorem. The former ensures that the analysis information is preserved during evaluation and the latter gives
an example of the semantic consequences that can be read off from the analysis.

In Subsection 2.3, we gave the definition of the pattern matching function, M, which makes use of the
substitution, po. The definition gives rise to the following auxiliary lemmas.

Lemma 1. if p =e: 9 and v € p(x) then p = e[z — v] : ¥

CaPiTo: Protocol Stacks for Services 21

Proof. By induction on the structure of e. [

Lemma 2. if p,x = P and v € p(x) then p, s = Pz +— v]

Proof. By applying the induction hypothesis on any subservices and Lemma 1 on any subexpressions. []
Lemma 3 (Substitution result). Vv, p,o : M(¥,p) = o iff (¢) = (p)o.

Proof. By induction on the structure of M(%,p). [

Lemma 4 (Pattern matching result). if M(7,5) =c and 7€ V then p =1 5: V > W and jo € W.

Proof. By induction on the structure of p =1 p': VeWw. O

Lemma 5. Let P, P, P, be services. The following statements hold:

1. if p,k = Py and P, M)PQ then p,k = Py and (r,vq,...,v;) € K
2. if p,x = P, and Py {rvrevn), poang (ryv1,...,v,) € k then p,k = P
3. if p,k = Py and P, “2Ee), p)then p,k = Py and (r, {7}) € &
4. if p,k = Py and Py {rBu®), p, and (r,{U}w) € K then p,k |= Py

Proof. All four parts of Lemma 5 are proved by induction on the inference tree used to establish the semantics
reduction.

We start with the base case of part 1, that is, rule (Out). Here we consider the case (r,v1,...,v).P o), p
such that p, k |= (r,¥).P, which gives us (r,v) € k and p, k | P according to the analysis rule (Out).

When we prove part 2 of Lemma 5, it suffices to concentrate on the base case, that is, rule (Inp). So assume

o,k = (r,p).P (1)

(r,7).P " po (2)
(r,0) €k (3)

(2) gives M((r, @), (r, p)) = o. Applying Lemma 4 to M((r, @), (r, 7)) = o and (3), we have p =, (r,p) : k>W
and (r,p)o € W, which means that W #). This together with the analysis rule (Inp) gives us the expected
result.

Now we shall prove part 3. We assume the following hold

r:wb(r,ﬂ).PMr:w>P (4)
pEET we (rv).P (5)

Assumption (4) gives (r,v).P Lrd, p, According to Table 11, we have

roww (r,0).P~ (r,{w}z).r:ww» P (6)

22 H. Gao, F. Nielson and H. R. Nielson

(5) together with (6) give p,k = (r,{0}y).r : w » P. Applying the analysis rule (Out) then gives the
expected result.

Proving part 4 is similar. [
Theorem 1 (Subject reduction). If P, = P; and p, k |= Py then p, k = Ps.

Proof. The proof is by induction on the inference of P, - P, and makes use of Lemma 5.

Consider the case (t-sync) and assume the following conditions hold:

(rEw (7))

p = pl (7)
p, DB pr (8)
ps K = Pr| P 9)

The assumptions (7) and (8) give P;|Py = P/|Py. Applying the analysis rule (Par) to (9), we get p,k E Py
and p, k |= P,. Lemma 5 then gives p, x |= P and p, k |= Pj. We get the desired result p, k |= Pj|P5.

The remaining cases are similar or straightforward. [

We shall now present an adequacy result; it focuses on the the x component of the analysis and shows that
it correctly captures the information communicated.

Theorem 2 (Adequacy). If P, * P, and p,x | P, and at some point the value (wq,...,wg) is
output then (wy,...,wy) € k.
Proof. We may assume without loss of generality that (wi,...,wy) is output as part of the transition

P, = P,11. It is an easy induction on n to use Theorem 1 to show that p,x = P,. The proof proceed by
induction on the inference of P, <= P,,;1 and the interesting case is (t-sync) as in the proof of Theorem 1.
Thanks to Lemma 5 we have that (wy,...,wg) € k. O

Similar adequacy results can be formulated for other applications of the analysis. This is perhaps a place
where the development of analyses by Flow Logic differs a bit from the development of analysis by type
systems. In the latter case there often is only one purpose of the type system and hence there only is one
adequacy result that it is natural to formulate. In the former case the analysis tracks so many components
that quite a few adequacy results can be formulated (as illustrated in [NNP11]); usually we focus on the
communications taking place as established by Theorem 2.

