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Abstract

This paper is devoted to the identification of Bayesian posteriors for the random
coefficients of the high-dimension polynomial chaos expansions of non-Gaussian
tensor-valued random fields using partial and limited experimental data. The ex-
perimental data sets correspond to an observation vector which is the response
of a stochastic boundary value problem depending on the tensor-valued random
field which has to be identified. So an inverse stochastic problem must be solved
to perform the identification of the random field. A complete methodology is
proposed to solve this very challenging problem in high dimension, which con-
sists in using the first four steps introduced in a previous paper, followed by the
identification of the posterior model. The steps of the methodology are the fol-
lowing: (1) introduction of a family of Prior Algebraic Stochastic Model (PASM),
(2) identification of an optimal PASM in the constructed family using the partial
experimental data, (3) construction of a statistical reduced-order optimal PASM,
(4) construction, in high dimension, of the polynomial chaos expansion with deter-
ministic vector-valued coefficients of the reduced-order optimal PASM, (5) substi-
tution of these deterministic vector-valued coefficients by random vector-valued
coefficients in order to extend the capability of the polynomial chaos expansion
to represent the experimental data and for which the joint probability distribu-
tion must be identified, (6) construction of the prior probability model of these
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random vector-valued coefficients and finally, (7) identification of the posterior
probability model of these random vector-valued coefficients using partial and
limited experimental data, through the stochastic boundary value problem. Two
methods are proposed to carry out the identification of the posterior model. The
first one is based on the use of the classical Bayesian method. The second one
is a new approach derived from the Bayesian method, which is more efficient in
high dimension. An application is presented for which several millions of random
coefficients are identified.

Key words: Inverse problem, non-Gaussian, random field, Bayes, Bayesian
method, identification.

1. Introduction

The problem related to the identification of vector-valued parameter of a system
modeled by a boundary value problem (BVP) (for instance, the coefficients of a
partial differential equation) using experimental data related to the vector-valued
observation of this system, is a difficult problem which has been studied a lot. In
general and in the deterministic context, there is not a unique solution because the
function which maps the vector-valued parameter to the vector-valued observation
is not an injection, and consequently, cannot be inverted. It is an ill-posed prob-
lem. However, such a problem can be reformulated in terms of an optimization
problem consisting in calculating an optimal value of the vector-valued parame-
ter which minimizes a certain distance between the observed experimental data
and the vector-valued observation which is computed with the BVP and which
depends on the vector-valued parameter (see for instance [54]). In many cases,
the analysis of such an inverse problem can have a unique solution in the frame-
work of statistics, that is to say when the vector-valued parameters is modeled
by a random quantity, with or without external noise on the observed output. In
such a case, the random vector-valued observation is completely defined by its
probability distribution which is the unique transformation of the probability dis-
tribution of the random vector-valued parameter. This transformation is defined
by the function which maps the vector-valued parameter to the vector-valued ob-
servation. With such a formulation which becomes a well-posed problem, there
is a unique solution in the probability theory framework (see for instance [24] an
overview concerning the stochastic inverse problems).

The identification of non-Gaussian random fields solving stochastic inverse prob-
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lems has already been addressed in many scientific and technical areas (see for
instance [13, 16, 27, 53, 23, 24, 28]).

The present paper is a companion work of the recent paper published in [48]
and which was devoted to the identification of the random Vector-Valued Coef-
ficients (VVC) of the high-dimension Polynomial Chaos Expansion (PCE) of a
non-Gaussian tensor-valued random field using partial and limited experimental
data. These experimental data are related to an observation vector which is the
response of a stochastic boundary value problem depending on the tensor-valued
random field which has to be identified. A complete new methodology has been
proposed to solve this challenging problem in high dimension, in particular new
algorithms have been proposed to identify the construction, in high dimension,
of the PCE with deterministic VVC of the reduced-order optimal prior algebraic
stochastic model of the tensor-valued random field. In order to extend the capa-
bility of the PCE to represent the experimental data, the deterministic VVC have
been replaced by random VVC for which the joint probability distribution has to
be identified. In [48], we have proposed a first approach to construct the prior
probability model of these random VVC and then, to identify the posterior prob-
ability model of these random VVC using partial and limited experimental data.
Nevertheless, an alternative approach seemed to have to be investigated, based on
the Bayesian method, as it was indicated in the conclusion of this work. In this
paper, we thus present the identification of the Bayesian posteriors of the random
VVC of the high-dimension PCE of a non-Gaussian tensor-valued random field
using partial and limited experimental data. As we will see, two methods will
be developed to perform the identification of the posterior model in high dimen-
sion. The first one will be based on the use of the classical Bayesian method. The
second one is a new approach derived from the Bayesian method, which is more
efficient in high dimension. An application will be presented for which several
millions of random coefficients must be identified.

Let us recall that the methodology used to construct the PCE of a random field has
been introduced in [17]. The methodologies relative to the PCE of stochastic pro-
cesses and random fields, and application to stochastic boundary value problems,
have generated many works in the last decade (see for instance [12, 18, 21, 22, 25,
29, 30, 34, 35, 36, 38, 39, 41, 45, 47, 55, 56]). The stochastic inverse methods and
the Bayesian inference approach to inverse problems have received a particular
attention (see for instance [8, 19, 31, 32, 33, 57, 58, 59]). The problem relative
to the identification, with experimental data, of the deterministic VVC of the PCE
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of a non-Gaussian real-valued random field using the maximum likelihood has
been introduced in [14, 15] and more recently, has been revisited in [11]. In [10],
the authors propose to construct the probability model of the random VVC of the
PCE by using the asymptotic sampling Gaussian distribution constructed with the
Fisher information matrix. Such an approach has been used for model validation
[20, 37]. Recently, in [1], as a continuation of [46], the identification of Bayesian
posteriors for the random VVC of PCE has been proposed. Nevertheless, this
interesting approach is not perfectly adapted to high-dimension problems (case
for which several millions of random variables have to be identified). This is the
reason why we propose to explore in this paper, as a continuation of [48], another
way for the high-dimension case in the field of the Bayesian inverse method.

2. Definition of the problem to be solved

In this section, we recall the challenging problem introduced and solved in [48],
for which the last step of the methodology which is devoted to the identification
of the posterior probability model, is revisited in this paper. We propose to use
the Bayesian method to identify the posterior probability model. We then have
to identify the Bayesian posteriors of high-dimension PCE with random VVC for
non-Gaussian tensor-valued random fields using partial and limited experimental
data.

(1) Stochastic boundary value problem. We consider a boundary value problem
for a vector-valued field{u(x) = (u1(x), u2(x), u3(x)), x ∈ Ω} defined on an
open bounded domainΩ of R3, with generic pointx = (x1, x2, x3). This bound-
ary value problem depends on a non-Gaussian fourth-order tensor-valued random
field {C(x), x ∈ Ω} in whichC(x) = {Cijkℓ(x)}ijkℓ, which is unknown and which
has to be identified solving an inverse stochastic problem. The boundary∂Ω of
domainΩ is written asΓ0 ∪ Γobs∪ Γ. Fieldu is only experimentally observed on
Γobs, which means that the system is partially observed with respect to the avail-
able experimental data.

(2) Stochastic finite element approximation of the stochastic boundary value prob-
lem. The stochastic boundary value problem (introduced in (1) above) is dis-
cretized by the finite element method. LetI = {x1, . . . , xNp} ⊂ Ω be the finite
subset ofΩ made up of all the integrations points of the finite elements used in
the mesh ofΩ. For all x fixed in I ⊂ Ω, the fourth-order tensor-valued random
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variableC(x) is represented by a real random matrix[A(x)] such that[A(x)]IJ =
Cijkh(x) with a given adapted correspondenceI = (i, j) and J = (k, h). It
should be noted that mathematical properties on the matrix-valued random field
{[A(x)], x ∈ Ω} are necessary in order to preserve the mathematical properties of
the boundary value problem. LetU = (Uobs,Unobs) be the random vector with
values inRm = Rmobs × Rmnobs with m = mobs + mnobs, constituted of some
degrees of freedom of the finite element approximation of fieldu. TheRmobs-
valued random vectorUobs = (Uobs

1 , . . . , Uobs
mobs

) is made up of themobs observed
degrees of freedom for which there are available experimental data (correspond-
ing to the finite element approximation of the trace onΓobs of random fieldu).
VectorUobs will be called the observation vector. TheRmnobs-valued random vec-
tor Unobs= (Unobs

1 , . . . , Unobs
mnobs

) is made up of themnobsdegrees of freedom (of the
finite element model) for which no experimental data are available and are intro-
duced for performing the quality assessment of the identification which will be
done. The random vectorU appears as the unique deterministic nonlinear trans-
formation of the finite family ofNp dependent random matrices{[A(x)], x ∈ I}.
This set of random matrices can then be represented by aRmV-valued random
vectorV = (V1, . . . , VmV

). Consequently, theRm-valued random vectorU can be
written as

U = h(V) , Uobs= hobs(V) , Unobs= hnobs(V) , (1)

in which v �→ h(v) = (hobs(v), hnobs(v)) is a deterministic nonlinear transforma-
tion from RmV into Rm = Rmobs × Rmnobs which can be constructed solving the
discretized boundary value problem.

