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Abstract

This paper is devoted to the construction of a class of prior stochastic models for non-Gaussian
positive-definite matrix-valued random fields. The proposed class allows the variances of selected
random eigenvalues to be specified and exhibits a larger number of parameters than the other classes
previously derived within a nonparametric framework. Having recourse to a particular characterization
of material symmetry classes, we then propose a mechanical interpretation of the constraints and
subsequently show that the probabilistic model may allow prescribing higher statistical fluctuations in
given directions. Such stochastic fields turn out to be especially suitable for experimental identification
under material symmetry uncertainties, as well as for the development of computational multi-scale
approaches where the randomness induced by fine-scale features may be taken into account. We further
present a possible strategy for inverse identification, relying on the sequential solving of least-square
optimization problems. An application is finally provided.

Keywords: Elasticity tensor; Material Symmetry; Maximum Entropy Principle; Probabilistic Model;
Random Field; Uncertainty.

1 INTRODUCTION

The increasing use and modeling of heterogeneous materials gives rise to many scientific challenges defined
at various scales. One of the main issues that has been extensively studied over the past fifty years concerns
the analytical or computational characterization of the relationship between a complex microstructure and
its overall, macroscopic behavior. Most of these contributions have been derived within a deterministic
framework, considering domains that are larger than the Representative Volume Element (RVE) associated
with the microstructure [17]. Quite recently, attention has been paid to the modeling of the randomness
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induced by local microstructural features, ranging from the mesoscale modeling of random media (pio-
neered by Huet [10] - see also [20] and [9]- and largely discussed later on) to stochastic simulations (based
on the Stochastic Finite Elements Method; see the monograph by Ghanem and Spanos [7] for instance)
of structural parts made up with multi-phase materials. With reference to [10], it should be emphasized
at this stage that taking into account the underlying randomness induced by microstructural features is
only relevant for materials (or applications) for which the scale separation (between the RVE scale and
the coarse scale - that is, the scale of either engineering application or experimental testing-) cannot be
stated, yielding to the consideration of probabilistic, apparent mechanical properties. Although such a
framework was initially derived for heterogeneous materials whose reinforcing constituents are character-
ized by a millimetric or centimetric size (such as some concretes or some fiber-reinforced composites), it
may also be suitable for other classes of materials due to the constant miniaturization of systems. Clearly,
the question of whether and how such mesoscopic randomness must be taken into account is application
dependent and rises some theoretical issues (see for instance [18]) which are worth discussing prior to
performing any probabilistic modeling on real microstructures.

While many of these previous works generally provide a quantitative computational characterization
of randomness (by simulating random microstructures in relative accordance with experimental data and
by computing some statistics of any response of interest; see [32] among many others), there is a need for
suitable probabilistic models (that is to say, for representations of random variables that are consistent
from both a mathematical and physical standpoint) allowing, for instance, experimental identification and
large-scale stochastic simulations. Two kinds of approaches can then be followed.

The first one consists in modeling either the engineering modulus characterizing the random elasticity
tensor with given material symmetry (e.g. the Young’s modulus and Poisson ratio for the isotropic case)
or equivalently, all its nonzero components. One of the main drawback of such a framework is that the
construction of the probabilistic model becomes intractable for low-symmetry materials (because of the
statistical dependence between the components). Indeed, it should even be pointed out that imposing
a material symmetry class while considering statistical fluctuations is, in general, highly questionable,
so that the joint probability distribution may always be constructed on R21 (that is to say, considering
the anisotropic case). Moreover, the associated formalism does not allow fundamental properties of the
elasticity tensor (such as positive-definiteness) to be taken into account easily.

Alternatively, one may consider the direct construction of a nonparametric probabilistic model for the
matrix-valued random variable corresponding to a matrix representation of the stochastic elasticity tensor.
Such an approach was first introduced, in the case of a tensor-valued random field and for the anisotropic
class, in [25] [24]. Following a similar methodology (based on the use of the Maximum Entropy Principle;
see [22] [11] [12]), Das and Ghanem derived another probabilistic model for random elasticity matrices
that are deterministically bounded from below and above [4]. While these nonparametric probabilistic
models benefit from both their mathematical background and minimal parametrization, they basically
induce anisotropic statistical fluctuations which cannot be preferably assigned to a set of components
of the random matrix. Based on this statement, Ta et al. proposed a new class (in the class of the
generalized probabilistic approach of uncertainties [26]) by adding a new parameter allowing the distance
to the isotropy class to be measured and partly controlled, regardless of the level of statistical fluctuations
of the random elasticity matrix [30]. However, such an approach relies on the construction of a parametric
probabilistic model which cannot be reasonably generalized to spaces of higher dimension.

In this work, we address the construction of a class of prior stochastic models for tensor-valued random
fields. From a methodological point of view, such an issue turns out to be very important while modeling
complex materials for which the microstructure cannot be described in terms of the local topology and the
mechanical behavior of its constitutive phases (e.g. some biological tissues). Furthermore, it should be
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emphasized that a non-Gaussian tensor-valued random field cannot be constructed using nonparametric
statistics, even if a large amount of experimental data are available (because of mathematical properties,
such as symmetry, positiveness, ellipticity condition, etc., which have to be fulfilled). In addition, experi-
mental data are often limited (in the sense that only a few realizations may be available) and correspond
to partial observation, that is to say, are identified through the partial characterization of the solution of
a boundary value problem (such as a displacement field measured on a part of the domain under testing).
For these reasons, it is absolutely necessary that the prior stochastic model thus constructed integrates
as much available mathematical information as possible in order to ensure the consistency and robustness
of the model in both forward simulations and inverse identification.

This paper is organized as follows. Section 2 deals with the construction of the class of non-Gaussian
positive-definite matrix-valued random fields. In particular, fundamental properties as well as strategies
for the numerical Monte-Carlo simulations of random fields belonging to the proposed class are presented.
Section 3 is devoted to a mechanical interpretation of the parametrization of the class. More specifically,
we introduce distances in the set of elasticity tensors (from which projections onto the set of elasticity
tensors with given symmetries can be defined), as well as the eigensystem characterization of material
symmetries. Such definitions will be used in order to define constraints on the stochastic eigenvalues of
the random elasticity tensor, so that the (mean) distance to a material symmetry class can be, to a limited
extent, specified. Finally, a numerical example illustrating a possible strategy for the inverse identification
of the model is presented in Section 4.

2 PROBABILISTIC MODEL DERIVATION

This section is devoted to the construction of the prior probabilistic model of the non-Gaussian tensor-
valued random field, which will be used for modeling the apparent elasticity tensor random field at a given
mesoscale. From a physical standpoint, the latter makes reference to some spatial resolution at which the
apparent elasticity random tensor field is constructed and identified, that is, to the size of some window
over which averaging is performed. Note at this stage that this interpretation is only conceptual, as no
homogenization procedure is performed between the microscale and the considered mesoscale. When such
a size is (much) smaller than the RVE size (should a RVE exist), statistical fluctuations of the elasticity
field remain and have to be taken into account, thus motivating the use of the proposed derivations. Since
the choice of such an averaging window naturally implies some smoothing of the fluctuations induced by
finest scales, the properties of the apparent tensor random field (e.g. the spatial correlation lengths, level
of fluctuations, etc.) depend on the choice of the mesoscale, but turns out to be completely independent
of the geometry and of any kind of boundary condition at this mesoscale. Obviously, this mesoscale model
depends on the boundary conditions at the microscale (as largely discussed in the literature), which are
however not considered here since no homogenization is performed. Nevertheless, once this model is used
at this spatial resolution, the identification of its parameters can be readily obtained solving the inverse
stochastic problem related to the mesoscale boundary value problem.