4.4. The Analysis of the Credit Request Case Study

Returning to the Credit Request case study let us consider the general scenario that a number of Clients
may simultaneously request services from VS and Serg (or Serc). We shall use 4 to refer to the instance of
the protocol where the i'th Client is communicating with VS and Serg. The index ¢ is added to all variables,
crypto-points and constants thereby allowing the analysis to distinguish between the various instances.

The overall scenario of the case study takes the form
((V K\;S)(V KS_erE)(V KS_erc)

", Client; | VS | SM | Serg | Ser¢)
| Attacker

CaPiTo: Protocol Stacks for Services 23

Table 15. Concrete level specification of the Credit Request Case Study.

let X C {1,2} in
(liex (v Kea)(ve Kgerp)(ve Kvs)(
/ * Client * /
((v Bta;)(v r1;)(renv,req,r1).
(v Nx;)(r1,C;, VS, Nz;).
(r1, VS, Ci, "ny;, S oo+ (VS, ?kvs) : [at al; orig {b1;}]).
(v N;i)(r1,C4, VS, P s+ (V) = [at a2; dest {b2;}]).
T H(Na:i,nyi,Ni) » <r1,Btai)[at a3; dest {bgl}]
(r1, Bta;, 7zr;)[at a4, orig {b6;,b9;}.(renv, zr;).0)
| /*VS=x/
(renv, req,) ((r], Ci, VS, na;).(v Ny;)
(rh, V8,Ci, Ny, S pa— (VS, Kvs™) : [at bl; dest {al;}]).
(r1,Ci, VS, P o— (7ny) : [at b2; orig {a2;}]).
r] : H(nz;, Ny;, n;) » (], 7bta;)[at b3; orig {a3;}].
(v r2)(renv,valg, ro).(v SN;)
(ro VS, SM, VS, Serg,
Skvs— Pr+ (SNi,bta,Sp .- (VS, Kvst)) : [at b4; dest {c1;}])).
Ser
(r2,SM, VS, Serg, VS, St (Peyer (SNi, 7umy) s [at b5, orig {c2,}])).
ETE
(r1, btai, vr;)[at b6; dest {ad;}].0+
(v r2)(renv,valc, r2).(v SN;)
(ro VS, SM, VS, Serc,
Skvs— (PKg (SN, bta, Skeca— (VS, KU8+)) : [at b7; dest {dll}}»
e’f‘c
(7"2, SM, VS, Serc, VS,§K§ (PKvs+ (S]Vi7 ?vri) : [at b8; orig {d?l}]))
e"‘c
(r], btai,vr;) : [at b9; dest {ad;}].0)
| /% SMx/
(?r, VS, SM, VS, ?ser, ?z1).(r, SM, ser, V.S, ser, z1).
(?r',?ser, SM, ser, VS, ?x2).(r', SM, VS, ser, VS, x2).0
| /*Serg =/
(renv,valg, 7rh).
(rhy, SM, Serg, VS, Serg,
Skpst (EKg (?sny, Tbtas;, S .o+ (VIS, Tkvs)) : [at cl; orig {b4;}])).
(rh, Serg, SM,ESETE, Vs, SK; (Phpst (sny, isValid(btas;)) : [at ¢2; dest {b5;}])).0
|(/*Serlc *?//) E
Tenv, ValC, Ty).
(rh, SM, Serc, VS, Serc,
Srvst (EK§ (?smy, Pbtas;, S g oq+ (VS, Tkvs)) : [at d1; orig {b7;}])).