(3) Experimental data sets. It is assumed thatνexp experimental data sets are avail-
able for the observation vectorUobs. Each experimental data set corresponds to
partial experimental data (only the trace of the displacement field onΓobs is ob-
served) with a limited length (νexp is relatively small). Theseνexp experimental data
sets correspond to measurements ofνexp experimental configurations associated
with the same boundary value problem. For configurationℓ, with ℓ = 1, . . . , νexp,
the observation vector (corresponding toUobs for the computational model) is de-
noted byuexp,ℓ and belongs toRm. Therefore, the available data are made up of the
νexp vectorsuexp,1, . . . , uexp,νexp in Rm. Below, it is assumed thatuexp,1, . . . , uexp,νexp

can be viewed asνexp independent realizations of a random vectorUexp defined on
a probability space(Θexp, T exp,Pexp) and corresponding to random observation
vectorUobs (but noting that random vectorsUexp andUobs are not defined on the
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same probability space).

(4) Stochastic inverse problem to be solved. The problem to be solved concerns
the identification of the unknown non-Gaussian random vectorV representing the
fourth-order tensor-valued random field{C(x), x ∈ Ω}, using partial and lim-
ited experimental datauexp,1, . . . , uexp,νexp relative to the random observation vec-
tor Uobs such thatUobs = hobs(V) in which hobs is a given deterministic nonlinear
mapping. The components of the random vectorUnobs, such thatUnobs= hnobs(V)
in whichhnobs is a given deterministic nonlinear mapping, are used for performing
the quality assessment of the identification .

3. Summarizing the methodology previously introduced to identify a high-
dimension PCE using partial and limited experimental data

The identification of Bayesian posteriors of high-dimension PCE with random
VVC, using partial and limited experimental data, requires a first identification of
the deterministic VVC of the high-dimension PCE for the non-Gaussian tensor-
valued random field, using partial and limited experimental data. Such a first
identification, performed in four steps, is described in details in [48]. In this sec-
tion, we briefly summarize the methodology for readability of the paper.

Step 1. Introduction of a family of Prior Algebraic Stochastic Models (PASM) for
random vectorV. The available partial and limited experimental data are not suf-
ficient to perform a direct statistical estimation of the covariance matrix[CV], that
would be necessary to construct a reduced-order statistical model deduced from
the Karhunen-Loeve expansion of the random field{[A(x)], x ∈ Ω} (that is to say
deduced from a principal component analysis of random vectorV). In addition,
such a reduced-order statistical model must have the capability to represent the re-
quired mathematical properties for the random family{[A(x1)], . . . , [A(xNp)]} (for
instance, each random matrix[A(xk)] should be positive definite almost surely).
To circumvent these two major difficulties, it was proposed to introduce a family
{[APASM(x;w)] , x ∈ Ω}w of Prior Algebraic Stochastic Models (PASM) to rep-
resent the matrix-valued random field{[A(x)] , x ∈ Ω}. We can then deduce a
family {VPASM(w)}w of PASM for random vectorV. This family is defined on a
probability space(Θ, T ,P) and depends on the vector-valued parameterw be-
longing to an admissible setCad. The knowledge of such a family means that the
family {P PASM

V (dv;w) ,w ∈ Cad} of probability distributions onRmV of the family
of random vectors{VPASM(w) ,w ∈ Cad} is known. In addition, it is assumed that
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a generator ofνKL independent realizationsVPASM(θ1;w), . . . ,VPASM(θνKL ;w) for
θ1, . . . , θνKL belonging toΘ is available. In practice, vector-valued parameterw
will be chosen as a vector with a very low dimension and its components will be,
for instance, the mean value[A], the spatial correlation lengths and the dispersion
parameters controlling the statistical fluctuations of matrix-valued random field
{[A(x)] , x ∈ Ω}.

Step 2. Identification of an optimal PASM in the constructed family using the ex-
perimental data sets. This step consists in using the experimental data{uexp,1, . . . ,
uexp,νexp} to identify the optimal valuewopt of parameterw. Using the computa-
tional model (see Eq. (1)) and the familyVPASM(w) of PASM for V, we can con-
struct the family{Uobs,PASM(w) ,w ∈ Cad} of random observation vectors such that
Uobs,PASM(w) = hobs(VPASM(w)) for w ∈ Cad. The optimal PASM is then obtained
in finding the optimal valuewopt of w which minimizes an adapted ”distance”
J(w) (cost function) between the family{Uobs,PASM(w) ,w ∈ Cad} of random ob-
servation vectors and the family of experimental data{uexp,1, . . . , uexp,νexp}. We
then obtain the optimal PASM denoted byVPASM = VPASM(wopt). Several meth-
ods can be used to define the cost functionJ(w), such as the moment method,
the least-square method, the maximum likelihood method, etc (see [40, 50, 54]).
By construction of the PASM, the dimension of vectorw is much smaller than
νexp ×mobs. The least-square method or the maximum likelihood method can be
used to calculate the optimal valuewopt (see the details in [48]).

Step 3. Construction of the statistical reduced-order optimal PASM. For ℓ =
1, . . . , νKL , let VPASM(θℓ) be νKL independent realizations of the optimal PASM
VPASM. The mean valueV = E{VPASM} of VPASM (E is the mathematical expec-
tation) and its positive-definite symmetric(mV × mV) real covariance matrix
[CVPASM] = E{(VPASM − V) (VPASM − V)T} are estimated using independent re-
alizations{VPASM(θℓ), ℓ = 1, . . . νKL}. The dominant eigenspace of the eigenvalue
problem[CVPASM]W j = λjW

j is then constructed. Let[W ] = [W 1 . . .W n] be the
(mV × n) real matrix of then eigenvectors associated with then largest eigenval-
uesλ1 ≥ λ2 ≥ . . . ≥ λn > 0 such that[W ]T [W ] = [In], in which[In] is the(n×n)
identity matrix. The statistical reduced-order optimal PASM is then written as

VPASM ≃ V+

n∑

j=1

√
λj η

PASM
j W j , (2)

in whichη
PASM = (ηPASM

1 , . . . , ηPASM
n ) is a second-order centered random variable
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with values inRn such that

E{ηPASM} = 0 , E{ηPASM (ηPASM)T} = [In] . (3)

The mean-square convergence of the right-hand side in Eq. (2)) with respect to
the reduced-ordern is studied in constructing the error function

n �→ err(n) = 1−
∑n

j=1 λj

tr[CVPASM]
, (4)

which is a monotonic decreasing function from{1, . . . , mV} into [0 , 1] and such
that err(mV) = 0. TheνKL independent realizationsηPASM(θ1), . . . ,η

PASM(θνKL ) are
deduced from the realizationsVPASM(θ1), . . . ,V

PASM(θνKL ) using, forj = 1, . . . , n
and forℓ = 1, . . . νKL , the equation

ηPASM
j (θℓ) =

1√
λj

(VPASM(θℓ)− V)T W j . (5)

Step 4. Construction of the PCE with deterministic VVC of the reduced-order
optimal PASM. This step consists in constructing an approximationη

chaos(N) =
(ηchaos

1 (N), . . . , ηchaos
n (N)) of ηPASM by using a PCE, such that

η
PASM ≃ η

chaos(N) , η
chaos(N) =

N∑

α=1

yαΨα(Ξ) , (6)

in which the real valued random variablesΨ1(Ξ), . . . ,ΨN(Ξ) are the renumbered
normalized Hermite polynomials of theRNg -valued normalized Gaussian random
variableΞ = (Ξ1, . . . ,ΞNg

) (therefore,E{Ξ} = 0 andE{ΞΞ
T} = [INg

]), de-
fined on probability space(Θ, T ,P), such that for allα andβ in {1, . . . , N},

E{Ψα(Ξ)} = 0 , E{Ψα(Ξ) Ψβ(Ξ)} = δαβ , (7)

whereδαβ is the Kronecker symbol. It should be noted that the constant Hermite
polynomial with indexα = 0 is not included in Eq. (6). IfNd is the integer
number representing the maximum degree of the Hermite polynomials, then the
numberN of chaos in Eq. (6) is

N = h(Ng, Nd) = (Nd +Ng)! /(Nd!Ng!)− 1 . (8)
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In Eq. (6)), the symbol ”≃” means that the mean-square convergence is reached
for N sufficiently large and the deterministic VVC which must be identified are
theN vectorsy1, . . . , yN in Rn. Taking into account Eqs. (3) and (7), it can be
deduced that vectorsy1, . . . , yN must verify the following equation,

N∑

α=1

yα yαT = [In] . (9)

In order to control the quality of the convergence of the series in Eq. (6) with
respect toN (which is mean-square convergent), we have introduced in [48] an
unusualL1-log error function which allows the errors of the very small values of
the probability density function (the tails of the probability density function) to
be measured. For a fixed value ofN , such a measurement of the error is sum-
marized hereinafter. Lete �→ pηPASM

j
(e) be the probability density function of the

random variableηPASM
j . For all y1, . . . , yN fixed inRn and satisfying Eq. (9)), let

e �→ pηchaos
j (N)(e ; y1, . . . , yN) be the probability density function of random vari-

ableηchaos
j (N). The convergence of the sequence of random vectors{ηchaos(N)}N

towardsηPASM is then controlled with theL1-log error defined by

errj(Ng, Nd) =

∫

BIj

| log10 pηPASM
j

(e)− log10 pηchaos
j (N)(e ; y1, . . . , yN)| de , (10)

in which BIj is a bounded interval of the real line which is adapted to the problem
(see the details in [48]). The estimation ofpηPASM

j
(e) is carried out using the ker-

nel density estimation method [6] with the independent realizationsη PASM
j (θ1), . . . ,