2.1 Overview of the construction

Let MS
n(R) and M+

n (R) ⊂ MS
n(R) be the set of all the (n × n) real symmetric and symmetric positive-

definite matrices respectively, with n ≤ 6. Let x 7→ [L(x)] be the M+
n (R)-valued random field defined

on probability space (Θ, T , P ), indexed by a bounded open domain Ω in Rd (d being a positive integer,
1 ≤ d ≤ 3) and corresponding to a random matrix representation of the tensor-valued random field
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x 7→ [[L(x)]].
Let x 7→ [L(x)] be the mean value of random field x 7→ [L(x)], defined from Ω into M+

n (R) and
supposed to be known. Eigenvalues are assumed to be sorted in increasing order throughout this paper,
making use of order statistics in the random case. For x fixed in Ω, let {λi(x)}ni=1 and {ϕi(x)}ni=1 be the
sets of associated eigenvalues and eigenvectors of [L(x)]. Let I = {i1, . . . , im} be an index set of positive
integers, such that m ≤ n and 1 ≤ ik ≤ n for all k in [1,m]. It is assumed that the variances of m selected
stochastic eigenvalues of random matrix [L(x)] are specified through the following constraint [13]:

E

{(
ϕik(x)

T
[L(x)]ϕik(x)

)2}
= sk(x)

2
λik(x)

2
, (1)

for k = 1, . . . ,m. The deterministic field x 7→ sk(x) is assumed to be known and can be either computed
when full-field (displacement) measurements are available or supposed a priori when the experimental
identification is carried out solving a boundary value problem.

Let [Λ(x)] be the (m×m) diagonal matrix the components of which are the eigenvalues of mean matrix
[L(x)] corresponding to the constrained eigenvalues and let [Φ(x)] be the (n×m) matrix whose columns
are the corresponding eigenvectors:

[Λ(x)] =


λi1(x) 0 . . . 0

0 λi2(x)
. . .

...
...

. . .
. . . 0

0 . . . 0 λim(x)

 , (2)

[Φ(x)] = [ϕi1(x) . . .ϕim(x)]. (3)

Let [N(x)] be the (n× n) matrix defined as follows:

• If m < n, [N(x)] is the following block matrix:

[N(x)] = [[N1(x)] [N2(x)]] , (4)

in which the deterministic matrices [N1(x)] and [N2(x)] are defined as:

[N1(x)] = [L(x)][Φ(x)][Λ(x)]−1/2, [N2(x)] = [D(x)], (5)

and where the (n× (n−m)) matrix [D(x)] is such that:

[D(x)][D(x)]T = [L(x)]− [L(x)][Φ(x)][Λ(x)]−1[Φ(x)]T[L(x)]. (6)

• If m = n (that is to say, if all the eigenvalues are constrained), [N(x)] is defined as:

[N(x)] = [L(x)][Φ(x)][Λ(x)]−1/2. (7)

For x ∈ Ω, the random matrix [L(x)] is defined as:

[L(x)] = [N(x)][G(x)][N(x)]T, (8)
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in which x 7→ [G(x)] is a random field defined on probability space (Θ, T , P ), indexed by Ω and whose
probabilistic model can be readily deduced from the one associated with x 7→ [L(x)]. For all x in Ω, the
random matrix [G(x)] is finally written as:

[G(x)] = [H(x)][H(x)]T, (9)

where the underlying random field x 7→ [H(x)], defined on probability space (Θ, T , P ) and indexed by Ω,
is defined, following the overall methodology introduced in [24] [25], through a nonlinear mapping of a set
of n(n+1)/2 independent Gaussian stochastic germs. From a methodological point of view, the latter will
be used to induce a correlation structure on non-Gaussian random field x 7→ [L(x)] (see Section 2.2) and
for x fixed in Ω, subsequently mapped onto selected components of random matrix [H(x)] (see Section
2.3).

2.2 Definition of a family of stochastic germs {x 7→ Ui`(x)}i,`
Let {x 7→ Ui`(x)}1≤`≤i≤n be a set of n(n+1)/2 independent second-order centered homogeneous Gaussian
random fields, defined on probability space (Θ, T , P ), indexed by Rd and with values in R, such that for
all x in Rd, E{Ui`(x)2} = 1. This family of stochastic germs will be used to define the random field
x 7→ [H(x)], as explained in Section 2.3. For y ∈ Rd, let {y 7→ RUi`

(y)} be the set of associated
autocorrelation functions, defined by:

RUi`
(y) = E{Ui`(x + y)Ui`(x)}, RUi`

(0) = 1. (10)

In order to reduce the parametrization of the model, each autocorrelation function y 7→ RUi`
(y) is written

as:

RUi`
(y) =

d∏
k=1

ri`k (yk), (11)

where ri`k (0) = 1 and ri`k (yk) = (2Li`k /(πyk))2 sin2(πyk/(2L
i`
k )) for yk 6= 0. As an illustration, the plot of

function y = (y1, y2) 7→ RUi`
(y) is shown on Fig. 1 for Li`1 = Li`2 = 0.33.

Each stochastic germ x 7→ Ui`(x) is then entirely defined by the set of d spatial correlation lengths
{Li`k }dk=1, defined as:

Li`k =

∫ +∞

0

|RUi`
(0, . . . , yk, . . . , 0)|dyk. (12)

2.3 Definition of random field x 7→ [H(x)]: probability distributions

Let m < n and let x be fixed in Rd. The lower triangular matrix [H(x)] is then a random variable with
components [H]i` (for the sake of clarity, the dependence on x is dropped out hereafter). Let i be fixed
in {1, . . . , n}.

For i > m, the random variables [H]i1, . . ., [H]ii are all independent from each other (and from the
other elements). Consequently, their joint probability density function, defined from R× . . .×R×R+ into
R+, can be written as:

p[H]i1,...,[H]ii([H]i1, . . . , [H]ii) =

i∏
`=1

p[H]i`([H]i`), (13)
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Figure 1: Plot of y = (y1, y2) 7→ RUi`
(y) for Li`1 = Li`2 = 0.33 and Ω = (]0, 2[)2.

where the random variables [H]i`, i > ` , are normally distributed with mean 0 and standard deviation
1/
√

2µi(x) and the random variable [H]ii is distributed according to:

p[H]ii ([H]ii) = c1[H]ii
n−1−i+2α(x)

exp
[
−µi(x)[H]ii

2
]
, (14)

in which:

• The real parameter α(x) is strictly positive.

• The parameter µi(x) is given by µi(x) = (n− 1 + 2α(x))/2.