(rh, Serc, SM,CSerc, V8,8~ (Prys+ (sni,isValid(btas;)) : [at d2; dest {b8;}])).0))
Serc

reflecting the fact that VIS, SM, Serg and Serc are ready to interact with legitimate Clients as well as
the attacker, and the attacker has no knowledge of the principals’ private keys. One may also include a
dishonest Client, who shares long-term keys with the Certificate Authority (CA). However such an inside
attacker is so powerful in this example that he is able to interfere with almost all the communications and
we therefore concentrated on the outside attacker. The analysis itself is carried out for n = 2, which amounts
to partitioning the infinite number of Clients into two groups, with each group communicating with the rest
of the principals. This allows the analysis to determine if any two instances of communications can interfere
with each other. The concrete level specification (with LySa annotations) of the Credit Request case study
is shown in Table 15.

In case the unilateral TLS authentication protocol is adopted (for protecting the communications between
Client and VS) the analysis gives an empty 1) component (i.e. 1) = §)) which means that no authentication
annotations are violated. For example, one can draw the conclusion that once the decision has been made
whether the request has to be validated by the service for enterprises or corporates, it cannot be tricked into
being processed by the wrong one, because (b4;,d1l;) ¢ 1. Inspecting the analysis result more closely, the

24 H. Gao, F. Nielson and H. R. Nielson

following entries may be of interest:

plxm) = {z:sValz:d(Btal)}
p(xr2) = {isValid(Btaz)}

This confirms that the evaluation results is Valid(Bta;) are correctly returned back from Serg to Client, via
VS and SM. Furthermore, the analysis results also show that no sensitive date is leaked to the attacker,
i.e. the attacker’s knowledge p(ze) does not contain any important information (recall that z, is the variable
used by the attacker). In summary, both authentication and confidentiality hold in this case study.

4.5. The Analysis of the SAML Single Sign-On Protocol

We consider the scenario where there are a number of users and destinations, but only one server. We shall
use ¢ and j to refer to an instance of the protocol involving the i’th user and j’th destination. The indices are
added to the names of the principals, variables, constants and crypto-points, thus allowing different instances
to be distinguished. We shall use the index 0 to refer to the dishonest user, which shares a long term key
with the server. The communications between each two parties, user and server, user and destination, as well
as server and destination, are all protected by TLS unilateral authentication protocol. The overall scenario
takes the form:

(|?:0\}n:1(1/ Ks™)(v Ku;) U; | S| Dj) | Attacker

The concrete level specification (with LySa annotations) of the SAML Single Sign-On Protocol is shown in
Table 16. (The two underlines are irrelevant at this point and shall be referred to later on.)

The analysis is carried out for n = 2 and m = 2, which models that two groups of users and two groups of
destinations are communicating with each other via one server S. The analysis result has a non-empty error
component (c4;;,ls), which means that the message M sent by the destination to the user in step 6 can be
learnt by the attacker (recall that [is the crypto-point used by the attacker). The p component contains
the entry Ky; € p(ze), which is relevant to this situation.

This shows that the attacker can also learn the master key Ky;. This information leads us to find the
following attack:

1. AU) — S: D

2. A(U): D,A
3.

4. A(D) S A

5. S — A(D): Ky,U

In the above attack, the attacker first pretends to be the user U and acquires an Artifact from the server S
in step 1 and 2. In step 4, it sends the Artifact back to S pretending to be a destination D. Finally in step
5, the key Ky is compromised. Now the attacker is able to decrypt the message M that is encrypted using
Ky.

This attack is not surprising; the communications are only secured by the TLS unilateral authentication
protocol. The attack can be avoided by adopting the TLS bilateral protocol to protect the communication
between the user and the server. In this case, the abstract level specification remains the same, and the
plug-in level specification becomes:

CaPiTo: Protocol Stacks for Services 25

Table 16. Concrete level specification of the SAML Single Sign-On Protocol.

let X C {0,1,2},Y C {1,2} in
(liex jey (v+ Kea)(ve Ks)(v+ Ku;)(v Kdj)(
[xUsx/
(v r1){renv,inv,r1).
(v Nulg;)(r1,Us, S, Nulyj).(r1, S, Us, ?NS1z‘j7§K$ (S, 7xkslyy)).
(V Nlij)<7"1, Ui7 S, kasl” (Nlm)>7’1 : H(Nulij, n51ij7 NI'LJ) » (
(Tl, U;, S, Dj>[at ali]- dest {blij H.(Tl, S, U, Dj, 7(11']')[31‘. (I2ij orig {b21]}]
(v r2)(renw, fwd, r2).
(v Nu245)(r2,U;, Dj, Nu2s;).(r2, D, U, ?n82ij’§KgA (Dj, 7xks245)).
(v N245)(r2,Us, Dj, Pypsa,; (N245)).
T ! H(NuQi]'7n82ij,N2ij) » (
(TQ, U»L', Dj, S, aij)[at a3ij dest {Cll]}]
(renv, send, 7r)).ry « Ku; » (), "m;;)[at ad;; orig {c4;;}].0))