ηPASM
j (θνKL ) calculated in Step 3. Similarly, for a given value ofy1, . . . , yN , the

estimation ofpηchaos
j (N)(e ; y1, . . . , yN) is carried out using Eq. (6) andν inde-

pendent realizationsΞ(θ1), . . . ,Ξ(θν) of the normalized Gaussian vectorΞ de-
fined on probability space(Θ, T ,P) with θ1, . . . , θν in Θ. For the random vector
η

chaos(N), theL1-log error function is denoted as err(Ng, Nd) and is defined by

err(Ng, Nd) =
1

n

n∑

j=1

errj(Ng, Nd) . (11)

It should be noted that Eqs. (10) and (11) are not used to identifyy1, . . . , yN , but
only to evaluate, for each fixed value ofN and for giveny1, . . . , yN , the qual-
ity of the approximationηPASM ≃ η

chaos(N). For each fixed value ofN , the
identification ofy1, . . . , yN is performed using the maximum likelihood method
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[40, 50, 54] as done in [14, 15, 10, 48]. Taking into account that the dependent
random variablesηPASM

1 , . . . , ηPASM
n are not correlated, the following approximation

L(y1, . . . , yN) of the log-likelihood function is introduced

L(y1, . . . , yN ) =
n∑

j=1

νKL∑

ℓ=1

log10 pηchaos
j (N)(η

PASM
j (θℓ) ; y1, . . . , yN ) . (12)

The optimal value(y1, . . . , yN) of (y1, . . . , yN) is then given by

(y1, . . . , yN ) = arg max
(y1,...,yN )∈CN

ad

L(y1, . . . , yN) , (13)

in whichCN
ad is such that

CN
ad = {(y1, . . . , yN) ∈ (Rn)N ,

N∑

α=1

yα yαT = [In]} . (14)

For the high-dimension case, that is to say forn × N very large, solving the op-
timization problem defined by Eqs. (13) and (14) is a very challenging problem
which has been solved in the last decade only for small values ofn andN . Such
a challenging problem has been solved in [48] thanks to the use of two novel al-
gorithms:

(i) The first one is required, forα = 1, . . . , N andℓ = 1, . . . , ν, to generate the
independent realizationsΨα(Ξ(θℓ)) of Ψα(Ξ) with high degreeNd of the polyno-
mialsΨα. Introducing the(ν ×N) real matrix[Ψ] such that[Ψ]ℓα = Ψα(Ξ(θℓ)),
matrix [Ψ] is computed as explained in [49] to preserve the orthogonality condi-
tions defined by Eq. (7) for any values ofNg andNd.

(ii) The details of the second one are given in [48] and allows the high-dimension
optimization problem defined by Eqs. (13) and (14) to be solved with a reason-
able CPU time, the constraint defined by Eq. (9) being automatically and exactly
satisfied.

(iii) The random response vectorUPASM = (Uobs,PASM,Unobs,PASM) of the computa-
tional stochastic model, corresponding to the optimal PASM represented by the
PCE, is given byUPASM = h(VPASM) in whichVPASM ≃ V +

∑n

j=1

√
λj η

PASM
j W j

with η
PASM ≃

∑N

α=1 yα Ψα(Ξ). The independent realizations{UPASM(θℓ), ℓ =
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1, . . . , ν} of UPASM can then be calculated. For1 ≤ k ≤ mobs, letUPASM
k be a com-

ponent of the random observation vectorUobs,PASM while, if mobs+ 1 ≤ k ≤ m,
thenUPASM

k represents a component of the random vectorUnobs,PASM. The proba-
bility density functionuk �→ pUPASM

k
(uk) on R of the random variableUPASM

k is
then estimated using the above independent realizations and the kernel density
estimation method [6].

4. Comments about the proposed methodology and identification of Bayesian
posteriors for the high-dimension PCE using partial and limited experi-
mental data

For given experimental data sets, the best approach which can be made is the one
(1) which takes into account all the available theoretical information related to
the tensor-valued random field and (2) which reproduces the set of the available
experimental data in a statistical sense. The family of PASM (see Step 1) which
depends on the low-dimension vector-valued parameterw must span the larger
possible subset of all the admissible tensor-valued random fields. The construc-
tion of such a family must then take into account all the available mathematical
properties (for instance an ellipticity condition). Nevertheless, since the optimal
PASM (see Step 2) is constructed in identifying a family which has only a few
free parameters (components of vectorw), this optimal PASM belongs to a subset
which is not big enough to perfectly represent the available experimental data.
Consequently, it is necessary to construct a posterior model to better represent the
experimental data, that is to say, it is necessary to construct a representation which
is capable to span a larger subset containing the experimental data. The approach
used has then been to construct a PCE with random VVC of the optimal PASM.
Such a PCE with random VVC has the capability to represent any tensor-valued
random field and then has the capability to fit all the experimental data in a sta-
tistical sense. Nevertheless, a direct construction of such PCE with random VVC
would not be realistic. This is the reason why, in Step 4, the PCE with deter-
ministic VVC of the optimal PASM is constructed and then, the posterior model
is constructed in replacing the deterministic VVC of the PCE by random VVC.
Clearly, better will be the optimal PASM, less will be the numerical cost required
to fit the probability distributions of the random VVC.
Let us consider an uncertain computational model for which the stochastic model-
ing of uncertain parameters is performed by introducingNg independent random
variables (after having applied a Karhunen-Loeve statistical reduction and a non-
linear transformation of independent random variables for which the probability
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measures are known). Clearly, for the direct problem consisting in analyzing the
propagation of uncertainties through the computational model, the length of the
germ of the PCE of the random response of this stochastic computational model,
must be chosen asNg. In this paper, the stochastic inverse problem is consid-
ered. The uncertain parameter is a random field for which the stochastic model
is unknown and must be identified. Using the Karhunen-Loeve statistical reduc-
tion (see Step 3) and then the PCE of theRn-valued random variableηPASM (see
Step 4), there are three unknown parametersn, Ng andNd, which must be se-
lected to get a good convergence of the representation. The value of parametern
is defined in studying the error functionn �→ err(n) defined by Eq. (4) which is
based on a mean-square convergence. The value ofn is then independent from
the value ofNg andNd. Now, the value ofNg andNd must be defined in or-
der that the convergence of the PCE of theRn-valued random variableηPASM be
reached. Such a convergence is studied using the unusualL1-log error function
(Ng, Nd) �→ err(Ng, Nd) defined by Eqs. (10) and (11). It should be noted that
this error function is better than the mean-square error function and allows the
convergence of the probability function to be controlled over all the range of the
large values and the very small values of the probability levels (this means that
this error function allows the tail of the probability density functions to be cor-
rectly fitted). Consequently, the maximum degreeNd of the polynomial chaos
must be sufficiently high to get the convergence of the representation when the
random field is any non-Gaussian random field (a random field which is unknown
and which must be identified without any information about the tails of the sys-
tem of marginal probability distributions which define the probability law of the
non-Gaussian random field). In addition, the introduction of a very large number
N of polynomial chaos{Ψα(Ξ), α = 1, . . . , N} induced by the use of a high
value ofNd coupled with the use of a significant value ofNg, is equivalent to the
introduction of a very large number of uncorrelated random variables due to the
orthogonal property defined by Eq. (7).
For the stochastic inverse problem under consideration, this analysis shows that,
there is no reason to set a priori a value forNg or a value forNd which are strongly
dependent. The optimal values ofNg andNd must be determined using theL1-log
error function and there is no reason to set the value ofNg to the valuen.
As explained above, the family of PASM which is introduced is, in general, not
capable to perfectly represent the experimental data (for instance, this can be the
case for the mesoscale stochastic modeling of complex anisotropic and hetero-
geneous microstructures). It should be noted that the family of PASM does not
take into account modeling errors but is introduced to model the random medium.
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Consequently, a posterior stochastic model must be introduced in order to improve
the optimal PASM which has been constructed and identified in Steps 1 to 3 and
for which the representation by a high-dimension PCE has been constructed in
Step 4. Such a posterior stochastic model is mainly constructed in order to take
into account the modeling errors introduced by the choice of the family of the
PASM.

Following the method of reduced PCE with random VVC of vector-valued ran-
dom variables presented in [46, 48, 1] and in order to take into account model un-
certainties, the optimal values(y1, . . . , yN ) constructed in Step 4 are replaced by a
family of random vectors{Y1, . . . ,YN} defined on a probability space(Θ′, T ′,P ′))
which is independent of the family of random variables{Ψ1(Ξ), . . . ,ΨN(Ξ)}
(which are defined on the probability space(Θ, T ,P)).

In [48], we have proposed a first approach to identify such a posterior stochas-
tic model. Presently, we propose an alternative approach based on the use of
the Bayesian method for the high-dimension case. The identification of Bayesian
posteriors in high-dimension case (that is to say the identification of a posterior
probability distribution of a random vector with several millions of dependent
components) using a random observation vector for which limited and partial ex-
perimental data are available is also a challenging problem.