• The real number c1 = 2µi(x)(n−i)/2+α(x)/Γ((n − i)/2 + α(x)) is the normalization constant and
t 7→ Γ(t) is the Gamma function:

Γ(t) =

∫ +∞

0

zt−1e−zdz. (15)

For i ≤ m, the random variables {[H]i`}i`=1 are statistically dependent. It should be pointed out
however that the families of random variables {[H]11}, {[H]21, [H]22}, . . ., {[H]m`, ` = 1, . . . ,m} are
independent. Their joint probability density function is defined as:

p[H]i1,...,[H]ii([H]i1, . . . , [H]ii) = c2[H]ii
n−1−i+2α(x)

× exp

(
−µi(x)

(
i∑

`=1

[H]i`
2

)

−τi(x)

(
i∑

`=1

[H]i`
2

)2
,

(16)

6



where c2 is a normalization constant. The parameter µi(x), i ≤ m, can further be written as a function
of parameters α(x) and τi(x) by enforcing the following equation to hold:∫

R+
∗

c3g
(n+2α(x)−1)/2 exp{−µi(x)g − τi(x)g2}dg = 1, (17)

where

c3 = 1/

∫
R+

∗

g(n+2α(x)−3)/2 exp{−µi(x)g − τi(x)g2}dg. (18)

Let H(i) and U(i) be the random vectors with components (Hi1, . . . ,Hii) and (Ui1, . . . , Uii), respec-
tively. The random vector U(i) is such that:

E{U(i)} = 0, E{U(i)U(i)T} = [Ii], (19)

with [Ii] the i × i identity matrix. We now introduce the nonlinear mapping f (i) from Ri into CH(i) =
R× . . .× R× R+, such that H(i) = f (i)(U(i)).

2.4 Definition of the nonlinear mapping for i > m

For i > m, the mapping can be readily defined on each component:

• For ` = 1, . . . , i− 1, one has:

[H]i` =
Ui`√
2µi(x)

. (20)

• For ` = i, one has:

[H]ii =

√
F−1G((n−i+2α(x))/2,1)(FN (0,1)(Uii))

µi(x)
, (21)

where t 7→ F−1G(a,b)(t) and t 7→ FN (0,1)(t) are the Gamma inverse cumulative distribution function

with parameters (a, b) ∈ R+
∗
2

and the standard normal cumulative distribution function, respectively.

In Eqs. (20-21), µi(x) is given by µi(x) = (n− 1 + 2α(x))/2.

2.5 Definition of the nonlinear mapping for i ≤ m

For i ≤ m, the random variables {[H]i`}i`=1 are jointly distributed w.r.t. to Eq. (16). Consequently,
f (i) now defines a mapping of i independent Gaussian random variables (as x is fixed) onto a CH(i)-
valued random variable and both the change of variable and simulation strategy (relying on a rejection
algorithm) proposed in [13] (for random matrices) cannot be neither used nor extended (because of the
spatial correlations of the Gaussian germs). It then follows that the definition of mapping f (i), i ≤ m,
requires a more specific methodology and two possible strategies are discussed below.
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2.5.1 Use of a probabilistic transformation.

A first approach consists in defining the mapping f (i) through the Rosenblatt transformation [19]:

[Hi1] = P[Hi1]
−1(FN (0,1)(Ui1)),

[Hi2] = P[Hi2]|[Hi1]
−1(FN (0,1)(Ui2)),

. . . ,
[Hii] = P[Hii]|[Hi(i−1)],...,[Hi1]

−1(FN (0,1)(Uii)),

(22)

where [Hi`] 7→ P[Hi`]|,[Hi(`−1)]...,[Hi1]
([Hi`]), ` = 2, . . . , i, is the conditional probability distribution function

of random variable [Hi`], given [Hi1] = [Hi1], . . .,
[
Hi(`−1)

]
= [Hi(`−1)], induced by P[H]i1,...,[H]ii . From

Eq. (22), it is seen that the probabilistic transformation must be carried out sequentially, solving first for
[Hi1], then for [Hi2] given [Hi1], etc.

It is worth noticing that (i) the use of the probabilistic model in either forward simulations or inverse
problem solving (which may rely on an iterative optimization algorithm) requires performing multidimen-
sional integrations with some potential numerical bias due to the particular form of the joint probability
density function (with an obvious dependence on the values of parameters α(x) and µi(x); see Eq. (16))
and that (ii) such a transformation has to be performed m times, at each point x of the domain under
consideration and for all the realizations of the stochastic germs. These facts can clearly yield a prohibitive
computational cost and make such an approach be restricted to small values of m (that is to say, when
only a few eigenvalues are constrained) and to a reasonable number of numerical Monte Carlo simulations.
Consequently, we propose below another strategy which turns out to be more computational effective.

2.5.2 Use of a statistical reduction and projection onto the polynomial chaos.

We assume that Ndata realizations of random vector H(i) can be synthesized, using either an inverse
probabilistic transform, a rejection method or a Markov Chain Monte Carlo sampling for instance. Let
h(i) = E{H(i)} and [CH(i) ] = E{(H(i) − h(i))(H(i) − h(i))T} be the mean value and covariance matrix
of H(i), estimated from the above realizations. Note that parameter Ndata has to be determined from
a convergence analysis on these moment estimates, so that no additional bias is introduced through the
statistical reduction. Let [V ] = [v1, . . . ,vNKL ] be the (i × NKL) real matrix constituted by the NKL
eigenvectors of [CH(i) ] corresponding to the NKL largest associated eigenvalues λ1 ≥ . . . ≥ λNKL

, such
that [V ]T[V ] = [Ii]. The truncated Karhunen-Loève expansion (KLE) of random vector H(i) then reads:

H(i) ' h(i) +

NKL∑
j=1

√
λjηjv

j , (23)

where {ηj}NKL
j=1 is a set of uncorrelated (but generally statistically dependent) orthogonal centered random

variables whose arbitrary joint probability distribution is estimated having recourse to a projection onto
the polynomial chaos. Since the length of the Gaussian germ used for defining the mapping is i, it further
follows that the resulting interpolated second-order vector-valued random variable η = (η1, . . . , ηNKL

) has
to be of length NKL ≥ i. From max{NKL} = i, we then deduce NKL = i. Consequently, η admits the
following Gaussian polynomial chaos expansion, truncated at order Nord [31] (see also [7] [29]):

ηpce '
Npce∑
γ=1

zγΨγ(U(i)), (24)

8



where Npce = (i+Nord)!/(i!Nord!)− 1 and:

• {zγ}Npce

γ=1 is a set of deterministic Ri-valued coefficients such that,

Npce∑
γ=1

zγzγT = [Ii]. (25)

• The random variables {Ψγ(U(i))}Npce

γ=1 are the normalized Hermite polynomials (renumbered for

notational convenience) of the Ri-valued Gaussian random variable U(i) such that,

E{Ψγ(U(i))} = 0, E{Ψγ(U(i))Ψβ(U(i))} = δγβ , (26)

with δγβ the kronecker symbol.

The Maximum Likelihood Method [21] is used to estimate the chaos coefficients (see [6] [5] for in-
stance). In this context, note that the KLE is basically used here to make the random variables η1, . . .,
ηNKL

uncorrelated, in order to allow an identification of the chaos coefficients by using the Maximum
Likelihood Method on first-order marginal probability density functions, as discussed in [6] and [28]. Let
{ηsim(θk)}Ndata

1 be the set of independent realizations of random vector η computed from the ones of H(i)

by using the orthogonality of the eigenvectors of [CH(i) ], for j = 1, . . . , i and k = 1, . . . , Ndata:

ηsimj (θk) =
1√
λj

< H(i)(θk)− h(i),vj >Ri , (27)

where < ·, · >Ri denotes the Euclidean inner product in Ri. Taking advantage of the fact that random
variables η1, . . ., ηi are uncorrelated, let (z1, . . . , zNpce) 7→ L(z1, . . . , zNpce) be the following log-likelihood
function,

L(z1, . . . , zNpce) =

i∑
j=1

Ndata∑
k=1

log10(pηpcej
(ηsimj (θk); z1, . . . , zNpce)), (28)

in which the marginal probability density function ηj 7→ pηpcej
(ηj) can be estimated from numerical Monte