| /%S %/
(renw, inv, 7ry).(r}, Us, S, Tnuly;).(v Nsly;)(r], S,U;, Nsl;;, S
r] : H(nuls;, Nslij, nli;) » (
(7"1, Ul', S, ?d) [at blij orig {alij}].(y Ai]’)<7‘/1, S, U»L‘, d, A,‘j)[at b2ij dest {aSij}].
(renw,val, 7r%).(rh, D;, S, 7nd3;;).(v Ns35)(r, S, Dj, Ns3yj, Sy- (S, K;))
cA
Té : H(nd3ij,]\7337;3‘7 n3¢j) » (
(Té, d, S, A)[at b3i]' orig {CQ,']' H<T’é, S,d, Ku;, Ui)[at b4i]' dest {03”‘ HO))
| /*D=x/
(Tenva f’ll]d, ?ré)'(rév U7 D7 ?’I’L’LLQU)
(v Nd2i;)(ry, Dy, Ui, Nd2ij, S g (S, K))
(7”2, Ui, DJ’BK;, (7n2“))
T’/2 : H(anlj,Nd21]7’l’L2m) > (
(7'/2, U;, Dj, S, 7(1;]-)[31'. cly; orig {a3¢j H
(v r3)(renv,val,r3).(v Nd;;)(r3, D;, S, Nd;j;).
(r3,S, Di, 'ns3i5, S o+ (S, 7wks3;5))
A
(v N3ij)(r3, Di, S, Pyiss, ; (N345)).
r3 : H(Nd;ij,ns3;5, N3i5) » (
<7"3, Dj, S, a;j)[at CQij dest {b3ij H.(’I“g, S, Dj, ?kuij, Ui)[at C3ij orig {b4ij H
(v M) (v r4)(Tenv, send, T4) kugj » (
(ra, Myj)[at cdi; dest {adi;}].0)))))

ko (S K

K

U 2 w|TLSs,U,S,CAL(U,S,D).(S,U,D,?%).
fwdv[TLS,U,D,CA].(U, D, S, a).
sendv(enc, Ky].(?m).0
S £ inw[TLS,,U,S,CA]L(U,S,?d)(v A){(S,U,d, A).

valv[TLS, D, S,CAl(d, S, A).(S,d, Kis, U).0
D 2 fwdv[TLS,U,D,CA.(U,D,S,?%l).

valv[TLS, D, S,CA|.(D,S,a").(S, D, ?ky,U).
(v M)sendv|enc, ky](M).0

The only changes that have to made are replacing TLS by TLS9 in the invocation and response of the
service Inv, as indicated by our use of bold font.

The concrete specification is the same as in Table 16 except that the output and input, marked with

26 H. Gao, F. Nielson and H. R. Nielson

underlines, become

<’I"1, Ui7 57 SKEA (C, Ké«r), Pwkle(leg)a SK[; (]Vul”7 ’I’LSlij, le»

j
and

(ry, Ui, S, §K$A (C, ?kc)EK§ (?n1;;),Sie(nuly;, Nsl;j,nl;;))
Applying the analysis to the new version of the case study now gives an empty error component, i.e. 1) = ().

This result verifies that the attack cannot happen when the communications between the user and the server
are secured by the TLS bilateral authentication protocol.

Our work here is based on version 1.0 of the SAML specification. The work most closely related to ours
is [HSNO5], which also proves the existence of a similar attack, and [ACCT08] that proves an attack on
Google’s implementation of SAML. However, later work [ACCT08] seems to show that version 2.0 of the
SAML specification does no longer admit such an attack, as the new specification provides a more detailed
treatment of the security aspects of the protocol.