5. Prior probability model of the random VVC

5.1. Prior model

LetVprior be the prior stochastic model ofVPASM, defined as theRmV-valued random
variable on the probability space(Θ′ ×Θ, T ′ ⊗ T ,P ′ ⊗ P), such that

Vprior = V+
n∑

j=1

√
λj η

prior
j W j . (15)

The prior stochastic modelηprior = (ηprior
1 , . . . , ηprior

n ) is aRn-valued random vari-
able defined on(Θ′ ×Θ, T ′ ⊗T ,P ′ ⊗P), which is written as the following PCE
with random VVC (deduced from Eq. (6)),

η
prior =

N∑

α=1

Yα,prior Ψα(Ξ) . (16)
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The family ofRn-valued random variables{Y1,prior, . . . ,YN,prior} are defined on
the probability space(Θ′, T ′,P ′). We introduce the random vectorYprior with
values inRnN , defined on(Θ′, T ′,P ′), such that

Yprior = (Y1,prior, . . . ,YN,prior) , (17)

and for which its probability distribution is assumed to be represented by a proba-
bility density functiony �→ pprior

Y
(y) onRnN with respect to the Lebesgue measure

dy= dy1 . . . dynN .

5.2. Independent realizations of the prior model

For all (θ′, θ) in Θ′ ×Θ, the realizationVprior(θ′, θ) of Vprior is written as

Vprior(θ′, θ) = V+
n∑

j=1

√
λj η

prior
j (θ′, θ)W j , (18)

in which the realizationηprior(θ′, θ) = (ηprior
1 (θ′, θ), . . . , ηprior

n (θ′, θ)) of ηprior is
written as

η
prior(θ′, θ) =

N∑

α=1

Yα,prior(θ′) Ψα(Ξ(θ)) . (19)

The realizationYprior(θ′) of Yprior is given by

Yprior(θ′) = (Y1,prior(θ′), . . . ,YN,prior(θ′)) . (20)

5.3. Probability distribution of the prior model

Let ε ≥ 0 be any given positive or null real number. The probability density
functiony �→ pprior

Y
(y) onRnN of the random vectorYprior = (Y1,prior, . . . ,YN,prior)

is such that the random vectorsY1,prior, . . . ,YN,prior are mutually independent and
such that,

Yα,prior = 2ε |yα|Uα + yα − ε |yα| , (21)

in which |yα| is the vector(|yα
1
|, . . . , |yα

n
|) wherey1, . . . , yN are theN known vec-

tors inRn calculated in Step 4. In Eq. (21),{U 1, . . . ,UN} is a family of indepen-
dent uniform random variables on[0 , 1], defined on(Θ′, T ′,P ′). Consequently,
the componentY α,prior

j of Yα,prior is a uniform random variable, centered inyα
j

and
the support of its probability distribution is written as

sαj = [ yα
j
− ε |yα

j
| , yα

j
+ ε |yα

j
| ] . (22)
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It can then be deduced thatE{ηprior} = 0 and the mean values of the random
VVC are such that

E{Yα,prior} = yα , for α = 1, . . . , N , (23)

The statistical fluctuations ofYα,prior around the mean valueyα is controlled by
parameterε. If ε = 0, thenYα,prior = yα almost surely (deterministic case for the
VVC of the PCE introduced in Step 4).

5.4. Subset of independent realizations for the prior model

Let {[Aprior(x1)], . . . , [Aprior(xNp)]} be theNp random matrices associated with the
prior modelVprior. In Section 2-(2), we have seen that the matrix-valued ran-
dom field{[A(x)], x ∈ Ω} must generally satisfy mathematical properties for that
the stochastic boundary value problem has a unique stochastic solution verifying
given properties. Let us assume that such mathematical properties are described
as follows: The family of random matrices{[Aprior(x1)], . . . , [Aprior(xNp)]} verifies,
almost surely, a property denoted asProp (for instance, for allk in {1, . . . , Np}, the
random matrix[Aprior(xk)] should be positive define almost surely). By construc-
tion (see Section 2), forε = 0, propertyProp is verified almost surely. However,
for ε > 0, such a property can be not verified for certain realizations. Conse-
quently, the rejection method is used to construct the subset of independent real-
izations for whichProp is satisfied almost surely.
Let ε be fixed (not equal to zero). LetYprior(θ′1), . . . ,Y

prior(θ′ν ′) be ν ′ indepen-
dent realizations ofYprior for θ′1, . . . , θ

′
ν ′ in Θ′. Let Ξ(θ1), . . . ,Ξ(θν) be theν

independent realizations ofΞ (for θ1, . . . , θν in Θ) introduced in Step 4 of Sec-
tion 3. For givenθ′ℓ′ and θℓ, let Vprior(θ′ℓ′ , θℓ) be the realization ofVprior and
let [Aprior(x1; θ′ℓ′ , θℓ)], . . . , [A

prior(xNp; θ′ℓ′ , θℓ)] be the corresponding realizations of
[Aprior(x1)], . . . , [Aprior(xNp)]. Consequently, if the family{[Aprior(x1; θ′ℓ′ , θℓ)], . . . ,
[Aprior(xNp; θ′ℓ′, θℓ)]} verifies propertyProp, then realization(θ′ℓ′, θℓ) will be kept
and, if not, this realization will be rejected. For fixedθ′ℓ′ , we then introduce the
subset{θℓ1 , . . . , θℓν̃(ℓ′)} of {θ1, . . . , θν}, with ν̃(ℓ′) ≤ ν, for which propertyProp is
verified.
It should be noted thatε will arbitrarily be fixed in the context of the use of the
Bayesian method to construct the posterior model. In general, moreε will be
chosen large, morẽν(ℓ′) will be small. Therefore, a compromise will have to be
chosen between the numberν̃(ℓ′) of realizations to get convergence of the sta-
tistical estimators and a large value ofε allowing large deviations from the prior
model to be generated.
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5.5. Prior probability density functions of the responses

For all ℓ′ fixed in {1, . . . , ν ′}, the realizationsUprior(θ′ℓ′ , θℓj ) for j = 1, . . . , ν̃(ℓ′)
of the prior random vectorUprior = (Uobs,prior,Unobs,prior) = h(Vprior) are calculated
with the stochastic computational model for the prior modelYprior of Y. For 1 ≤
k ≤ mobs, U

prior
k is a component of the random observation vectorUobs,prior while,

if mobs+ 1 ≤ k ≤ m, thenUprior
k represents a component of the random vector

Unobs,prior. The probability density functionuk �→ p
U

prior
k

(uk) on R of the prior

random variableUprior
k is then estimated using the above independent realizations

and the kernel density estimation method [6].

6. Posterior probability model of the random VVC using the classical Bayesian
approach

In this section, we present the use of the classical Bayesian approach to construct
the posterior probability modelYpostof the random VVC for which the prior prob-
ability modelYprior has been constructed in Section 5.

6.1. Conditional probability of the vector-valued random observation if VVC are
given

For a given vectory= (y1, . . . , yN) in RnN = Rn× . . .×Rn, letU = (Uobs,Unobs)
be the random vector with values inRm = Rmobs×Rmnobs, such thatU = h(V) (see
Eq. (1)) in which the random vectorV with values inRmV is given byV = V +∑n

j=1

√
λj ηj W

j (see Eq. (15)) and for which the random vectorη = (η1, . . . , ηn)

with values inRn is given byη =
∑N

α=1 yα Ψα(Ξ) (see Eq. (16)).

We introduce the conditional probability density functionuobs �→ pUobs|Y(u
obs|y)

(defined onRmobs and with respect to the Lebesgue measureduobs= duobs
1 . . . duobs

mobs
)

of random observation vectorUobs if Y = (Y1, . . . ,YN) is equal to the given vec-
tor y= (y1, . . . , yN) in RnN .

Consequently, the random observation vectorUobs = (Uobs
1 , . . . , Uobs

mobs
) depends

on Y = y and the stochastic computational model allows the conditional prob-
ability density functionsuobs �→ pUobs|Y(u

obs|y) anduobs
k �→ pUobs

k
|Y(u

obs
k |y) to be

calculated.
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6.2. Formulation using the Bayesian method

The posterior random vectorUpost = (Uobs,post,Unobs,post) with values inRm =
Rmobs × Rmnobs is written (see Eq. (1)) as

Upost = h(Vpost) , Uobs,post = hobs(Vpost) , Unobs,post= hnobs(Vpost) , (24)

in which theRmV-valued random vectorVpost is the posterior model ofVprior. Tak-
ing into account Eqs. (15) to (17), the posterior model ofVprior is written as

Vpost= V+

n∑

j=1

√
λj η

post
j W j , (25)

in which the posterior stochastic modelη
post = (ηpost

1 , . . . , ηpost
n ) is a Rn-valued

random variable defined on(Θ′ ×Θ, T ′ ⊗ T ,P ′ ⊗ P), such that

η
post=

N∑

α=1

Yα,postΨα(Ξ) , (26)

in which the family ofRn-valued random variables{Y1,post, . . . ,YN,post} are de-
fined on the probability space(Θ′, T ′,P ′). As previously, we introduce theRnN -
valued random vectorYpost defined on(Θ′, T ′,P ′) such that

Ypost= (Y1,post, . . . ,YN,post) , (27)

whose its probability distribution is represented by the probability density func-
tiony �→ ppost

Y
(y) onRnN with respect to the Lebesgue measuredy= dy1 . . . dynm.