Carlo simulations using the kernel estimation method for instance. The Maximum Likelihood estimate
(ẑ1, . . . , ẑNpce) of the deterministic coefficients is then defined as:

(ẑ1, . . . , ẑNpce) = arg max
S

L(z1, . . . , zNpce), (29)

where S denotes the admissible set satisfying the constraint defined by Eq. (25). The non-convex opti-
mization problem (29) has to be solved by a random search strategy. In this paper, we use the numerical
strategy proposed in [27], where recurrent optimization problems on first-order marginal density func-
tions are sequentially solved using a Latin-hypercube-sampling-like algorithm. Taking into account that
E{ηpce} = 0, E{ηpceηpceT} = [Ii] and invoking the Maximum Entropy Principle, the random search is
performed in the neighborhood of a Gaussian prior distribution whose mean vector and covariance matrix
are the null vector 0 and the (i × i) identity matrix, respectively. Note finally that in the present case,
the convergence analysis of the chaos representation has to be carried out with respect to the order of
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expansion only, since the length of the Gaussian germ U(i) is fixed. Such an analysis can be performed
by introducing the error function Nord 7→ εpcej (Nord) on coordinate ηj defined as [27]:

εpcej (Nord) =

∫
spj

| log10{pηsimj
(e)} − log10{pηpcej

(e; z1, . . . , zNpce)}|de, (30)

in which spj is the support defined as the intersection of the supports of e 7→ pηsimj
(e) and e 7→

pηpcej
(e; z1, . . . , zNpce). The overall convergence of the chaos expansion can also be studied by charac-

terizing the convergence of the global error function Nord 7→ Conv(Nord) given by:

Conv(Nord) =
1

i

i∑
j=1

εpcej (Nord). (31)

An appropriate order of expansion can thus be selected by choosing a maximal value, either for all the
parameters εpcej (say, 0.5 for instance) or for parameter Conv(Nord). Once the coefficients of the projection

have been identified, vectorial representations of Eqs. (23 - 24) allow realizations of random vector H(i)

to be generated very efficiently at any point x of the domain and at a very low computational cost, since
realizations of the Hermite polynomials can be computed and stored beforehand.

2.6 Fundamental properties of random field x 7→ [G(x)]

The following properties of random field x 7→ [G(x)] can be deduced from the previous sections and from
[13].

Property 2.6.1 ∀x ∈ Rd, [G(x)] ∈M+
n (R) almost surely.

Property 2.6.2 ∀x ∈ Rd, E{‖[G(x)]‖2F} < +∞, that is to say, x 7→ [G(x)] is a second-order random
field.

Property 2.6.3 x 7→ [G(x)] is homogeneous for the translation in Rd.

Property 2.6.4 The mean function x 7→ E{[G(x)]} is independent of x and is such that ∀x ∈ Rd,
E{[G(x)]} = [In].

Property 2.6.5 The dispersion parameter δ[G](x) defined as:

δ[G](x) = (
1

n
E{‖[G(x)]− [In]‖2F})1/2, (32)

is such that:

δ[G](x)2 =
1

n

m∑
i=1

si(x)
2

+
n+ 1− (m/n)(n+ 1 + 2α(x))

n− 1 + 2α(x)
. (33)

Taking into account Property 2.6.4, Eq. (32) implies that E{‖[G(x)]‖2F} = n(δ[G](x) + 1). It can further
be shown that ∀i ≤ m, si(x) → 1 when α(x) → +∞. From Eq. (33), we deduce that δ[G](x) → 0 and
then, that E{‖[G(x)]‖2F} → n when α(x)→ +∞.
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Property 2.6.6 Let [µ(x)] be the diagonal matrix with components µi(x). For x fixed in Rd, let [G] 7→
p[G(x)] ([G]) be the probability density function from M+

n (R) into R+ defining the probability distribution
P[G(x)] = p[G(x)] ([G]) dG of random matrix [G(x)], where the volume measure dG on MS

n (R) is written as

dG = 2n(n−1)/4
∏

1≤i≤`≤n d[G]i` (d[G]i` is the Lebesgue measure on R; see [23]). The probability density
function p[G(x)] ([G]) is then given by:

p[G(x)] ([G]) = c4 (det ([G]))
α(x)−1

exp
(
−tr

(
[µ(x)]

T
[G]
)

−
m∑
i=1

τi(x)[G]ii
2

)
,

(34)

in which c4 is a normalization constant.

Property 2.6.7 Random field x 7→ [G(x)] is mean-square continuous on Rd.

Property 2.6.8 Realizations of random field x 7→ [G(x)] are continuous from Rd into M+
n (R) almost

surely.

Property 2.6.9 For all (x,η) ∈ Rd×Rd, the tensor-valued covariance function (x+η,x) 7→ C[G(x)](x+
η,x) is independent of x and is such that:

C[G(x)](x+ η,x) = C∗[G(x)](η) = E{([G(x+ η)]− [In])⊗ ([G(x)]− [In])}, (35)

in which η 7→ C∗[G(x)](η) is a continuous function in Rd.

2.7 Fundamental properties of random field x 7→ [L(x)]

The following results can be deduced from the previous sections.

Property 2.7.1 ∀x ∈ Rd, [L(x)] ∈M+
n (R) almost surely.

Property 2.7.2 ∀x ∈ Rd, E{‖[L(x)]‖2F} < +∞, that is to say, x 7→ [L(x)] is a second-order random
field.

From the definition of matrix [N(x)] (see Eqs. (4-7)) and using Property 2.6.4, one can deduce the
following property.

Property 2.7.3 The mean function x 7→ E{[L(x)]} is such that ∀x ∈ Rd, E{[L(x)]} = [L(x)].

From the construction above, it can be deduced that the random bilinear form associated with the weak
formulation of the elasticity stochastic boundary value problem is non-uniformly elliptic [24]. However, it
is interesting to note that because of the invertibility property, which implies the flatness of the p.d.f. of
random matrix [L(x)] near lower bound [0] (which is never reached), an uniform ellipticity condition can

be recovered if one considers a new elasticity tensor random field x 7→ [L̃(x)] = [L(x)] + ε[In], in which ε
is a any positive constant independent of x.

Finally, we introduce the field x 7→ δ[L](x), allowing the level of statistical fluctuations of x 7→ [L(x)]
to be characterized and defined as:

δ[L](x)
2

=
E{‖[L(x)]− [L(x)]‖2F}

‖[L(x)]‖2F
. (36)
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2.8 Influence of parameters α(x) and τ (x)

The aim of this section is to characterize the influence of parameters x 7→ α(x) and x 7→ τi(x), i ∈ I. For
illustration purposes, let x ∈ Ω be fixed, so that reference to spatial indexation is temporarily dropped
out. Let [L] be the mean model defined as (unit is [GPa]):

[L] =


10.1036 0.5391 2.9625 −0.0040 0.0071 −0.0165

10.1061 2.9782 −0.0041 −0.0070 −0.0036
182.69 0.0197 0.0016 0.0145

14.0339 0.0068 0.0008
Sym. 14.0121 −0.0103

9.5552

 . (37)

Eq. (37) corresponds to a random perturbation of the elasticity matrix of a carbon-epoxy unidirectional
composite (with fibers aligned along axis e3).

First of all, numerical experiments, together with the results provided in Section 2.6, show that α →
+∞ implies that δ[L] → 0 (that is to say, [L]→ [L] in probability), while non-negligible levels of statistical
fluctuations are obtained for α ≤ 150.