5. Conclusion

This paper presented the CaPiTo framework, which is able to model service-oriented systems at different
levels of abstractions, with or without taking the underlying protocol stack into consideration. To the best
of our knowledge this is a novel contribution.

We formally developed the abstract, the plug-in and the concrete levels of CaPiTo together with the semantics
of the concrete level and showed how to transform the plug-in level to the concrete level. We also developed a
static analysis to formally track the run-time behaviour and check the authentication properties of systems.
As usual our analysis has been implemented using our LySa technology [BBD105] and in general the results
are computed in low polynomial time in the size of the system in question. In practice the analysis is quite fast;
for each experiment that we have conducted, the analysis is able to give result within two seconds. Throughout
the paper we illustrated our approach on the Credit Request case study developed and scrutinised as part
of the EU project SENSORIA [Sen]. Although LySa is used as backend in this work, it is also possible to
replace it by other protocol verification tools, e.g. ProVerif [Pro], Scyther [Scy], or OFMC [MV09].

We chose process algebra as the way to model service-oriented applications, as it has been widely used
for describing concurrent communicating systems. There are many other ways of modelling systems, visual
representations for example, that the designers of computer systems are more familiar with. However, not all
the visual notations, e.g. state diagrams, flow charts, Petri nets, etc, have a universally accepted underlying
semantics and are associated with formal analysis techniques [Rei85]. Process algebras, on the other hand,
are equipped with operational semantics and therefore subject to formal analysis. They also provide succinct
yet precise descriptions of communication systems. Furthermore, for industrial purposes, it is also possible to
embed process algebra in high level programming languages, e.g. C++ or Java. There are also tools available
for facilitating non-experts in formal methods. For example, the twin tools Elyjah [O’S] and Hajyle translate
between LySa processes and Java code; this helps developers to increase their understanding of security
protocols and also helps them to develop more secure programs.

In our view the main contribution of the CaPiTo approach, compared to that of other service-oriented cal-
culi (e.g. CaSPiS [BBNLO0S§]), is that the CaPiTo approach, on the one hand, allows to perform an abstract
modelling of service-oriented applications and, on the other hand, facilitates dealing with existing standard-
ised protocols. It is due to this ability that we believe CaPiTo overcomes a shortcoming identified in the
EU project SENSORIA — that there is a gap between the level of models and analyses performed by the
academic partners and the realisations and implementations performed by the industrial partners.

From a more theoretical perspective we could equip the abstract level of CaPiTo with a semantics in the
same style as the one given to CaSPiS [BBNLO08] and we could then study equivalences between specifications
at the various levels of CaPiTo. Similarly we could develop static analyses at several levels of CaPiTo and

CaPiTo: Protocol Stacks for Services 27

compare their relative precision. However, in our view this is not what the industrial partners are likely to
find useful; rather we believe that an analysis performed as close as possible to the concrete specification level
is more valuable in practice. Indeed, it reduces the risks of attacks at levels below the level of formalisation.

Acknowledgment. We should like to thank Chiara Bodei for working with us in the Sensoria project, Jose
Nuno Carvalho Quaresma and the referees for providing useful comments on improving the presentation of
the paper, and Ender Yuksel for assistance with the typesetting.

References

[ACCH08]

[AG99]
[BBD*05]
[BBNLOS]
[DA99)]
[Gao08]
[GNN11]

[HMO04]

[HSNO5]

[LGOO]

[Lib)
[LPTO7]

[Mil99]
[MV09)

[NAPN]

[NNP11]
[NNS02]

[OAS]
[0°S]
[08]]
[Pro]
[Rei85)
[Scy]
[Sen]
[Shi]
[SOA]
[Sta99]

[WS-]

Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuellar, and Llanos Tobarra Abad. Formal Anal-
ysis of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based Single Sign-On for Google Apps. In the
6th ACM Workshop on Formal Methods in Security Engineering (FMSE 2008), Hilton Alexandria Mark Center,
Virginia, USA, 2008. ACM Press.

Martin Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The spi calculus. Information and
Computation, 148(1):1-70, 1999.

Chiara Bodei, Mikael Buchholtz, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Nielson. Static validation
of security protocols. J. Comput. Secur., 13:347-390, May 2005.