Let uexp,1, . . . , uexp,νexp be theνexp independent experimental dataUexp correspond-
ing to observation vectorUobs. The Bayesian method (see for instance [4, 5, 7,
9, 40, 50, 51, 54]) allows the posterior probability density functionppost

Y
(y) to be

calculated, using the prior probability density functionpprior
Y

(y) and using the ex-
perimental valuespUobs|Y(u

exp,ℓ|y) of the conditional probability density function
pUobs|Y(u

obs|y), as

ppost
Y

(y) = Lbayes(y) pprior
Y

(y) , (28)

in whichy �→ Lbayes(y) is the likelihood function defined onRnN , with values in
R+, such that

Lbayes(y) =
Π

νexp
ℓ=1 pUobs|Y(u

exp,ℓ|y)
E{Πνexp

ℓ=1 pUobs|Y(uexp,ℓ|Yprior)}
. (29)
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Eq. (29) shows that likelihood functionLbayesmust verify the following equation,

E{Lbayes(Yprior)} =

∫

RnN

Lbayes(y) pprior
Y

(y) dy= 1 . (30)

6.3. Posterior probability density functions of the responses

The probability density functionu �→ pUpost(u) onRm of the posterior random vec-
tor Upost is then given bypUpost(u) =

∫
RnN pU|Y(u|y) ppost

Y
(y) dy in whichpU|Y(u|y)

is the conditional probability density function ofU givenY = yand which is con-
structed using the computational model defined in Section 6.1. Using Eq. (28),
this last equation can be rewritten aspUpost(u) = E{Lbayes(Yprior) pU|Y(u|Yprior)}.
LetUpost

k be any component of random vectorUpost. For1 ≤ k ≤ mobs, U
post
k rep-

resents a component of random observation vectorUobs,post while, if mobs+ 1 ≤
k ≤ m, thenUpost

k represents a component of random vectorUnobs,post. Conse-
quently, the probability density functionuk �→ p

U
post
k

(uk) on R of the posterior

random variableUpost
k is then given by

p
U

post
k

(uk) = E{Lbayes(Yprior) pUk|Y(uk|Yprior)} , (31)

in which pUk|Y(uk|y) is the conditional probability density function of the real
valued random variableUk givenY = yand which is constructed using the com-
putational model defined in Section 6.1.

6.4. Computational aspects

We use the notation introduced in Section 5.4 concerning the realizations ofY and
Ξ. Forν ′ sufficiently large, the right-hand side of Eq. (31) can be estimated by

p
U

post
k

(uk) ≃
1

ν ′

ν ′∑

ℓ′=1

Lbayes(Yprior(θ′ℓ′)) pUk|Y(uk|Yprior(θ′ℓ′)) , (32)

For fixed θ′ℓ′, the computational model defined in Section 6.1 is used to calcu-
late theν̃(ℓ′) independent realizationsU(θℓ1 |Yprior(θ′ℓ′)), . . . ,U(θℓν̃(ℓ′)|Yprior(θ′ℓ′))

for y= Yprior(θ′ℓ′). We can then deduceUobs(θℓ1 |Yprior(θ′ℓ′)), . . . ,U
obs(θℓν̃(ℓ′)|Yprior(θ′ℓ′))

and, for all fixedk, Uk(θℓ1|Yprior(θ′ℓ′)), . . . , Uk(θℓν̃(ℓ′)|Yprior(θ′ℓ′)).

(1) Using the independent realizationsUobs(θℓ1 |Yprior(θ′ℓ′)), . . . ,U
obs(θℓν̃(ℓ′)|Yprior(θ′ℓ′))

and the multivariate Gaussian kernel density estimation (see Appendix A), we
can estimatepUobs|Y(u

exp,ℓ|Yprior(θ′ℓ′)) and then, using Eq. (29), we can compute
Lbayes(Yprior(θ′ℓ′)) for ℓ′ = 1, . . . , ν ′.
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(2) Using the independent realizationsUk(θℓ1 |Yprior(θ′ℓ′)), . . . , Uk(θℓν̃(ℓ′)|Yprior(θ′ℓ′))

and the kernel estimation method [6], we can estimatepUk|Y(uk|Yprior(θ′ℓ′)) and
then, using Eq. (32), we can estimatep

U
post
k

(uk).

7. Posterior probability model of the random VVC using a new approach
derived from the Bayesian approach

In Section 6, we have presented the classical Bayesian approach to construct the
posterior modelYpostof the prior modelYprior of the random VVC. Nevertheless, in
the application presented in Section 8, we will see that, for a very high-dimension
problem (the random vectorYpost has several millions of components), the usual
Bayesian method can be improved to get a more efficient method derived from the
classical one and presented below.

It should be noted that Eq. (31) can be rewritten as

p
U

post
k

(uk) = E{Llls pUk|Y(uk|Yprior)} , (33)

in which the positive-valued random variableLlls defined on(Θ′, T ′,P ′) is such
that Llls = Lbayes(Yprior) and such thatE{Llls} = 1 (see Eq. (30)). Theν ′

independent realizations ofLlls are Llls(θ′1), . . . , L
lls(θ′ν ′) such thatLlls(θ′ℓ′) =

Lbayes(Yprior(θ′ℓ′)). With such a notation, Eq. (32) can be rewritten as

p
U

post
k

(uk) ≃
1

ν ′

ν ′∑

ℓ′=1

Llls(θ′ℓ′) pUk|Y(uk|Yprior(θ′ℓ′)) , (34)

andE{Llls} = 1 yields

1

ν ′

ν ′∑

ℓ′=1

Llls(θ′ℓ′) ≃ 1 . (35)

The method proposed consists in using Eq. (34), but in replacingL lls = Lbayes(Yprior)
by another random variable for which the vectorL lls = (Llls(θ′1), . . . , L

lls(θ′ν ′)) of
the realizations ofLlls is constructed as the unique solution of the following linear
least square optimization problem with nonnegativity constraints,

L lls = arg min
L∈Gad

G(L) . (36)
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The admissible setGad is defined as

Gad = {L = (L1, . . . , Lν ′) ∈ Rν ′

; L1≥ 0, . . . , Lν ′ ≥ 0 ;
1

ν ′

ν ′∑

ℓ′=1

Lℓ′ =1} . (37)

The cost functionL �→ G(L ) is defined as

G(L) =
mobs∑

k=1

∫

R

(
p̂Uexp

k
(uobs

k )− 1

ν ′

ν ′∑

ℓ′=1

Lℓ′ pUobs
k

|Y(u
obs
k |Yprior(θ′ℓ′))

)2
duobs

k , (38)

in whichuobs
k �→ p̂Uexp

k
(uobs

k ) is an estimation of the probability density function of

the random variableUexp
k carried out with the experimental datauexp,1

k , . . . , u
exp,νexp
k

(see Section 2-(3)) and using the kernel estimation method [6]. In Eq. (38),
pUobs

k
|Y(u

obs
k |Yprior(θ′ℓ′)) is estimated as explained in Section 6.4. The optimiza-

tion problem defined by Eq. (36) can be solved, for instance, using the algorithm
described in [26]. The quality assessment is performed using Eq. (34) fork such
thatmobs + 1 ≤ k ≤ m, that is to say, whenU post

k represents a component of
the random vectorUnobs,post which is not observed and which is then not used in
Eq. (36) for the calculation ofL lls.

In theory, the Bayesian approach presented in Section 6 can be used in high di-
mension and for a few experimental data (small value ofνexp), but in practice, for
the high-dimension case (very large value of the productnN such as several mil-
lions), the posterior probability model significantly improves the prior model if
many experimental data are available (large value ofνexp). On the other hand, the
method proposed in Section 7 requires the estimation of the probability density
function of the experimental observationsU exp

k (using the kernel density estima-
tion in the context of nonparametric statistics). Such an estimation is not correct
if νexp is too small and must be sufficiently large (for instanceνexp ≃ 100). In Sec-
tion 8 which is devoted to the application, fornN = 550 × 10 625 = 5 843 750
(high-dimension case),mobs = 50 while m = 1 017 (partial data) andνexp = 200
(limited data), we will see that the posterior model constructed with the method
proposed in Section 7 is more efficient than the Bayesian method presented in
Section 6. Finally, it should be noted that, as soon as the independent realizations
Yprior(θ′1), . . . ,Y

prior(θ′ν ′) are given, Eqs. (36) to (38) correspond to the generator
of random variableLlls allowing the realizationsLlls(θ′1), . . . , L

lls(θ′ν ′) to be gen-
erated. For anyν ′ and for any realizations ofYprior, we then have a generator of
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realizations ofLlls. For any given measurable mappingg defined onRm, we can
then compute the quantity

E{g(Upost)} ≃ 1

ν ′

ν ′∑

ℓ′=1

Llls(θ′ℓ′)

ν̃(ℓ′)

ν̃(ℓ′)∑

j=1

g(Uprior(θ′ℓ′, θℓj )) , (39)

where Uprior(θ′ℓ′ , θℓj) = h(Vprior(θ′ℓ′, θℓj )) is calculated with the computational
model and where

Vprior(θ′ℓ′ , θℓj )) = V+

n∑

j=1

√
λj η

prior
j (θ′ℓ′, θℓj )W

j , (40)

with

η
prior(θ′ℓ′ , θℓj) =

N∑

α=1

Yα,prior(θ′ℓ′) Ψα(Ξ(θℓj)) . (41)

8. Application

In this work, we reuse the example introduced in [48], but the experimental data
are different. The stochastic model used to generate the experimental data (nu-
merical experiments) strongly differs from the family of prior algebraic stochastic
models (PASM). This means that the prior stochastic model cannot fit the ex-
periments and consequently, the posterior model must be constructed using the
experimental data. Consequently, the first four steps of the methodology must be
redone and will then be presented. We will present the identification of the pos-
terior model using the two approaches presented in Sections 6 and 7. In order to
give readability to the present paper, we give again some explanations, already
introduced in [48], but required to obtain a good understanding.