Let us now fix α to a given value, say, α = 60, and let τ = (τ, τ, 0, τ, τ, 0). Consequently, the variances
of stochastic eigenvalues λ1, λ2, λ4 and λ5 are similarly constrained, while no constraint is imposed on λ3
and λ6. The deterministic matrices [Φ] and [Λ], introduced in Section 2.1, then read:

[Φ] = [ϕ1 ϕ2 ϕ4 ϕ5], (38)

[Λ] =


λ1 0 0 0
0 λ2 0 0
0 0 λ4 0
0 0 0 λ5

 . (39)

Let λ 7→ pλi
(λ) be the probability density function of random eigenvalue λi. The probability density

functions of the stochastic eigenvalues are plotted for τ = 1 and τ = 104 in Fig. 2.
As expected, it is seen that the probability density functions of λ3 and λ6 are not affected by pa-

rameter τ , although the coefficient of variation of λ3 presents a very small variation which may be due
to its closeness of the constrained eigenvalues. Furthermore, these figures show that for a given value of
parameter α:

(i) Parameter τi has a negligible effect on the mean value of the stochastic eigenvalue λi.

(ii) Setting a large value of τi allows for a significant reduction of the variance of λi. At this stage, it is
worth mentioning that no matter the value of τi, the eigenvalue λi still remains stochastic, so that
its variance can be prescribed within a given range of values.

The coefficients of variation (estimated on a set of 2500 realizations by using mathematical statistics;
see [21] for instance) of the six eigenvalues are plotted (in semi-log scale) on Fig. 3, parameter τ ranging
from 0.1 to 104.

It is seen that for τ ≥ 104, the coefficient of variation of λ1 (resp. λ2, λ4 and λ5) is reduced by approx-
imately 25% (resp. 37%, 44% and 44%). Beyond this value, all the coefficients of variation corresponding
to constrained eigenvalues tend to a nonzero constant value, in agreement with the point (ii) mentioned
above. The coefficients of variation of the unconstrained eigenvalues (namely λ3 and λ6) do not depend
on τ . Based on these comments, it can be finally concluded that:
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Figure 2: Plots of the probability density functions λ 7→ pλi
(λ) of the random eigenvalues λi, i = 1, ..., 5

(left) and λ6 (right), for α = 60. Black solid line: τ = 1. Red solid line: τ = 104.
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Figure 3: Plots of τ 7→ CV {λi(τ)} for α = 60.

• The field x 7→ α(x) has to be used to calibrate the overall level of statistical fluctuations of random
matrix [L(x)], x ∈ Ω.

• The field x 7→ τi(x), i ∈ I, allows the variance of random eigenvalue λi to be partially prescribed.
Furthermore, it is seen that the influence of τi(x) is significant over a very large range of values.
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3 DEFINITION OF CONSTRAINTS WITH RESPECT TO MA-
TERIAL SYMMETRY

The aim of this section is to provide a mechanical insight in the way the variances of some eigenvalues
may be constrained. For this purpose, we first define distances in the set of elasticity tensors, based on
which a projection onto the class of elasticity tensors exhibiting given material symmetry can be defined.
Such derivations turn out to be useful in order to quantify, in a probabilistic sense, the effect of variance
constraints on material symmetry. Then, we illustrate the approach for the set of parameters defined in
Section 2.8.

3.1 Distance and projection in the set of elasticity tensors

The question of defining the distance between elasticity tensors has received considerable attention, es-
pecially within the context of experimental identification (see [3] for an application in geophysics for
instance).

Several metrics have been introduced in the literature to quantify the distance between two elasticity
tensors, the most widely used metrics being the Euclidean, Log-Euclidean [1] and Riemannian ones [14],
denoted by dE , dLE and dR respectively, and defined for any elasticity tensors [[L1]] and [[L2]] by:

dE([[L1]], [[L2]]) = ‖[[L2]]− [[L1]]‖, (40)

dLE([[L1]], [[L2]]) = ‖log ([[L2]])− log ([[L1]]) ‖, (41)

dR([[L1]], [[L2]]) = ‖log([[L1]]−1/2[[L2]][[L1]]−1/2)‖, (42)

in which the inner product and its associated norm are respectively given by:

<< [[L1]], [[L2]] >>= [[L1]]ijk`[[L2]]ijk`, (43)

and
‖[[L]]‖ =<< [[L]], [[L]] >>1/2 . (44)

Let ESym be a class of elasticity tensors with given material symmetries (isotropy, transverse isotropy,
orthotropy, etc.). Let [[L]] be a fourth-order elasticity tensor having an arbitrary symmetry, with compo-
nents [[L]]ijk` with respect to a given frame R = (0, e1, e2, e3). We then denote by [[LSym]] = PSym ([[L]])
the projection of [[L]] onto ESym, calculated by using one of the distance d introduced above, such that:

[[LSym]] = arg min
[[L̃]]∈ESym

d([[L]], [[L̃]]). (45)

For an elasticity tensor with an arbitrary symmetry, solving Eq. (45) allows one to derive either closed-form
expressions (when the Euclidean metric is used) for the closest tensors of higher symmetries, or equivalent
optimization problems for the parameters of the projection spanning ESym (when the Log-Euclidean or
Riemannian distance is retained); see the discussion in [15]. In order to reduce at most the computation
time, Euclidean projection will be used in the sequel (note however that once a projection scheme has been
chosen, any of the metric introduced above can be used for characterizing the residual distance between
a tensor with arbitrary symmetry and its projection, and that all the metrics qualitatively yield similar
results).
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3.2 Application

The eigensystem coordinate-free characterization of the material symmetries [2] states that a material
symmetry class can be defined by both the multiplicities of the eigenvalues and constraints on the related
eigenspaces. Specifically, it can be shown for instance that an isotropic (resp. transversely isotropic) tensor
has one eigenvalue of multiplicity five (resp. two eigenvalues of multiplicity two) and one eigenvalue of
multiplicity one (resp. two eigenvalues of multiplicity one). In this context, it is interesting to note
that the use of the classical random ensembles from the Random Matrix Theory generally implies all the
stochastic eigenvalues to be of multiplicity one (because of the well-known repulsion phenomena) and that
the corresponding random eigenspaces cannot be explicitly constrained nor described. Nevertheless, such
a material symmetry characterization suggests that decreasing the variances of the random eigenvalues
that would correspond to given deterministic eigenvalues of multiplicity higher than one, should the tensor
exactly belong to the considered symmetry class, may allow some statistical properties of the distance to
be prescribed. In fact, it can be shown that tailoring such variances to properly selected values allows the
mean of the distance to be partially controlled, since one can then enforce, in some sense, the “relative
closeness” of the relevant eigenvalues (see [8]).