Michele Boreale, Roberto Bruni, Rocco Nicola, and Michele Loreti. Sessions and pipelines for structured service
programming. In Proceedings of the 10th IFIP WG 6.1 international conference on Formal Methods for Open
Object-Based Distributed Systems, FMOODS ’08, pages 19-38, Berlin, Heidelberg, 2008. Springer-Verlag.

T. Dierks and C. Allen. The tls protocol version 1.0, 1999.

Han Gao. Analysis of security protocols by annotations. PhD thesis, Technical University of Denmark, 2008.
Han Gao, Flemming Nielson, and Hanne Riis Nielson. Analysing Protocol Stacks for Services. In Rigorous Software
Engineering for Service-Oriented Systems, page to appear. Springer LNCS, 2011.

J. Hughes and E. Maler. Security assertion markup language (SAML) v1.1 technical overview. Technical report,
2004.

Steffen M. Hansen, Jakob Skriver, and Hanne Riis Nielson. Using static analysis to validate the saml single sign-on
protocol. In Proceedings of the 2005 workshop on Issues in the theory of security, WITS 05, pages 27-40, New
York, NY, USA, 2005. ACM.

Guy Leduc and Franois Germeau. Verification of security protocols using lotos - method and application. Computer
Communications, 23:2000, 2000.

Liberty alliance project.

Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A calculus for orchestration of web services. In
Proceedings of the 16th European conference on Programming, ESOP’07, pages 33-47, Berlin, Heidelberg, 2007.
Springer-Verlag.

Robin Milner. Communicating and mobile systems: the &pgr;-calculus. Cambridge University Press, New York,
NY, USA, 1999.

Sebastian Médersheim and Luca Vigano. The Open-Source Fized-Point Model Checker for Symbolic Analysis of
Security Protocols, pages 166—194. Springer-Verlag, Berlin, Heidelberg, 2009.

Christoffer Rosenkilde Nielsen, Michel Alessandrini, Michael Pollmeier, and Hanne Riis Nielson. Formalising the
S&N Credit Request. Technical report, Technical University of Denmark, Informatics and Mathematical Modelling,
Technical University.

Hanne Riis Nielson, Flemming Nielson, and Henrik Pilegaard. Flow logic for process calculi. ACM Computing
Surveys, page to appear, 2011.

Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. A succinct solver for alfp. Nordic J. of Computing,
9:335-372, December 2002.

Organization for the advancement of structured information standards.

Nicholas O’Shea. The elyjah project.

Ttu-t x.200 (07/94) the basic reference model (osi).

Proverif: Cryptographic protocol verifier in the formal model.

Wolfgang Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc., New York, NY, USA, 1985.
Scyther tool.

Sensoria project. http://sensoria.fast.de/.

Shibboleth project. http://shibboleth.internet2.edu/index.html.

Simple object access protocol (soap).

William Stallings. Cryptography and network security (2nd ed.): principles and practice. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1999.

Oasis web services security (wss) tc.

28

Table 17. A direct definition of the pattern matching function.

M(v,v) = ¢
M(v, ?z) = [(=,v)]
M(e, €) = €
M((v1,--- %), (P15, PK)) = let 0 = M(v1,p1) in

oW M((ve,-..,v),0(p2, - -, Pk))
M(P 4+ (V1. v8), Py= (P15, 0k)) = M((v1, .., 0k), (1, -+, Pr))
M(SU—(vlv'"vvk)7§1)+(p17"'7pk)) = M(('Ul,.-.,'Uk),(pl,.-.,pk))
otherwise = undefined

A. The Pattern Matching Function

H. Gao, F. Nielson and H. R. Nielson

The definition of Pattern Matching Function M that leads to an implementation is listed in Table 17. The
function determines whether a receive and an invoke over the same endpoint can synchronize. The definition,
as shown in Table 17, states that two identical values match each other, a binding variable matches any value,
a pattern tuple matches a value tuple only if they are of the same length and inductively pairwise matches,
and two encryptions matches when both the encrypted messages and the keys match each other. The notation
e stands for the empty list. The pattern matching function returns a substitution o € (Var x Val)* for all
the binding variables. The operation & is used to concatenate two substitutions.