8.1. Definition of the stochastic boundary value problem at the meso-scale

We consider a microstructure represented by the domainΩ = (]0 , 1[)3 of R3 with
generic pointx = (x1, x2, x3) (see Fig. 1). DomainΩ is occupied by a heteroge-
neous complex material modeled by a statistically homogeneous and anisotropic
elastic random medium at the meso-scale. For this meso-scale modeling, the elas-
tic properties of the microstructure are then defined by the non-Gaussian fourth-
order tensor-valued random field{C(x), x ∈ Ω} in whichC(x) = {C ijkℓ(x)}ijkℓ.
Let {u(x) = (u1(x), u2(x), u3(x)), x ∈ Ω} be the displacement random field at
the meso-scale. The random constitutive equation is then written assjk(x) =

21



0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

x 3

Figure 1:Finite element mesh of the domain.

Cjkℓm(x) εℓm(x), in which s is the stress tensor andε is the strain tensor such
that εℓm(u(x)) = 1

2
(∂uℓ(x)/∂xm + ∂um(x)/∂xℓ). The boundary∂Ω is written

asΓ0 ∪ Γobs∪ Γ. A Dirichlet conditionu = 0 is given onΓ0 while a Neumann
condition is given onΓ corresponding to the application of a given deterministic
surface force fieldgΓ(x) = (gΓ1 (x), g

Γ
2 (x), g

Γ
3 (x)). There is no surface force field

applied toΓobs which is the part of the boundary for which fieldu is observed
(this corresponds to the hypothesis for which only partial experimental data are
observed and then are available). The stochastic boundary value problem consists
in finding the second-order random field{u(x), x ∈ Ω} such that

−div s= 0 in Ω ,

u(x) = 0 on Γ0 , (42)

s(x) n(x) = gΓ(x) on Γ and s(x) n(x) = 0 on Γobs ,

in which n(x) = (n1(x), n2(x), n3(x)) is the outward unit normal to∂Ω, where
{div s(x)}j = ∂sjk(x)/∂xk and where the random constitutive equation is defined
above.

8.2. Introduction of a family of prior algebraic stochastic models (PASM) for the
random field{C(x), x ∈ Ω}

We apply Step 1 of the methodology presented in Section 3. The stochastic bound-
ary value problem defined by Eq. (42) is elliptic. A family{CPASM(x ;w), x ∈ Ω}w
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of PASM is introduced to represent the fourth-order tensor-valued random field
{C(x), x ∈ Ω}. For all x in Ω, CPASM(x ;w) is represented by the symmetric
positive-definite(6×6) real random matrix[APASM(x ;w)] such that[APASM(x ;w)]IJ
= CPASM

ijkℓ (x ;w) and depends on the vector-valued parameterw. Such a fam-
ily {[APASM(x ;w)], x ∈ Ω}w of PASM cannot arbitrarily be chosen (see for in-
stance [2, 3, 56] for the scalar case). In this application, we are interested in
the anisotropic case (tensor case) and we then propose to choose the stochastic
model as follows. It is assumed that the mean value[A] = E{[APASM(x ;w)]} is
independent ofx and is a positive-definite matrix. For allx in Ω, [APASM(x ;w)]
is written as[APASM(x ;w)] = [A0] + [APASM(x ;w)], in which the positive-definite
matrix [A0] is written as[A0] = ε0 [A] with 0 < ε0 < 1 (which can be chosen as
small as one wants), and where[APASM(x ;w)] is a positive-definite random matrix.
In this application,ε0 is chosen to the value10−6. The family of random fields
{[APASM(x ;w)], x ∈ Ω}w is defined in [43, 44] which yields a stochastic non-
uniform ellipticity condition. The family of random fields{[APASM(x ;w)], x ∈
Ω}w, defined above, then yields a stochastic ellipticity condition which implies
that the second-order random solution of the stochastic boundary value problem
continuously depend from its parameters. It can then be deduced that the mean
value[A] of [APASM(x ;w)] is such that[A] = E{[APASM(x ;w)]} = [A] − [A0] =
(1 − ε0)[A] which is then a positive-definite matrix. For this PASM, there ex-
its a generator of independent realizations. The vector-valued parameter isw =
(δ, Lc) ∈ Cad in which δ > 0 is a real parameter controlling the level of sta-
tistical fluctuations of the field andLc > 0 is a correlation length controlling
the spatial correlation of the field. In [43, 44], it is proven that, for allx in Ω,
[APASM(x ;w)] = [L]T [L(x ; δ, Lc)]

T [L(x ; δ, Lc)] [L] in which [A] = [L]T [L] and
where the random upper triangular matrix[L(x ; δ, Lc)] depends onx, δ andLc

and is such thatE{[L(x ; δ, Lc)]
T [L(x ; δ, Lc)]} = [I6]. As explained in [43, 44],

the random upper triangular matrix[L(x ; δ, Lc)] is explicitly expressed as a func-
tion of 21 independent homogeneous normalized Gaussian real-valued random
fields for which the21 spatial autocorrelation functions depend on63 real pa-
rametersLjj′

1 , Ljj′

2 , Ljj′

3 for 1 ≤ j ≤ j′ ≤ 6 which represent the spatial corre-
lation lengths. In this application, we have usedLc = Ljj′

1 = Ljj′

2 = Ljj′

3 for
1 ≤ j ≤ j′ ≤ 6. Consequently, the spatial correlation lengths of the random field
{[APASM(x ;w)], x ∈ Ω}w is controlled by only one parameter which isLc.
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8.3. Stochastic finite element approximation of the stochastic boundary value
problem

The cube(]0 , 1[)3 is meshed with6× 6 × 6 = 216 finite elements using8-nodes
finite elements (see Fig. 1). There are8 integration points in each finite element.
We then haveNp = 1 728 integration points. The dimension of vectorVPASM(w)
discretizing[APASM(. ;w)] is thenmV = 21×Np = 36 288. Concerning the bound-
ary conditions, the displacements are locked at points(1, 0, 0), (1, 1, 0), (1, 1, 1)
and(1, 0, 1) corresponding to the 4 corners of the face of the cube in the plane
x1 = 1. An external point load(0, 1, 0) is applied to the node of coordinates
(0, 0, 1). The observed degrees of freedom, for which there are available experi-
mental data, are thex2- andx3-displacements of the nodes located inside the face
x1 = 0. Since there are49 nodes on each face of the cube whose25 nodes inside
the face, there aremobs = 2× 25 = 50 observed degrees of freedom. The number
of degrees of freedom for which no experimental data are available ismnobs= 967
and the total number of degrees of freedom is thenm = 1 017.

8.4. Experimental data sets
The objective is the validation of the methodology proposed for partial and lim-
ited experimental data. The experimental data are then synthetically generated
using the stochastic boundary value problem for which the elasticity tensor is a
non-Gaussian elastic random field defined on(Θexp, T exp,Pexp), such that, for all
x in Ω, [Aexp(x)] = [A0]+ [Lexp]T [L(x ; δexp, Lexp

c )]T [Gpert] [L(x ; δexp, Lexp
c )] [Lexp].

We have takenδexp = 0.25, Lexp
c = 0.33, and [Gpert] is the positive-definite

symmetric(6 × 6) random matrix defined in [42] such thatE{[Gpert]} = [I6]
and whose statistical fluctuations are controlled by the dispersion parameterδpert

which is chosen equal to0.3. It should be noted that the total statistical fluctu-
ations of this random field is controlled by two multiplicative random matrices
[G(x ; δexp, Lexp

c )] = [L(x ; δexp, Lexp
c )]T [L(x ; δexp, Lexp

c )] and[Gpert], whose disper-
sion parameters areδexp = 0.25 andδpert = 0.3. For the anisotropic material,
the (6 × 6) real matrix [Aexp] = (1 − ε0)[A

exp] of the mean model , such that
[Aexp] = [Lexp]T [Lexp], is defined as

[Aexp] = 1010×

⎡
⎢⎢⎢⎢⎢⎢⎣

3.3617 1.7027 1.3637 −0.1049 −0.2278 2.1013
1.7027 1.6092 0.7262 0.0437 −0.1197 0.8612
1.3637 0.7262 1.4653 −0.1174 −0.1506 1.0587
−0.1049 0.0437 −0.1174 0.1319 0.0093 −0.1574
−0.2278 −0.1197 −0.1506 0.0093 0.1530 −0.1303
2.1013 0.8612 1.0587 −0.1574 −0.1303 1.7446

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(43)
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The matrix defined by Eq. (43) corresponds to the mean value of the elasticity
tensor of the anisotropic random microstructure presented in [44]. Finally, we
considerνexp = 200 experimental data setsuexp,1, . . . , uexp,νexp considered as in-
dependent realizations of the random vectorUexp defined on probability space
(Θexp, T exp,Pexp). Each experimental data setuexp,ℓ is then generated as the re-
alizationUexp(θexp

ℓ ) of the observation vector inRmobs, that is to say, is such that
uexp,ℓ = hobs(Vexp(θexp

ℓ )) in which θexp
1 , . . . , θexp

νexp
areνexp independent realizations

in Θexp and whereVexp is the random vector representing the finite family of ran-
dom matrices{[Aexp(x)], x ∈ I}.