In order to illustrate this fact, let (α, τ ) 7→ DSym(α, τ ) be the function such that:

DSym(α, τ ) = E{d([L], [LSym])}, (46)

in which [L] (and implicitly, [LSym]) depends on (α, τ ) and d is any of the distance previously introduced.
We consider the set of parameters as defined in Section 2.8. Consequently, we consider the projection
onto the set ETI of all the elasticity tensors exhibiting transverse isotropy with respect to e3, defined
with respect to the Euclidean distance dE (see [15]). Following [2] and Section 2.8, the mean distance
DTI can be specified, for a given overall level of statistical fluctuation, by setting an appropriate value of
parameter τ . The plot of function τ 7→ DTI(60, (τ, τ, 0, τ, τ, 0)), obtained using the Riemannian distance, is
shown in Fig. 4. It is seen that enforcing the closeness of the eigenvalues defining the considered material

10
−1

10
0

10
1

10
2

10
3

10
4

0.47

0.475

0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

τ

D
(6

0,
 τ

)

Figure 4: Plot of τ 7→ DTI(60, (τ, τ, 0, τ, τ, 0)).

symmetry class (according to the coordinate-free characterization) allows for the reduction of the mean
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Riemannian distance. It can also be shown that this reduction is all the more important that the overall
level of statistical fluctuation is high (that is to say, for small values of parameter α). Unlike the few other
probabilistic models previously derived within a nonparametric framework in the literature, the proposed
probabilistic model thus allows to take into account, in some sense, higher statistical fluctuations in some
given directions.

4 APPLICATION

4.1 Numerical generation of an experimental database

4.1.1 Description of the stochastic boundary value problem.

For this application, we consider the stochastic mesoscopic modeling of a random elastic microstructure,
defined on mesoscale domain Ω = (]0, 1[)3 (with boundary ∂Ω) of R3 (n = 6). Consequently, random
field x 7→ [L(x)] is now identified as the apparent elasticity tensor random field, constructed (and to be
identified) at a given spatial resolution (that is to say, at a given mesoscale). For x ∈ Ω, the associated
displacement second-order random field is denoted by x = (x1, x2, x3) 7→ V(x) = (V1(x), V2(x), V3(x)).
For the given spatial resolution introduced above, we consider the finite element discretization of the
associated elliptic stochastic boundary value problem (SBVP), for which the local random constitutive
equation reads:

σ(x) = [L(x)]ε(x), (47)

in which σ(x) and ε(x) (with εi`(x) = (∂Vi(x)/∂x` + ∂V`(x)/∂xi)/2) are the vectorial representations
(defined to ensure the consistency with the matrix representation of the elasticity tensor) of the local
random stress and strain tensors at point x. We stress at this stage that the size of the finite element
mesh used while spatially discretizing the model and the size of the spatial resolution associated with the
given mesoscale are implicitly dependent (but not necessarily equal), since the choice of the mesoscale
implies for instance some spatial correlation lengths (of the apparent elasticity tensor random field), for
which four points are at least required (in each direction) to properly catch the correlation structure.
As said previously, it is worth pointing out that the constructed prior probabilistic model to be used
hereafter intrinsically depends on the choice of the mesoscale (as well as on the boundary conditions at
microscale, the latter not being considered in the sequel since we are not concern with homogenization
between microscale and mesoscale) but does not depend, neither on the geometry nor on the boundary
conditions defined at this mesoscale. Consequently, since the model is used at the same, given mesoscale,
the identification of its parameters can be performed solving the inverse stochastic problem related to the
mesoscale boundary value problem (see below).

The prescribed Dirichlet boundary conditions are defined as follows:

• A null displacement condition is applied on ∂Ω0, where ∂Ω0 is constituted by the four points of
coordinates (0, 0, 0), (0, 1, 0), (1, 0, 0) and (1, 1, 0).

• An arbitrary deterministic displacement condition V (x) = VD(x) is applied on ∂ΩD, where ∂ΩD is
the point of coordinates (0, 0, 1).

The SBVP can be stated as follows: find the second-order random field x 7→ V(x), defined from Θ × Ω
into R3, such that:

−div σ(·) = 0 in Ω, (48)
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V(·) = 0 on ∂Ω0, (49)

V(·) = VD(·) on ∂ΩD, (50)

σ(·)n(·) = 0 on ∂ΩN = ∂Ω \ ∂Ω0 ∪ ∂ΩD. (51)

in which n(·) is the outward unit normal to ∂ΩN . The SBVP is solved by a non-intrusive stochastic finite
elements method (that is to say, by coupling numerical Monte-Carlo simulations with a deterministic finite
element solver). The domain Ω is meshed using 216 eight-nodes solid elements (with 8 integration points;
see Fig. 5).
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Figure 5: Finite Element mesh of domain Ω.

For Nexp realizations of random field x 7→ [L(x)] (see Section 4.1.2), the corresponding realizations of
displacements V2 and V3 at the Nnod nodes of the elements belonging to the face ∂Ωobs = {x ∈ Ω|x1 = 0}
constitute the experimental database. For the sake of brevity, let Wexp be the R2Nnod-valued random
variable the components of which are the observable degrees of freedom. Consequently, the database is

constituted by the set {wexp
i }

Nexp

i=1 of experimental realizations of Wexp. In order to be consistent with
both usual experimental constraints and the inverse identification procedure, we set Nexp = 100.

4.1.2 Numerical Monte Carlo simulations of random field x 7→ [L(x)].

The mean model is independent of x and is given by Eq. (37). We further assume that the spatial
correlation lengths are such that Li`1 = Li`2 = Li`3 = Lc for 1 ≤ ` ≤ i ≤ n. Finally, we consider the
following constant fields of constraints:

α(x) = α = 60, (52)

τ1(x) = τ2(x) = τ4(x) = τ5(x) = 200, τ3(x) = τ6(x) = 0, (53)

for all x in Ω. The first step for generating realizations of random field x 7→ [H(x)] according to these
parameters is the computation of the deterministic fields x 7→ µi(x), i = 1, . . . , 6. It follows from Eqs.
(52-53) that µi(x) = µi for all x in Ω. For i > 4, one has µi = (n − 1 + 2α)/2 = 62.5 (see Section 2.3).
For i ≤ 4, the parameter µi can be computed by solving Eq. (17), making use of one of the two possible
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strategies briefly reviewed in [8] for instance. Alternatively, let Gi be the random variable with values in
R+
∗ whose probability density function g 7→ pGi(g), defined from R+

∗ into R, is given by:

pGi
(g) =

̂̂
kig

(n+2α−3)/2 exp{−µig − τig2}, (54)

where
̂̂
ki is the normalization constant. Eq. (17) can then be rewritten as:

E{Gi} = 1. (55)

As an example, Eq. (55) is solved combining a pattern search algorithm with Markov Chain Monte
Carlo (MCMC) sampling (namely, the Metropolis-Hastings - MH- algorithm, with a thinned sequence
and a burn-in period set to 2000). The proposal distribution is the normal probability density function
centered at the mode of the distribution and whose coefficient of variation has been tuned beforehand.
The convergence of the statistical estimate of the left-hand side (l.h.s.) of Eq. (55) with respect to the
number of samples is illustrated on Fig. 6, for the best trial of the pattern search algorithm.
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Figure 6: Convergence of the statistical estimate of E{Gi} with respect to the number of samples
(Metropolis-Hastings algorithm).