8.5. Identification with experimental data of an optimal PASM in the constructed
family

The optimization problem defined in Step 2 of Section 3 is constructed using
the least-square method and allows the identification of the optimal PASM to be
carried out using the experimental data. This optimization problem is solved by
the trial method. The cost functionw �→ J(w) (defined in [48]) is computed
for δ ∈ {0.24, 0.27, 0.30, 0.33, 0.36, 0.39, 0.42, 0.45, 0.48, 0.51, 0.55}, for Lc ∈
{0.2, 0.24, 0.28, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.4} and for [A] = [Aexp]
(note that[A] is fixed and is not free in the optimization problem). For each trial
point w, the value of the cost functionJ(w) is estimated using the stochastic
numerical modelUobs,PASM(w) = hobs(VPASM(w)) which is solved by the Monte
Carlo method with1 000 independent realizations of random vectorVPASM(w).
The optimal valuewopt = (δopt, Lopt

c ), corresponding to the minimum of the cost
function, is obtained forδopt = 0.42 andLopt

c = 0.34. Fig. 2 displays the graph of
the cost function(δ, Lc) �→ J(δ, Lc).

8.6. Construction of the statistical reduced-order optimal PASM

We apply Step 3 of the methodology presented in Section 3. The optimal PASM
VPASM(wopt) is simply denoted byVPASM. Its mean valueV = E{VPASM(wopt)} is a
vector inR36 288 and its covariance matrix[CVPASM] is a(36 288×36 288) real sym-
metric matrix. These two second-order moments are estimated with the optimal
PASM usingνKL = 1 000 independent realizations. The dominant eigenspace of
the eigenvalue problem[CVPASM]W j = λjW

j is solved by using the usual subspace
iteration method without assembling matrix[CVPASM]. The(36 288×n) real matrix
[W ] = [W 1 . . .W n] of then eigenvectors associated with then largest eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn > 0 is such that[W ]T [W ] = [In]. Fig. 3 displays the graph of
the relative error functionn �→ err(n) = 1 − (

∑n

j=1 λj)/tr[CVPASM] related to the
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Figure 2:Cost function(δ, Lc) �→ J(δ, Lc) for the identification of the optimal PASM using the
experimental data sets.

convergence (with respect ton) of the expansion of random vectorVPASM corre-
sponding to the optimal PASM. This figure shows that a reasonable convergence
is reached forn = 550.

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Relative error function

Value of n

er
r(

n)

Figure 3: Graph of the error functionn �→ err(n).

8.7. Construction of the PCE with deterministic VVC of the reduced-order opti-
mal PASM

We apply Step 4 of the methodology presented in Section 3. The calculations
of (1) the valueNg of the length of germΞ = (Ξ1, . . . ,ΞNg

), (2) the max-

26



imum degreeNd of the polynomial chaosΨα(Ξ), and (3) the optimal values
y1, . . . , yN of the deterministic VVC inRn (with n = 550) of the PCEηchaos(N) =∑N

α=1 yαΨα(Ξ), are performed as explained in Step 4 of Section 3 and in [48],
with νKL = 1 000 andν = 11 000. The convergence is obtained forNg = 4 (as
in [48]). Fig. 4 displays the graph of theL1-error functionNd �→ err(Ng, Nd) for
random vectorηchaos(N) with N = h(Ng, Nd) and forNg = 4. It can be seen that
convergence is obtained forNd = 20. At convergence (Ng = 4 andNd = 20),
there areN = 10 625 deterministic VVC in the PCE ofηchaos(N), that is to say
5 843 750 = 10 625×550 real coefficients which have been identified. It should be
noted that there areNg = 4 independent Gaussian germs, inducingN = 10 625
uncorrelated non-Gaussian (but dependent) random variables used in the PCE,
value (Ng = 4) which has to be compared to the36 288 independent Gaussian
germs used to generateVPASM (the optimal non-Gaussian PASM). Fig. 5 is related
to the convergence analysis with respect to the numberN = h(Ng, Nd) of chaos.
Each figure shows the comparison of the graph of the optimal PASM pdfe �→
log10(pηPASM

j
(e)) with the graph of the pdfe �→ log10(pηchaos

j (N)(e ; y1, . . . , yN))

estimated using the PCE withN = h(Ng, Nd) chaos. The figures show the com-
parisons for the coordinatesj = 1 and550, forNg = 4 and forNd = 9 (N = 714),
Nd = 20 (N = 10 625) and forNd = 22 (N = 14 949). It can be seen again
a good convergence of the probability density function for these two coordinates
obtained forNg = 4 andNd = 20 corresponding to the valueN = 10 625. The
quality of the convergence is similar for the other548 coordinates.
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Figure 4: L1-error function Nd �→ err(Ng, Nd) for random vectorηchaos(N) with N =
h(Ng, Nd) and forNg = 4.
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j
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j
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coordinatej (the values ofj andN are indicated at the top of each figure). Vertical axis:log

10
of

the pdf. Horizontal axis: valuee of ηj .
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8.8. Prior probability model of the random VVC

Section 5 is used withn = 550,N = 10 625, ε = 1.2, ν ′ = 10 000 andν = 3 000.
As explained in Section 5.4, each matrix of the family{[Aprior(x1; θ′ℓ′ , θℓ)], . . . ,
[Aprior(xNp; θ′ℓ′ , θℓ)]} must be positive definite (propertyProp). For fixedθ′ℓ′ , the
subset{θℓ1 , . . . , θℓν̃(ℓ′)} of {θ1, . . . , θν} has been determined with the stochastic
computational model in order that propertyProp be verified. Fig. 6 displays the
graph of functionℓ′ �→ ν̃(ℓ′) from {1, . . . , ν ′} into {1, . . . , ν}. It can be seen
that the average value is about340, which compared toν = 3 000, corresponds
to a significant rate of rejection. Such a rate can easily be understood taking
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Figure 6:Graph of functionℓ′ �→ ν̃(ℓ′) related to propertyProp.

into account the high value ofε which has been fixed to1.2. The total number
of realizations inΘ′ × Θ is

∑ν ′

ℓ′=1 ν̃(ℓ
′) = 3 439 684. We compare the exper-

imental dataUexp
k with the random responsesU PASM

k andUprior
k associated with

VPASM (the optimal PASM represented by the optimal chaos expansion) andVprior

(the prior model), respectively. In order to limit the number of figures presented
in the paper, we have selected the observed degrees of freedomk which corre-
spond to thex2-displacement of nodes9, 17, 25 and 37 (among the25 nodes
located inside the face of equationx1 = 0). An estimationuobs

k �→ p̂Uexp
k
(uobs

k )

of the probability density function of the random variableU exp
k is carried out us-

ing experimental datauexp,1
k , . . . , u

exp,νexp
k (see Section 2-(3)) and the kernel esti-

mation method [6]. The probability density functionuobs
k �→ p

U
obs,PASM
k

(uobs
k ) is

estimated as explained in Section 3-Step 4-(iii). The probability density func-
tion uobs

k �→ p
U

obs,prior
k

(uobs
k ) is estimated as explained in Section 5.5. Fig. 7

shows the comparison ofuobs
k �→ p̂Uexp

k
(uobs

k ) with uobs
k �→ p

U
obs,PASM
k

(uobs
k ) and
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Figure 7: For observed degrees of freedomk corresponding to thex2-displacement of nodes9,
17, 25 and37, graphs ofuobs

k �→ p̂
U

exp
k

(uobs
k ) (thin solid lines),uobs

k �→ p
U

obs,PASM
k

(uobs
k ) (dashed

lines),uobs
k �→ p

U
obs,prior
k

(uobs
k )(dashed dotted lines).

uobs
k �→ p

U
obs,prior
k

(uobs
k ). As explained in Section 8.4, these four figures show that

there are significant differences between the experiments and the PASM for the
observed degrees of freedom. It can also be seen that the prior model is not yet
sufficient to correctly fit the experiments.

8.9. Posterior probability model of the random VVC using the classical Bayesian
approach

We compare the experimental dataUexp
k with the random responsesU prior

k andUpost
k

associated with the prior modelVprior and the posterior modelVpost computed with
the method presented in Section 6. For the observed degrees of freedomk, we use
the estimationsuobs

k �→ p̂Uexp
k
(uobs

k ) anduobs
k �→ p

U
obs,prior
k

(uobs
k ) calculated in Sec-
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Figure 8:For observed degrees of freedomk corresponding to thex2-displacement of nodes9, 17,
25 and37, graphs ofuobs

k �→ p̂
U

exp
k

(uobs
k ) (thin solid lines),uobs

k �→ p
U

obs,prior
k

(uobs
k )(dashed dotted

lines),uobs
k �→ p

U
obs,post
k

(uobs
k ) computed with Section 6.4 (blue thick solid lines).

tion 8.8. The probability density functionuobs
k �→ p

U
obs,post
k

(uobs
k ) is estimated as

explained in Section 6.4. Fig. 8 shows the comparison ofuobs
k �→ p̂Uexp

k
(uobs

k ) with

uobs
k �→ p

U
obs,prior
k

(uobs
k ) anduobs

k �→ p
U

obs,post
k

(uobs
k ). These figures show that the

posterior model improves the prior model a bit, but is not sufficiently good taken
into account that the comparisons are relative to observed degrees of freedom for
which experimental data are used in the identification procedure.
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Figure 9:For observed degrees of freedomk corresponding to thex2-displacement of nodes9, 17,
25 and37, graphs ofuobs

k �→ p̂
U

exp
k

(uobs
k ) (thin solid lines),uobs

k �→ p
U

obs,prior
k

(uobs
k )(dashed dotted

lines),uobs
k �→ p

U
obs,post
k

(uobs
k ) computed with Section 7 (blue thick solid lines).

8.10. Posterior probability model of the random VVC using a new approach de-
rived from the Bayesian approach

We compare the experimental dataUexp
k with the random responsesU prior

k andUpost
k

associated with the prior modelVprior and the posterior modelVpost computed with
the method presented in Section 7. For the observed degrees of freedomk,we
use the estimationsuobs

k �→ p̂Uexp
k
(uobs

k ) anduobs
k �→ p

U
obs,prior
k

(uobs
k ) calculated in

Section 8.8. The probability density functionuobs
k �→ p

U
obs,post
k

(uobs
k ) is estimated

as explained in Section 7. Fig. 9 shows the comparison ofuobs
k �→ p̂Uexp

k
(uobs

k ) with

uobs
k �→ p

U
obs,prior
k

(uobs
k ) anduobs

k �→ p
U

obs,post
k

(uobs
k ). These figures show that the

posterior model significantly improves the prior model and that the comparisons
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with the experiments are good.

8.11. Quality assessment of the two posterior stochastic models

In Sections 8.9 and 8.10, we have compared the probability density functions
of observations, calculated with the two proposed posterior models. For these
two models, the observations (for which experimental data are available) are used
to identify the models. In order to give a quality assessment of the posterior
stochastic models, we present comparisons for degrees of freedom which are
not observed (that is to say which are not used in the identification procedure
of the posterior stochastic models). We then consider degrees of freedomk,
such thatmobs + 1 ≤ k ≤ m, corresponding to thex2-displacement of the
nodes72, 74, 170 and174 for which the coordinates are(0.1667, 0.500, 0.1667),
(0.1667, 0.500, 0.500), (0.500, 0.500, 0.1667) and (0.500, 0.500, 0.8333). These
four nodes are located inside the cube. Figs. 10 and 11 show the comparisons of
unobs
k �→ p̂Uexp

k
(unobs

k ) with unobs
k �→ p

U
nobs,prior
k

(unobs
k ) andunobs

k �→ p
U

nobs,post
k

(unobs
k )

computed with Sections 8.9 and 8.10. The four figures in Fig. 10 show that the
quality of the posterior stochastic model, identified with the Bayesian approach
for degrees of freedom which have not be used to identify it, is not really good
while the four figures in Fig. 11 show that the quality is good enough for the pos-
terior stochastic model identified with the proposed new approach derived from
the Bayesian method.

9. Conclusions

A methodology has been proposed for the identification of a Bayesian posterior of
a high-dimension PCE of a non-Gaussian tensor-valued random field using partial
and limited experimental data, through a stochastic boundary value problem. We
have validated the methodology of this very challenging problem for which the
joint probability distribution of several millions of dependent non-gaussian ran-
dom variables has to be identified. The first four steps of the methodology have
been introduced and validated in a previous paper. In the present work, we have
developed two approaches for the last step consisting in the identification of the
Bayesian posteriors from a prior model, and which constitute novel results due
to the high-dimension aspects. In addition, we have proposed and validated a
new approach derived from the Bayesian method which is very efficient in high
dimension.
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Figure 10: For degrees of freedomk not used in the identification of the posterior stochas-
tic model and corresponding to thex2-displacement of nodes72, 74, 170 and 174, graphs
of unobs

k �→ p̂
U

exp
k

(unobs
k ) (thin solid lines),unobs

k �→ p
U

nobs,prior
k

(unobs
k )(dashed dotted lines),

unobs
k �→ p

U
nobs,post
k

(unobs
k ) computed in Section 8.9 (blue thick solid lines).
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A. Appendix: Estimation of a probability density function on Rm using the
multivariate Gaussian kernel density estimation

In this appendix, we summarize the nonparametric estimation of a multivariate
probability density function using the multivariate Gaussian kernel density estima-
tion (see for instance [6, 52]). Such a method is used to estimatepUobs|Y(u

exp,ℓ|y)
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Figure 11: For degrees of freedomk not used in the identification of the posterior stochas-
tic model and corresponding to thex2-displacement of nodes72, 74, 170 and 174, graphs
of unobs

k �→ p̂
U

exp
k

(unobs
k ) (thin solid lines),unobs

k �→ p
U

nobs,prior
k

(unobs
k )(dashed dotted lines),

unobs
k �→ p

U
nobs,post
k

(unobs
k ) computed in Section 8.10 (blue thick solid lines).

(see Eq. (29)) for givenuexp,ℓ and for giveny.

Let S = (S1, . . . , Sm), with m > 1, be any second-order random variable de-
fined on(Θ, T ,P) with values inRm (the components are statistically dependent
andS is not a Gaussian random vector). LetS(θ1), . . . ,S(θν) be ν independent
realizations ofS with θ1, . . . , θν in Θ. Let PS(ds) = pS(s) ds be the probability
distribution defined by an unknown probability density functions �→ pS(s) onRm,
with respect to the Lebesgue measuredsonRm. Fors0 fixed inRm and forν suffi-
ciently large, the multivariate kernel density estimation allows the nonparametric
estimationp̂S(s0) of pS(s0) to be carried out using theν independent realizations
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S(θ1), . . . ,S(θν). The first step consists in performing a rotation and a normaliza-
tion of data in the principal component axes. The second step is devoted to the
Gaussian kernel density for each direction.

Let Ŝ and[ĈS] be the usual statistical estimations of the mean value and the co-
variance matrix of the random vectorS using theν realizations. For instance,
Ŝ = ν−1

∑ν

ℓ=1 S(θℓ). It is assumed that[ĈS] is a positive-definite symmetric
(m ×m) real matrix. Consequently, there is an orthogonal(m ×m) real matrix
[Φ] (that is to say[Φ] [Φ]T = [Φ]T [Φ] = [Im]) such that[ĈS] [Φ] = [Φ] [λ] in which
[λ] is the diagonal matrix of the positive eigenvalues. LetQ = (Q1, . . . , Qm) be
the random vector such that

S= Ŝ+ [Φ]Q , Q = [Φ]T (S− Ŝ) . (A-1)

We havepS(s) ds = pQ(q) dq and since| det[Φ]| = 1, we haveds = dq. Conse-
quently, if we introduceq0 = [Φ]T (s0 − Ŝ), thenpS(s0) = pQ(q0) and therefore,
the nonparametric estimation̂pS(s0) of pS(s0) is equal to the nonparametric esti-
mationp̂Q(q0) of pQ(q0), that is to say,

p̂S(s0) = p̂Q(q0) . (A-2)

Using Eq. (A-1), the realizationsS(θ1), . . . ,S(θν) are transformed in the real-
izationsQ(θ1), . . . ,Q(θν) of random vectorQ such that, for allℓ in {1, . . . , ν}
Q(θℓ) = [Φ]T (S(θℓ) − Ŝ). Eq. (A-2) shows that the initial problem is equivalent
to the construction of the nonparametric estimationp̂Q(q0) of pQ(q0) using the
realizationsQ(θ1), . . . ,Q(θν) of random vectorQ. Let Q̂ and[ĈQ] be the usual
statistical estimations of the mean value and the covariance matrix of the random
vectorQ using theν independent realizationsQ(θ1), . . . ,Q(θν). It can be seen
that

Q̂ = 0 , [ĈQ] = [λ] . (A-3)

The second step consists in calculatingp̂Q(q0) using the the multivariate kernel
density estimation which is written as

p̂Q(q0) =
1

ν

ν∑

ℓ=1

Πm
k=1

{
1

hk

K

(
Qk(θℓ)− q0k

hk

)}
, (A-4)

in whichh1, . . . , hm are the smoothing parameters,q0 = (q01, . . . , q
0
m) and where

K is the kernel. For the multivariate Gaussian kernel density estimation, we have

hk =
√
[λ]kk

{
4

ν(2 +m)

} 1
4+m

, K(v) =
1√
2π

e−
v2

2 . (A-5)
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