Finally, one has µi = −337.9487 for i ≤ 4 (a symbolic calculation of the l.h.s. of Eq. (55) with α = 60,
µi = −337.9487 and τi = 200 yields 0.9991). It should be pointed out that the construction of the mapping
(α, τi) 7→ µi is independent of the problem under consideration (mean value, etc.) and thus, it may be
carried out once for all (and in particular, out of the main optimization algorithm used for the inverse
identification). The second step consists in performing a set of probabilistic transformations, mapping the
independent realizations of the Gaussian germs {x 7→ Ui`(x)}1≤`≤i≤n into the corresponding independent
realizations of random field x 7→ [H(x)] (see Section 2.4). For x fixed in Ω, the nonlinear mappings for
components [H]i` and [H]ii, i > m, ` ≤ i, are computed using Eqs. (20) and (21). For i ≤ m, we adopt
the strategy relying on the projection onto the Gaussian polynomial chaos (see Eqs. (23) and (24)). This
methodology requires the numerical Monte-Carlo simulations of random vector H(i), in order to identify
the coefficients involved in the chaos expansion (see Eq. (29)). While a few techniques for generating
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multivariate random variables are available in the literature, we recommend the use of a MCMC sampling
technique. In particular, the slice sampling technique [16] turns out to be very efficient, since it does not
require, unlike the MH algorithm, the definition of a proposal distribution (nor the definition of conditional
distributions, used in Gibbs sampling for instance). In this study, we used the slice sampling technique
with a burn-in period set to 500. Below, the overall methodology is exemplified for random vector H(4).
The convergence of the Euclidean norm of the mean vector estimate and that of the Frobenius norm of
the covariance matrix estimate is first illustrated on Fig. 7.
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Figure 7: Convergence analysis: Euclidean norm of the statistical estimate of h(4) (left) and Frobenius
norm of the statistical estimate of [CH(4) ] (right).

It is seen that a reasonable convergence of the statistical estimates is reached for 1000 samples, so
that we set Ndata = 1000. Optimization problem (29) is solved using the methodology introduced in
Section 2.4, realizations of random vector ηpce being generated considering 10000 independent realizations
of the Gaussian germ. For Nord = 3, one has εpce1 (3) = 0.4244, εpce2 (3) = 0.4076, εpce3 (3) = 0.4337,
εpce4 (3) = 0.2621 and thus, Conv(3) = 0.3819. For j = {1, . . . , 4} and Nord = 3, the probability density
functions e 7→ pηsimj

(e) and e 7→ pηpcej
(e) are plotted in Figs. 8 and 9. It is seen that there is a good match

between the reference and the chaos expansion-based (first-order marginal) distributions. Consequently,
a third-order chaos expansion is used hereafter.

4.2 Inverse identification

This section deals with a methodology for the inverse identification of the probabilistic model presented
in Section 2. The strategy is first introduced in Section 4.2.1. Each substep is then separately reviewed
and illustrated. A few general comments are finally provided.

4.2.1 Overall strategy.

Let Wopt be the response random vector obtained by solving the SBVP using numerical Monte-Carlo
simulations. Since the inverse identification is carried out on a limited set of data and solving a boundary
value problem, we assume that the deterministic parameterizing fields are independent of x and that
all the spatial correlation lengths of all the germs are equal. It is worth noticing that when full-field
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measurements are available, one may reasonably introduce nonconstant fields. From Section 2, one has
Wopt = Wopt([Lopt], αopt, τ opt, Loptc ), where superscript opt makes reference to parameters to be identified.
The admissible space Copt for the inverse identification can then be written as:

Copt = M+
n (R)× R+

∗ × R+6 × R+. (56)

Clearly, solving an inverse problem over such an admissible space is a very challenging task and may be
computationally intractable in practice. Thus, we propose to proceed sequentially as follows:

• Step 1: sequential identification of a prior solution.

- a. Identification of the mean model, without statistical fluctuations.
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- b. Identification of the parameter α and of the spatial correlation lengths, without constraining
the eigenvalues.

- c. Identification of the parameter τ .

• Step 2: refinement of all the parameters in the neighborhood of the prior solution.

The first three substeps are now reviewed below.

4.2.2 Step 1.a. Identification of a prior mean model.

Let wopt be the vector corresponding to the (observed) solution of the SBVP without fluctuations, that
is, wopt = Wopt([Lopt], ·, ·, ·). Let [Lopt] 7→ J1([Lopt]) be the cost function defined as:

J1([Lopt]) = ‖wexp −wopt‖2F, (57)

where wexp = E{Wexp}. A first strategy for identifying a prior mean model would consist in solving the
following optimization problem:

[L̂
prior

] = arg min
M+

n (R)
J1([Lopt]). (58)

It is seen that Eq. (58) has to be solved over the entire interior of the positive-semidefinite cone. While the
use of semidefinite programming algorithms allows solving such problems, it is worth noticing that (i) the
obtained result may be highly questionable, taking into account the lack of constraints and experimental
information, and that (ii) trying to identify a strongly anisotropic mean model from limited data is clearly
meaningless. Subsequently, the prior mean model may be rather assumed to belong to a given class of
material symmetry, reducing by the way the dimension of the optimization problem. For this purpose,
available microstructural information may be used in order to infer about that class, which is here taken
as ETI in view of Eq. (37). A prior mean model can then be identified solving:

[L̂
prior

] = arg min
ETI

J1([Lopt]). (59)

Taking advantage of the well-known parametrization of ETI , optimization problem (59) is solved using
a pattern search algorithm, initialized using a random perturbation of classical micromechanics-based
estimates. The optimal prior mean value is given by (unit is [GPa]):

[L̂
prior

] =


9.3247 0.6250 3.3581 0 0 0

9.3247 3.3581 0 0 0
182.09 0 0 0

14.2496 0 0
Sym. 14.2496 0

8.6997

 . (60)

The matrix the components of which are the relative error (in %) between the components of [L] (see Eq.

(37)) and the ones of [L̂
prior

] is given below:

[εr] =


7.71 15.93 13.35 − − −

7.73 12.76 − − −
0.33 − − −

1.54 − −
Sym. 1.69 −

8.95

 . (61)
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It is seen that there is a relatively good agreement between the prior solution and the reference mean
model, the maximum relative error being around 16%.

4.2.3 Step 1.b. Identification of prior values for α and L.

The second step in the methodology consists in finding the best values of scalar parameters αopt and

Loptc in the admissible space R+ × R+, setting [Lopt] = [L̂
prior

] and τ opt = 0. Consequently, one has

Wopt = Wopt([L̂
prior

], αopt,0, Loptc ). Let (αopt, Loptc ) 7→ J2(αopt, Loptc ) be the cost function defined as:

J2(αopt, Loptc ) = (1− pJ2)‖wexp −wopt‖2F + pJ2‖σexp − σopt‖2F, (62)

in which pJ2 ∈ [0, 1] is a free parameter and wopt = E{Wopt}. Vectors σexp and σopt are such that
components σexpi and σopti are the standard deviations of components Wexp

i and Wopt
i respectively.

Estimates of wopt and σopt are obtained from a set of 500 simulated realizations. Parameters α and Lc
are identified solving the following optimization problem:

(α̂prior, L̂c
prior

) = arg min
R+×R+

J2(αopt, Loptc ). (63)

Eq. (63) is solved using a trial method, that is to say, by computing the value of the cost func-
tion J2 for selected values of parameters αopt and Loptc . Following Section 2.8, we considered αopt ∈
{20, 60, 100, 140, 180}. Furthermore, the spatial correlation length can be reasonably assumed to be less
than the size the domain Ω, so that we set Loptc ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. Finally, two values of param-
eter pJ2

(namely, pJ2
= 0.5 and pJ2

= 0.8) were tested and yielded very similar results. For pJ2
= 0.5, the

values of cost function J2 (normalized by a factor 10−18) for all the trial values are reported in a matrix
form in Eq. (64) (a raw -resp. a column - corresponds to a given value of αopt -resp. to a given value of
Loptc -).

[J2] =


0.8137 2.3540 2.5909 3.7354 4.2137 4.1469
0.3159 0.0911 0.0495 0.0618 0.0844 0.0822
0.9326 0.4661 0.3860 0.2327 0.1947 0.2033
1.4239 0.8945 0.8037 0.6003 0.5444 0.5565
1.8020 1.2572 1.1634 0.9420 0.8796 0.8929

 . (64)

The corresponding graph (αopt, Loptc ) 7→ J2(αopt, Loptc ) is shown in Fig. 10. It is readily seen that the

minimum of the cost function is obtained for α̂prior = 60 and L̂c
prior

= 0.3, that is to say, for the reference
values of the parameters.

4.2.4 Step 1.c. Identification of a prior value for vector τ .

Let us now consider Wopt = Wopt([L̂
prior

], α̂prior, τ opt, L̂c
prior

), where τ opt is given by:

τ opt = (τopt1 , τopt2 , τopt3 , τopt4 , τopt5 , τopt6 ). (65)

Following the same approach as in Section 4.2.3, let τ opt 7→ J3(τ opt) be the cost function defined as:

J3(τ opt) = (1− pJ3)‖wexp −wopt‖2F + pJ3‖σexp − σopt‖2F, (66)
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Figure 10: Plot of the cost function (αopt, Loptc ) 7→ J2(αopt, Loptc ) for pJ2
= 0.5.

in which pJ3
∈ [0, 1]. A prior estimate of τ can be obtained solving:

τ̂ prior = arg min
R+6

J3(τ opt). (67)

Taking into account the large range of possible values for all the parameters τopti , i = 1, . . . , 6, Eq. (67)
can be solved using a trial method for which the values are selected using a logarithmic scale. One may
set, for instance, τopti ∈ {1, 101, 102, 103}. Allowing parameter τopti to take k different values then implies
computing the cost function (66) k6 times (that are, 4096 times for k = 4 for instance). Following the
discussion provided in Section 3, one may alternatively consider identifying parameter τ opt with reference
to the distance to a given material symmetry class. While such a strategy is clearly restricted to random
media the realizations of which may still exhibit strong symmetries (in other words, the distance of each
realization to the relevant symmetry class is bounded), such as unidirectional composites, it benefits from
a minimal parametrization, since the resulting optimization problem may be formulated using a single

unknown parameter. Since [L̂
prior

] ∈ ETI and following the second approach, one may reasonably consider
τ̂ prior = (τ̂prior, τ̂prior, 0, τ̂prior, τ̂prior, 0), in which τ̂prior is the solution of the following optimization
problem:

τ̂prior = arg min
R+

J3((τopt, τopt, 0, τopt, τopt, 0)). (68)

Eq. (68) is solved by the trial method for τopt ∈ {1, 10, 100, 200, 300, 500, 600}. The plot of function
τopt 7→ J3((τopt, τopt, 0, τopt, τopt, 0)) is reported in Fig. 11 (for pJ3

= 0.5).
It is seen that the minimal value is obtained for τ̂prior = 200.
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Figure 11: Plot of the cost function τopt 7→ J3((τopt, τopt, 0, τopt, τopt, 0)) for pJ3
= 0.5.

4.2.5 Summary and general comments about inverse identification.

Based on the previous sections, prior estimates of the parameters are then given by:

[L̂
prior

] =


9.3247 0.6250 3.3581 0 0 0

9.3247 3.3581 0 0 0
182.09 0 0 0

14.2496 0 0
Sym. 14.2496 0

8.6997

 , (69)

L̂c
prior

= 0.3, (70)

α̂prior = 60, (71)

τ̂ prior = (200, 200, 0, 200, 200, 0). (72)

The perfect agreement of the prior solutions L̂c
prior

, α̂prior and τ̂ prior with the reference values of
the parameters is obviously due to the fact that the latter belong to the sets of trial values. Since it
may not be the case in general, one may then have recourse to a refinement in the neighborhood of the
prior estimates. Note that this second step, which has not been illustrated here, does not introduce any
additional difficulty and that the resulting increase of computational cost may not be a critical issue, since
in particular, solving by a trial method is well suited for parallelization.

Three conclusions can further be drawn and are worth taking into account while addressing the inverse
identification. First of all, it is readily seen, from the parametric study performed in this research, that
parameters to be identified generally induce asymptotic behaviors that are well-known and from which
some bounds (to be used for constraining the optimization solver) can be deduced. For instance, setting
values of α larger than 100 generally implies a small level of overall fluctuations, while small values of
this parameter yields larger statistical fluctuations. Consequently, it is likely that for mesoscopic domain
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which are sufficiently large (but much smaller than the RVE size, in order to be consistent with the
modeling of apparent properties), parameter α may be sought within, say 20 and 100. The same way
of reasoning holds for the spatial correlation lengths, since local fluctuations are often (but not always)
induced by the local random topology, so that initial guesses for parameters {Li`k }k,i,` may be chosen in
accordance with some characteristic lengths of the local topology. Note also that most engineered or even
biological materials exhibits some material symmetries (at least, at the macroscale), so that the form of
vector τ may be reasonably inferred as well. In other words, although the proposed application does not
make reference to such information (since it relies on a simulated database), one should always take into
account as much information as possible in order to reduce the computational cost associated with the
inverse identification procedure.

Secondly, the model parameter identification is arguably made easier by the fact that modifications of
each parameter do have a significant impact on the realizations of the apparent elasticity tensor random
field (which may be more or less anisotropic, etc.) and therefore, on the solution displacement field, so
that the proposed objective functions exhibit rather large fluctuations over the admissible spaces (note
that this may not be the case for all applications though).

Finally, it should be pointed out that no matter the numerical strategy that is used (least square
method, maximum likelihood principle, etc.), the inverse identification basically consists in finding the
closest approximation in the proposed class of non-Gaussian positive-definite matrix-valued random fields.
Thus, while the reduced parametrization makes this class especially suitable for inverse identification
(as well as for stochastic modeling on large-scale systems), it may introduce some discrepancy between
the experimental, true random field and its approximation. However, this potential difficulty can be
circumvented by considering a more general identification strategy, in which the proposed class can be used
as a class of prior algebraic stochastic models to be combined, within an updating procedure, to functional
(chaos) representations (with final random coefficients). Such a methodology, which has been proposed
and successfully applied in [27], underlines the fact that the information used in the MaxEnt approach
(while defining the class of prior algebraic models) must be as rich as possible in order to make the updating
procedure reasonably feasible (and especially, when one is concerned with high dimension modeling and/or
makes use of the Bayesian method). From that point of view, it is believed that information related to
material symmetries is of primal importance in many practical situations.

5 CONCLUSION

In this paper, we have proposed the construction of a class of prior stochastic models for non-Gaussian
positive-definite matrix-valued random fields. In particular, this class exhibits a larger number of pa-
rameters than the other classes previously derived within a nonparametric framework. Making use of
a coordinate-free characterization of material symmetry classes, it is then shown that the probabilistic
model may allow prescribing higher statistical fluctuations in given directions. Consequently, such stochas-
tic fields turn out to be especially suitable for the fundamental issue of inverse experimental identification
under material symmetry uncertainties. It it worth noticing that they can also be used as stochastic fields
for the development of computational multi-scale approaches in which the underlying randomness arising
from fine scale features has to be taken into account at a coarse scale. We finally present and illustrate
a possible strategy for inverse identification, relying on the sequential solving of least-square optimization
problems. While the methodology is exemplified in the context of the mesoscale modeling of an elasticity
tensor random field, the proposed class is also well suited for other applications involving non-Gaussian
positive-definite matrix-valued random fields, such as the modeling of the flow through random porous
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media characterized by a permeability tensor random field.
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